JP2004143561A - Method for simultaneously manufacturing hydrogen and hydrogen peroxide by electrochemical reaction - Google Patents

Method for simultaneously manufacturing hydrogen and hydrogen peroxide by electrochemical reaction Download PDF

Info

Publication number
JP2004143561A
JP2004143561A JP2002312040A JP2002312040A JP2004143561A JP 2004143561 A JP2004143561 A JP 2004143561A JP 2002312040 A JP2002312040 A JP 2002312040A JP 2002312040 A JP2002312040 A JP 2002312040A JP 2004143561 A JP2004143561 A JP 2004143561A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen peroxide
electrochemical reaction
water
peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002312040A
Other languages
Japanese (ja)
Inventor
Yuji Ando
安藤 祐司
Tadayoshi Tanaka
田中 忠良
Yasukazu Saito
齋藤 泰和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002312040A priority Critical patent/JP2004143561A/en
Publication of JP2004143561A publication Critical patent/JP2004143561A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simultaneously manufacturing hydrogen and hydrogen peroxide on site by electrolysis of water without generating gaseous oxygen or gaseous carbon dioxide. <P>SOLUTION: In this method for simultaneously manufacturing hydrogen and peroxide hydrogen, hydrogen and peroxide hydrogen are simultaneously manufactured by performing electrochemical reaction by introducing water in an anode side of an electrolytic tank partitioned by a cation exchange membrane between a cathode plate and an anode plate. Solar energy is preferably utilized for power supply of the electrochemical reaction. According to the method, on-site type hydrogen can be easily manufactured by electrolysis of water, and hydrogen peroxide is generated together with hydrogen, resulting in industrially high utility value. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水から電気化学的に水素及び過酸化水素を同時に製造するオンサイト型製造方法に関するものである。
【0002】
【従来の技術】
水素の工業的製造法としては、電気分解法、水蒸気改質法、部分酸化法及び他プラントからの副生水素回収法などが知られている。その中でも原料に炭化水素を使用した水蒸気改質法は、触媒を使用して大量に水素を生産する方法の主流技術として世界中で採用されている。例えば、原料にメタンを使用した場合は、以下の反応式により水素が製造される。
CH+HO → CO+3H2     (1)
CO+HO → CO+H2        (2)
(1)と(2)から
CH+2HO → CO+4H2 
また、水の電気分解法では、以下の反応式により水素が製造される。
2HO → 2H+O
【0003】
一方、過酸化水素の製造法としては、アンスラキノンの水添・酸化によるアンスラキノン法が主に採用されているが、この方法は大量生産向けである。これに対して、オンサイト型の簡便な過酸化水素の製法としては、陰極において酸素を電解還元して過酸化水素を製造する研究がなされている。既にいくつかの電解装置(特許文献1〜3参照)が提案されているが、なかでもMcIntyreらが報告した電解層(非特許文献1参照)は、米国の紙パルプ工場へ導入されて良好な操業実績を残している。
【0004】
【特許文献1】
特開平4−130002号公報
【特許文献2】
特開平9−228084号公報
【特許文献3】
特開平11−229168号公報
【非特許文献1】
J.A.McIntyre,Interface,Spring,p29〜33(1995)
【0005】
【発明が解決しようとする課題】
ところで、炭化水素原料を用いた水蒸気改質法による水素の製法では、水素とともに二酸化炭素を排出するため地球温暖化等による環境負荷が問題となる。また、水蒸気改質を行うには一定規模のプラントが必要となることからオンサイト型の水素製造法には適していない。
そこで、電気分解法を用いるとオンサイト型の水素製造が可能になり、自然エネルギー起源の電力を使用して電気分解を行えば環境負荷は非常に小さくなる。しかし、水素と共に生成される酸素ガスについては、以下の問題点がある。
1)水からの酸素生成には、4電子還元という電気化学的に困難なプロセスが含まれる。
2)酸素を効率的に製造する電極が開発されていない。
3)上記1)と2)を克服したとしても、生成した酸素の用途が限られている。特に太陽電池からの電気を用いて比較的小規模に電解する場合には、生成した酸素の有効な利用方法が殆どない。
【0006】
一方、アンスラキノン法による過酸化水素の製法は、オンサイト型の過酸化水素の製造には適用できない。また、陰極において酸素を電解還元して過酸化水素を製造するオンサイトにおいても、陽極では水を電解して酸素を生成しているため、電気分解による水素製造法と同じ問題点を有している。さらに、これらの製法においてはクリーンな燃料として注目されている水素を使用しなければ過酸化水素を製造できないという問題がある。
本発明は、従来の技術における上記した実状に鑑みてなされたものである。すなわち、本発明の目的は、水の電気分解により酸素や炭酸ガスを生成することなくオンサイトに水素及び過酸化水素を同時に製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、陰極板と陽極板との間にカチオン交換膜で仕切られた電解槽の陽極側に、水を導入し、電気化学反応させることによる水素及び過酸化水素の同時製造方法である。その電気化学反応の電源として、太陽エネルギーを利用することが好ましい。
【0008】
【発明の実施の形態】
本発明は、水を電解槽を用いる電気分解によって、オンサイトに水素と過酸化水素のみを同時に製造する方法である。この方法における陽極と陰極における反応式は、以下のとおりである。
陽極:2OH− → HOOH+2e   (a)
陰極:2H+2e → H      (b)
この電解プロセスは、2電子還元であるため電気化学的には4電子還元の酸素生成よりも容易に進行するものと考えられる。
【0009】
本発明の電気化学反応に使用する電解槽において、陰極には、従来より用いられている白金、ルテニウム、ロジウム、イリジウム等の貴金属の単独板或いはこれらの2種類以上からなる複合板、またはこれらの貴金属の単独または2種類以上の複合体をカーボンなどの導電性担体に担持した板状体等を水素発生用電極触媒として用いることができる。また、陽極には、フェルト状カーボン、クロス状カーボンまたはグラファイト系カーボン等の炭素質材料板を電極触媒として用いることができる。これらの炭素質材料は、市販のものをそのまま使用可能であるが、必要に応じてフッ素、臭素等で表面処理を施したものを用いてもよい。
【0010】
また、陰極の触媒作用により生成する過酸化水素の分解を防止するため、陰極と陽極の間にカチオン交換膜を挿入する。このカチオン交換膜としては、耐熱性、耐酸化性の観点から、固体高分子型燃料電池の電解質膜として利用されているフッ素系樹脂の陽イオン交換膜が望ましいが、海水濃縮による食塩製造等に利用されている非フッ素系樹脂の陽イオン交換膜も使用可能である。
【0011】
原料の水としては、天然水、水道水、工業用水等のいずれも使用可能であるが、水酸化ナトリウム等のアルカリを含む水溶液を用いることが好ましい。このような水を電解槽の陽極側に導入することにより、陽極側では、上記(a)に示す反応により生成する過酸化水素を含む水溶液が得られ、また、陰極側では、上記(b)に示す反応により水素ガスが発生する。
この方式を採用することにより、水からオンサイト型の水素を製造することが可能になり、また、有効利用性の乏しい酸素を生成してしまうという従来式の欠点を克服することができる。さらに、水素を消費することなく水から過酸化水素を製造することが可能になる。
【0012】
また、この方式では、水の電気分解により水素と過酸化水素の同時生成を行うための電源として太陽電池などの自然エネルギー起源の電気を用いることにより環境負荷の小さい水素および過酸化水素製造システムを可能にする。本発明の水素及び過酸化水素の同時製法は、オンサイト型の製造方法であるから、太陽電池パネル等と容易に組み合わせることが可能である。
【0013】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
実施例1
図1に示すように、陰極に白金網、陽極に前処理を施していないカーボンクロス(GF−20、日本カーボン社製)を配置し、両極をフッ素系カチオン交換膜(NF−115、デュポン社製)で隔てた装置(4cm×4cm)を用意した。その装置の陽極側に0.1mol/Lの水酸化ナトリウム水溶液を流速1.0ml/min.で流しつつ、カーボンクロスと白金電極間に2Vの電圧を印加し(カーボンクロスの方が高電位)、20分間通電して電気化学反応を行った。
得られた生成液について、硫酸酸性過マンガン酸カリウム溶液を用いて滴定を行ったところ、水酸化ナトリウム水溶液中に過酸化水素5μMが生成していることを確認した。また、ガスクロマトグラフを用いて陰極内の気相分析を行った結果、水素ガスの生成を確認した。この時の電流効率は54%であった。
【0014】
実施例2
実施例1における装置の陽極に用いたカーボンクロスをクレハ社製のF105に代えたこと以外は、実施例1と全く同様にして電気化学反応を行った。得られた生成液について、硫酸酸性過マンガン酸カリウム溶液を用いて滴定を行ったところ、水酸化ナトリウム水溶液中に過酸化水素5μMが生成していることを確認した。また、ガスクロマトグラフを用いて陰極内の気相分析を行った結果、水素ガスの生成を確認した。この時の電流効率は22%であった。
【0015】
実施例3
実施例1に用いた装置の陽極に用いたカーボンクロスを日本カイノール社製のCN−211−20に代えたこと以外は、実施例1と全く同様にして電気化学反応を行った。得られた生成液について、硫酸酸性過マンガン酸カリウム溶液を用いて滴定を行ったところ、水酸化ナトリウム水溶液中に過酸化水素6.25μMが生成していることを確認した。また、ガスクロマトグラフを用いて陰極内の気相分析を行った結果、水素ガスの生成を確認した。この時の電流効率は47%であった。
【0016】
【発明の効果】
本発明によれば、水の電気分解でオンサイト型の水素を容易に製造でき、その電気分解の電源として自然エネルギー起源の電気を用いれば、二酸化炭素を排出しないため環境負荷の極めて小さい水素製造システムを構築できる。
本発明の電気分解法は、水を原料として水素と過酸化水素のみを生成するプロセスであって、従来のような4電子還元を伴うプロセスで水素と酸素を製造する方法よりも容易に進行するものであり、また、従来の電気分解法のように水素の生成に伴って有効利用性の殆どない酸素が得られるという問題点を解消し、過酸化水素を生成するものであるから工業的に利用価値の高いものである。
【図面の簡単な説明】
【図1】本発明の製造方法に用いられる電気化学反応装置の一例を示す概念図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an on-site manufacturing method for electrochemically producing hydrogen and hydrogen peroxide from water at the same time.
[0002]
[Prior art]
As an industrial production method of hydrogen, an electrolysis method, a steam reforming method, a partial oxidation method, a method of recovering by-product hydrogen from another plant, and the like are known. Among them, a steam reforming method using a hydrocarbon as a raw material has been adopted all over the world as a mainstream technology of a method for producing a large amount of hydrogen using a catalyst. For example, when methane is used as a raw material, hydrogen is produced by the following reaction formula.
CH 4 + H 2 O → CO + 3H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)
