JP2004140514A - 受信装置および受信方法 - Google Patents

受信装置および受信方法 Download PDF

Info

Publication number
JP2004140514A
JP2004140514A JP2002301946A JP2002301946A JP2004140514A JP 2004140514 A JP2004140514 A JP 2004140514A JP 2002301946 A JP2002301946 A JP 2002301946A JP 2002301946 A JP2002301946 A JP 2002301946A JP 2004140514 A JP2004140514 A JP 2004140514A
Authority
JP
Japan
Prior art keywords
channel estimation
phase rotation
estimation value
unit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301946A
Other languages
English (en)
Other versions
JP3806389B2 (ja
Inventor
Takayuki Murakami
村上 貴之
Keiichi Kitagawa
北川 恵一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002301946A priority Critical patent/JP3806389B2/ja
Publication of JP2004140514A publication Critical patent/JP2004140514A/ja
Application granted granted Critical
Publication of JP3806389B2 publication Critical patent/JP3806389B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

【課題】少ない演算量で効率良くシンボルデータを受信ビット系列へ変換すること。
【解決手段】逆拡散部110は、受信信号を逆拡散処理をする。同期検波部120は、受信信号を逆拡散処理して得られた逆拡散信号を、推定値補正部170から出力される補正チャネル推定値を用いて同期検波する。RAKE合成部130は、同期検波された信号をRAKE合成する。位相回転部140は、RAKE合成された信号に対して、チャネライゼーションコードに対応する位相回転を加える。QPSKデマッピング部150は、位相回転部140から出力された信号を復調して受信ビット系列を出力する。チャネル推定部160は、受信信号を用いて、チャネル推定を行う。推定値補正部170は、チャネル推定部160から出力された各チャネル推定値に(π/4)位相回転を加える。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、受信装置および受信方法に関する。
【0002】
【従来の技術】
近年、無線通信システムにおいて、同一の周波数帯域を用いて複数の移動局が同時に通信を行うための多元アクセス方式として、CDMA(Code Division Multiple Access:コード分割多元アクセス)方式が注目されている。CDMA方式は、FDMA(Frequency Division Multiple Access:周波数分割多元アクセス)方式やTDMA(Time Division Multiple Access:時分割多元アクセス)方式などの技術と比較して、高い周波数利用効率を図ることができ、より多くの利用者を収容することができる。
【0003】
また、無線通信システムの移動局と基地局間において、上り回線と下り回線の双方向に信号を伝送する伝送方式としては、FDD(Frequency Division Duplex:周波数分割多重)方式とTDD(Time Division Duplex:時分割多重)方式とがある。FDD方式は、上り回線と下り回線で異なる周波数帯を利用する方式である一方、TDD方式は、送受信同一帯域方式であり、同一の無線周波数を時間分割して上り回線と下り回線を交互に通信する方式である。したがって、CDMA/TDD方式では、伝送される信号の処理はCDMA方式によって行われ、上り回線と下り回線の伝送はTDD方式によって行われる。
【0004】
図6は、CDMA/TDD方式を用いた無線通信システムにおける、信号のフレーム構成の一例を示す図である。同図に示すように、1フレームは、それぞれが1つのパイロットシンボルブロック、2つの情報シンボルブロック、および1つのガードシンボルブロックからなる複数のスロットから構成されている。すなわち、1スロットは、パイロットシンボルブロックPi(i=1〜n)を、情報シンボルブロックIi1(i=1〜n)と情報シンボルブロックIi2(i=1〜n)がはさむようになっており、その後にガードシンボルブロックGi(i=1〜n)が配置された構成となっている。
【0005】
各パイロットシンボルブロックPiは、それぞれあらかじめ定められた長さ(例えば10シンボル)の既知のシンボル列からなっている。また、各情報ブロックIi1およびIi2には、それぞれ所定数(最大61シンボル)の情報シンボルが配置されている。また、各ガードシンボルブロックGiは、それぞれあらかじめ定められた長さ(例えば2シンボル)の何も情報の無いシンボル列からなっている。このようにフレーム構成された信号は、基地局などの送信側装置において例えばQPSK変調により情報変調された後、所定の拡散符号で拡散変調されて移動局などの受信側装置へ送信される。
【0006】
具体的には、例えば非特許文献1に記載されているように、送信ビット系列は、QPSK変調が行われることにより、図7に示すようなシンボル位置にマッピングされ、シンボルデータが得られる。そして、シンボルデータは、送信相手となる受信側装置ごとに割り当てられているチャネライゼーションコードに応じた位相回転が加えられ、拡散処理が行われた後に送信される。
【0007】
そして、送信信号は、受信側装置において受信され、チャネライゼーションコードが用いられることにより逆拡散される。また、受信信号に含まれるパイロットシンボルブロックPiが用いられることにより、チャネル推定が行われ、逆拡散結果とチャネル推定結果とが用いられることにより、受信信号の同期検波が行われる。さらに、同期検波結果はRAKE合成され、チャネライゼーションコードに応じた位相回転が加えられる。
【0008】
以上の処理によって得られたシンボルデータは、送信側装置におけるシンボルデータと同様に、図7に示すようなシンボル位置にデマッピングされる。ここで、このシンボルデータに対してターボ復号およびビタビ復号を行う場合は、シンボルデータに含まれる各ビットが軟判定値で出力されることが必要であるため、シンボルデータが(−π/4)位相回転されることにより、図8に示すようなシンボル位置にデマッピングされ、QPSK変調されている2ビットのうち、1ビット目の軟判定値としてI軸成分が用いられ、2ビット目の軟判定値としてQ軸成分が用いられる。
【0009】
【非特許文献1】
3GPP規格書 TS25.223 ”3rd Generation Partnership Project;Technical Specification Group Radio Access Network; Spreading and modulation(TDD)”
【0010】
【発明が解決しようとする課題】
しかしながら、上述の受信側装置では、すべてのシンボルデータに対して位相回転を加える必要があるために、演算量が大きくなるという問題がある。
【0011】
例えば、上述したスロット構成の場合、情報シンボルブロックIi1および情報シンボルブロックIi2のシンボル数は、最大で122(61×2)シンボルとなり、これらのシンボルすべてに対して位相回転を加える演算は、膨大な量となる。
【0012】
本発明は、かかる点に鑑みてなされたものであり、少ない演算量で効率良くシンボルデータを受信ビット系列へ変換することができる受信装置および受信方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の受信装置は、受信信号を用いてチャネル推定値を取得するチャネル推定手段と、前記チャネル推定値を位相回転する位相回転手段と、位相回転されて得られた補正チャネル推定値を用いて前記受信信号を同期検波する同期検波手段と、を有する構成を採る。
【0014】
この構成によれば、チャネル推定値を位相回転し、得られた補正チャネル推定値用いて受信信号を同期検波するため、受信信号に含まれるシンボル数に比べて数が少ないチャネル推定値に対してのみ位相回転の演算を行えば良く、少ない演算量で効率良くシンボルデータを受信ビット系列へ変換することができる。
【0015】
本発明の受信装置は、前記位相回転手段は、受信信号の変調方式に応じて定まる位相回転量だけ前記チャネル推定値を位相回転する構成を採る。
【0016】
この構成によれば、受信方式の変調方式に応じて定まる位相回転量だけチャネル推定値を位相回転するため、例えばターボ復号またはビタビ復号を行うために復調結果が軟判定値である必要がある場合でも、少ない演算量で効率良く軟判定値の復調結果を得ることができ、受信信号に含まれるシンボルデータを受信ビット系列へ変換することができる。
【0017】
本発明の受信装置は、前記位相回転手段は、前記チャネル推定値を(π/4)位相回転する構成を採る。
【0018】
この構成によれば、チャネル推定値を(π/4)位相回転するため、受信信号がQPSK変調されている場合に、少ない演算量で軟判定値の復調結果を得ることができる。
【0019】
本発明の受信装置は、前記位相回転手段は、自装置に割り当てられているチャネライゼーションコードに応じて定まる位相回転量だけ前記チャネル推定値を位相回転する構成を採る。
【0020】
この構成によれば、チャネライゼーションコードに応じて定まる位相回転量だけチャネル推定値を位相回転するため、CDMA方式において拡散変調された受信信号から受信ビット系列を得るために必要な位相回転を、少ない演算量で効率良く行うことができる。
【0021】
本発明の受信装置は、受信信号に対してアダマール行列を乗算することにより、当該受信信号を逆拡散する逆拡散手段と、前記補正チャネル推定値を用いて前記逆拡散手段によって逆拡散された信号から干渉を除去する干渉除去手段と、をさらに有する構成を採る。
【0022】
この構成によれば、受信信号に対してアダマール行列を乗算して逆拡散された信号から、補正チャネル推定値を用いて干渉を除去するため、より精度の高い受信ビット系列を得ることができる。
【0023】
本発明の無線通信端末装置は、上記のいずれかに記載の受信装置を有する構成を採る。
【0024】
この構成によれば、上記のいずれかに記載の受信装置と同様の作用効果を無線通信端末装置において実現することができる。
【0025】
本発明の無線通信基地局装置は、上記のいずれかに記載の受信装置を有する構成を採る。
【0026】
この構成によれば、上記のいずれかに記載の受信装置と同様の作用効果を無線通信基地局装置において実現することができる。
【0027】
本発明の受信方法は、受信信号を用いてチャネル推定値を取得するステップと、前記チャネル推定値を位相回転するステップと、位相回転して得られた補正チャネル推定値を用いて前記受信信号を同期検波するステップと、を有するようにした。
【0028】
この方法によれば、チャネル推定値を位相回転し、得られた補正チャネル推定値用いて受信信号を同期検波するため、受信信号に含まれるシンボル数に比べて数が少ないチャネル推定値に対してのみ位相回転の演算を行えば良く、少ない演算量で効率良くシンボルデータを受信ビット系列へ変換することができる。
【0029】
【発明の実施の形態】
本発明の骨子は、位相回転を加えたチャネル推定結果を用いて逆拡散信号の同期検波を行うことにより、復調時の位相回転を不要とすることである。
【0030】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0031】
(実施の形態1)
図1は、本発明の実施の形態1に係る受信装置の要部構成を示すブロック図である。同図に示す受信装置は、逆拡散部110、同期検波部120、RAKE合成部130、位相回転部140、P/S(パラレル/シリアル)変換部152からなるQPSKデマッピング部150、チャネル推定部160、および推定値補正部170を有している。
【0032】
逆拡散部110は、アンテナを介して受信された信号に対して、自装置に割り当てられたチャネライゼーションコードを用いて逆拡散処理をする。
【0033】
同期検波部120は、受信信号を逆拡散処理して得られた逆拡散信号を、推定値補正部170から出力される補正チャネル推定値を用いて同期検波する。
【0034】
RAKE合成部130は、同期検波された信号をRAKE合成する。
【0035】
位相回転部140は、RAKE合成された信号に対して、受信装置に割り当てられたチャネライゼーションコードに対応する位相回転量Wだけ位相回転を加える。
【0036】
QPSKデマッピング部150は、位相回転部140から出力された信号を復調して受信ビット系列を出力する。具体的には、QPSKデマッピング部150は、QPSK変調されている位相回転部140の出力信号を復調してI軸成分およびQ軸成分のビットを取得し、P/S変換部152によってパラレル/シリアル変換することにより、受信ビット系列を出力する。
【0037】
チャネル推定部160は、アンテナを介して受信された信号を用いて、チャネル推定を行い、得られたチャネル推定値を推定値補正部170へ出力する。ここで、チャネル推定値は、チャネル推定の結果、1スロットに対応する時間内に検出されたパスの数だけ得られる。すなわち、例えば図2に示すように、1スロット時間内にパス1〜4の4つのパスがチャネル推定によって検出された場合は、4つのチャネル推定値が得られる。
【0038】
推定値補正部170は、チャネル推定部160から出力された各チャネル推定値に(π/4)位相回転を加える。したがって、図2に示したように、1スロット時間内にパス1〜4の4つのパスが検出された場合は、4つのチャネル推定値のそれぞれに(π/4)位相回転が加えられる。
【0039】
次いで、上記のように構成された受信装置の動作について説明する。
【0040】
まず、アンテナを介して受信された受信信号は、逆拡散部110およびチャネル推定部160へ入力される。そして、逆拡散部110によって、自装置に割り当てられたチャネライゼーションコードが用いられ、受信信号の逆拡散が行われ、逆拡散信号が同期検波部120へ出力される。
【0041】
他方、チャネル推定部160によって、チャネル推定が行われ、直接波および遅延波のパスが検出され、各パスにおけるチャネル推定値が推定値補正部170へ出力される。各パスにおけるチャネル推定値は、推定値補正部170によって、それぞれ(π/4)位相回転が加えられ、得られた補正チャネル推定値は、同期検波部120へ出力される。
【0042】
ここで、チャネル推定部160によって1スロット時間内に検出されるパス数は、受信信号に含まれるシンボル数と比較すると非常に少ないため、各パスに対応するチャネル推定値に対する位相回転の演算は、わずかな量で済む。
【0043】
そして、同期検波部120によって、補正チャネル推定値が用いられることにより逆拡散信号の同期検波が行われる。この同期検波においては、(π/4)位相回転が加えられた補正チャネル推定値が用いられるため、同期検波後の信号は、各シンボルに対して(π/4)位相回転が加えられたものと等価になる。
【0044】
同期検波後の信号は、RAKE合成部130によって、RAKE合成されることにより、各パスに対応する信号が合成されたRAKE合成信号が得られる。そして、RAKE合成信号は、位相回転部140によって、チャネライゼーションコードに対応して定められている位相回転量Wだけ位相回転が加えられ、QPSKデマッピング部150によって復調されるとともに、P/S変換部152によってパラレル/シリアル変換され、I軸成分およびQ軸成分のビットからなる受信ビット系列が出力される。
【0045】
上記従来の技術で説明したように、例えば図6に示すフレーム構成の信号において、各スロットに含まれる情報シンボルブロックIi1および情報シンボルブロックIi2がそれぞれ61シンボルからなっている場合、従来は122シンボルに対して(π/4)位相回転を加える必要があるのに対し、本実施の形態においては、例えば図2に示すように1スロット時間内に4つのパスが検出された場合は、4つのチャネル推定値に対して(π/4)位相回転を加えれば良い。
【0046】
このように、本実施の形態によれば、受信信号から1スロット時間内に得られるチャネル推定値のみを(π/4)位相回転して補正チャネル推定値を取得し、補正チャネル推定値を用いて逆拡散信号の同期検波を行うため、RAKE合成後の信号の各シンボルに対して位相回転を行う場合よりも少ない演算量で効率良くシンボルデータを受信ビット系列へ変換することができる。
【0047】
(実施の形態2)
本発明の実施の形態2の特徴は、チャネライゼーションコードに対応して定められている位相回転をチャネル推定値に加える点である。
【0048】
図3は、実施の形態2に係る受信装置の要部構成を示すブロック図である。同図において、図1と同じ部分には同じ符号を付し、その説明を省略する。
【0049】
図3に示す受信装置は、逆拡散部110、同期検波部120、RAKE合成部130、P/S変換部152と(−π/4)移相器154とからなるQPSKデマッピング部150a、チャネル推定部160、および推定値補正部210を有している。
【0050】
QPSKデマッピング部150aは、RAKE合成部130から出力された信号を復調して受信ビット系列を出力する。具体的には、QPSKデマッピング部150aは、QPSK変調されているRAKE合成部130の出力信号を(−π/4)移相器154によって(−π/4)位相回転するとともに復調してI軸成分およびQ軸成分のビットを取得し、P/S変換部152によってパラレル/シリアル変換することにより、受信ビット系列を出力する。
【0051】
推定値補正部210は、チャネル推定部160から出力された各チャネル推定値に、チャネライゼーションコードに対応して定まる位相回転量Wだけ位相回転を加える。
【0052】
次いで、上記のように構成された受信装置の動作について説明する。
【0053】
まず、アンテナを介して受信された受信信号は、逆拡散部110およびチャネル推定部160へ入力される。そして、逆拡散部110によって、自装置に割り当てられたチャネライゼーションコードが用いられ、受信信号の逆拡散が行われ、逆拡散信号が同期検波部120へ出力される。
【0054】
他方、チャネル推定部160によって、チャネル推定が行われ、直接波および遅延波のパスが検出され、各パスにおけるチャネル推定値が推定値補正部210へ出力される。各パスにおけるチャネル推定値は、推定値補正部210によって、それぞれチャネライゼーションコードに対応して定まる位相回転量Wだけ位相回転が加えられ、得られた補正チャネル推定値は、同期検波部120へ出力される。
【0055】
ここで、チャネル推定部160によって1スロット時間内に検出されるパス数は、受信信号に含まれるシンボル数と比較すると非常に少ないため、各パスに対応するチャネル推定値に対する位相回転の演算は、わずかな量で済む。
【0056】
そして、同期検波部120によって、補正チャネル推定値が用いられることにより逆拡散信号の同期検波が行われる。この同期検波においては、位相回転量Wだけ位相回転が加えられた補正チャネル推定値が用いられるため、同期検波後の信号は、各シンボルに対して位相回転量Wだけ位相回転が加えられたものと等価になる。
【0057】
同期検波後の信号は、RAKE合成部130によって、RAKE合成されることにより、各パスに対応する信号が合成されたRAKE合成信号が得られる。そして、RAKE合成信号は、QPSKデマッピング部150a内の(−π/4)移相器154によって、(−π/4)位相回転が加えられて復調されるとともに、P/S変換部152によってパラレル/シリアル変換され、I軸成分およびQ軸成分のビットからなる受信ビット系列が出力される。
【0058】
上記従来の技術で説明したように、例えば図6に示すフレーム構成の信号において、各スロットに含まれる情報シンボルブロックIi1および情報シンボルブロックIi2がそれぞれ61シンボルからなっている場合、従来は122シンボルに対して位相回転量Wだけ位相回転を加える必要があるのに対し、本実施の形態においては、例えば図2に示すように1スロット時間内に4つのパスが検出された場合は、4つのチャネル推定値に対して位相回転量Wの位相回転を加えれば良い。
【0059】
このように、本実施の形態によれば、受信信号から1スロット時間内に得られるチャネル推定値のみを、チャネライゼーションコードに対応して定められる位相回転量だけ位相回転して補正チャネル推定値を取得し、補正チャネル推定値を用いて逆拡散信号の同期検波を行うため、RAKE合成後の信号の各シンボルに対して位相回転を行う場合よりも少ない演算量で効率良くシンボルデータを受信ビット系列へ変換することができる。
【0060】
(実施の形態3)
本発明の実施の形態3の特徴は、QPSKデマッピングにおいて必要となる位相回転およびチャネライゼーションコードに対応して定められている位相回転の双方をチャネル推定値に加える点である。
【0061】
図4は、実施の形態3に係る受信装置の要部構成を示すブロック図である。同図において、図1と同じ部分には同じ符号を付し、その説明を省略する。
【0062】
図4に示す受信装置は、逆拡散部110、同期検波部120、RAKE合成部130、P/S変換部152からなるQPSKデマッピング部150、チャネル推定部160、および推定値補正部310を有している。
【0063】
推定値補正部310は、チャネル推定部160から出力された各チャネル推定値に、チャネライゼーションコードに対応して定まる位相回転量Wおよび(π/4)位相回転を加える。
【0064】
次いで、上記のように構成された受信装置の動作について説明する。
【0065】
まず、アンテナを介して受信された受信信号は、逆拡散部110およびチャネル推定部160へ入力される。そして、逆拡散部110によって、自装置に割り当てられたチャネライゼーションコードが用いられ、受信信号の逆拡散が行われ、逆拡散信号が同期検波部120へ出力される。
【0066】
他方、チャネル推定部160によって、チャネル推定が行われ、直接波および遅延波のパスが検出され、各パスにおけるチャネル推定値が推定値補正部310へ出力される。各パスにおけるチャネル推定値は、推定値補正部310によって、それぞれチャネライゼーションコードに対応して定まる位相回転量Wおよび(π/4)位相回転が加えられ、得られた補正チャネル推定値は、同期検波部120へ出力される。
【0067】
ここで、チャネル推定部160によって1スロット時間内に検出されるパス数は、受信信号に含まれるシンボル数と比較すると非常に少ないため、各パスに対応するチャネル推定値に対する位相回転の演算は、わずかな量で済む。
【0068】
そして、同期検波部120によって、補正チャネル推定値が用いられることにより逆拡散信号の同期検波が行われる。この同期検波においては、位相回転量Wおよび(π/4)位相回転が加えられた補正チャネル推定値が用いられるため、同期検波後の信号は、各シンボルに対して位相回転量Wおよび(π/4)位相回転が加えられたものと等価になる。
【0069】
同期検波後の信号は、RAKE合成部130によって、RAKE合成されることにより、各パスに対応する信号が合成されたRAKE合成信号が得られる。そして、RAKE合成信号は、QPSKデマッピング部150によって復調されるとともに、P/S変換部152によってパラレル/シリアル変換され、I軸成分およびQ軸成分のビットからなる受信ビット系列が出力される。
【0070】
上記従来の技術で説明したように、例えば図6に示すフレーム構成の信号において、各スロットに含まれる情報シンボルブロックIi1および情報シンボルブロックIi2がそれぞれ61シンボルからなっている場合、従来は122シンボルに対して位相回転量Wおよび(π/4)位相回転を加える必要があるのに対し、本実施の形態においては、例えば図2に示すように1スロット時間内に4つのパスが検出された場合は、4つのチャネル推定値に対して位相回転量Wおよび(π/4)位相回転を加えれば良い。
【0071】
このように、本実施の形態によれば、受信信号から1スロット時間内に得られるチャネル推定値のみを、チャネライゼーションコードに対応して定められる位相回転量および(π/4)位相回転して補正チャネル推定値を取得し、補正チャネル推定値を用いて逆拡散信号の同期検波を行うため、RAKE合成後の信号の各シンボルに対して位相回転を行う場合よりも少ない演算量で効率良くシンボルデータを受信ビット系列へ変換することができる。
【0072】
(実施の形態4)
本発明の実施の形態4の特徴は、RAKE合成後の信号に対して干渉除去を行う点である。
【0073】
図5は、実施の形態4に係る受信装置の要部構成を示すブロック図である。同図において、図3と同じ部分には同じ符号を付し、その説明を省略する。
【0074】
図5に示す受信装置は、逆拡散部110、同期検波部120、RAKE合成部130、P/S変換部152からなるQPSKデマッピング部150、チャネル推定部160、推定値補正部310、および演算変数生成部410と干渉除去演算部420とからなる干渉除去部400を有している。なお、本実施の形態における逆拡散部110は、高速アダマール変換を適用しており、他ユーザの信号に対する逆拡散処理を同時に行うものとする。
【0075】
干渉除去部400は、補正チャネル推定値と自装置と同一セル内の全ユーザの多重コードに関する拡散情報とを用いてRAKE合成後の信号の干渉を除去する。具体的には、干渉除去部400は、演算変数生成部410にて補正チャネル推定値と全ユーザの多重コードに関する拡散情報とを用いることにより、干渉除去のための演算変数を生成し、干渉除去演算部420にてRAKE合成後の信号に対して演算変数を用いることにより、例えばJD(Joint Detection)演算などの符号間干渉および他ユーザ干渉の影響を除去する演算を行う。干渉除去部400については、例えば、”Interference Cancellation vs. Channel Equalization and Joint Detection for the Downlink of C/TDMA Mobile Radio Concepts” (Bernd Steiner, Proceedings of EPMCC Conference Germany 1997, No. 145, pp.253−260)、または、”EFFICIENT MULTI‐RATE MULTI‐USER DETECTION FOR THEASYNCHRONOUS WCDMA UPLINK” (H.R.Karimi, VTC’99, pp.593−597)などの文献に記載された技術を適用することができる。
【0076】
次いで、上記のように構成された受信装置の動作について説明する。
【0077】
まず、アンテナを介して受信された受信信号は、逆拡散部110およびチャネル推定部160へ入力される。そして、逆拡散部110によって、自装置に割り当てられたチャネライゼーションコードが用いられ、受信信号の逆拡散が行われ、逆拡散信号が同期検波部120へ出力される。
【0078】
他方、チャネル推定部160によって、チャネル推定が行われ、直接波および遅延波のパスが検出され、各パスにおけるチャネル推定値が推定値補正部310へ出力される。各パスにおけるチャネル推定値は、推定値補正部310によって、それぞれチャネライゼーションコードに対応して定まる位相回転量Wおよび(π/4)位相回転が加えられ、得られた補正チャネル推定値は、同期検波部120および干渉除去部400内の演算変数生成部410へ出力される。
【0079】
ここで、チャネル推定部160によって1スロット時間内に検出されるパス数は、受信信号に含まれるシンボル数と比較すると非常に少ないため、各パスに対応するチャネル推定値に対する位相回転の演算は、わずかな量で済む。
【0080】
そして、同期検波部120によって、補正チャネル推定値が用いられることにより逆拡散信号の同期検波が行われる。この同期検波においては、位相回転量Wおよび(π/4)位相回転が加えられた補正チャネル推定値が用いられるため、同期検波後の信号は、各シンボルに対して位相回転量Wおよび(π/4)位相回転が加えられたものと等価になる。
【0081】
同期検波後の信号は、RAKE合成部130によって、RAKE合成されることにより、各パスに対応する信号が合成されたRAKE合成信号が得られ、RAKE合成信号は、干渉除去演算部420へ出力される。
【0082】
また、演算変数生成部410によって、補正チャネル推定値と自装置と同一セル内の全ユーザの多重コードに関する拡散情報とが用いられることにより、干渉除去のための演算変数が生成され、干渉除去演算部420によって、RAKE合成信号に対して演算変数が用いられることにより、例えばJD演算などの演算が行われ、符号間干渉および他ユーザ干渉の影響が除去される。
【0083】
そして、干渉除去後の信号は、QPSKデマッピング部150によって復調されるとともに、P/S変換部152によってパラレル/シリアル変換され、I軸成分およびQ軸成分のビットからなる受信ビット系列が出力される。
【0084】
このように、本実施の形態によれば、受信信号から1スロット時間内に得られるチャネル推定値のみを、チャネライゼーションコードに対応して定められる位相回転量および(π/4)位相回転して補正チャネル推定値を取得し、補正チャネル推定値を用いて逆拡散信号の同期検波を行うとともに、RAKE合成後の信号の干渉除去を行うため、RAKE合成後の信号の各シンボルに対して位相回転を行う場合よりも少ない演算量で効率良くシンボルデータを干渉の影響が除去された精度の高い受信ビット系列へ変換することができる。
【0085】
なお、上記各実施の形態においては、変調方式としてQPSKが適用されている場合について説明したため、チャネル推定値に加えられる位相回転量は(π/4)であったが、本発明はこれに限定されず、その他の変調方式が適用される場合でも適宜変更することにより、本発明を実施することができる。
【0086】
【発明の効果】
以上説明したように、本発明によれば、少ない演算量で効率良くシンボルデータを受信ビット系列へ変換することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る受信装置の要部構成を示すブロック図
【図2】実施の形態1に係るチャネル推定部の動作を説明するための図
【図3】本発明の実施の形態2に係る受信装置の要部構成を示すブロック図
【図4】本発明の実施の形態3に係る受信装置の要部構成を示すブロック図
【図5】本発明の実施の形態4に係る受信装置の要部構成を示すブロック図
【図6】CDMA/TDD方式において用いられる信号のフレーム構成の一例を示す図
【図7】QPSK変調におけるシンボルのマッピングの一例を示す図
【図8】QPSK変調におけるシンボルのマッピングの他の一例を示す図
【符号の説明】
110 逆拡散部
120 同期検波部
130 RAKE合成部
140 位相回転部
150、150a QPSKデマッピング部
152 P/S変換部
154 (−π/4)移相器
160 チャネル推定部
170、210、310 推定値補正部
400 干渉除去部
410 演算変数生成部
420 干渉除去演算部

Claims (8)

  1. 受信信号を用いてチャネル推定値を取得するチャネル推定手段と、
    前記チャネル推定値を位相回転する位相回転手段と、
    位相回転されて得られた補正チャネル推定値を用いて前記受信信号を同期検波する同期検波手段と、
    を有することを特徴とする受信装置。
  2. 前記位相回転手段は、
    受信信号の変調方式に応じて定まる位相回転量だけ前記チャネル推定値を位相回転することを特徴とする請求項1記載の受信装置。
  3. 前記位相回転手段は、
    前記チャネル推定値を(π/4)位相回転することを特徴とする請求項1記載の受信装置。
  4. 前記位相回転手段は、
    自装置に割り当てられているチャネライゼーションコードに応じて定まる位相回転量だけ前記チャネル推定値を位相回転することを特徴とする請求項1記載の受信装置。
  5. 受信信号に対してアダマール行列を乗算することにより、当該受信信号を逆拡散する逆拡散手段と、
    前記補正チャネル推定値を用いて前記逆拡散手段によって逆拡散された信号から干渉を除去する干渉除去手段と、
    をさらに有することを特徴とする請求項1記載の受信装置。
  6. 請求項1から請求項5のいずれかに記載の受信装置を有することを特徴とする無線通信端末装置。
  7. 請求項1から請求項5のいずれかに記載の受信装置を有することを特徴とする無線通信基地局装置。
  8. 受信信号を用いてチャネル推定値を取得するステップと、
    前記チャネル推定値を位相回転するステップと、
    位相回転して得られた補正チャネル推定値を用いて前記受信信号を同期検波するステップと、
    を有することを特徴とする受信方法。
JP2002301946A 2002-10-16 2002-10-16 受信装置 Expired - Fee Related JP3806389B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301946A JP3806389B2 (ja) 2002-10-16 2002-10-16 受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301946A JP3806389B2 (ja) 2002-10-16 2002-10-16 受信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006007979A Division JP2006174501A (ja) 2006-01-16 2006-01-16 受信装置および受信方法

Publications (2)

Publication Number Publication Date
JP2004140514A true JP2004140514A (ja) 2004-05-13
JP3806389B2 JP3806389B2 (ja) 2006-08-09

Family

ID=32450160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301946A Expired - Fee Related JP3806389B2 (ja) 2002-10-16 2002-10-16 受信装置

Country Status (1)

Country Link
JP (1) JP3806389B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090812A1 (ja) * 2005-02-25 2006-08-31 Nec Corporation 伝送路推定装置、cdma受信装置、および伝送路推定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090812A1 (ja) * 2005-02-25 2006-08-31 Nec Corporation 伝送路推定装置、cdma受信装置、および伝送路推定方法
JPWO2006090812A1 (ja) * 2005-02-25 2008-07-24 日本電気株式会社 伝送路推定装置、cdma受信装置、および伝送路推定方法
JP4555332B2 (ja) * 2005-02-25 2010-09-29 日本電気株式会社 伝送路推定装置、cdma受信装置、および伝送路推定方法
US8102898B2 (en) 2005-02-25 2012-01-24 Nec Corporation Channel estimating apparatus, CDMA receiving apparatus, and channel estimating method

Also Published As

Publication number Publication date
JP3806389B2 (ja) 2006-08-09

Similar Documents

Publication Publication Date Title
KR100318959B1 (ko) 부호분할다중접속통신시스템의서로다른부호간의간섭을제거하는장치및방법
US7372889B2 (en) Mobile station capable of and a method for generating chip patterns for transmission
CA2294895C (en) A subscriber unit and method for use in a wireless communication system
AU736358B2 (en) Subscriber unit for CDMA wireless communication system
JP4132088B2 (ja) 無線通信システムに用いられる加入者ユニット及び方法
US6324209B1 (en) Multi-channel spread spectrum system
US20070041348A1 (en) Transmitting/receiving apparatus and method for cell search in a broadband wireless communications system
US20030210735A1 (en) System and method for demodulating multiple walsh codes using a chip combiner
EP1147618B1 (en) Method and apparatus for reducing peak-to-average ratio in a cdma communication system
JP2004508766A (ja) 部分的な転送フォーマット情報を処理するための方法および装置
WO2003017558A2 (en) Method and apparatus for enhancing data rates in spread spectrum communication systems
CN1846357A (zh) 并行扩频通信系统和方法
JP2003209493A (ja) 符号分割多元接続通信方式及び方法
EP1240725A1 (en) Methods and apparatus for spreading and despreading information signals in code division multiple access communications systems
WO2011035961A1 (en) Synchronization channel interference cancelling in a wireless cellular network
JP3806389B2 (ja) 受信装置
KR100790124B1 (ko) 패킷 데이터 전송을 위한 이동 통신시스템의 수신기 및그에 의한 신호 수신 방법
JP2778396B2 (ja) スペクトル拡散信号の受信機
EP1580902A1 (en) Receiver and receiving method
JP2006174501A (ja) 受信装置および受信方法
JP2003283462A (ja) マルチキャリアcdma受信装置
TW201427300A (zh) 傳送裝置、接收裝置及應用於正交分頻多工分碼多重存取系統中的方法
KR20020065809A (ko) 이동 통신시스템의 프리앰블 송수신 장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees