JP2004143546A - Method for surface treating metal powder for forming sintered compact, and the metal powder for forming sintered compact - Google Patents

Method for surface treating metal powder for forming sintered compact, and the metal powder for forming sintered compact Download PDF

Info

Publication number
JP2004143546A
JP2004143546A JP2002310931A JP2002310931A JP2004143546A JP 2004143546 A JP2004143546 A JP 2004143546A JP 2002310931 A JP2002310931 A JP 2002310931A JP 2002310931 A JP2002310931 A JP 2002310931A JP 2004143546 A JP2004143546 A JP 2004143546A
Authority
JP
Japan
Prior art keywords
metal powder
dispersion
resin
forming
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002310931A
Other languages
Japanese (ja)
Other versions
JP3977226B2 (en
Inventor
Wataru Suenaga
末永 渉
Kanako Takada
高田 加奈子
Minoru Moriyama
森山 稔
Akiko Miyamoto
宮本 昭子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK, Dainippon Ink and Chemicals Co Ltd filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP2002310931A priority Critical patent/JP3977226B2/en
Publication of JP2004143546A publication Critical patent/JP2004143546A/en
Application granted granted Critical
Publication of JP3977226B2 publication Critical patent/JP3977226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide surface-treated metal powders and a production method therefor by which the dispersibility and preservation stability of the metal powder and the characteristics such as a residual carbon content and a leakage current in an anode element for an electrolytic capacitor produced by using the metal powder can be improved, to provide a dispersion liquid of the metal powder, and to provide a production method therefor. <P>SOLUTION: The method of producing valve action metal powders for forming a sintered compact comprises (1) a dispersion stage where the valve action metal powder is dispersed by using a dispersion resin having anionic groups or cationic groups, and having a weight average molecular weight of ≤50,000 in a solvent; and (2) a drying stage where the obtained dispersion liquid of the valve action metal powder is dried (e.g., by using a vacuum freeze drying method). The valve action metal powder for forming a sintered compact is obtained by the production method. Further, the anode element for an electrolytic capacitor of valve action metal is produced by using the metal powder. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵用合金部材や金型、濾過用フィルター、ランプ用電極、化学反応用固体触媒、電池用電極等の製造に関し、また液晶表示素子、あるいは半導体素子などの各種電子回路の部品の配線用パターンの製造に関し、該製造法に使用しうる焼結体形成用金属粉及び分散液に関するものであり、さらに詳細には、これら各種の製品を製造するための各種焼結体の製造に用いられる焼結体形成用金属粉の表面処理物に関する。
【0002】
【従来の技術】
電子部品の分野や、金型、ランプ用電極、機械部品から汚染物質の金属製フィルターや化学反応用固体触媒、水素吸蔵金属として使用する多孔質体等、多くの金属焼結体応用製品が用いられている。
金属焼結体の製造方法に関しては、従来おこなわれている乾式成形あるいは蒸着などに代わって、タンタル金属粉の分散液を印刷方式により所定の形状に印刷して、電子部品を作製することが提案されている(例えば、特許文献1参照)。
またこれら印刷パターンは、セラミック上に印刷し、焼結することによってそのまま配線パターンとして機能させることができる。
また、焼結体形成用金属粉を、チタン、シリコン、アルミニウム、ジルコニウム等を含有するカップリング剤、HLB値が6以上で好ましくは8以下のアニオン系、カチオン系、両性又は非イオン系界面活性剤、大豆レシチン、ソルスパーズ、等の分散剤により表面処理をした後、乾燥することによる保存安定性のよい焼結体用金属粉の製造方法が提案されている(例えば、特許文献2参照)。
【0003】
しかしながら、金属粉の中には比重が高く沈降し易いばかりでなく、再凝集して分散液としての保存に全く適していないものも多い。例えばタンタル金属粉、溶剤、および樹脂を混合し、分散したタンタル金属粉の分散液は、タンタル金属粉は、真比重が16.6であり、沈降しやすく再凝集性が大きいため、長期保存後の利用に際して再分散工程が大がかりになるなど、更なる長期安定保存性が求められていた。
また塗料分散の時に、使用する結着樹脂との相溶性を良くし、塗料分散液の分散性を向上することが求められていた。
また、上記焼結工程において、真空下、高温加熱することにより弁作用金属粉末間に存在していた樹脂が蒸発除去(熱分解して除去)され、かつ、弁作用金属粉末同士の接触点における溶着により、多孔質体の形態をなす弁作用金属を用いた電解コンデンサ用陽極素子が得られる。この際、除去されきらず金属粉間に残った焼成された樹脂分及びその分解物の量(残留炭素量と呼ぶ)によりコンデンサー特性、特に漏れ電流などが悪化する問題があった。
【0004】
【特許文献1】
特開昭63−54714号公報 (請求項1及び3頁左上欄1行目〜右上欄14行目)
【特許文献2】
特開2002−167603号公報 (請求項1及び4頁段落番号0026)
【発明が解決しようとする課題】
本発明は、上記金属粉の分散性、保存安定性及び該金属粉を用いて作成した電解コンデンサ用陽極素子の残留炭素量、および漏れ電流などの特性を改善することができる表面処理された金属粉およびその製造方法、ならびに該金属粉の分散液およびその製造方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明者らは、上記実状を鑑みて鋭意検討したところ、少なくとも、焼結体形成用金属粉を、水溶性溶剤中で、溶剤と親和性を有する基を有し、分子量があまり大きくない(重量平均分子量 5万以下)分散樹脂とを分散させて得た該金属粉の分散液を乾燥することにより得られる表面処理された焼結体形成用金属粉が、該金属を結着剤溶液と混合、撹拌(分散)することにより、焼結体を形成する際に有用であることを見出した。
さらに、本発明で記載した方法により表面処理された焼結体形成用金属粉は、金属の沈降が起こりにくく、撹拌程度の易分散(再分散)により良好な分散液が得られる特徴を有し、印刷方法から、加圧成型までの製造方法に広く自由に対応できることを見出した。
【0006】
さらに、この表面処理した焼結体形成用金属粉は固体或いは粉体状態で保存又は輸送することができるため、安全性及び長期保存安定性にも優れることを見い出した。
【0007】
また、本発明で記載された方法で得られた金属粉は比較的低い分子量のアニオン性基又はカチオン性基を有する樹脂で表面処理された後、結着剤で成型されている。真空下、高温加熱することにより弁作用金属粉末間に存在していた樹脂が分解除去される際に、もっとも除去されにくい金属近傍が、分解しやすい低分子量の樹脂で覆われているため、除去が完全に行われやすい。更に金属表面が樹脂で覆われているため、結着樹脂との親和性があがり、少ない量の結着樹脂で成型化が可能となる。これらの相乗効果により、樹脂除去工程後の残留樹脂成分、つまり残留する炭素量が少なくなる。このため、本発明の方法で得られた金属粉を使用したコンデンサーは、静電容量や、漏れ電流が少ない優れたコンデンサー特性を示す事を見いだした。
すなわち本発明は、(1)弁作用金属粉を溶剤中で、アニオン性基又はカチオン性基を有し、重量平均分子量が5万以下である分散樹脂を用いて分散させる分散工程と、(2)得られた弁作用金属粉の分散液を(例えば、真空凍結乾燥法等を用いて)、乾燥させる乾燥工程を有することを特徴とする焼結体形成用弁作用金属粉の製造方法を提供する。
また、本発明は、上記製造方法により得られた焼結体形成用弁作用金属粉を提供する。
更に、本発明は、上記製造法により得られた焼結体形成用弁作用金属粉を用いて製造した弁作用金属の電解コンデンサ用陽極素子を提供する。
【発明の実施の形態】
以下本発明を詳細に説明する。
【0008】
(弁作用金属)
前記弁作用金属としては、タンタル、ニオブ、アルミニウム、チタン、及びこれらの金属の合金である弁作用金属を用いることができる。これらの弁作用金属の中でも、タンタル及びニオブが好適であり、特にタンタルが用いられる。
本発明に適する弁作用金属粉の純度は99.5%以上のものが好ましい。また、平均一次粒子径は0.01〜5.0μmであることが好ましく、特に0.01〜1.0μmであることが好ましい。
【0009】
(分散樹脂)
本発明で使用される分散樹脂は、炭化水素鎖を主体とした疎水基を主鎖に、親水基を側鎖に有する、両親媒性の高分子が好ましい。
【0010】
(分散樹脂の重量平均分子量)
使用される分散樹脂の重量平均分子量は、500〜2万であることが好ましく、1000〜1万であることが更に好ましい。
分散樹脂としては、天然系や合成系があり、一般の界面活性剤と同様にアニオン系及びカチオン系に分類される。
【0011】
(アニオン系)
(メタ)アクリレート・アクリル酸共重合物、スチレン−無水マレイン酸共重合物、オレフィン−無水マレイン酸共重合物、ナフタレンスルホン酸塩のホルマリン縮合物、ポリアクリル酸ナトリウム、ポリアクリルアミド部分加水分解物、アクリルアミド・アクリル酸ナトリウム共重合物、アルギン酸ナトリウム、ポリエステル酸のアミドアミン塩、ポリエーテルリン酸エステルのアミン塩などのアニオン系樹脂が挙げられる。
【0012】
(カチオン系)
ポリエチレンイミン、ポリビニルイミダゾリン、アミノアルキル(メタ)アクリレート・アクリルアミド共重合物、ポリアクリルアミドマンニッヒ変性物、キトサン類などのカチオン系樹脂が挙げられる。
尚、本明細書では、アクリレートはアクリル酸エステルを意味する。
分散樹脂の種類と配合量は、弁作用金属粉の種類により適宜選択することができる。分散樹脂の配合量は、弁作用金属粉100質量部に対して0.01〜3.00質量部が好ましく、0.05〜0.50質量部が更に好ましい。分散樹脂が0.01質量部未満では、充分な分散性が得られない。3.00質量部を越えると水溶性溶剤中での分散時に気泡が大量に発生し、分散液として使用が困難になる。
【0013】
本発明に使用する弁作用金属粉に対する分散樹脂による分散処理は、前記水溶性溶剤に分散樹脂を配合して十分溶解させた後に、弁作用金属粉を配合することが好ましい。必要に応じて、中和により水溶性溶剤への溶解度を上げることができる。
配合後0.5〜2.0時間分散すると、分散樹脂剤と金属粉とが吸着平衡に達する。本発明に使用される分散樹脂としては、(メタ)アクリレート・アクリル酸共重合物が好ましく、更に(メタ)アクリル酸の含有率が10〜80質量%である共重合体が好ましく、特に20〜70質量%の含有率であることが好ましい。
【0014】
(水溶性溶剤)
水、あるいは水と容易に混ざり合う水溶性有機溶剤を含むものとする。ここで用いる水溶性有機溶剤としては、例えばエタノール、イソプロピルアルコールなどの低級アルコール;エチレングリコールヘキシルエーテル、ジエチレングリコールブチルエーテルなどのアルキルアルコールのエチレンオキシド付加物やプロピレングリコールプロピルエーテルなどのアルキルアルコールのプロピレンオキシド付加物などが挙げられる。
【0015】
これら溶剤はここに挙げたものに限定されるものではなく、その使用に際しては単独、或いは2種類以上混合して用いることができる。
乾燥法として、例えば、真空凍結乾燥を使用する場合は凍結し易い溶剤、またはアスピレータ等では昇華しやすい溶剤が選択される。溶剤、作業性に応じて適宜乾燥法は選択すれば良く、本記述に限定されるものではない。
【0016】
(分散安定性)
焼結体形成用金属粉である弁作用金属粉としてタンタル金属粉を用いると、タンタル金属が比重16.6と、非常に沈降し易く、また分散後の再凝集が起こりやすい。更に、粉体状態において危険物2類に分類されることから判るように、非常に発火し易い性質を持っている。このため、本発明者は、本発明に記載の表面処理方法をタンタル金属に適用することによって、分散性、安全性に対し非常に効果が大きいことを見出した。
【0017】
また比重の大きいタンタルのような金属粉は、通常の処理方法では、沈降し易く、濃度分布が発生し易いため、一様な処理を行いにくいが、分散樹脂を含有する溶剤中で分散後、凍結を行ってタンタル金属粉を閉じこめることにより、より一様な処理条件で金属表面を処理することができる。
【0018】
分散完了した分散液は成形体に形成されたのち焼結されるが、成形体形成過程にはまた、塗布のように最適粘度領域が比較的低粘度領域にあるものと、押し出しのように高粘度領域にあるものとが存在する。
従来は、分散液粘度が使用分散機で規定されてしまうため、分散終了後の分散液粘度をそれぞれの成形体形成方法に合わせた最適粘度に再調整を行うのが常である。例えば押し出し成形に最適な高粘度に設定するために、分散後の試料の溶剤量を少なくしなければならないこともあった。
【0019】
しかしながら本願発明の表面処理された金属粉を用いると、溶剤もしくは樹脂と溶剤を加えた撹拌のみで広範囲の粘度の分散液が作製可能である。
このように上記のような焼結体形成用金属の表面処理を行うと、分散液形成用の溶剤と撹拌させるだけで分散液を形成することができるため、成型体の作製に用いる成型手段に最も適した金属粉含有量で粘度を有する分散液を容易に作製することができる。
【0020】
本発明の、分散樹脂により表面処理された焼結体形成用金属は、とくに金属表面の活性度が高い場合においても、有機物で表面処理されているため、表面が酸素に曝されることがないので、酸化・発熱により、発火する危険性が少ない。
この表面は、ESCA、X線光電子分光分析、熱分解ガスクロマトグラフィ、あるいはCHNコーダーなどの元素分析等により、その表面状態を把握することができる。
また、分散樹脂により表面処理された焼結体形成用金属は、危険性のない状態で保存若しくは輸送することができ、原料の安全性及び長期保存安定性の問題をも解消することができる。
さらに、塗料化後の放置期間が長くとも容易に撹拌程度の再分散で安定した分散液が得られる。
【0021】
(残留炭素)
また、本発明で記載された方法で得られた金属粉は、前記のように比較的低い分子量の樹脂で表面処理された後、結着剤で成型化されているため、真空下、高温加熱することにより樹脂の除去が完全に行われやすい。更に樹脂で覆われた金属表面が、結着樹脂との親和性が高いため少量の結着樹脂で成型化が可能となる。これらの相乗的作用により、樹脂除去工程後の残留樹脂成分、つまり残留する炭素量が少なくなる。このため、本発明の方法で得られた金属粉を使用したコンデンサーは、静電容量に優れ、漏れ電流が少ない優れたコンデンサー特性を示す。
焼結後の残留炭素は、200ppm以下にすることが可能となる。更に好ましくは、100ppm以下にすることが可能となる。残留炭素量が少なくなることにより漏れ電流は300μA/g以下、好ましくは150μA/g以下が可能となる。
【0022】
(真空凍結乾燥)
前記乾燥工程の一例として、真空凍結法を挙げることができる。焼結体形成用金属粉の表面を分散剤処理する方法を用いると、基本的に低温状態で凍結した水系溶剤から、水系溶剤のみが昇華除去される。水系溶剤に溶出して失われる分散剤がないため、添加した分散剤のほとんど全てが処理後の焼結体形成用金属粉中に残留する。分散液中で分散剤は金属粉の表面付近に局在しており、真空凍結方法の実施時に、水系溶剤のみが除去され、分散剤が金属粉表面に一様に付着した状態で取り出せる可能性が高く、しかも、通常の水系溶剤を除去する時のように除去時に金属粉同士が凝集することがなく、極めて効率的な処理方法といえる。このように使用した分散剤全てが焼結体形成用金属粉中に残留するため、分散剤の効果と使用量の関係を把握し易く、使用量に対する最適化が行いやすい。これは発火の危険性のあるタンタルのような金属粉を処理するに当たり該金属粉を完全被覆する量を検討する上でも重要である。
【0023】
さらに真空凍結法は基本的に低温での処理であるため、発火の危険はさらに小さいものとなる。
また、金属表面を覆った樹脂が、真空乾燥処理を行うことにより結着樹脂との相溶性を更に増すことができる。
上記焼結体形成用金属粉の表面処理物の製造方法に使用される水系溶剤は、その凝固点が−40℃以上であることが好ましい。
【0024】
本発明に記載した真空凍結乾燥法を用い、分散剤によって表面処理した焼結体形成用金属粉を用いることにより、塗布直前に添加溶剤、もしくは添加溶剤と添加結着剤との簡単な撹拌操作を行うことで、良好な分散液が得られるため、塗布装置に付随の設備として塗布液調整用に多くを必要としない。
【0025】
このような処理済の焼結体形成用金属粉は、そのまま圧着成形して焼結することもできるし、再度溶剤を加えて塗料として用いることもできる。その際溶剤の選定は、必ずしも金属粉の表面の樹脂を完全に溶解するものである必要はなく、樹脂との関係、各種成型法との関係において、種々のものを用いることができる。
【0026】
凍結真空乾燥は、例えば、焼結体形成用金属粉、水、及び分散剤を含む焼結体形成用金属粉の分散液の場合は、大気圧で0℃以下に予備凍結し、理論上は0℃における水の蒸気圧4.5mmHg (=600Pa)を越えないよう真空度をコントロールすれば良い。乾燥速度、コントロールのやり易さを加味すれば1mmHg (=133.32Pa)以下にして、その蒸気圧での融点(凝固点)まで、温度を上げることが好ましい。
【0027】
真空中で昇華蒸発させ、乾燥するため、乾燥による収縮がわずかであり、組織や構造が破壊しにくい。また、熱風乾燥のように高温で試料内での水の移動による乾燥ではなく、固体の凍った状態で低温乾燥するため、部分的成分濃縮、変形、成分変化がほとんどないという利点が本発明の製造方法にとって好ましい利点を与える。
以上、凍結真空乾燥による乾燥方法を述べたが、凍結真空乾燥を用いないで公知慣用のアスピレータによる乾燥、自然乾燥、等も利用できる。
【0028】
(分散液中の金属粉濃度)
上記のように、焼結体形成用金属粉と、水溶性溶剤と、分散剤とを所望の割合で混合して、分散手段により分散させた焼結体形成用金属粉の分散液を得ることができるが、凍結乾燥を行う場合の焼結体形成用金属粉の分散液中の固形分濃度の範囲は、0.5〜80%が好ましく、特に、1〜50%が好ましい。
【0029】
(結着剤含有分散液)
さらに、また本発明は、少なくとも焼結体形成用金属粉と、水溶性溶剤と、分散樹脂とを分散させて得た焼結体形成用金属粉の分散液を、凍結真空乾燥法により乾燥して表面処理された該金属粉を得、その後に、該金属粉と、溶剤若しくは、結着剤と溶剤とを混合することにより焼結体形成用金属粉の結着剤含有分散液を提供することができる。本発明に記載の方法で表面処理された焼結体形成用金属粉は、溶剤中に分散させて、塗布、印刷、加圧成型されてもよいが、さらに分散液に結着剤である樹脂を用いることにより分散安定性を増してから、塗布、印刷、成型を行ってもよい。
【0030】
(分散手段)
分散手段としては、例えば、二本ロール、三本ロール、ボールミル、サンドミル、ペブルミル、トロンミル、サンドグラインダー、セグバリアトライター、高速インペラー分散機、高速ストーンミル、高速度衝撃ミル、ニーダー、ホモジナイザー、超音波分散機等により、混練、分散することができる。
【0031】
(塗料化)
本発明の表面処理された焼結体形成用金属粉を原料とすれば、使用する際に、溶剤もしくは溶剤と結着剤とを用いて簡単な分散処理をするだけで、焼結体形成用金属粉の分散液が得られる。
【0032】
結着剤を含む分散液を作製する際に使用する溶剤は、
メタノール、エタノール、n−プロパノール、ベンジルアルコール等のアルコール類;
アセトン、メチルエチルケトン、シクロヘキサノン、イソホロン、アセチルアセトン等のケトン類;
N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;
テトラヒドロフラン、ジオキサン、メチルセロソルブ、ジグライム等のエーテル類;
酢酸メチル、酢酸エチル,炭酸ジエチル等のエステル類;
ジメチルスルホキシド、スルホラン等のスルホキシド及びスルホン類;
塩化メチレン、クロロホルム、四塩化炭素、1,1,2−トリクロロエタン等の脂肪族ハロゲン化炭化水素;
ベンゼン、トルエン、o−キシレン、p−キシレン、m−キシレン、モノクロロベンゼン、ジクロロベンゼン等の芳香族類等が挙げられる。
これらの溶剤はここに挙げたものに限定されるものではなく、その使用に際しては単独、或いは2種類以上混合して用いることができる。
【0033】
(結着剤)
本発明に用いる結着剤としては、アクリル樹脂、ブチラール樹脂、ポリビニルアルコール樹脂、アセタール樹脂、フェノール樹脂、尿素樹脂、酢酸ビニルエマルジョン、ポリウレタン樹脂、ポリ酢酸ビニル樹脂、エポキシ樹脂、メラミン樹脂、アルキド樹脂、ニトロセルロース樹脂、天然樹脂を単独、あるいは2種以上混合して利用することができる。
分解残留物の点において他の樹脂より、アクリル樹脂が好ましい。結着樹脂がアクリル樹脂である場合は、前記分散樹脂はアクリレート及び又はアクリル酸の重合体であることが好ましい。2−エチルへキシルアクリレートを含有するアクリレートの重合体が最も好ましい。
【0034】
前記結着剤の使用量は、焼結体形成用金属粉100質量部あたり0.01〜30質量部の範囲が好ましく、0.01〜10質量部の範囲が特に好ましい。
また、溶剤の使用量は塗布方法、印刷方法により異なり、適宜使用量を選択すればよい。
【0035】
このようにして作製された焼結体形成用金属粉末分散液は、種々の塗布方法により塗布物として形成することができる。例えば、公知のロール塗布方法等、具体的には、エアードクターコート、ブレードコート、ロッドコート、押し出しコート、エアーナイフコート、スクイズコート、含侵コート、リバースロールコート、トランスファーロールコート、グラビアコート、キスコート、キャストコート、スプレイコート等により基体上に塗布物を形成することができる。
【0036】
(塗布法、印刷法)
また、各種印刷方法を適用することも可能である。具体的には、孔版印刷方法、凹版印刷方法、平版印刷方法などを用いて基体上に所定の大きさに塗布物を印刷することができる。
さらにまた印刷方法以外にも、分散液を金型に注入し、乾燥し、成型体を形成後に、焼結を行っても良い。
【0037】
塗布もしくは印刷時の基体の材料としては、例えば、ポリエチレンテレフタレートフィルム(PETフィルム)を基体として、このフィルム上に焼結体形成用金属粉末分散液を塗布し、塗布物の乾燥後、フィルム上より塗布物を剥離して、この塗布物のみを焼結処理しても良い。
また、塗布物(印刷物)の厚さは、印刷法によって焼結用の成型体を形成するときは、塗布物の湿時厚さが10〜1000μmの範囲が好ましく、特に50〜500μmの厚さが好ましい。
塗布物(印刷物)の乾燥後、単位体積当たりの塗布物(印刷物)の密度を上げるために、焼結体形成用金属粉末の粒子径の著しい変形を生じない程度に、プレスあるいはカレンダー処理をしてもよい。
【0038】
また、液晶表示素子や半導体素子等の各種電子回路装置のときは、基体の材料としては無機質基板あるいは金属板上に焼結体形成用金属粉の分散液を印刷し、これを一体として焼結処理して薄膜回路として形成させても良い。
【0039】
このようにして得られた塗布物を、例えば、約60℃で約60〜120分乾燥し、次いで約300〜600℃の熱処理工程によって有機物質の除去を行い、さらに約10〜30分間、約1200〜1600℃の高温加熱処理を行って完全に有機物質の除去を行うと伴に金属粉末同士を融着させることにより、液晶表示素子や半導体素子等の各種電子回路装置が得られる。
【0040】
【実施例】
以下、実施例として、焼結体形成用金属粉がタンタル金属粉である場合を用いて本発明を更に具体的に説明するが、本発明はこれら実施例の範囲に限定されるものではない。
【0041】
また、本実施例において用いた樹脂A及びBは以下のものである。
分散樹脂A:モノマー組成比において、メチルメタアクリレート/エチルメタアクリレート/メタアクリル酸=47/29/24(質量比)であり、重量平均分子量6300である樹脂。
分散樹脂B:モノマー組成比において、メチルメタアクリレート/2−エチルヘキシルメタクリレート/メタアクリル酸=65/24/11(質量比)であり、重量平均分子量10800である樹脂。
上記分散樹脂は、酸成分が完全に中和される量の水酸化カリウムにより中和し、あらかじめ10質量%分散樹脂水溶液を作製した。
【0042】
(実施例1)
平均1次粒子計0.5μmのタンタル金属粉末100g、分散樹脂として分散樹脂Aの10質量%水溶液を1g、溶媒である水50g、及び3mm径のスチールボール50gを100ccのポリ瓶に入れて混合し、振とう機(ペイントコンディショナー)を用いて0.5時間練肉して、タンタル金属粉の分散液(a1)を得た。
【0043】
このタンタル金属粉の分散液(a1)を底面の寸法250mmL×150mmWの平型トレイに100g移し、液体窒素中にトレイを浸積し予備凍結乾燥した後、凍結真空乾燥を行った。
凍結真空乾燥機は日本真空(株)製の「DFM−05AS」を用いた。予備凍結したタンタル金属の分散液(a1)を、あらかじめ約−40℃に冷却した棚にのせて、真空度7〜10Paで20時間の凍結真空乾燥後、嵩高のスポンジ状乾燥物としてタンタル金属粉の表面処理物(b1)60gを得た。
【0044】
次に、タンタル金属粉の表面処理物(b1)50g、バインダー樹脂としてアクリル樹脂「NCB166」(大日本インキ化学工業(株)製)1.25g(固形分量)、およびシクロヘキサノンとトルエンの混合溶媒6.5gを50ccのポリ瓶に入れて混合し、振とう機(ペイントコンディショナー)を用いて0.5時間攪拌して、結着剤含有タンタル金属分散液B−1を得た。この分散液B−1を回路パターンを形成した厚さ150μmのマスクフィルムを用いて、孔版印刷したところ良好な印刷物が得られた。
【0045】
(実施例2)
実施例1での分散樹脂を分散樹脂Bにした以外は、実施例1と同様の方法にて、タンタル金属の分散液(a2)を150.1g、及びタンタル金属粉の表面処理物(b2)を50g、結着剤含有タンタル金属分散液B−2を60.3g得た。
回路パターンを形成した厚さ150μmのマスクフィルムを用いて、孔版印刷したところ実施例と同様に、良好な印刷物が得られた。
【0046】
(比較例1)
実施例1で分散樹脂を用いないで、実施例1と同様の方法にて、タンタル金属粉の分散液(c1)を150.1g、及びタンタル金属粉の表面処理物(d1)を50g、結着剤含有タンタル金属分散液D−1を60.3g得た。
【0047】
(比較例2)
実施例1での分散樹脂の代わりに、分散剤としてソルスパーズ20000(ゼネカ(株)製)0.1gにした以外は、実施例1と同様の方法にて、タンタル金属粉の分散液(c2)を150.1g、及びタンタル金属粉の表面処理物(d2)を50g、結着剤含有タンタル金属分散液D−2を60.3g得た。
【0048】
(評価1)タンタル金属の分散液(a1)、(a2)及び(c2)の比較
評価項目:タンタル金属の分散液の沈降速度
【0049】
【表1】

Figure 2004143546
【0050】
評価基準:塗料分散後5時間静置したときの分離の有無
◎:分離が全く見られず。
○:分離がわずかに見られる。
×:分離が見られる。
【0051】
(評価2)タンタルコンデンサーの電気特性
評価項目:コンデンサー特性
1) 残留炭素の測定方法
LECO社製 C−200型炭素分析装置にて測定した。
2) 漏れ電流の測定方法
焼結体を0.02wt%の燐酸溶液中60℃ 20Vで化成し、酸化タンタルからなる誘電体層を形成した後、EIAJ RC−2361Aに記載の方法により、漏れ電流を測定した。
3) 静電容量の測定方法
漏れ電流同様、0.02wt%の燐酸溶液中60℃20Vで化成した焼結体素子を、
EIAJ RC−2361Aに記載の方法により、静電容量の測定を行った。
【0052】
【表2】
Figure 2004143546
【0053】
表1〜2から明らかなように、
・実施例1〜2の本発明によるタンタル金属粉の分散液は、比較例1と比べて明らかに沈降性が改善されている。
・実施例1〜2の本発明による結着剤含有タンタル金属分散液を使用して作製したタンタルコンデンサーは、比較例2と比べると残留炭素量が低下し、漏れ電流も低減している。
【0054】
本発明のタンタル金属粉の前記分散樹脂による表面処理物を使用すれば、バインダー樹脂と溶媒を0.5〜1時間程度撹拌混合するだけで容易に分散液を作製することができる。これに対して比較例のように表面処理を行っていないタンタル金属粉を使用すると、実施例と同等の分散状態を得ることが難し。分散メディアを混合して4〜5時間の振とう機による分散工程を経て同等の分散状態を得ようとしても良好な分散状態が得られない場合が多い。
【0055】
【発明の効果】
本発明による焼結体形成用金属の表面処理物は、分散性に優れるものであり、長期保存安定性があり、優れた分散性を有する焼結体形成用金属粉の分散液が得られる。該金属を使用することにより電気特性に優れているコンデンサーを作製することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the manufacture of alloy members and molds for hydrogen storage, molds for filters, filters for lamps, electrodes for lamps, solid catalysts for chemical reactions, electrodes for batteries, etc., and various electronic circuit components such as liquid crystal display elements or semiconductor elements. The present invention relates to a metal powder for forming a sintered body and a dispersion liquid which can be used in the production method, and more particularly, to the production of various sintered bodies for producing these various products. The present invention relates to a surface-treated material of a metal powder for forming a sintered body used in the present invention.
[0002]
[Prior art]
Many metal-sintered products are used, including electronic components, molds, lamp electrodes, mechanical components, metal filters for contaminants, solid catalysts for chemical reactions, and porous materials used as hydrogen storage metals. Have been.
Regarding the method for manufacturing metal sintered bodies, it is proposed that instead of the conventional dry molding or evaporation, a dispersion of tantalum metal powder be printed in a predetermined shape by a printing method to produce electronic components. (For example, see Patent Document 1).
Further, these printed patterns can be made to function as wiring patterns as they are by printing them on ceramic and sintering them.
Further, a metal powder for forming a sintered body may be a coupling agent containing titanium, silicon, aluminum, zirconium, etc., an anionic, cationic, amphoteric or nonionic surfactant having an HLB value of 6 or more and preferably 8 or less. There has been proposed a method for producing a metal powder for a sintered body having good storage stability by performing a surface treatment with a dispersant such as an agent, soybean lecithin, Solsperse, and the like, followed by drying (for example, see Patent Document 2).
[0003]
However, many metal powders not only have a high specific gravity and easily sediment, but also re-agglomerate and are not at all suitable for storage as a dispersion. For example, a tantalum metal powder dispersion obtained by mixing and dispersing a tantalum metal powder, a solvent, and a resin has a true specific gravity of 16.6, is easy to settle, and has a large re-agglomeration property. Further long-term stable storage properties have been demanded, for example, when the redispersion step becomes large in the use of water.
In addition, it has been required to improve the compatibility with the binder resin to be used at the time of dispersing the paint and to improve the dispersibility of the paint dispersion.
Further, in the sintering step, the resin existing between the valve action metal powders is evaporated and removed (removed by thermal decomposition) by heating at a high temperature under vacuum, and at the contact point between the valve action metal powders. By welding, an anode element for an electrolytic capacitor using a valve metal in the form of a porous body is obtained. At this time, there has been a problem that capacitor characteristics, especially leakage current, and the like are deteriorated due to the amount of calcined resin remaining between metal powders and the amount of decomposition products thereof (referred to as residual carbon amount).
[0004]
[Patent Document 1]
JP-A-63-54714 (Claims 1 and 3 from line 1 in the upper left column to line 14 in the upper right column)
[Patent Document 2]
JP-A-2002-167603 (Claims 1 and 4 Paragraph No. 0026)
[Problems to be solved by the invention]
The present invention provides a surface-treated metal capable of improving the dispersibility of the metal powder, the storage stability and the residual carbon content of the anode element for an electrolytic capacitor prepared using the metal powder, and the characteristics such as leakage current. It is intended to provide a powder and a method for producing the same, and a dispersion of the metal powder and a method for producing the same.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above-mentioned actual situation. As a result, at least a metal powder for forming a sintered body in a water-soluble solvent has a group having an affinity for a solvent and has a not so large molecular weight ( (Weight average molecular weight: 50,000 or less) A metal powder for forming a sintered body having a surface treatment obtained by drying a dispersion of the metal powder obtained by dispersing the dispersion resin with the binder resin is used as a binder solution. It has been found that mixing and stirring (dispersing) are useful when forming a sintered body.
Furthermore, the metal powder for forming a sintered body that has been surface-treated by the method described in the present invention is characterized in that metal sedimentation does not easily occur, and a good dispersion can be obtained by easy dispersion (redispersion) of the degree of stirring. It has been found that it is possible to freely cope with a wide variety of manufacturing methods from printing methods to pressure molding.
[0006]
Furthermore, since the surface-treated metal powder for forming a sintered body can be stored or transported in a solid or powder state, it has been found that the metal powder has excellent safety and long-term storage stability.
[0007]
The metal powder obtained by the method described in the present invention is surface-treated with a resin having a relatively low molecular weight anionic group or cationic group, and then molded with a binder. When the resin existing between the valve metal powders is decomposed and removed by heating at high temperature under vacuum, the vicinity of the metal that is most difficult to remove is covered with low molecular weight resin that is easily decomposed. Easy to do completely. Further, since the metal surface is covered with the resin, the affinity with the binder resin is increased, and the molding can be performed with a small amount of the binder resin. Due to these synergistic effects, the residual resin component after the resin removing step, that is, the amount of residual carbon is reduced. For this reason, it was found that a capacitor using the metal powder obtained by the method of the present invention exhibited excellent capacitance characteristics and excellent capacitor characteristics with little leakage current.
That is, the present invention provides (1) a dispersion step of dispersing a valve action metal powder in a solvent using a dispersion resin having an anionic group or a cationic group and having a weight average molecular weight of 50,000 or less; A) providing a method for producing a valve action metal powder for forming a sintered body, comprising a drying step of drying the obtained dispersion liquid of the valve action metal powder (for example, by using a vacuum freeze-drying method); I do.
Further, the present invention provides a valve metal powder for forming a sintered body obtained by the above-mentioned production method.
Further, the present invention provides an anode element for a valve action metal electrolytic capacitor manufactured using the valve action metal powder for forming a sintered body obtained by the above manufacturing method.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0008]
(Valve action metal)
As the valve metal, tantalum, niobium, aluminum, titanium, and a valve metal which is an alloy of these metals can be used. Among these valve metals, tantalum and niobium are preferred, and tantalum is particularly used.
The purity of the valve metal powder suitable for the present invention is preferably 99.5% or more. Further, the average primary particle diameter is preferably from 0.01 to 5.0 μm, and particularly preferably from 0.01 to 1.0 μm.
[0009]
(Dispersed resin)
The dispersion resin used in the present invention is preferably an amphiphilic polymer having a hydrophobic group mainly composed of a hydrocarbon chain in a main chain and a hydrophilic group in a side chain.
[0010]
(Weight average molecular weight of dispersed resin)
The weight average molecular weight of the dispersing resin used is preferably from 500 to 20,000, more preferably from 1,000 to 10,000.
Dispersion resins include natural and synthetic resins, and are classified into anionic and cationic as well as general surfactants.
[0011]
(Anionic)
(Meth) acrylate / acrylic acid copolymer, styrene-maleic anhydride copolymer, olefin-maleic anhydride copolymer, formalin condensate of naphthalene sulfonate, sodium polyacrylate, polyacrylamide partial hydrolyzate, Anionic resins such as acrylamide / sodium acrylate copolymer, sodium alginate, amidoamine salts of polyester acids, and amine salts of polyether phosphate esters are exemplified.
[0012]
(Cationic)
Cationic resins such as polyethyleneimine, polyvinylimidazoline, aminoalkyl (meth) acrylate / acrylamide copolymer, modified polyacrylamide Mannich, and chitosans.
In addition, in this specification, an acrylate means an acrylate ester.
The type and amount of the dispersed resin can be appropriately selected depending on the type of the valve metal powder. The mixing amount of the dispersing resin is preferably from 0.01 to 3.00 parts by mass, more preferably from 0.05 to 0.50 parts by mass, per 100 parts by mass of the valve metal powder. If the dispersing resin is less than 0.01 parts by mass, sufficient dispersibility cannot be obtained. When the amount exceeds 3.00 parts by mass, a large amount of bubbles is generated during dispersion in a water-soluble solvent, and it becomes difficult to use the dispersion as a dispersion.
[0013]
In the dispersion treatment of the valve metal powder used in the present invention with the dispersing resin, it is preferable that the valve resin metal is mixed after the resin is sufficiently mixed and dissolved in the water-soluble solvent. If necessary, the solubility in a water-soluble solvent can be increased by neutralization.
When the mixture is dispersed for 0.5 to 2.0 hours after mixing, the dispersed resin agent and the metal powder reach the adsorption equilibrium. As the dispersion resin used in the present invention, a (meth) acrylate / acrylic acid copolymer is preferable, and a copolymer having a (meth) acrylic acid content of 10 to 80% by mass is preferable, and particularly, 20 to 80% by mass. The content is preferably 70% by mass.
[0014]
(Water-soluble solvent)
It contains water or a water-soluble organic solvent that easily mixes with water. Examples of the water-soluble organic solvent used herein include lower alcohols such as ethanol and isopropyl alcohol; ethylene oxide adducts of alkyl alcohols such as ethylene glycol hexyl ether and diethylene glycol butyl ether; and propylene oxide adducts of alkyl alcohols such as propylene glycol propyl ether. Is mentioned.
[0015]
These solvents are not limited to those listed here, and can be used alone or as a mixture of two or more.
As a drying method, for example, when vacuum freeze-drying is used, a solvent that is easily frozen or a solvent that is easily sublimated with an aspirator or the like is selected. The drying method may be appropriately selected depending on the solvent and workability, and is not limited to this description.
[0016]
(Dispersion stability)
When tantalum metal powder is used as the valve metal powder, which is the metal powder for forming the sintered body, the tantalum metal has a specific gravity of 16.6, so that it is very easy to settle, and reagglomeration after dispersion tends to occur. Furthermore, as can be seen from being classified as a dangerous substance 2 in a powder state, it has a very easily ignitable property. For this reason, the present inventor has found that applying the surface treatment method according to the present invention to tantalum metal has a great effect on dispersibility and safety.
[0017]
In addition, metal powder such as tantalum having a large specific gravity is easy to settle out by a normal processing method, and it is difficult to perform uniform processing because a concentration distribution is easily generated, but after dispersion in a solvent containing a dispersing resin, By freezing and confining the tantalum metal powder, the metal surface can be processed under more uniform processing conditions.
[0018]
The dispersion that has been dispersed is formed into a compact and then sintered.However, in the process of forming a compact, the optimal viscosity region is relatively low in the viscosity region, as in the case of coating, and high, as in extrusion. Some are in the viscosity range.
Conventionally, since the viscosity of the dispersion is regulated by the disperser used, it is usual to adjust the viscosity of the dispersion after dispersion to an optimum viscosity suitable for each method of forming a molded article. For example, in order to set an optimum high viscosity for extrusion molding, the amount of solvent in the sample after dispersion may have to be reduced in some cases.
[0019]
However, when the surface-treated metal powder of the present invention is used, a dispersion having a wide range of viscosities can be produced only by stirring with a solvent or a resin and a solvent.
When the surface treatment of the metal for forming a sintered body as described above is performed, the dispersion can be formed only by stirring with the solvent for forming the dispersion, and therefore, the molding means used for producing the molded body may be used. A dispersion having a viscosity with the most suitable metal powder content can be easily prepared.
[0020]
The metal for forming a sintered body surface-treated with the dispersion resin of the present invention is not exposed to oxygen because the surface is treated with an organic substance even when the activity of the metal surface is particularly high. Therefore, there is little danger of ignition due to oxidation and heat generation.
The surface state of this surface can be grasped by ESCA, X-ray photoelectron spectroscopy, pyrolysis gas chromatography, elemental analysis using a CHN coder or the like.
Further, the sintered body-forming metal surface-treated with the dispersion resin can be stored or transported in a state without danger, and the problems of the safety of the raw material and the long-term storage stability can be solved.
Furthermore, a stable dispersion can be easily obtained by re-dispersion with the degree of stirring easily even if the standing period after the coating is long.
[0021]
(Residual carbon)
In addition, the metal powder obtained by the method described in the present invention is surface-treated with a resin having a relatively low molecular weight as described above, and then molded with a binder. By doing so, the resin is easily removed completely. Further, since the metal surface covered with the resin has a high affinity with the binder resin, it can be molded with a small amount of the binder resin. Due to these synergistic effects, the residual resin component after the resin removing step, that is, the amount of residual carbon is reduced. For this reason, the capacitor using the metal powder obtained by the method of the present invention has excellent capacitance and exhibits excellent capacitor characteristics with little leakage current.
The residual carbon after sintering can be reduced to 200 ppm or less. More preferably, the concentration can be reduced to 100 ppm or less. By reducing the amount of residual carbon, the leakage current can be reduced to 300 μA / g or less, preferably 150 μA / g or less.
[0022]
(Vacuum freeze-drying)
An example of the drying step is a vacuum freezing method. When the method of treating the surface of the metal powder for forming a sintered body with a dispersant is used, only the aqueous solvent is basically sublimated and removed from the aqueous solvent frozen at a low temperature. Since there is no dispersant that is eluted and lost in the aqueous solvent, almost all of the added dispersant remains in the sintered compact-forming metal powder after the treatment. In the dispersion, the dispersant is localized near the surface of the metal powder, and when the vacuum freezing method is carried out, only the aqueous solvent is removed, and the dispersant may be removed with uniform adhesion to the metal powder surface In addition, the metal powder does not agglomerate at the time of removal as in the case of removing an ordinary aqueous solvent, and it can be said that this is an extremely efficient treatment method. Since all of the used dispersant remains in the metal powder for forming the sintered body, it is easy to grasp the relationship between the effect of the dispersant and the amount used, and it is easy to optimize the amount used. This is also important when treating metal powder such as tantalum, which has a risk of ignition, in considering the amount of the metal powder to be completely covered.
[0023]
Furthermore, since the vacuum freezing method is basically a treatment at a low temperature, the risk of ignition is further reduced.
Further, the compatibility of the resin covering the metal surface with the binder resin can be further increased by performing a vacuum drying treatment.
The aqueous solvent used in the method for producing a surface-treated product of the metal powder for forming a sintered body preferably has a solidification point of −40 ° C. or higher.
[0024]
By using the vacuum freeze-drying method described in the present invention and using a metal powder for forming a sintered body surface-treated with a dispersant, a simple stirring operation of an additive solvent or an additive solvent and an additive binder immediately before application is performed. By doing so, a good dispersion can be obtained, so that a large amount of equipment for adjusting the coating liquid is not required as equipment associated with the coating apparatus.
[0025]
Such treated metal powder for forming a sintered body can be pressed and molded as it is and sintered, or can be used again as a paint by adding a solvent again. At this time, the selection of the solvent is not necessarily required to completely dissolve the resin on the surface of the metal powder, and various solvents can be used in relation to the resin and various molding methods.
[0026]
Freeze-vacuum drying is, for example, in the case of a dispersion of a sintered body-forming metal powder containing a sintered body-forming metal powder, water, and a dispersant, the material is pre-frozen to 0 ° C. or less at atmospheric pressure, and theoretically The degree of vacuum may be controlled so that the vapor pressure of water at 0 ° C. does not exceed 4.5 mmHg (= 600 Pa). Taking into account the drying speed and the ease of control, it is preferred that the temperature be 1 mmHg (= 133.32 Pa) or less and the temperature be raised to the melting point (solidification point) at the vapor pressure.
[0027]
Since it is sublimated and evaporated in a vacuum and dried, the shrinkage due to the drying is slight, and the tissue and structure are not easily destroyed. In addition, since the solid is frozen and dried at a low temperature, instead of drying by moving water in a sample at a high temperature like hot air drying, partial component concentration, deformation, and component change are hardly affected. Provides favorable advantages for the manufacturing method.
The drying method by freeze-vacuum drying has been described above. However, without using freeze-vacuum drying, drying using a known and commonly used aspirator, natural drying, and the like can also be used.
[0028]
(Metal powder concentration in dispersion)
As described above, a sintered body forming metal powder, a water-soluble solvent, and a dispersant are mixed at a desired ratio, and a dispersion of the sintered body forming metal powder dispersed by a dispersing unit is obtained. However, the range of the solid content concentration in the dispersion of the metal powder for forming a sintered body when freeze-drying is performed is preferably 0.5 to 80%, and particularly preferably 1 to 50%.
[0029]
(Binder-containing dispersion)
Still further, the present invention provides a method for drying a sintered body-forming metal powder dispersion obtained by dispersing at least a sintered body-forming metal powder, a water-soluble solvent, and a dispersion resin by a freeze-vacuum drying method. To obtain a binder-containing dispersion of a metal powder for forming a sintered body by mixing the metal powder with a solvent or a binder and a solvent. be able to. The metal powder for forming a sintered body surface-treated by the method according to the present invention may be dispersed in a solvent, applied, printed, and pressed. The application, printing, and molding may be performed after the dispersion stability is increased by using.
[0030]
(Dispersion means)
Dispersing means, for example, two rolls, three rolls, ball mill, sand mill, pebble mill, tron mill, sand grinder, segbar lighter, high-speed impeller disperser, high-speed stone mill, high-speed impact mill, kneader, homogenizer, ultra The mixture can be kneaded and dispersed by an acoustic disperser or the like.
[0031]
(Painting)
If the surface-treated metal powder for forming a sintered body of the present invention is used as a raw material, it can be used simply by performing a simple dispersion treatment using a solvent or a solvent and a binder. A dispersion of the metal powder is obtained.
[0032]
Solvent used when preparing a dispersion containing a binder,
Alcohols such as methanol, ethanol, n-propanol and benzyl alcohol;
Ketones such as acetone, methyl ethyl ketone, cyclohexanone, isophorone, acetylacetone;
Amides such as N, N-dimethylformamide, N, N-dimethylacetamide;
Ethers such as tetrahydrofuran, dioxane, methyl cellosolve, diglyme;
Esters such as methyl acetate, ethyl acetate and diethyl carbonate;
Sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane;
Aliphatic halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, 1,1,2-trichloroethane;
Examples include aromatics such as benzene, toluene, o-xylene, p-xylene, m-xylene, monochlorobenzene, and dichlorobenzene.
These solvents are not limited to those listed here, and can be used alone or as a mixture of two or more.
[0033]
(Binder)
As the binder used in the present invention, acrylic resin, butyral resin, polyvinyl alcohol resin, acetal resin, phenol resin, urea resin, vinyl acetate emulsion, polyurethane resin, polyvinyl acetate resin, epoxy resin, melamine resin, alkyd resin, Nitrocellulose resins and natural resins can be used alone or as a mixture of two or more.
Acrylic resins are preferred over other resins in terms of decomposition residues. When the binder resin is an acrylic resin, the dispersion resin is preferably a polymer of acrylate and / or acrylic acid. Most preferred are acrylate polymers containing 2-ethylhexyl acrylate.
[0034]
The amount of the binder used is preferably in the range of 0.01 to 30 parts by mass, particularly preferably in the range of 0.01 to 10 parts by mass, per 100 parts by mass of the metal powder for forming a sintered body.
The amount of the solvent used depends on the coating method and the printing method, and may be appropriately selected.
[0035]
The thus-produced metal powder dispersion for forming a sintered body can be formed as a coating by various coating methods. For example, known roll coating methods and the like, specifically, air doctor coat, blade coat, rod coat, extrusion coat, air knife coat, squeeze coat, impregnation coat, reverse roll coat, transfer roll coat, gravure coat, kiss coat A coating material can be formed on a substrate by a cast coat, a spray coat, or the like.
[0036]
(Coating method, printing method)
Also, various printing methods can be applied. Specifically, the coating material can be printed on the substrate in a predetermined size using a stencil printing method, an intaglio printing method, a lithographic printing method, or the like.
Further, in addition to the printing method, the dispersion may be injected into a mold, dried, and formed into a molded body, followed by sintering.
[0037]
As a material of the substrate at the time of application or printing, for example, a polyethylene terephthalate film (PET film) is used as a substrate, and a metal powder dispersion for forming a sintered body is applied onto the film, and after the applied material is dried, The applied material may be peeled off, and only the applied material may be subjected to sintering.
Further, when a molded product for sintering is formed by a printing method, the thickness of the applied material (printed material) is preferably such that the wet thickness of the applied material is in the range of 10 to 1000 μm, particularly 50 to 500 μm. Is preferred.
After drying the coated material (printed material), press or calender treatment is performed to increase the density of the coated material (printed material) per unit volume so that the particle size of the metal powder for forming the sintered body does not significantly change. You may.
[0038]
In the case of various electronic circuit devices such as a liquid crystal display element and a semiconductor element, a dispersion liquid of a metal powder for forming a sintered body is printed on an inorganic substrate or a metal plate as a base material, and this is integrally sintered. It may be processed to form a thin film circuit.
[0039]
The coated material thus obtained is dried, for example, at about 60 ° C. for about 60 to 120 minutes, and then the organic substance is removed by a heat treatment step at about 300 to 600 ° C., and further about 10 to 30 minutes. Various electronic circuit devices such as a liquid crystal display element and a semiconductor element can be obtained by performing high-temperature heat treatment at 1200 to 1600 ° C. to completely remove an organic substance and to fuse metal powders together.
[0040]
【Example】
Hereinafter, the present invention will be described more specifically by way of examples in which the metal powder for forming a sintered body is tantalum metal powder, but the present invention is not limited to the scope of these examples.
[0041]
The resins A and B used in this example are as follows.
Dispersion resin A: A resin having a monomer composition ratio of methyl methacrylate / ethyl methacrylate / methacrylic acid = 47/29/24 (mass ratio) and a weight average molecular weight of 6,300.
Dispersion resin B: A resin having a monomer composition ratio of methyl methacrylate / 2-ethylhexyl methacrylate / methacrylic acid = 65/24/11 (mass ratio) and a weight average molecular weight of 10,800.
The above-mentioned dispersed resin was neutralized with potassium hydroxide in such an amount that the acid component was completely neutralized, and a 10% by mass aqueous resin solution was prepared in advance.
[0042]
(Example 1)
100 g of tantalum metal powder having an average primary particle size of 0.5 μm, 1 g of a 10% by weight aqueous solution of dispersing resin A as a dispersing resin, 50 g of water as a solvent, and 50 g of 3 mm-diameter steel balls are put in a 100 cc poly bottle and mixed. Then, the mixture was kneaded with a shaking machine (paint conditioner) for 0.5 hour to obtain a dispersion liquid (a1) of tantalum metal powder.
[0043]
100 g of the dispersion liquid (a1) of the tantalum metal powder was transferred to a flat tray having a bottom surface of 250 mmL × 150 mmW, immersed in liquid nitrogen, preliminarily freeze-dried, and then freeze-vacuum dried.
The freeze vacuum dryer used was "DFM-05AS" manufactured by Japan Vacuum Corporation. The pre-frozen tantalum metal dispersion (a1) is placed on a shelf previously cooled to about −40 ° C., freeze-vacuum dried at a degree of vacuum of 7 to 10 Pa for 20 hours, and then tantalum metal powder is obtained as a bulky sponge-like dried product. 60 g of the surface-treated product (b1) was obtained.
[0044]
Next, 50 g of a surface-treated tantalum metal powder (b1), 1.25 g (solid content) of an acrylic resin "NCB166" (manufactured by Dainippon Ink and Chemicals, Inc.) as a binder resin, and a mixed solvent 6 of cyclohexanone and toluene 0.5 g was placed in a 50 cc plastic bottle, mixed, and stirred for 0.5 hour using a shaker (paint conditioner) to obtain a binder-containing tantalum metal dispersion B-1. When this dispersion B-1 was stencil-printed using a 150 μm-thick mask film on which a circuit pattern was formed, a good printed matter was obtained.
[0045]
(Example 2)
150.1 g of a tantalum metal dispersion (a2) and a surface-treated tantalum metal powder (b2) were prepared in the same manner as in Example 1 except that the dispersion resin in Example 1 was changed to the dispersion resin B. Was obtained, and 60.3 g of a binder-containing tantalum metal dispersion B-2 was obtained.
When stencil printing was performed using a mask film having a thickness of 150 μm on which a circuit pattern was formed, good printed matter was obtained in the same manner as in the example.
[0046]
(Comparative Example 1)
In Example 1, 150.1 g of the tantalum metal powder dispersion liquid (c1) and 50 g of the tantalum metal powder surface-treated product (d1) were obtained in the same manner as in Example 1 without using the dispersion resin. 60.3 g of an adhesive-containing tantalum metal dispersion D-1 was obtained.
[0047]
(Comparative Example 2)
Dispersion of tantalum metal powder (c2) in the same manner as in Example 1 except that 0.1 g of Solspers 20000 (manufactured by Zeneca Corporation) was used as a dispersant instead of the dispersing resin in Example 1. 150.1 g, a surface-treated tantalum metal powder (d2) 50 g, and a binder-containing tantalum metal dispersion D-2 60.3 g.
[0048]
(Evaluation 1) Comparison of tantalum metal dispersions (a1), (a2) and (c2)
Evaluation item: Sedimentation speed of tantalum metal dispersion
[0049]
[Table 1]
Figure 2004143546
[0050]
Evaluation criteria: Separation when left undisturbed for 5 hours after dispersion of paint
A: No separation was observed.
:: Slight separation is observed.
X: Separation is seen.
[0051]
(Evaluation 2) Electrical characteristics of tantalum capacitors
Evaluation item: Condenser characteristics
1) Method for measuring residual carbon
The measurement was performed using a C-200 carbon analyzer manufactured by LECO.
2) Leakage current measurement method
The sintered body was formed in a 0.02 wt% phosphoric acid solution at 60 ° C. and 20 V to form a dielectric layer made of tantalum oxide, and then the leakage current was measured by the method described in EIAJ RC-2361A.
3) Capacitance measurement method
As in the case of the leakage current, the sintered body element formed in a 0.02 wt% phosphoric acid solution at 60 ° C. and 20 V is
The capacitance was measured by the method described in EIAJ RC-2361A.
[0052]
[Table 2]
Figure 2004143546
[0053]
As is clear from Tables 1-2,
The sedimentation properties of the tantalum metal powder dispersions according to the present invention of Examples 1 and 2 are clearly improved as compared with Comparative Example 1.
-The tantalum capacitors prepared using the binder-containing tantalum metal dispersions according to the present invention of Examples 1 and 2 have a lower residual carbon amount and a lower leakage current than Comparative Example 2.
[0054]
By using the surface treated product of the tantalum metal powder of the present invention with the dispersion resin, a dispersion can be easily prepared only by stirring and mixing the binder resin and the solvent for about 0.5 to 1 hour. On the other hand, when a tantalum metal powder not subjected to a surface treatment as in the comparative example is used, it is difficult to obtain a dispersion state equivalent to that of the example. In many cases, a good dispersion state cannot be obtained even if the same dispersion state is obtained by mixing the dispersion media and passing through a dispersion step using a shaker for 4 to 5 hours.
[0055]
【The invention's effect】
The surface-treated product of the metal for forming a sintered body according to the present invention is excellent in dispersibility, has long-term storage stability, and provides a dispersion of the metal powder for forming a sintered body having excellent dispersibility. By using the metal, a capacitor having excellent electric characteristics can be manufactured.

Claims (6)

(1)弁作用金属粉を水溶性溶剤中で、アニオン性基又はカチオン性基を有し、重量平均分子量が5万以下である分散樹脂を用いて分散させる分散工程と、(2)得られた弁作用金属粉の分散液を、乾燥させる乾燥工程を有することを特徴とする焼結体形成用弁作用金属粉の製造方法。(1) a dispersion step of dispersing the valve action metal powder in a water-soluble solvent using a dispersion resin having an anionic group or a cationic group and having a weight average molecular weight of 50,000 or less; A method for producing a valve-acting metal powder for forming a sintered body, comprising a drying step of drying a dispersion of the valve-acting metal powder. 前記分散樹脂が、(メタ)アクリレートと(メタ)アクリル酸との共重合体である請求項1記載の焼結体形成用弁作用金属粉の製造方法。The method according to claim 1, wherein the dispersion resin is a copolymer of (meth) acrylate and (meth) acrylic acid. 前記乾燥工程が真空凍結乾燥法を用いる請求項1又は2記載の焼結体形成用弁作用金属粉の製造方法。3. The method according to claim 1, wherein the drying step uses a vacuum freeze-drying method. 前記弁作用金属粉が、ニオブ粉又はタンタル粉である請求項1〜3のいずれかに記載の焼結体形成用弁作用金属粉の製造方法。The method for producing a valve metal powder for forming a sintered body according to any one of claims 1 to 3, wherein the valve metal powder is niobium powder or tantalum powder. 請求項1〜4のいずれかに記載の製造方法により得られる焼結体形成用弁作用金属粉。A valve metal powder for forming a sintered body obtained by the production method according to claim 1. 請求項5記載の焼結体形成用弁作用金属粉を用いて作製される弁作用電解コンデンサ用陽極素子。An anode element for a valve action electrolytic capacitor produced using the valve action metal powder for forming a sintered body according to claim 5.
JP2002310931A 2002-10-25 2002-10-25 Method of surface treatment of metal powder for forming sintered body and metal powder for forming sintered body Expired - Lifetime JP3977226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310931A JP3977226B2 (en) 2002-10-25 2002-10-25 Method of surface treatment of metal powder for forming sintered body and metal powder for forming sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310931A JP3977226B2 (en) 2002-10-25 2002-10-25 Method of surface treatment of metal powder for forming sintered body and metal powder for forming sintered body

Publications (2)

Publication Number Publication Date
JP2004143546A true JP2004143546A (en) 2004-05-20
JP3977226B2 JP3977226B2 (en) 2007-09-19

Family

ID=32456308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310931A Expired - Lifetime JP3977226B2 (en) 2002-10-25 2002-10-25 Method of surface treatment of metal powder for forming sintered body and metal powder for forming sintered body

Country Status (1)

Country Link
JP (1) JP3977226B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057348A1 (en) * 2004-11-29 2006-06-01 Dainippon Ink And Chemicals, Inc. Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
JP2007100062A (en) * 2005-02-28 2007-04-19 Dainippon Ink & Chem Inc Method for producing electro conductive coating material
JP2007277458A (en) * 2006-04-10 2007-10-25 Dainippon Ink & Chem Inc Cation curable electro-conductive ink
JP2009138030A (en) * 2007-12-03 2009-06-25 Dic Corp Method for producing nickel ink, method for forming nickel ink pattern, and method for producing multilayer ceramic capacitor
CN101569929B (en) * 2009-06-05 2011-01-26 北京工业大学 Method for preparing nano aluminum oxide coated tungsten powder
US8067702B2 (en) 2005-06-03 2011-11-29 Gunze Limited Electromagnetic wave shielding material and production process of the same
WO2018198485A1 (en) * 2017-04-28 2018-11-01 リンテック株式会社 Film-shaped firing material, film-shaped firing material provided with support sheet, method for manufacturing film-shaped firing material, and method for manufacturing film-shaped firing material provided with support sheet
EP3666429A4 (en) * 2017-09-15 2021-01-27 LINTEC Corporation Film-shaped firing material and support-sheet-equipped film-shaped firing material
CN114999825A (en) * 2022-06-30 2022-09-02 新疆众和股份有限公司 Electrode foil and preparation method thereof, and aluminum electrolytic capacitor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706637B2 (en) * 2004-11-29 2011-06-22 Dic株式会社 Conductive paste and method for producing conductive paste
WO2006057348A1 (en) * 2004-11-29 2006-06-01 Dainippon Ink And Chemicals, Inc. Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
US7771625B2 (en) 2004-11-29 2010-08-10 Dainippon Ink And Chemicals, Inc. Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
JP2007100062A (en) * 2005-02-28 2007-04-19 Dainippon Ink & Chem Inc Method for producing electro conductive coating material
US8067702B2 (en) 2005-06-03 2011-11-29 Gunze Limited Electromagnetic wave shielding material and production process of the same
JP2007277458A (en) * 2006-04-10 2007-10-25 Dainippon Ink & Chem Inc Cation curable electro-conductive ink
JP2009138030A (en) * 2007-12-03 2009-06-25 Dic Corp Method for producing nickel ink, method for forming nickel ink pattern, and method for producing multilayer ceramic capacitor
CN101569929B (en) * 2009-06-05 2011-01-26 北京工业大学 Method for preparing nano aluminum oxide coated tungsten powder
WO2018198485A1 (en) * 2017-04-28 2018-11-01 リンテック株式会社 Film-shaped firing material, film-shaped firing material provided with support sheet, method for manufacturing film-shaped firing material, and method for manufacturing film-shaped firing material provided with support sheet
JPWO2018198485A1 (en) * 2017-04-28 2020-02-27 リンテック株式会社 Film fired material, film fired material with support sheet, method of manufacturing film fired material, and method of manufacturing film fired material with support sheet
US11707787B2 (en) 2017-04-28 2023-07-25 Lintec Corporation Film-shaped firing material, film-shaped firing material provided with support sheet, method for manufacturing film-shaped firing material, and method for manufacturing film-shaped firing material provided with support sheet
EP3666429A4 (en) * 2017-09-15 2021-01-27 LINTEC Corporation Film-shaped firing material and support-sheet-equipped film-shaped firing material
US11420255B2 (en) 2017-09-15 2022-08-23 Lintec Corporation Film-shaped firing material and film-shaped firing material with a support sheet
CN114999825A (en) * 2022-06-30 2022-09-02 新疆众和股份有限公司 Electrode foil and preparation method thereof, and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP3977226B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP4706637B2 (en) Conductive paste and method for producing conductive paste
Kleger et al. 3D printing of salt as a template for magnesium with structured porosity
Naderizadeh et al. Superhydrophobic Coatings from Beeswax‐in‐Water Emulsions with Latent Heat Storage Capability
Friederich et al. Rheological control of the coffee stain effect for inkjet printing of ceramics
Lee et al. Coating BaTiO3 nanolayers on spherical Ni powders for multilayer ceramic capacitors
JP5632852B2 (en) Low temperature sinterable silver nanoparticle composition and electronic article formed using the composition
JP3977226B2 (en) Method of surface treatment of metal powder for forming sintered body and metal powder for forming sintered body
JP6822124B2 (en) Method for producing surface-modified carbon nanotubes and its dispersion
JP5068468B2 (en) Conductive ink composition and printed matter
WO2010095672A1 (en) Metal thin film production method and metal thin film
JP6972569B2 (en) Carbon oxide nanotubes and their dispersions
WO2014057564A1 (en) Process for manufacturing dry nanoparticles by freeze-drying
US20100189992A1 (en) Method for producing product having nanoporous surface
CN106519516A (en) Dielectric composite material based on paraffin-coated barium titanate nanoparticles and preparation method thereof
KR20160060913A (en) Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof
JP2017048366A (en) Stabilized nanoparticles, dispersions of the stabilized nanoparticles, and methods of application
WO2005038897A1 (en) Liquid composition, process for producing the same, film of low dielectric constant, abradant and electronic component
JP2002167603A (en) Method for surface treating metal powder for forming sintered body
JP5200515B2 (en) Nickel ink manufacturing method, nickel ink pattern forming method, and multilayer ceramic capacitor manufacturing method
JP4219616B2 (en) Anode element for valve action electrolytic capacitor and manufacturing method thereof
JP2022016511A (en) Method for producing silver fine particle ink for offset printing
KR100529478B1 (en) Baking Layer Paste
CA3199826A1 (en) Method for the manufacture of a self-standing graphene oxide or reduced graphene oxide film
CN107057466A (en) A kind of inkjet printing silver ink for paper base
Kim et al. Suspension stability and consolidation behavior of ultrafine BaTiO3 particles in nonazeotropic solvent system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150