From (1) and (2), CH 4 + 2H 2 O → CO 2 + 4H 2
In the water electrolysis method, hydrogen is produced by the following reaction formula.
2H 2 O → 2H 2 + O 2
[0003]
On the other hand, as a method for producing hydrogen peroxide, the anthraquinone method based on hydrogenation and oxidation of anthraquinone is mainly used, but this method is intended for mass production. On the other hand, as a simple method for producing hydrogen peroxide of an on-site type, studies have been made to produce hydrogen peroxide by electrolytic reduction of oxygen at a cathode. Several electrolytic devices (see Patent Literatures 1 to 3) have already been proposed. Among them, the electrolytic layer (see Non-Patent Literature 1) reported by McIntyre et al. It has a track record of operation.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 4-130002 [Patent Document 2]
Japanese Patent Application Laid-Open No. 9-228084 [Patent Document 3]
JP-A-11-229168 [Non-Patent Document 1]
J. A. McIntyre, Interface, Spring, p29-33 (1995)
[0005]
[Problems to be solved by the invention]
By the way, in a method of producing hydrogen by a steam reforming method using a hydrocarbon raw material, carbon dioxide is emitted together with hydrogen, so that there is a problem of environmental load due to global warming and the like. Further, since steam reforming requires a plant of a certain scale, it is not suitable for an on-site type hydrogen production method.
Therefore, when the electrolysis method is used, on-site hydrogen production becomes possible, and when the electrolysis is performed using electric power derived from natural energy, the environmental load is extremely reduced. However, oxygen gas generated together with hydrogen has the following problems.
1) Oxygen production from water involves the electrochemically difficult process of four-electron reduction.
2) An electrode for efficiently producing oxygen has not been developed.
3) Even if the above 1) and 2) are overcome, the use of the generated oxygen is limited. In particular, when electrolysis is performed on a relatively small scale using electricity from a solar cell, there is almost no effective use of the generated oxygen.
[0006]
On the other hand, the method for producing hydrogen peroxide by the anthraquinone method cannot be applied to the production of on-site type hydrogen peroxide. In addition, on-site where oxygen is electrolytically reduced to produce hydrogen peroxide at the cathode, the anode has the same problems as the hydrogen production method by electrolysis because water is electrolyzed at the anode to generate oxygen. I have. Further, in these production methods, there is a problem that hydrogen peroxide cannot be produced unless hydrogen which is attracting attention as a clean fuel is used.
The present invention has been made in view of the above situation in the related art. That is, an object of the present invention is to provide a method for simultaneously producing hydrogen and hydrogen peroxide on-site without generating oxygen or carbon dioxide gas by electrolysis of water.
[0007]
[Means for Solving the Problems]
The present invention is a method for simultaneously producing hydrogen and hydrogen peroxide by introducing water into the anode side of an electrolytic cell partitioned by a cation exchange membrane between a cathode plate and an anode plate and causing an electrochemical reaction. It is preferable to use solar energy as a power source for the electrochemical reaction.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is a method for simultaneously producing only hydrogen and hydrogen peroxide on-site by electrolysis of water using an electrolytic cell. The reaction formulas at the anode and cathode in this method are as follows.
Anode: 2OH → HOOH + 2e (a)
Cathode: 2H + + 2e → H 2 (b)
Since this electrolytic process is a two-electron reduction, it is thought that it electrochemically proceeds more easily than the four-electron reduction oxygen generation.
[0009]
In the electrolytic cell used for the electrochemical reaction of the present invention, the cathode is a conventionally used noble metal such as platinum, ruthenium, rhodium, and iridium, or a composite plate composed of two or more of these, or a combination thereof. A plate-like body in which a single noble metal or a composite of two or more kinds is supported on a conductive carrier such as carbon can be used as an electrode catalyst for hydrogen generation. For the anode, a carbonaceous material plate such as felt-like carbon, cloth-like carbon, or graphite-based carbon can be used as an electrode catalyst. As these carbonaceous materials, commercially available ones can be used as they are, but if necessary, those subjected to surface treatment with fluorine, bromine, or the like may be used.
[0010]
Further, a cation exchange membrane is inserted between the cathode and the anode in order to prevent decomposition of hydrogen peroxide generated by the catalytic action of the cathode. As the cation exchange membrane, from the viewpoint of heat resistance and oxidation resistance, a fluorinated resin cation exchange membrane used as an electrolyte membrane of a polymer electrolyte fuel cell is preferable. A cation exchange membrane of a non-fluorinated resin used can also be used.
[0011]
As the raw material water, any of natural water, tap water, industrial water and the like can be used, but it is preferable to use an aqueous solution containing an alkali such as sodium hydroxide. By introducing such water to the anode side of the electrolytic cell, an aqueous solution containing hydrogen peroxide generated by the reaction shown in the above (a) is obtained on the anode side, and the above-mentioned (b) is obtained on the cathode side. A hydrogen gas is generated by the reaction shown in FIG.
By adopting this method, it is possible to produce on-site hydrogen from water, and it is possible to overcome the conventional drawback of generating oxygen with poor effective utilization. Furthermore, it is possible to produce hydrogen peroxide from water without consuming hydrogen.
[0012]
In addition, this system uses a natural energy source such as a solar cell as a power source to simultaneously generate hydrogen and hydrogen peroxide by electrolysis of water. enable. Since the simultaneous production method of hydrogen and hydrogen peroxide of the present invention is an on-site production method, it can be easily combined with a solar cell panel or the like.
[0013]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
As shown in FIG. 1, a platinum net is arranged on the cathode, and a carbon cloth (GF-20, manufactured by Nippon Carbon Co., Ltd.) without pretreatment is arranged on the anode, and both electrodes are made of a fluorine-based cation exchange membrane (NF-115, DuPont) (4 cm × 4 cm). A 0.1 mol / L aqueous solution of sodium hydroxide was applied to the anode side of the apparatus at a flow rate of 1.0 ml / min. , A voltage of 2 V was applied between the carbon cloth and the platinum electrode (the carbon cloth had a higher potential), and an electric current was applied for 20 minutes to perform an electrochemical reaction.
The obtained product solution was titrated with a sulfuric acid acidic potassium permanganate solution, and it was confirmed that 5 μM of hydrogen peroxide was generated in the aqueous sodium hydroxide solution. In addition, as a result of performing a gas phase analysis inside the cathode using a gas chromatograph, generation of hydrogen gas was confirmed. The current efficiency at this time was 54%.
[0014]
Example 2
The electrochemical reaction was carried out in exactly the same manner as in Example 1, except that the carbon cloth used for the anode of the apparatus in Example 1 was replaced by F105 manufactured by Kureha Corporation. The obtained product solution was titrated with a sulfuric acid acidic potassium permanganate solution, and it was confirmed that 5 μM of hydrogen peroxide was generated in the aqueous sodium hydroxide solution. In addition, as a result of performing a gas phase analysis inside the cathode using a gas chromatograph, generation of hydrogen gas was confirmed. The current efficiency at this time was 22%.
[0015]
Example 3
An electrochemical reaction was carried out in exactly the same manner as in Example 1 except that the carbon cloth used for the anode of the apparatus used in Example 1 was changed to CN-211-20 manufactured by Kainol Japan. The obtained product was titrated with a sulfuric acid acidic potassium permanganate solution, and it was confirmed that 6.25 μM of hydrogen peroxide was generated in the aqueous sodium hydroxide solution. In addition, as a result of performing a gas phase analysis inside the cathode using a gas chromatograph, generation of hydrogen gas was confirmed. The current efficiency at this time was 47%.
[0016]
【The invention's effect】
According to the present invention, on-site type hydrogen can be easily produced by electrolysis of water, and if electricity derived from natural energy is used as a power source for the electrolysis, no carbon dioxide is emitted, so hydrogen production with an extremely low environmental load is produced. Can build a system.
The electrolysis method of the present invention is a process for producing only hydrogen and hydrogen peroxide using water as a raw material, and it proceeds more easily than a conventional method involving production of hydrogen and oxygen by a process involving four-electron reduction. In addition, it solves the problem that oxygen with almost no effective utilization can be obtained with the generation of hydrogen as in the conventional electrolysis method, and produces hydrogen peroxide. It is of high use value.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of an electrochemical reaction device used for a production method of the present invention.

Claims (2)

陰極板と陽極板との間にカチオン交換膜で仕切られた電解槽の陽極側に、水を導入して電気化学反応させることによる水素及び過酸化水素の同時製造方法。A method for simultaneously producing hydrogen and hydrogen peroxide by introducing water into the anode side of an electrolytic cell partitioned by a cation exchange membrane between a cathode plate and an anode plate to cause an electrochemical reaction. 前記電気化学反応の電源が、太陽エネルギーを利用するものである請求光1に記載された水素及び過酸化水素の同時製造方法。The method for producing hydrogen and hydrogen peroxide simultaneously according to claim 1, wherein the power source of the electrochemical reaction utilizes solar energy.
JP2002312040A 2002-10-28 2002-10-28 Method for simultaneously manufacturing hydrogen and hydrogen peroxide by electrochemical reaction Pending JP2004143561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312040A JP2004143561A (en) 2002-10-28 2002-10-28 Method for simultaneously manufacturing hydrogen and hydrogen peroxide by electrochemical reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312040A JP2004143561A (en) 2002-10-28 2002-10-28 Method for simultaneously manufacturing hydrogen and hydrogen peroxide by electrochemical reaction

Publications (1)

Publication Number Publication Date
JP2004143561A true JP2004143561A (en) 2004-05-20

Family

ID=32457042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312040A Pending JP2004143561A (en) 2002-10-28 2002-10-28 Method for simultaneously manufacturing hydrogen and hydrogen peroxide by electrochemical reaction

Country Status (1)

Country Link
JP (1) JP2004143561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766701B1 (en) 2006-12-01 2007-10-15 한국과학기술연구원 System for the production of hydrogen from water electrolysis using photoelectric cells
JP2009538267A (en) * 2006-05-25 2009-11-05 ユーオーピー エルエルシー In situ generation of hydrogen peroxide
US8986534B2 (en) 2011-11-14 2015-03-24 Saudi Arabian Oil Company Method for removing oxygen from a reaction medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538267A (en) * 2006-05-25 2009-11-05 ユーオーピー エルエルシー In situ generation of hydrogen peroxide
KR100766701B1 (en) 2006-12-01 2007-10-15 한국과학기술연구원 System for the production of hydrogen from water electrolysis using photoelectric cells
US8986534B2 (en) 2011-11-14 2015-03-24 Saudi Arabian Oil Company Method for removing oxygen from a reaction medium

Similar Documents

Publication Publication Date Title
Zhang et al. Insights into practical-scale electrochemical H2O2 synthesis
KR101220199B1 (en) Electrolytic synthesis of hydrogen peroxide directly from water and application thereof
JPH07502202A (en) Electrodialysis tank and electrodialysis method
JP2002526655A (en) Natural gas assisted electrolyzer
TW201323074A (en) Method for electrochemically transforming carbon dioxide
CN104919088A (en) Integrated process for producing carboxylic acids from carbon dioxide
Giddey et al. Low emission hydrogen generation through carbon assisted electrolysis
JP2011174139A (en) Electrolytic reduction apparatus for carbon dioxide
JP5470833B2 (en) Method for producing hydrogen peroxide
CN114402095B (en) Cross-flow water electrolysis
CN113862696A (en) Hydrogen production method based on solid oxide electrolyzed water
JP6948393B2 (en) Microelectrode fiber optics, optical cables, and hydrogen production equipment for hydrogen production by opto-electrical water splitting
Park et al. Heterostructured nanocatalysts to boost the hydrogen evolution reaction in neutral electrolyte
JP2004143561A (en) Method for simultaneously manufacturing hydrogen and hydrogen peroxide by electrochemical reaction
JP4671398B2 (en) Water decomposition method and apparatus, and water decomposition catalyst
CN107083557B (en) A kind of equipment using graphene high-efficiency oxygen and hydrogen-rich ionized water
JP2008156679A (en) Hydrogen producing apparatus and hydrogen producing method
JP4660853B2 (en) Hydrogen gas generating apparatus and hydrogen gas generating method
JPH04314881A (en) Electrolytic device
CN114457351A (en) Method and device for producing hydrogen by electrolyzing water step by step based on single-electrolytic-tank double-electrode two-step method
JP6991893B2 (en) Carbon dioxide reduction method and carbon dioxide reduction device
US3796647A (en) Apparatus for hydrogen production
CN111206265B (en) Air-water circulating system and multifunctional water electrolysis device thereof
US3577329A (en) Process for the production of high purity hydrogen
KR102610400B1 (en) Combined Power Generation System Using Renewable Energy and Fuel Cell, and System for Generating Hydrogen to be Used for the Same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050502