JP2004143471A - COPPER PLATED Al203 COMPOSITE POWDER, METHOD FOR PRODUCING THE COMPOSITE METAL POWDER, COPPER PLATED Al203 COMPOSITE POWDER SINTERED COMPACT, AND METHOD FOR PRODUCING THE SINTERED COMPACT - Google Patents

COPPER PLATED Al203 COMPOSITE POWDER, METHOD FOR PRODUCING THE COMPOSITE METAL POWDER, COPPER PLATED Al203 COMPOSITE POWDER SINTERED COMPACT, AND METHOD FOR PRODUCING THE SINTERED COMPACT Download PDF

Info

Publication number
JP2004143471A
JP2004143471A JP2002293956A JP2002293956A JP2004143471A JP 2004143471 A JP2004143471 A JP 2004143471A JP 2002293956 A JP2002293956 A JP 2002293956A JP 2002293956 A JP2002293956 A JP 2002293956A JP 2004143471 A JP2004143471 A JP 2004143471A
Authority
JP
Japan
Prior art keywords
copper
plated
composite powder
powder
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002293956A
Other languages
Japanese (ja)
Other versions
JP4111316B2 (en
Inventor
Seiji Masuda
増田 誠治
Yasushi Narisawa
成澤 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2002293956A priority Critical patent/JP4111316B2/en
Publication of JP2004143471A publication Critical patent/JP2004143471A/en
Application granted granted Critical
Publication of JP4111316B2 publication Critical patent/JP4111316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper plated Al<SB>2</SB>O<SB>3</SB>composite powder with which a sintered compact having excellent heat radiability and high density can be produced, to provide a method for producing the composite metal powder, to provide a copper plated Al<SB>2</SB>O<SB>3</SB>composite powder sintered compact which has excellent heat radiability and high density, and to provide a method for producing the sintered compact. <P>SOLUTION: The copper plated Al<SB>2</SB>O<SB>3</SB>composite powder provided with a copper covered layer in which the content of copper is ≥60 wt%, and Al<SB>2</SB>O<SB>3</SB>powder are preliminarily subjected to pretreatment of imparting a catalyst by imidazolesilane and palladium chloride. Thereafter, 1 to 10wt% copper is applied thereto by electroless plating. Next, copper is applied thereto by substitution plating. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、放熱性に優れかつ高密度の焼結体を製造することができる鍍銅Al複合粉末及び同複合金属粉末の製造方法、並びに放熱性に優れかつ高密度である鍍銅Al複合粉末焼結体及び同焼結体の製造方法に関する。
【0002】
【従来の技術】
アルミナ(Al)は、工業的にはボーキサイトを原料としバイヤー法によって製造される。密度は4.0g・cm−3、融点は2050°Cである。1000°C以上でα−Alとなり、熱的に極めて安定である。
このアルミナは、研磨剤、砥石、耐火材、絶縁体、触媒、乾燥剤、吸着材、レーザー材料などの広範囲な用途がある。特に、銅とAlの焼結体は放熱性が向上し、半導体装置の放熱板等として有用である。
【0003】
一般に、銅の粉とAl粉を単に混合して成形・焼結しただけでは、十分な強度をもつ均一な焼結体が得られない。したがって、予めAl粉に銅を被覆し、これによって得られた銅被覆層を備えた鍍銅Al複合粉末を成形・焼結して所定の焼結体を得る手法が採られている。
しかし、従来このような銅被覆層を備えた鍍銅Al複合粉末を焼結しても密度が十分に上がらず、まためっき等による被膜が均一でなく、Al粉末の一部は被膜が形成されていない等、問題があった。
【0004】
このようなことから、従来は銅被覆層を形成する処理方法、銅被覆層の厚さ、焼結の条件等を、それなりに変えてAl複合金属焼結体を製造する試みはいくつかなされてきたが、満足のいくものが得られていないというのが現状である。
【0005】
【発明が解決しようとする課題】
本発明は、放熱性に優れかつ高密度の焼結体を製造することができる鍍銅Al複合粉末及び同複合金属粉末の製造方法、並びに放熱性に優れかつ高密度である鍍銅Al複合粉末焼結体及び同焼結体の製造方法を得ることを課題とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記問題点を解決するために被覆に使用するめっきの条件や被覆層の厚さ、焼結条件を種々検討し、めっき層形成方法の改善を図り、被覆層を全体的に均一かつ厚く形成する等の工夫により、放熱性に優れかつ高密度の焼結体を製造することができるとの知見を得た。
本発明はこの知見に基づいて、
1.銅量が60wt%以上であることを特徴とする銅被覆層を備えた鍍銅Al複合粉末
2.銅量が70wt%以上であることを特徴とする銅被覆層を備えた鍍銅Al複合粉末
3.Al粉を予めイミダゾールシランと塩化パラジウムによる触媒付与の前処理を施した後、無電解めっきにより銅を1〜10wt%被覆し、次に置換めっきにより銅を被覆することを特徴とする鍍銅Al複合粉末の製造方法
4.Cu10〜85g/L、硫酸5〜50g/L及びさらに塩素イオン70mg/L以下を含有する硫酸銅水溶液を用いて置換めっきすることを特徴とする上記3記載の鍍銅Al複合粉末の製造方法
5.銅量が60wt%以上であることを特徴とする銅被覆層を備えた上記3又は4記載の鍍銅Al複合粉末の製造方法
6.銅量が70wt%以上であることを特徴とする銅被覆層を備えた上記3又は4記載の鍍銅Al複合粉末の製造方法
7.銅量が60wt%以上であり、密度比80%以上であることを特徴とする銅被覆層を備えた鍍銅Al複合粉末焼結体
8.銅量が70wt%以上であり、密度比80%以上であることを特徴とする銅被覆層を備えた鍍銅Al複合粉末焼結体
9.成形圧力4t/cm以上で成形することを特徴とする銅量が60wt%以上であり、密度比80%以上である銅被覆層を備えた鍍銅Al複合粉末焼結体の製造方法
10.成形圧力3t/cm以上で成形することを特徴とする銅量が70wt%以上であり、密度比80%以上である銅被覆層を備えた鍍銅Al複合粉末焼結体の製造方法
を提供するものである。
【0007】
【発明の実施の形態】
本発明の鍍銅Al複合粉末焼結体を半導体装置の放熱板等に利用するには、放熱性を向上させることが必要であるが、そのためには鍍銅Al複合粉末焼結体の密度を高めることが必要である。
このような高密度の焼結体を得る方法として、銅量が60wt%以上の厚くかつ均一な銅被覆層を備えた鍍銅Al複合粉末を用いることが有効であることが分かった。特に、銅量が70wt%以上の銅被覆層の鍍銅Al複合粉末であることが望ましい。
【0008】
この厚くかつ均一な銅被覆層を備えた鍍銅Al複合粉末を製造するには、Al粉を予めイミダゾールシランと塩化パラジウムによる触媒付与の前処理を施した後、無電解めっきにより銅を1〜10wt%被覆し、さらに硫酸銅水溶液に鉄粉を添加し、該鉄との置換めっきにより銅を被覆することによって得ることができる。
上記の工程による無電解めっきを行わない場合には、その後の銅の置換めっきの際に未付着のAl粉が出るようになり、均一性に劣る焼結体となることがあるので、好ましくない。
置換めっきには、Cu10〜85g/L、硫酸5〜50g/L、塩素イオン0〜70mg/Lを含有する硫酸銅水溶液を用いることが望ましい。
このめっき工程によって、銅量が60wt%以上、さらに銅量が70wt%以上である銅被覆層を備えた鍍銅Al複合粉末を製造することができる。
【0009】
上記によって得られた銅被覆層を備えた鍍銅Al複合粉末を成形圧力5t/cm以上で成形し、これを焼結することにより、銅量が60wt%以上、好ましくは銅量が70wt%以上であり、密度比80%以上の銅被覆層を備えた鍍銅Al複合粉末焼結体が得られる。
成形圧力5t/cm未満では、密度比80%以上の鍍銅Al複合粉末焼結体が得られ難いので、焼結体の成形圧力を5t/cm以上とすることが望ましい。
銅被覆層を備えた鍍銅Al複合粉末の銅量と真密度及び焼結密度との関係を図1に示す。図において実線は焼結体の真密度、点線は密度比80%を示す。銅被覆層の銅量の増加と共に焼結体の真密度及び密度比は上がり、成形圧力5t/cm以上で安定した密度比80%以上の焼結体が得られる。
【0010】
【実施例及び比較例】
次に、本発明の実施例について説明する。なお、本実施例はあくまで1例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。
【0011】
(実施例1)
市販のAl粉(AS−10、昭和電工製)にイミダゾールシラン及び塩化パラジウムによる触媒付与の前処理を施した後、予め無電解めっきしたものを原料として、下記の置換めっきによりトータルの銅量が64.9wt%被覆された鍍銅Al粉を作製した。
(置換めっき条件)
1)置換めっき液組成
Cu:60g/L
硫酸:30g/L
塩素イオン:6mg/L
2)置換用還元剤
市販の還元鉄粉(−100メッシュ)
3)置換めっき方法
原料粉(前処理したAl粉)と鉄粉をよく混合した後、必要量の上記めっき液を徐々に添加しながら攪拌する。これによって、めっき反応が起こる。鉄粉及びめっき液の量は、目標とする銅めっき量と原料粉量により算出される。めっき後は水洗及び乾燥を行うことにより鍍銅Al粉が得られる。
【0012】
(めっき粉の評価)
上記により得られた鍍銅Al粉を金型成形して、11.3mmφ×10mmHの円柱状圧粉体(試験片)を作製して、密度比を測定した。
成形圧力3t/cmでは、74.7%であったが、成形圧力4t/cmで78.3%、成形圧力5t/cmで80.8%となり、5t/cmの成形圧力で、安定した密度比80%以上の圧粉体を得ることができた。
また、これらの圧粉体を水素気流雰囲気中で保持温度875°C、保持時間60分焼結した後の焼結体の密度比を測定したところ、いずれも圧粉体の密度比を上回り、成形圧力4t/cm以上で密度比80%以上の焼結体を得ることができた。
以上の結果を表1に示す。また、図1に実施例1の結果をプロットしたものを○印で示す。
【0013】
【表1】

Figure 2004143471
【0014】
(実施例2)
実施例1と同じ材料を使用し、同様にして予め銅を4.9wt%無電解めっきしたAlを原料として、同様の置換めっき条件によりトータルの銅量が71.8wt%被覆された鍍銅Al粉を作製した。
これによって得られた鍍銅Al粉を金型成形して、11.3mmφ×10mmHの円柱状圧粉体(試験片)を作製して、密度比を測定した。
成形圧力3t/cmでは、76.3%であったが、成形圧力4t/cmで80.3%、成形圧力5t/cmで83.9%となり、4t/cmの成形圧力で、安定した密度比80%以上の圧粉体を得ることができた。
また、これらの圧粉体を実施例1と同様に、水素気流雰囲気中で保持温度875°C、保持時間60分焼結した後の焼結体の密度比を測定したところ、いずれも圧粉体の密度比を上回り、成形圧力3t/cm以上で密度比80%以上の焼結体を得ることができた。
以上の結果を実施例1と同様に、表1に示す。また、図1に実施例2の結果をプロットしたものを◇印で示す。
【0015】
(比較例1)
実施例1と同じ材料を使用し、同様にして予め銅を4.8wt%無電解めっきしたAlを原料として、同様の置換めっき条件によりトータルの銅量が45.1wt%被覆された鍍銅Al粉を作製した。
これによって得られた鍍銅Al粉を金型成形して、11.3mmφ×10mmHの円柱状圧粉体(試験片)を作製して、密度比を測定した。
成形圧力3t/cmで72.3%、成形圧力4t/cmで74.9%、成形圧力5t/cmでも77.0%であり、5t/cmの成形圧力においても、密度比80%以上の圧粉体を得ることはできなかった。
また、これらの圧粉体を実施例1と同様に、水素気流雰囲気中で保持温度875°C、保持時間60分焼結した後の焼結体の密度比を測定したところ、いずれも圧粉体の密度比と差がなく、成形圧力5t/cm以上で密度比80%以上の焼結体を得られなかった。
以上の結果を実施例1と同様に、表1に示す。また、図1に比較例1の結果をプロットしたものを+印で示す。
【0016】
(比較例2)
実施例1で使用したものと同じAl粉にイミダゾールシラン及び塩化パラジウムによる触媒付与の前処理を施した後、無電解めっきを実施し、さらに塩素イオンを添加せずに置換めっきを行なった。これによって、トータルの銅量が64.9wt%被覆された鍍銅Al粉を作製した。
以上によって得られた鍍銅Al粉を金型成形して、11.3mmφ×10mmHの円柱状圧粉体(試験片)を作製して、密度比を測定した。
成形圧力3t/cmでは71.7%であったが、成形圧力4t/cmで74.6%、成形圧力5t/cmで77.6%となり、成形圧力5t/cmにおいても、密度比80%以上の圧粉体を得ることはできなかった。
また、これらの圧粉体を実施例1と同様に、水素気流雰囲気中で保持温度875°C、保持時間60分焼結した後の焼結体の密度比を測定したところ、何れも圧粉体の密度比と差が無く、密度比80%以上の焼結体を得ることはできなかった。
以上の結果を実施例1と同様に、表1に示す。また、図1に比較例2の結果をプロットしたものを▲印で示す。
【0017】
【発明の効果】
以上に示す通り、本発明は、銅被覆層の形成すなわちめっき条件を最適にすることにより、銅被覆層を均一かつ厚く形成した鍍銅Al複合粉末を得ることができ、これを焼結することにより放熱性に優れかつ高密度であり、かつ強度も著しく向上した焼結体を製造することができるという優れた特徴を有している。
【図面の簡単な説明】
【図1】銅被覆層を備えた鍍銅Al複合粉末の銅量と真密度及び圧粉体密度との関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a copper-plated Al 2 O 3 composite powder capable of producing a high-density sintered body excellent in heat radiation and a method for producing the composite metal powder, and copper plating excellent in heat radiation and high density The present invention relates to an Al 2 O 3 composite powder sintered body and a method for producing the same.
[0002]
[Prior art]
Alumina (Al 2 O 3 ) is industrially produced from bauxite as a raw material by the Bayer method. The density is 4.0 g · cm −3 and the melting point is 2050 ° C. It becomes α-Al 2 O 3 at 1000 ° C. or higher, and is extremely stable thermally.
This alumina has a wide range of applications such as abrasives, grinding stones, refractory materials, insulators, catalysts, desiccants, adsorbents, laser materials, and the like. In particular, a sintered body of copper and Al 2 O 3 has improved heat dissipation, and is useful as a heat sink or the like of a semiconductor device.
[0003]
In general, simply mixing copper powder and Al 2 O 3 powder and molding and sintering does not provide a uniform sintered body having sufficient strength. Thus, pre-Al 2 O 3 powder of copper was coated, thereby鍍銅Al 2 O 3 Method composite powder molding and sintering to a obtain a predetermined sintered body adopted with copper coating layer obtained Have been.
However, the density is not sufficiently increased even by sintering鍍銅Al 2 O 3 composite powder having a conventional such copper covering layer, also not uniform in the film by plating or the like, Al 2 O 3 powder one There was a problem that no coating was formed on the part.
[0004]
For this reason, there have been several attempts to manufacture Al 2 O 3 composite metal sintered bodies by changing the processing method for forming the copper coating layer, the thickness of the copper coating layer, the sintering conditions, and the like. It has been done, but at present it is not satisfactory.
[0005]
[Problems to be solved by the invention]
The present invention relates to a copper-plated Al 2 O 3 composite powder capable of producing a high-density sintered body excellent in heat radiation and a method for producing the composite metal powder, and copper plating excellent in heat radiation and high density It is an object to obtain an Al 2 O 3 composite powder sintered body and a method for producing the same.
[0006]
[Means for Solving the Problems]
The present inventors have studied various plating conditions, coating layer thicknesses, and sintering conditions used for coating in order to solve the above problems, and have attempted to improve the plating layer forming method, and It was found that by devising a uniform and thick film, a sintered body having excellent heat dissipation and high density can be manufactured.
The present invention is based on this finding,
1. 1. A copper-plated Al 2 O 3 composite powder provided with a copper coating layer, wherein the copper content is 60 wt% or more. 2. Copper-plated Al 2 O 3 composite powder provided with a copper coating layer, wherein the copper content is 70 wt% or more. After pre-treating Al 2 O 3 powder with a catalyst by imidazole silane and palladium chloride in advance, copper is coated by 1 to 10 wt% by electroless plating, and then copper is coated by displacement plating. 3. Production method of plated copper Al 2 O 3 composite powder 4. The plated Al 2 O 3 composite powder according to the above 3, wherein displacement plating is performed using an aqueous solution of copper sulfate containing 10 to 85 g / L of Cu, 5 to 50 g / L of sulfuric acid and 70 mg / L or less of chloride ions. Manufacturing method 5. 5. The method for producing a copper-plated Al 2 O 3 composite powder according to the above item 3 or 4, comprising a copper coating layer having a copper content of 60 wt% or more. 6. The method for producing a copper-plated Al 2 O 3 composite powder according to the above item 3 or 4, comprising a copper coating layer, wherein the copper content is 70 wt% or more. 7. A copper-plated Al 2 O 3 composite powder sintered body provided with a copper coating layer, wherein a copper amount is 60 wt% or more and a density ratio is 80% or more. 8. A copper-plated Al 2 O 3 composite powder sintered body provided with a copper coating layer, wherein a copper amount is 70% by weight or more and a density ratio is 80% or more. Production of a plated Al 2 O 3 composite powder sintered body provided with a copper coating layer having a copper amount of 60% by weight or more and a density ratio of 80% or more, characterized by being molded at a molding pressure of 4 t / cm 2 or more. Method 10. Manufacture of a plated Al 2 O 3 composite powder sintered body having a copper coating layer having a copper amount of 70% by weight or more and a density ratio of 80% or more, characterized by being molded at a molding pressure of 3 t / cm 2 or more. It provides a method.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
鍍銅Al 2 O 3 composite powder sintered body to be used for heat dissipation plate of the semiconductor device, it is necessary to improve the heat radiation property, in order that the鍍銅Al 2 O 3 composite powder of the present invention It is necessary to increase the density of the sintered body.
As a method for obtaining such a high-density sintered body, it has been found effective to use a copper-plated Al 2 O 3 composite powder having a thick and uniform copper coating layer having a copper content of 60 wt% or more. . In particular, it is preferable that the copper powder is a copper-coated Al 2 O 3 composite powder having a copper content of 70 wt% or more.
[0008]
In order to produce a plated Al 2 O 3 composite powder having a thick and uniform copper coating layer, the Al 2 O 3 powder is pre-treated with imidazole silane and palladium chloride before applying a catalyst, and then electrolessly treated. Copper can be obtained by coating 1 to 10% by weight of copper by plating, further adding iron powder to an aqueous solution of copper sulfate, and coating copper by displacement plating with the iron.
If the electroless plating by the above-mentioned process is not performed, unattached Al 2 O 3 powder comes out at the time of the subsequent displacement plating of copper, which may result in a sintered body having poor uniformity. Is not preferred.
For displacement plating, it is desirable to use an aqueous copper sulfate solution containing 10 to 85 g / L of Cu, 5 to 50 g / L of sulfuric acid, and 0 to 70 mg / L of chloride ions.
By this plating step, a copper-plated Al 2 O 3 composite powder provided with a copper coating layer having a copper content of 60 wt% or more and a copper content of 70 wt% or more can be produced.
[0009]
The copper-plated Al 2 O 3 composite powder having the copper coating layer obtained as described above is molded at a molding pressure of 5 t / cm 2 or more, and then sintered, whereby the copper content is 60 wt% or more, preferably the copper content. Is 70 wt% or more, and a plated Al 2 O 3 composite powder sintered body having a copper coating layer having a density ratio of 80% or more is obtained.
If the molding pressure is less than 5 t / cm 2, it is difficult to obtain a copper-plated Al 2 O 3 composite powder sintered body having a density ratio of 80% or more. Therefore, the molding pressure of the sintered body is desirably 5 t / cm 2 or more.
FIG. 1 shows the relationship between the copper content, the true density, and the sintered density of the plated Al 2 O 3 composite powder having the copper coating layer. In the figure, the solid line indicates the true density of the sintered body, and the dotted line indicates the density ratio of 80%. As the amount of copper in the copper coating layer increases, the true density and the density ratio of the sintered body increase, and a sintered body having a stable density ratio of 80% or more can be obtained at a molding pressure of 5 t / cm 2 or more.
[0010]
[Examples and Comparative Examples]
Next, examples of the present invention will be described. Note that this embodiment is merely an example, and the present invention is not limited to this example. That is, within the scope of the technical idea of the present invention, all aspects or modifications other than the examples are included.
[0011]
(Example 1)
After subjecting a commercially available Al 2 O 3 powder (AS-10, manufactured by Showa Denko) to a pretreatment for imparting a catalyst with imidazole silane and palladium chloride, a material obtained by electroless plating in advance is used as a raw material to perform total plating by the following displacement plating. Copper plated Al 2 O 3 powder coated with 64.9 wt% of copper was prepared.
(Displacement plating conditions)
1) Composition of displacement plating solution Cu: 60 g / L
Sulfuric acid: 30 g / L
Chloride ion: 6mg / L
2) Reducing agent for replacement Commercially available reduced iron powder (-100 mesh)
3) Displacement plating method After the raw material powder (pre-treated Al 2 O 3 powder) and the iron powder are mixed well, stirring is performed while gradually adding the required amount of the plating solution. This causes a plating reaction. The amounts of iron powder and plating solution are calculated based on the target amount of copper plating and the amount of raw material powder. After plating, washing and drying are performed to obtain a plated Al 2 O 3 powder.
[0012]
(Evaluation of plating powder)
The plated copper Al 2 O 3 powder obtained as described above was molded into a mold to produce a columnar green compact (test piece) of 11.3 mmφ × 10 mmH, and the density ratio was measured.
At a molding pressure of 3 t / cm 2 , it was 74.7%, but at a molding pressure of 4 t / cm 2, it was 78.3%, and at a molding pressure of 5 t / cm 2, it was 80.8%, and at a molding pressure of 5 t / cm 2 , Thus, a green compact having a stable density ratio of 80% or more could be obtained.
Further, when the density ratio of the sintered body after sintering these green compacts in a hydrogen gas atmosphere at a holding temperature of 875 ° C. and a holding time of 60 minutes was measured, all of them exceeded the density ratio of the green compacts. A sintered body having a density ratio of 80% or more was obtained at a molding pressure of 4 t / cm 2 or more.
Table 1 shows the above results. Also, the results of Example 1 are plotted in FIG.
[0013]
[Table 1]
Figure 2004143471
[0014]
(Example 2)
Using the same material as in Example 1, and using as a raw material Al 2 O 3 in which copper was previously electrolessly plated at 4.9 wt%, a total copper amount of 71.8 wt% was coated under the same displacement plating conditions. Copper-plated Al 2 O 3 powder was produced.
The copper-plated Al 2 O 3 powder thus obtained was molded into a mold to produce a columnar green compact (test piece) of 11.3 mmφ × 10 mmH, and the density ratio was measured.
In molding pressure 3t / cm 2, but was 76.3% 80.3% at a molding pressure of 4t / cm 2, becomes 83.9% at a molding pressure of 5t / cm 2, at a molding pressure of 4t / cm 2 Thus, a green compact having a stable density ratio of 80% or more could be obtained.
The density ratio of the sintered body after sintering these green compacts in a hydrogen gas atmosphere at a holding temperature of 875 ° C. for a holding time of 60 minutes was measured in the same manner as in Example 1. A sintered body having a density ratio of 80% or more was obtained at a molding pressure of 3 t / cm 2 or more, exceeding the density ratio of the body.
The above results are shown in Table 1 as in Example 1. The results of Example 2 are plotted in FIG.
[0015]
(Comparative Example 1)
Using the same material as in Example 1, and using as a raw material Al 2 O 3 in which copper was previously electrolessly plated at 4.8 wt%, a total copper amount of 45.1 wt% was coated under the same displacement plating conditions. Copper-plated Al 2 O 3 powder was produced.
The copper-plated Al 2 O 3 powder thus obtained was molded into a mold to produce a columnar green compact (test piece) of 11.3 mmφ × 10 mmH, and the density ratio was measured.
72.3% at a molding pressure of 3t / cm 2, 74.9% at a molding pressure of 4t / cm 2, and 77.0.% To molding pressure 5t / cm 2, even in a molding pressure of 5t / cm 2, density ratio A compact of 80% or more could not be obtained.
The density ratio of the sintered body after sintering these green compacts in a hydrogen gas atmosphere at a holding temperature of 875 ° C. for a holding time of 60 minutes was measured in the same manner as in Example 1. There was no difference from the density ratio of the body, and no sintered body having a density ratio of 80% or more was obtained at a molding pressure of 5 t / cm 2 or more.
The above results are shown in Table 1 as in Example 1. In addition, a plot of the result of Comparative Example 1 in FIG.
[0016]
(Comparative Example 2)
After subjecting the same Al 2 O 3 powder as used in Example 1 to a pretreatment for providing a catalyst with imidazole silane and palladium chloride, electroless plating was performed, and displacement plating was further performed without adding chloride ions. Was. Thus, a copper-plated Al 2 O 3 powder coated with a total copper amount of 64.9 wt% was produced.
The plated copper Al 2 O 3 powder obtained as described above was molded into a mold to produce a columnar green compact (test piece) of 11.3 mmφ × 10 mmH, and the density ratio was measured.
Molding pressure 3t / cm 2 in it was 71.7% 74.6% at a molding pressure of 4t / cm 2, becomes 77.6% at a molding pressure of 5t / cm 2, even in the molding pressure 5t / cm 2, A green compact having a density ratio of 80% or more could not be obtained.
Further, the density ratio of the sintered bodies after sintering these green compacts in a hydrogen gas atmosphere at a holding temperature of 875 ° C. for a holding time of 60 minutes was measured in the same manner as in Example 1. There was no difference from the density ratio of the body, and a sintered body having a density ratio of 80% or more could not be obtained.
The above results are shown in Table 1 as in Example 1. In addition, a plot of the result of Comparative Example 2 in FIG.
[0017]
【The invention's effect】
As described above, according to the present invention, by optimizing the formation of the copper coating layer, that is, the plating conditions, it is possible to obtain a plated Al 2 O 3 composite powder in which the copper coating layer is formed uniformly and thickly. By sintering, it has an excellent feature that it is possible to produce a sintered body having excellent heat dissipation, high density, and significantly improved strength.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the copper content of copper-plated Al 2 O 3 composite powder having a copper coating layer, and true density and green compact density.

Claims (10)

銅量が60wt%以上であることを特徴とする銅被覆層を備えた鍍銅Al複合粉末。A copper-plated Al 2 O 3 composite powder comprising a copper coating layer, wherein the copper content is 60 wt% or more. 銅量が70wt%以上であることを特徴とする銅被覆層を備えた鍍銅Al複合粉末。A copper-plated Al 2 O 3 composite powder comprising a copper coating layer, wherein the copper content is 70 wt% or more. Al粉を予めイミダゾールシランと塩化パラジウムによる触媒付与の前処理を施した後、無電解めっきにより銅を1〜10wt%被覆し、次に置換めっきにより銅を被覆することを特徴とする鍍銅Al複合粉末の製造方法。After pre-treating Al 2 O 3 powder with a catalyst by imidazole silane and palladium chloride in advance, copper is coated by 1 to 10 wt% by electroless plating, and then copper is coated by displacement plating. A method for producing a plated Al 2 O 3 composite powder. Cu10〜85g/L、硫酸5〜50g/L及びさらに塩素イオン70mg/L以下を含有する硫酸銅水溶液を用いて置換めっきすることを特徴とする請求項3記載の鍍銅Al複合粉末の製造方法。Cu10~85g / L,鍍銅Al 2 O 3 composite powder of claim 3, wherein the substitution plating with copper sulfate aqueous solution containing less sulphate 5 to 50 g / L and more chloride ions 70 mg / L Manufacturing method. 銅量が60wt%以上であることを特徴とする銅被覆層を備えた請求項3又は4記載の鍍銅Al複合粉末の製造方法。The method for producing a copper-plated Al 2 O 3 composite powder according to claim 3 or 4, further comprising a copper coating layer having a copper content of 60 wt% or more. 銅量が70wt%以上であることを特徴とする銅被覆層を備えた請求項3又は4記載の鍍銅Al複合粉末の製造方法。The method for producing a copper-plated Al 2 O 3 composite powder according to claim 3 or 4, further comprising a copper coating layer having a copper content of 70% by weight or more. 銅量が60wt%以上であり、密度比80%以上であることを特徴とする銅被覆層を備えた鍍銅Al複合粉末焼結体。A copper-plated Al 2 O 3 composite powder sintered body provided with a copper coating layer, wherein a copper amount is 60% by weight or more and a density ratio is 80% or more. 銅量が70wt%以上であり、密度比80%以上であることを特徴とする銅被覆層を備えた鍍銅Al複合粉末焼結体。A copper-plated Al 2 O 3 composite powder sintered body provided with a copper coating layer, wherein a copper content is 70% by weight or more and a density ratio is 80% or more. 成形圧力4t/cm以上で成形することを特徴とする銅量が60wt%以上であり、密度比80%以上である銅被覆層を備えた鍍銅Al複合粉末焼結体の製造方法。Production of a plated Al 2 O 3 composite powder sintered body provided with a copper coating layer having a copper amount of 60% by weight or more and a density ratio of 80% or more, characterized by being molded at a molding pressure of 4 t / cm 2 or more. Method. 成形圧力3t/cm以上で成形することを特徴とする銅量が70wt%以上であり、密度比80%以上である銅被覆層を備えた鍍銅Al複合粉末焼結体の製造方法。Manufacture of a plated Al 2 O 3 composite powder sintered body having a copper coating layer having a copper amount of 70% by weight or more and a density ratio of 80% or more, characterized by being molded at a molding pressure of 3 t / cm 2 or more. Method.
JP2002293956A 2002-08-27 2002-10-07 Copper copper Al2O3 composite powder and method for producing the same composite metal powder Expired - Lifetime JP4111316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293956A JP4111316B2 (en) 2002-08-27 2002-10-07 Copper copper Al2O3 composite powder and method for producing the same composite metal powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002246091 2002-08-27
JP2002293956A JP4111316B2 (en) 2002-08-27 2002-10-07 Copper copper Al2O3 composite powder and method for producing the same composite metal powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007200308A Division JP4598033B2 (en) 2002-08-27 2007-08-01 Copper Al2O3 composite powder sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004143471A true JP2004143471A (en) 2004-05-20
JP4111316B2 JP4111316B2 (en) 2008-07-02

Family

ID=32472676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293956A Expired - Lifetime JP4111316B2 (en) 2002-08-27 2002-10-07 Copper copper Al2O3 composite powder and method for producing the same composite metal powder

Country Status (1)

Country Link
JP (1) JP4111316B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560172A (en) * 2012-03-13 2012-07-11 北京科技大学 Method for preparing dispersion-strengthened copper with high strength and high conductivity
CN102703744A (en) * 2012-06-08 2012-10-03 冯斌 Preparation method for Al2O3 strengthened copper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560172A (en) * 2012-03-13 2012-07-11 北京科技大学 Method for preparing dispersion-strengthened copper with high strength and high conductivity
CN102703744A (en) * 2012-06-08 2012-10-03 冯斌 Preparation method for Al2O3 strengthened copper

Also Published As

Publication number Publication date
JP4111316B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
KR100353386B1 (en) Aluminum Nitride Sintered Body and Method of Preparing the Same
JPH09510950A (en) Microwave sintering method
CN109894610B (en) Metal-coated spherical cast tungsten carbide powder and preparation method thereof
JP4095629B2 (en) Method for producing amorphous metal powder coated with metal (Methodfor Manufacturing Metal-Coated Amorphous Metal Powder)
WO2012041171A1 (en) Method for preparing high-performance rare earth-iron-cobalt silicide compound with nazn13 structure
JP4743387B2 (en) Method for producing aluminum nitride powder
JP2004143471A (en) COPPER PLATED Al203 COMPOSITE POWDER, METHOD FOR PRODUCING THE COMPOSITE METAL POWDER, COPPER PLATED Al203 COMPOSITE POWDER SINTERED COMPACT, AND METHOD FOR PRODUCING THE SINTERED COMPACT
JP4598033B2 (en) Copper Al2O3 composite powder sintered body and method for producing the same
JP3967192B2 (en) Copper copper SiC composite powder and method for producing the same, and metal copper SiC composite powder sintered body and method for producing the same
KR20060003327A (en) Aluminum material having aln region on the surface thereof and method for production thereof
JP2000141022A (en) Silicon carbide composite body and its manufacture
JP2001294905A (en) Method for producing micromodule gear
JP4161299B2 (en) Sintering method using tungsten-copper composite powder, sintered body, and heat sink
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
JP3270798B2 (en) Method for producing silicon carbide sintered body
JPH08175871A (en) Silicon carbide-based sintered body and its production
JP3847009B2 (en) Method for producing silicon carbide composite
JP2005325411A (en) Metal powder having excellent sinterability, its production method and method for producing sintered compact using the metal powder
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JPH11116361A (en) Silicon carbide-based composite and heat radiating part using the same
JPH10310475A (en) Aluminum nitride sintered compact and its use
JPH03146602A (en) Metal coating powder and manufacture thereof
JPH03247731A (en) Ceramic-copper alloy composite
CN117758104A (en) Copper-molybdenum alloy wire for electronic device, manganese plating process and manganese plating solution thereof
JP2003137655A (en) Boron carbide-aluminum nitride sintered compact, and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4111316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term