JP2004148353A - Method and device for inspecting laser welding quality - Google Patents

Method and device for inspecting laser welding quality Download PDF

Info

Publication number
JP2004148353A
JP2004148353A JP2002316073A JP2002316073A JP2004148353A JP 2004148353 A JP2004148353 A JP 2004148353A JP 2002316073 A JP2002316073 A JP 2002316073A JP 2002316073 A JP2002316073 A JP 2002316073A JP 2004148353 A JP2004148353 A JP 2004148353A
Authority
JP
Japan
Prior art keywords
welding
image
laser
laser beam
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002316073A
Other languages
Japanese (ja)
Other versions
JP4147390B2 (en
Inventor
Seiichi Matsumoto
清市 松本
Yoshiro Awano
芳朗 粟野
Kazuhisa Sanpei
和久 三瓶
Takayuki Saeki
隆之 佐伯
Koji Kitayama
綱次 北山
Goro Watanabe
吾朗 渡辺
Hirozumi Azuma
博純 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2002316073A priority Critical patent/JP4147390B2/en
Publication of JP2004148353A publication Critical patent/JP2004148353A/en
Application granted granted Critical
Publication of JP4147390B2 publication Critical patent/JP4147390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for inspecting the laser welding quality for easily and reliably determining any defective welding or precursory phenomenon, and more correctly inspecting the welding quality. <P>SOLUTION: Images of a place corresponding to the irradiation position of laser beams 1a and a place in a vicinity thereof between members 2a and 2b to be welded are taken in at high speed from the side during the laser lap welding. The distance from the position of a first luminous image corresponding to the laser beam irradiation position to the position of a bridge-like second luminous image formed on the back side of the welding direction in the taken-in image is obtained by an image processor 7. The obtained value is compared with a reference value by a determination circuit 8, and the result is specified as the inspection result of the welding quality. The value for obtaining the inspection result of "Good" by an experiment or the like in advance is selected as the reference value. Both luminous images are brighter than other peripheral portions, and the distance between the luminous images can be easily obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、複数の被溶接部材が重ね合わされた被溶接物にレーザビームを照射して行うレーザ重ね合わせ溶接において、溶接の品質を検査するレーザ溶接品質検査方法及び装置に関するものである。
【0002】
【従来の技術】
レーザ溶接は、レーザビームを被溶接物に照射し、その照射部分を溶融して溶接を行うものであるが、従来、このような溶接において、レーザ照射中の溶融池及びその近傍を上方、主に真上からCCDカメラで撮影し、得られた画像を観察することにより溶接品質を判定する装置があった(特許文献1参照)。
【0003】
【特許文献1】
特開平9−225666号公報([請求項1]、[0024])
【0004】
【発明が解決しようとする課題】
しかしながら上記従来技術では、次のような問題点があった。
すなわち、複数の画像を比較観察し、相互間の差異について何らかの判定を行うには、通常、それらの画像中の明暗パターンによることが簡単、確実である。しかし、上記溶融池及びその近傍の上面視像では、正常時と欠陥発生時との間で明暗パターンに差異が少なく、溶接不良を判定することが困難であった。特に、溶接不良の前兆現象については、溶接中における溶融池及びその周辺の挙動が高速であることからも、その判定が極めて困難であった。
そこで従来から、より簡単、確実に溶接不良やその前兆現象を判定でき、溶接品質の検査を正確に行うことのできるレーザ溶接の品質検査方法が望まれていた。
本発明の目的は、上記のような要望に鑑みなされたもので、より正確に溶接品質の検査が可能なレーザ溶接品質検査方法及び装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載のレーザ溶接品質検査方法は、複数の被溶接部材が重ね合わされた被溶接物にレーザビームを照射しつつその被溶接物及び/又はレーザビームを所望の溶接方向に移動させ、前記被溶接物の重ね合わせ溶接を行うレーザ重ね合わせ溶接において、溶接中、前記被溶接部材相互間の、前記レーザビームの照射位置対応箇所及びその近傍部分の画像を溶接方向に交差する側から高速で取り込み、取り込まれた画像中の、前記レーザビームの照射位置対応箇所の第1発光像の位置から、溶接方向後方側に生じる、前記被溶接部材相互が溶融結合してなるブリッジ状の第2発光像の位置までの距離に基づいて溶接の品質検査をすることを特徴とする。
【0006】
請求項2に記載のレーザ溶接品質検査装置は、複数の被溶接部材が重ね合わされた被溶接物にレーザビームを照射しつつその被溶接物及び/又はレーザビームを所望の溶接方向に移動させ、前記被溶接物の重ね合わせ溶接を行うレーザ重ね合わせ溶接において、溶接中、前記被溶接部材相互間の、前記レーザビームの照射位置対応箇所及びその近傍部分の画像を溶接方向に交差する側から高速で取り込む高速度カメラと、この高速度カメラからの画像が入力され、この入力画像に適宜処理を施して、前記レーザビームの照射位置対応箇所の第1発光像の位置から、溶接方向後方側に生じる、前記被溶接部材相互が溶融結合してなるブリッジ状の第2発光像の位置までの距離を求める画像処理手段と、この画像処理手段により求められた前記距離に基づいて溶接の品質の良、不良を判定する判定手段とを具備することを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
本発明者らは、レーザ重ね合わせ溶接において、上記のような目的を達成するため鋭意、実験・検討を重ねた結果、次のような知見を得、本発明を完成するに至った。
すなわち、溶接中、被溶接部材相互間の、レーザビームの照射位置対応箇所とその近傍部分を側方から取り込んだ画像(側面視像)中の、レーザビームの照射位置対応箇所の発光像の位置から、溶接方向後方側に生じるブリッジ状の発光像の位置までの距離が、溶接品質の良、不良を高い確度で表わすことを見い出し、本発明を完成するに至った。
これら2つの発光像は、いずれもその周囲部分に比べて高輝度になっていることから、上記側面視像(明暗パターン)中から容易に弁別でき、また、画像の取り込みを高速で行うことで時間分解能が高められ、溶接不良は勿論のこと、その前兆現象の判定も簡単、確実に可能となり、正確な溶接品質の検査が可能となる。
なお、重ね合わせ溶接においては、溶接時、被溶接部材相互が隙間なく密着していれば正常な溶接が行われ、隙間が生じていると、その寸法が大きくなるにつれ、不良度合いの高い溶接となる。発明者らの実験によれば、薄鋼板の重ね合わせ溶接において、それら相互の隙間が、0〜0.3mm以下のときに正常な溶接が行われ、0.3mmを超え0.5mm以下では「引け」が生じ、0.5mmを超えると「溶け落ち」が生じるという結果が得られた。なお、薄鋼板の厚さ、溶接速度、レーザ出力等の条件によって上記数値は異なる。本実施例では上記の隙間量での例で述べる。
【0008】
図1は、本発明によるレーザ溶接品質検査方法が適用された装置(本発明装置)の一実施形態の説明図である。
図1において、1はレーザ溶接用のトーチで、このトーチ1からのレーザビーム(光)1aを矢印イに示すように被溶接物2に照射して溶接を行う。
被溶接物2は、複数の被溶接部材、ここでは2枚の薄鋼板2a,2bが上下に重ね合わされたものであり、重ね合わせ溶接は、このような被溶接物2(薄鋼板2a,2b)にレーザビーム1aを照射して行う。
レーザビーム1aを発生するレーザ装置には炭酸ガスレーザ装置やYAGレーザ装置があり、ここでは出力4kW程度のYAGレーザ装置が用いられている。溶接は、トーチ1若しくは被溶接物2のいずれか一方、又はそれらの双方を移動させ、ここではトーチ1を矢印ロ方向に移動させて行う。
【0009】
フィルタ3は、減光用の光学フィルタである。
高速度カメラ4は、溶接中、薄鋼板2a,2b相互間の、レーザビーム1aの照射位置対応箇所及びその近傍部分の画像を、溶接方向に交差する側からフィルタ3を通して毎秒30コマを超える高速で取り込む(撮像する)カメラ、ここではCCDカメラである。なお、溶接方向に交差する側(溶接方向の側方)から取り込まれる上記画像を側面視像という。
この高速度カメラ4は、ここでは溶接方向に直交する側からの側面視像を、溶接中の溶融部分やその周辺の挙動を観察可能な速度、例えば毎秒500コマ程度の速度で取り込む。またこの高速度カメラ4は、レンズ面がフィルタ3により覆われた状態で伸縮アーム5を介してトーチ1に取り付けられており、レーザ溶接時、溶接部6の移動に追従して上記側面視像を取り込む。
伸縮アーム5は、ここでは横アーム部5a及び縦アーム部5bで構成され、両アーム部5a,5bが伸縮制御されて側面視像が撮像できる位置に高速度カメラ4を移動させ、その受光軸が矢印ハに示すように薄鋼板2a,2b相互間位置に合うように位置制御する。
【0010】
画像処理装置7は、高速度カメラ4からの側面視像(信号)が入力され、その側面視像中の、レーザビーム1aの照射位置対応箇所の発光像(第1発光像)の位置から、薄鋼板2a,2b相互が溶融結合してなるブリッジ状の発光像(第2発光像)の位置までの距離を求める装置である。上記第2発光像は、第1発光像の位置から溶接方向後方側に生じる。
具体的には、画像処理装置7は高速度カメラ4からの側面視像を2値化し、ノイズ除去した後、細線化処理等によって上記第1及び第2発光像をよりシャープな像にし、その後、第1発光像の位置(第1発光像位置)から第2発光像の位置(第2発光像位置)までの距離を演算する。第1発光像位置から第2発光像位置までの距離を演算できれば、画像処理装置7は、どのような構成であってもよい。
【0011】
判定回路8は、画像処理装置7によって求められた、第1発光像位置から第2発光像位置までの距離(演算値)に基づいて、実行中の溶接の品質の良、不良を判定する回路である。溶接品質の良、不良判定の基準となる第1発光像位置から第2発光像位置までの距離(基準値)は、実験等によって予め求めておいた値を用いる。
画像表示装置9は、判定回路8による判定結果を表示する装置であり、ここでは、高速度カメラ4からの生画像、すなわち側面視像も表示可能である。
なお、上記画像処理装置7を高速度カメラ4の筐体内に収納し、高速度カメラ4と一体に構成してもよい。また、判定回路8を画像処理装置7内に組込み構成してもよい。
【0012】
図2〜図4は、各々高速度カメラ4により取り込まれた側面視像(拡大像)を模式的に示す図で、図2は正常溶接時、図3は「引け」発生時、図4は「溶け落ち」発生時を示す。
これらの図から分かるように、正常溶接か否かに拘わらず、側面視像中の薄鋼板2a,2b相互間には、いずれもその周囲部分に比べて高輝度の2つの発光像(第1及び第2発光像)21,22が観察される。第1発光像21は、レーザビーム1aの照射位置(矢印ニで示す位置)の対応箇所に観察され、第2発光像22は、第1発光像21の図中、右側、すなわち溶接方向後方側の、薄鋼板2a,2b相互がブリッジ状に溶融結合している部分に観察される。各図中の23はプラズマを示す。
各図において、第1発光像21の位置から第2発光像22の位置までの距離L(L1〜L3)を比較すると、図2、図3及び図4の順で大きくなる(第2発光像22の位置が後退して行く)。すなわち、図2の正常溶接時における距離L1を基準として、図3の「引け」発生時、図4の「溶け落ち」発生時の順で距離Lが大きくなり(L1<L2<L3)、溶接不良の程度が大きくなることが分かる。
したがって、この距離Lの変化を観察することにより、具体的には距離LがL1か、あるいはL2,L3かによって溶接品質の良、不良が判定でき、また距離LがL1からL2に移行する兆候が見られれば、その時をもって、溶接不良の前兆と判定することができる。この場合、側面視像は高速度カメラ4により取り込まれているので、上記距離Lの変化は高い時間分解能で観察され、溶接不良の前兆を見逃すことなく、判定できる。
【0013】
なお図2〜図4においては、便宜上、薄鋼板2a,2b相互の隙間をほぼ同一に描いているが、この隙間は、実際には次の値を示す。すなわち、図2の正常溶接時は0〜0.3mm以下、図3の「引け」発生時は0.3mmを超え0.5mm以下、図4の「溶け落ち」発生時は0.5mmを超える隙間となっている。したがって、距離LがL1以下のときには、隙間は0〜0.3mm以下となっていて、溶接品質は「良」と判定され、また距離LがL1を超えたときには、隙間は0.3mmを超えていて、溶接品質は「不良」と判定される。
【0014】
以下、判定動作の詳細を図5を併用して説明する。
図5において、ステップ501で溶接が開始されると、高速度カメラ4は、フィルタ3により減光された薄鋼板2a,2b相互間の側面視像を高速で取り込む。なお、レーザビーム1aの照射位置に対する高速度カメラ4の撮像位置は溶接中、一定であり、高速度カメラ4は、常時、側面視像を取り込む。
ステップ502では、高速度カメラ4からの側面視像(信号)を受けた画像処理装置7が、図2〜図4に示す側面視像中の第1発光像21の位置から第2発光像22の位置までの距離Lを演算する。
ステップ503では、画像処理装置7により演算された距離Lが与えられた判定回路8が、その時点の溶接品質の良、不良を判定する。判定は、上記演算値Lが基準値(閾値)L1を超えたか否かの比較によって行う。基準値L1としては、ここでは薄鋼板2a,2b相互の隙間が0.3mmであったときの演算値Lが設定されている。
判定結果、つまり溶接品質の良、不良は、画像表示装置9にリアルタイム表示される(ステップ504参照)。
以上の動作(ステップ501〜504)は、溶接終了まで繰り返される。
なお、溶接品質の良、不良の表示に加え、高速度カメラ4からの生画像(側面視像)も画像表示装置9に同時表示するようにしてもよく、更に、画像表示装置9の表示画像を録画し、溶接後において、溶接結果の解析や確認に利用できるようにしてもよい。
【0015】
【発明の効果】
以上述べたように本発明では、レーザ重ね合わせ溶接において、溶接中、被溶接部材相互間の側面視像を高速で取り込み、取り込まれた画像中の、レーザビームの照射位置対応箇所の第1発光像の位置から、溶接方向後方側に生じるブリッジ状の第2発光像の位置までの距離に基づいて溶接の品質検査をするようにした。
側面視像中の第1発光像の位置から第2発光像の位置までの距離が、溶接品質の良、不良を高い確度で表わすことは本発明者らによって見い出されている。そして、第1及び第2発光像は、いずれもその周囲部分に比べて高輝度になっており、側面視像中から容易に弁別できる。加えて、画像の取り込みを高速で行えば時間分解能が高められ、したがって本発明によれば、従来技術に比べて溶接不良は勿論のこと、その前兆現象の判定も簡単、確実に可能となり、正確な溶接品質の検査が可能となる。
【図面の簡単な説明】
【図1】本発明によるレーザ溶接品質検査装置の一実施形態の説明図である。
【図2】図1中の高速度カメラにより取り込まれた側面視像(正常溶接時)を模式的に示す図である。
【図3】溶接品質不良(引け発生)時における側面視像を模式的に示す図である。
【図4】溶接品質不良(溶け落ち発生)時における側面視像を模式的に示す図である。
【図5】溶接品質の判定動作を示すフローチャートである。
【符号の説明】
1a レーザビーム
2 被溶接物
2a,2b 薄鋼板(被溶接部材)
4 高速度カメラ
7 画像処理装置(画像処理手段)
8 判定回路(判定手段)
21 第1発光像
22 第2発光像
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser welding quality inspection method and apparatus for inspecting the quality of welding in laser overlay welding performed by irradiating a workpiece on which a plurality of members to be welded are overlapped with a laser beam.
[0002]
[Prior art]
In laser welding, a workpiece is irradiated with a laser beam, and the irradiated portion is melted to perform welding. Conventionally, in such welding, the weld pool and its vicinity during laser irradiation are mainly moved upward. There is a device for judging welding quality by photographing with a CCD camera from directly above and observing the obtained image (see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-9-225666 ([Claim 1], [0024])
[0004]
[Problems to be solved by the invention]
However, the above prior art has the following problems.
That is, in order to compare and observe a plurality of images and to make a determination about the difference between them, it is usually easy and reliable to use the light and dark patterns in these images. However, in the top view image of the molten pool and the vicinity thereof, there is little difference in the light and dark pattern between the normal time and the time when the defect is generated, and it is difficult to determine poor welding. In particular, it is extremely difficult to determine the precursor phenomenon of poor welding because the behavior of the weld pool and its surroundings during welding is high speed.
Therefore, there has been a demand for a quality inspection method for laser welding that can easily and reliably determine a welding failure or its precursor phenomenon and accurately inspect the welding quality.
An object of the present invention is to provide a laser welding quality inspection method and apparatus capable of inspecting welding quality more accurately.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a laser welding quality inspection method according to claim 1 is directed to irradiating a workpiece to which a plurality of workpieces are overlapped with each other while irradiating the workpiece with the laser beam. In laser overlay welding, in which welding is performed by moving the workpiece in a desired welding direction, images of the laser beam irradiation position corresponding portion and the vicinity thereof between the welded members during welding are displayed. The members to be welded that are captured at high speed from the side crossing the welding direction, and that are generated on the rear side in the welding direction from the position of the first emission image corresponding to the irradiation position of the laser beam in the captured image are melt-bonded to each other. The welding quality inspection is performed based on the distance to the position of the bridge-shaped second light emission image.
[0006]
The laser welding quality inspection apparatus according to claim 2, while irradiating a laser beam on a workpiece on which a plurality of workpieces are superimposed, moves the workpiece and / or the laser beam in a desired welding direction, In laser lap welding for performing lap welding of the workpieces, during welding, high speed images from the side intersecting the welding direction between the welded members and corresponding portions of the irradiation position of the laser beam and the vicinity thereof. The high-speed camera to be captured in step S1 and the image from the high-speed camera are input, and the input image is appropriately processed so that the position of the first emission image corresponding to the irradiation position of the laser beam is rearward in the welding direction. An image processing means for obtaining a distance to a position of a second light emission image in the form of a bridge formed by melting and joining the welded members, and the distance obtained by the image processing means Good quality welding based on, characterized by comprising determination means for determining failure.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
As a result of intensive studies and experiments to achieve the above-described object in laser overlay welding, the present inventors have obtained the following knowledge and completed the present invention.
That is, the position of the emission image corresponding to the position corresponding to the irradiation position of the laser beam in the image (side view image) in which the portion corresponding to the irradiation position of the laser beam and the vicinity thereof are taken from the side during welding. From this, it has been found that the distance to the position of the bridge-like light emission image generated on the rear side in the welding direction expresses good and bad welding quality with high accuracy, and the present invention has been completed.
Since these two luminescent images are both brighter than their surrounding parts, they can be easily distinguished from the side view image (bright / dark pattern), and the image can be captured at high speed. The time resolution is increased, and not only defective welding but also the precursor phenomenon can be easily and reliably determined, and accurate welding quality inspection can be performed.
In lap welding, normal welding is performed if welded members are in close contact with each other at the time of welding, and when a gap is formed, welding with a high degree of failure is performed as the size increases. Become. According to the experiments by the inventors, in the lap welding of thin steel plates, normal welding is performed when the gap between them is 0 to 0.3 mm or less. The result was that “scoring” occurred, and when the thickness exceeded 0.5 mm, “melting” occurred. In addition, the said numerical value changes with conditions, such as the thickness of a thin steel plate, welding speed, and laser output. In this embodiment, an example with the above gap amount will be described.
[0008]
FIG. 1 is an explanatory diagram of an embodiment of an apparatus (invention apparatus) to which a laser welding quality inspection method according to the present invention is applied.
In FIG. 1, reference numeral 1 denotes a laser welding torch, which is welded by irradiating a workpiece 2 with a laser beam (light) 1a from the torch 1 as shown by an arrow A.
The workpiece 2 is a plurality of members to be welded, in this case, two thin steel plates 2a and 2b, which are stacked one above the other, and the lap welding is performed using such a workpiece 2 (thin steel plates 2a and 2b). ) Is irradiated with the laser beam 1a.
Laser devices that generate the laser beam 1a include a carbon dioxide laser device and a YAG laser device. Here, a YAG laser device having an output of about 4 kW is used. Welding is performed by moving either the torch 1 or the workpiece 2 or both of them, and moving the torch 1 in the direction indicated by the arrow B.
[0009]
The filter 3 is an optical filter for dimming.
The high-speed camera 4 has a high-speed image of 30 frames per second through the filter 3 from the side intersecting the welding direction between the thin steel plates 2a and 2b during the welding, corresponding to the irradiation position of the laser beam 1a and the vicinity thereof. This is a camera that captures (captures) an image, in this case a CCD camera. In addition, the said image taken in from the side which cross | intersects a welding direction (side of a welding direction) is called side view image.
Here, the high-speed camera 4 captures a side view image from the side orthogonal to the welding direction at a speed at which the behavior of the molten part during welding and its surroundings can be observed, for example, about 500 frames per second. The high-speed camera 4 is attached to the torch 1 via the telescopic arm 5 with the lens surface covered with the filter 3, and follows the movement of the welded portion 6 during the laser welding. Capture.
The telescopic arm 5 is composed of a horizontal arm portion 5a and a vertical arm portion 5b, and the high-speed camera 4 is moved to a position where both arm portions 5a and 5b can be expanded and contracted so that a side view image can be taken. As shown by arrow C, the position is controlled so as to match the position between the thin steel plates 2a and 2b.
[0010]
The image processing device 7 receives a side view image (signal) from the high-speed camera 4, and from the position of the light emission image (first light emission image) at the position corresponding to the irradiation position of the laser beam 1a in the side view image. This is an apparatus for obtaining the distance to the position of a bridge-like light emission image (second light emission image) formed by fusion bonding of the thin steel plates 2a and 2b. The second light emission image is generated on the rear side in the welding direction from the position of the first light emission image.
Specifically, the image processing device 7 binarizes the side view image from the high-speed camera 4, removes noise, and then makes the first and second emission images sharper by thinning processing or the like, and then The distance from the position of the first emission image (first emission image position) to the position of the second emission image (second emission image position) is calculated. The image processing apparatus 7 may have any configuration as long as the distance from the first light emission image position to the second light emission image position can be calculated.
[0011]
The determination circuit 8 determines whether the quality of the welding being performed is good or bad based on the distance (calculated value) from the first light emission image position to the second light emission image position obtained by the image processing device 7. It is. As the distance (reference value) from the first light emission image position to the second light emission image position, which serves as a reference for determining whether the welding quality is good or defective, a value obtained in advance through experiments or the like is used.
The image display device 9 is a device that displays the determination result by the determination circuit 8, and here can also display a raw image from the high-speed camera 4, that is, a side view image.
The image processing apparatus 7 may be housed in the housing of the high speed camera 4 and configured integrally with the high speed camera 4. Further, the determination circuit 8 may be built in the image processing apparatus 7.
[0012]
2 to 4 are diagrams schematically showing side-view images (enlarged images) captured by the high-speed camera 4, respectively. FIG. 2 shows a normal welding, FIG. 3 shows a “shrinkage”, and FIG. Shows the occurrence of “burn-out”.
As can be seen from these drawings, regardless of whether the welding is normal or not, between the thin steel plates 2a and 2b in the side view image, two light emission images (first images) that are both brighter than the surrounding portions. And second emission images 21 and 22 are observed. The first light emission image 21 is observed at a position corresponding to the irradiation position of the laser beam 1a (position indicated by arrow D), and the second light emission image 22 is on the right side in the drawing of the first light emission image 21, that is, on the rear side in the welding direction. The thin steel plates 2a and 2b are observed at a portion where the thin steel plates 2a and 2b are melt-bonded in a bridge shape. 23 in each figure shows plasma.
In each figure, when the distance L (L1 to L3) from the position of the first light emission image 21 to the position of the second light emission image 22 is compared, it increases in the order of FIGS. 2, 3 and 4 (second light emission image). The position of 22 goes backward). That is, with reference to the distance L1 at the time of normal welding in FIG. 2, the distance L increases in the order of “shrinkage” in FIG. 3 and “burn-out” in FIG. 4 (L1 <L2 <L3). It can be seen that the degree of failure increases.
Therefore, by observing this change in the distance L, it is possible to judge whether the welding quality is good or bad, specifically whether the distance L is L1, or L2 or L3, and the distance L is a sign of shifting from L1 to L2. If it is seen, it can be determined as a sign of poor welding at that time. In this case, since the side view image is captured by the high-speed camera 4, the change in the distance L is observed with high time resolution, and can be determined without missing a sign of poor welding.
[0013]
In FIG. 2 to FIG. 4, the gap between the thin steel plates 2 a and 2 b is drawn substantially the same for convenience, but this gap actually shows the following value. That is, 0 to 0.3 mm or less at the time of normal welding in FIG. 2, more than 0.3 mm at the time of occurrence of “shrunk” in FIG. 3, and 0.5 mm or less at the time of occurrence of “burn-out” in FIG. There is a gap. Therefore, when the distance L is less than or equal to L1, the gap is 0 to 0.3 mm or less, and the welding quality is determined as “good”. When the distance L exceeds L1, the gap exceeds 0.3 mm. Therefore, the welding quality is determined as “bad”.
[0014]
Details of the determination operation will be described below with reference to FIG.
In FIG. 5, when welding is started in step 501, the high-speed camera 4 captures a side view image between the thin steel plates 2 a and 2 b dimmed by the filter 3 at a high speed. Note that the imaging position of the high-speed camera 4 with respect to the irradiation position of the laser beam 1a is constant during welding, and the high-speed camera 4 always captures a side view image.
In step 502, the image processing apparatus 7 that has received the side view image (signal) from the high-speed camera 4 starts from the position of the first light emission image 21 in the side view image shown in FIGS. The distance L to the position is calculated.
In step 503, the determination circuit 8 given the distance L calculated by the image processing device 7 determines whether the welding quality at that time is good or bad. The determination is made by comparing whether or not the calculated value L exceeds a reference value (threshold value) L1. Here, as the reference value L1, the calculated value L when the gap between the thin steel plates 2a and 2b is 0.3 mm is set.
The determination result, that is, whether the welding quality is good or bad is displayed in real time on the image display device 9 (see step 504).
The above operations (steps 501 to 504) are repeated until the end of welding.
In addition to displaying good and bad welding quality, a raw image (side view image) from the high-speed camera 4 may be displayed on the image display device 9 at the same time. May be recorded and used for analysis and confirmation of welding results after welding.
[0015]
【The invention's effect】
As described above, according to the present invention, in laser overlay welding, a side view image between members to be welded is captured at high speed during welding, and the first light emission at the position corresponding to the irradiation position of the laser beam in the captured image. The quality of the welding is inspected based on the distance from the position of the image to the position of the bridge-like second light emission image generated on the rear side in the welding direction.
It has been found by the present inventors that the distance from the position of the first light emission image to the position of the second light emission image in the side view image expresses good or bad welding quality with high accuracy. And both the 1st and 2nd light emission images are high-intensity compared with the surrounding part, and can distinguish easily from the side view image. In addition, if the image is captured at a high speed, the time resolution can be improved. Therefore, according to the present invention, not only the poor welding but also the precursor phenomenon can be easily and reliably determined as compared with the prior art. It is possible to inspect the welding quality.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a laser welding quality inspection apparatus according to the present invention.
FIG. 2 is a diagram schematically showing a side view image (during normal welding) captured by the high-speed camera in FIG. 1;
FIG. 3 is a diagram schematically showing a side view image when welding quality is poor (shrinkage occurs).
FIG. 4 is a diagram schematically showing a side view image when welding quality is poor (melting-off occurs).
FIG. 5 is a flowchart showing a welding quality determination operation.
[Explanation of symbols]
1a Laser beam 2 Work piece 2a, 2b Thin steel plate (welded member)
4 High-speed camera 7 Image processing device (image processing means)
8. Judgment circuit (determination means)
21 First light emission image 22 Second light emission image

Claims (2)

複数の被溶接部材が重ね合わされた被溶接物にレーザビームを照射しつつその被溶接物及び/又はレーザビームを所望の溶接方向に移動させ、前記被溶接物の重ね合わせ溶接を行うレーザ重ね合わせ溶接において、
溶接中、前記被溶接部材相互間の、前記レーザビームの照射位置対応箇所及びその近傍部分の画像を溶接方向に交差する側から高速で取り込み、取り込まれた画像中の、前記レーザビームの照射位置対応箇所の第1発光像の位置から、溶接方向後方側に生じる、前記被溶接部材相互が溶融結合してなるブリッジ状の第2発光像の位置までの距離に基づいて溶接の品質検査をすることを特徴とするレーザ溶接品質検査方法。
Laser superposition for lap welding of the workpieces by moving the workpiece and / or the laser beam in a desired welding direction while irradiating a workpiece on which a plurality of workpieces are superimposed with each other. In welding,
During welding, the laser beam irradiation position between the members to be welded is captured at high speed from the side intersecting the welding direction and the laser beam irradiation position in the captured image. The welding quality inspection is performed based on the distance from the position of the first light emission image of the corresponding portion to the position of the bridge-shaped second light emission image formed on the rear side in the welding direction by fusion bonding of the members to be welded. Laser welding quality inspection method characterized by the above.
複数の被溶接部材が重ね合わされた被溶接物にレーザビームを照射しつつその被溶接物及び/又はレーザビームを所望の溶接方向に移動させ、前記被溶接物の重ね合わせ溶接を行うレーザ重ね合わせ溶接において、
溶接中、前記被溶接部材相互間の、前記レーザビームの照射位置対応箇所及びその近傍部分の画像を溶接方向に交差する側から高速で取り込む高速度カメラと、
この高速度カメラからの画像が入力され、この入力画像に適宜処理を施して、前記レーザビームの照射位置対応箇所の第1発光像の位置から、溶接方向後方側に生じる、前記被溶接部材相互が溶融結合してなるブリッジ状の第2発光像の位置までの距離を求める画像処理手段と、
この画像処理手段により求められた前記距離に基づいて溶接の品質の良、不良を判定する判定手段とを具備することを特徴とするレーザ溶接品質検査装置。
Laser superposition for lap welding of the workpieces by moving the workpiece and / or the laser beam in a desired welding direction while irradiating a workpiece on which a plurality of workpieces are superimposed with each other. In welding,
A high-speed camera that captures images of the laser beam irradiation position corresponding portion and the vicinity thereof between the members to be welded at high speed from the side intersecting the welding direction during welding,
An image from the high-speed camera is input, the input image is appropriately processed, and the welded members are generated on the rear side in the welding direction from the position of the first light emission image corresponding to the irradiation position of the laser beam. Image processing means for determining the distance to the position of the bridge-like second light emission image formed by fusion bonding;
A laser welding quality inspection apparatus comprising: a determination means for determining whether the quality of welding is good or not based on the distance obtained by the image processing means.
JP2002316073A 2002-10-30 2002-10-30 Laser welding quality inspection method and apparatus Expired - Fee Related JP4147390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316073A JP4147390B2 (en) 2002-10-30 2002-10-30 Laser welding quality inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316073A JP4147390B2 (en) 2002-10-30 2002-10-30 Laser welding quality inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2004148353A true JP2004148353A (en) 2004-05-27
JP4147390B2 JP4147390B2 (en) 2008-09-10

Family

ID=32459880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316073A Expired - Fee Related JP4147390B2 (en) 2002-10-30 2002-10-30 Laser welding quality inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP4147390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103878479A (en) * 2014-03-06 2014-06-25 上海交通大学 On-line detecting method for laser welding T-type overlap joint gaps based on spectrum analysis
CN113251941A (en) * 2021-06-17 2021-08-13 中国矿业大学(北京) Ultrafast digital speckle system based on pulse laser and experimental method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106051A (en) * 1996-06-18 1998-01-13 Nissan Motor Co Ltd Quality inspecting method in laser beam welding and its equipment
JP2004058141A (en) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd Lap spot welding method and welding equipment by laser
JP2004066267A (en) * 2002-08-02 2004-03-04 Toyota Motor Corp Method and device for inspecting laser welding quality

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106051A (en) * 1996-06-18 1998-01-13 Nissan Motor Co Ltd Quality inspecting method in laser beam welding and its equipment
JP2004058141A (en) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd Lap spot welding method and welding equipment by laser
JP2004066267A (en) * 2002-08-02 2004-03-04 Toyota Motor Corp Method and device for inspecting laser welding quality

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103878479A (en) * 2014-03-06 2014-06-25 上海交通大学 On-line detecting method for laser welding T-type overlap joint gaps based on spectrum analysis
CN113251941A (en) * 2021-06-17 2021-08-13 中国矿业大学(北京) Ultrafast digital speckle system based on pulse laser and experimental method

Also Published As

Publication number Publication date
JP4147390B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP5357030B2 (en) Method and apparatus for optically determining weld quality during welding
JPH0571932A (en) Quality-inspection device of welding bead
JP5158406B2 (en) Welding situation analysis apparatus and method
JP4324052B2 (en) Laser welding quality evaluation method
JP2006082129A (en) Method and device for evaluating quality of laser beam welding
JP4240220B2 (en) Laser welding quality inspection method and apparatus
JP2012254477A (en) Method and system for detecting welding anomaly
JP2007330987A (en) Apparatus and method for analyzing welding condition using weld zone visualizing apparatus
JP2885040B2 (en) Laser welding quality control method
JP4147390B2 (en) Laser welding quality inspection method and apparatus
JP3994276B2 (en) Laser welding quality inspection method and apparatus
JP2009034731A (en) Weld zone visualizing apparatus
JP2007198761A (en) Flaw detection method and detector
JP4045424B2 (en) Laser welding quality inspection method and apparatus
JP2009229221A (en) Optical device defect inspection method and optical device defect inspecting apparatus
JP6418005B2 (en) Undercut defect detection method, undercut defect detection device, and fillet arc welding method
JP5510398B2 (en) Weld inspection equipment
JP3949076B2 (en) Laser welding quality evaluation apparatus and method
JP3901961B2 (en) Pattern correction apparatus and pattern correction method
JP2008196866A (en) Weld crack detection method and device
JP3203507B2 (en) Laser processing equipment
JP2003220480A (en) Laser beam welding machine and laser beam welding method
JP2021048269A (en) Laser processing method and laser processing device
JPS62118994A (en) Quality inspecting instrument for laser butt welding
JPS63167208A (en) Surface unevenness inspecting instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees