JP2004140341A - Insulating film - Google Patents

Insulating film Download PDF

Info

Publication number
JP2004140341A
JP2004140341A JP2003317568A JP2003317568A JP2004140341A JP 2004140341 A JP2004140341 A JP 2004140341A JP 2003317568 A JP2003317568 A JP 2003317568A JP 2003317568 A JP2003317568 A JP 2003317568A JP 2004140341 A JP2004140341 A JP 2004140341A
Authority
JP
Japan
Prior art keywords
group
borazine
insulating film
resin composition
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003317568A
Other languages
Japanese (ja)
Other versions
JP4535703B2 (en
Inventor
Hiroshi Matsutani
松谷 寛
Yuko Uchimaru
内丸 祐子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hitachi Chemical Co Ltd
Priority to JP2003317568A priority Critical patent/JP4535703B2/en
Priority to US10/529,369 priority patent/US7625642B2/en
Priority to PCT/JP2003/012357 priority patent/WO2004030070A1/en
Publication of JP2004140341A publication Critical patent/JP2004140341A/en
Priority to US12/475,849 priority patent/US8362199B2/en
Application granted granted Critical
Publication of JP4535703B2 publication Critical patent/JP4535703B2/en
Priority to US13/219,342 priority patent/US20110313122A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating film, etc., which can sufficiently enhance a mechanical strength and electric characteristics. <P>SOLUTION: Interlayer insulating films 5, 7 (insulating films) provided in a memory capacitor cell 8 are formed between a gate electrode 3 and an opposed electrode 8 provided on a silicon wafer 1. The films 5, 7 each contains an organic silicon borazine polymer in such a manner that a relative permittivity is 2.6 or less, a Young' modulus is 5 GPa or more and leakage current is 1×10<SP>-8</SP>A/cm<SP>2</SP>or less. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、ボラジン系化合物を含む絶縁被膜、及びそれを用いた電子部品に関する。 The present invention relates to an insulating coating containing a borazine-based compound, and an electronic component using the same.

 昨今の通信機器の小型化、高出力化、及び信号の高速化に伴い、CMPによる膜平坦化の実現とも相俟って、電子部品の絶縁被膜(IMD:メタル層間絶縁膜、ILD:メタル下層間絶縁膜、PMD:前メタル絶縁膜等)には、耐熱性、機械特性、吸湿性、接着性、成形性、高エッチ選択比、等の他、特に低比誘電率が求められている。 With the recent miniaturization, high output, and high-speed signals of communication devices, the realization of film flattening by CMP has been combined with the insulation coating of electronic components (IMD: metal interlayer insulating film, ILD: metal lower layer). Insulation film, PMD: pre-metal insulation film, etc.) are required to have not only heat resistance, mechanical properties, hygroscopicity, adhesiveness, moldability, high etch selectivity, etc. but also particularly low dielectric constant.

 これは一般に、配線の信号の伝搬速度(v)と、配線材料が接する絶縁材料の比誘電率(ε)とは、v=k/√ε(kは定数)で表される関係を有しており、信号の伝搬速度を高速化して配線遅延を低減するためには、使用する周波数領域を高くし、或いは、絶縁材料の比誘電率を極力低くする必要があるからである。 In general, the propagation speed (v) of a signal on a wiring and the relative dielectric constant (ε) of an insulating material with which the wiring material contacts have a relationship represented by v = k / √ε (k is a constant). This is because, in order to increase the signal propagation speed and reduce the wiring delay, it is necessary to increase the frequency range to be used or to lower the relative dielectric constant of the insulating material as much as possible.

 このような絶縁被膜材料として量産ベースで現在実用化されている低誘電率材料としては、比誘電率が3.5程度のSiOF膜(CVD法)が挙げられ、その他に、比誘電率が2.6〜3.0の有機SOG(Spin On Glass)、有機ポリマー等の検討が進行中である。また、比誘電率が2.6未満と更に小さい絶縁被膜材料として、膜中に空隙を有するポーラス材が提案されており(例えば、特許文献1及び2参照)、LSIの層間絶縁被膜に適用するための検討が盛んに行われている。 A low dielectric constant material which is currently put into practical use on a mass production basis as such an insulating coating material is a SiOF film (CVD method) having a relative dielectric constant of about 3.5. Studies on organic SOGs (Spin @ On @ Glass) of 0.6 to 3.0, organic polymers, and the like are in progress. Further, as an insulating coating material having a relative dielectric constant smaller than 2.6, a porous material having voids in the film has been proposed (for example, see Patent Documents 1 and 2), and is applied to an interlayer insulating coating of LSI. Studies are being actively conducted.

 また、他の低誘電率材料としては、ベンゼンの炭素原子が窒素原子及びホウ素原子で置換された分子構造を有するボラジンは、ベンゼンに比して誘電率の計算値が低いことが知られている(例えば、特許文献3参照)。また、ボラジン含有ケイ素ポリマー薄膜が高い耐熱性を有することが知られている(例えば、特許文献4参照)。
特開平11−310411号公報 特開平11−322992号公報 特開2000−340689号公報 特開2002−155143号公報
In addition, as another low dielectric constant material, borazine having a molecular structure in which carbon atoms of benzene are substituted with nitrogen atoms and boron atoms is known to have a calculated dielectric constant lower than that of benzene. (For example, see Patent Document 3). It is also known that a borazine-containing silicon polymer thin film has high heat resistance (for example, see Patent Document 4).
JP-A-11-310411 JP-A-11-322992 JP 2000-340689 A JP 2002-155143 A

 しかし、上記従来のポーラス化によって低誘電率化が達成される絶縁被膜は、低誘電率化が助長されるにつれて膜強度の低下を伴う傾向にあり、例えばCMP等により膜の平坦化を行う際に、膜の剥がれといった不都合が生じ易くなってしまい、プロセス適応性や、かかる絶縁被膜を用いたデバイスの信頼性が低下してしまうといった大きな問題があった。また、上記従来のボラジン含有化合物は、合成の際に白金等の金属触媒を使用するため、これを絶縁被膜材料として用いる場合、得られる絶縁被膜中に白金等の金属成分が不可避的に不純物として残留してしまう。例えば、層間絶縁膜中に金属性不純物が存在すると、リーク電流が発生し、絶縁膜としての性能が低下又は劣化する要因となり得る。 However, the above-mentioned insulating film, which achieves a low dielectric constant by making it porous, tends to have a decrease in film strength as the low dielectric constant is promoted. For example, when the film is planarized by CMP or the like, In addition, problems such as peeling of a film are likely to occur, and there is a serious problem that process adaptability and reliability of a device using such an insulating film are reduced. In addition, since the conventional borazine-containing compound uses a metal catalyst such as platinum at the time of synthesis, when this is used as an insulating coating material, a metal component such as platinum is inevitably contained as an impurity in the obtained insulating coating. Will remain. For example, when a metallic impurity is present in the interlayer insulating film, a leak current is generated, which may be a factor of deteriorating or deteriorating the performance as the insulating film.

 そこで、本発明はかかる事情に鑑みてなされたものであり、機械強度及び電気特性を十分に高めることができる絶縁被膜、及び、配線遅延を有効に防止できると共に機械強度に優れ且つ信頼性を向上できる電子部品を提供することを目的とする。 Therefore, the present invention has been made in view of such circumstances, and has an insulating film capable of sufficiently increasing mechanical strength and electrical characteristics, and has excellent mechanical strength and improved reliability which can effectively prevent wiring delay. It is intended to provide an electronic component that can be used.

 上記課題を解決するために、本発明者による絶縁被膜は、分子構造中にボラジン骨格を有する成分を含有して成り、比誘電率が2.6以下であり、ヤング率が5GPa以上であり、且つ、リーク電流が1×10-8A/cm2以下であることを特徴とする。 In order to solve the above-mentioned problems, an insulating coating according to the present invention includes a component having a borazine skeleton in a molecular structure, has a relative dielectric constant of 2.6 or less, a Young's modulus of 5 GPa or more, In addition, the leakage current is 1 × 10 −8 A / cm 2 or less.

 このように構成された絶縁被膜は、その比誘電率が2.6以下とされており、従来の有機ポリマーに施されていたような低比誘電率化のためのポーラス化が不要である。よって、ポーラス化に起因する膜強度の低下が防止される。また、ヤング率が5GPa未満であると、膜の機械特性が劣り、かかる絶縁被膜を層間絶縁膜として用いたときに平坦化プロセスに適合しないといった不都合がある。さらに、リーク電流が1×10-8A/cm2以下であると、かかる絶縁被膜を例えば層間絶縁膜として用いたときに素子等のデバイス特性の悪化を生じるおそれがある。 The insulating film thus configured has a relative dielectric constant of 2.6 or less, and does not require a porous structure for lowering the relative dielectric constant, which is applied to a conventional organic polymer. Therefore, a decrease in film strength due to the formation of a porous layer is prevented. On the other hand, if the Young's modulus is less than 5 GPa, the mechanical properties of the film are inferior, and when such an insulating film is used as an interlayer insulating film, there is a disadvantage that the film is not suitable for a planarization process. Further, when the leak current is 1 × 10 −8 A / cm 2 or less, device characteristics such as elements may be deteriorated when such an insulating film is used as, for example, an interlayer insulating film.

 また、本発明の絶縁被膜は、金属不純物含有量が30ppm以下のボラジン系樹脂組成物から形成されて成るものであると好ましい。原料となるボラジン系樹脂組成物中の金属不純物含有量が30ppmを超えると、本発明の絶縁被膜を例えば極微細構造を成す多層配線の層間絶縁膜として用いたときに要求される低比誘電率を達成できないことがあり、或いはリーク電流の発生が顕著となってしまうおそれがある。 絶 縁 The insulating coating of the present invention is preferably formed of a borazine-based resin composition having a metal impurity content of 30 ppm or less. If the content of metal impurities in the borazine-based resin composition as a raw material exceeds 30 ppm, the low relative dielectric constant required when the insulating coating of the present invention is used, for example, as an interlayer insulating film of a multilayer wiring having an ultrafine structure May not be achieved, or the occurrence of leakage current may become significant.

 また、本発明による電子部品は、本発明の絶縁被膜を用いて有効に構成される半導体装置や液晶装置といった電子デバイスを構成するものであって、すなわち、導電層が設けられた基体と、この基体上に設けられており且つ本発明による絶縁被膜から成る層間絶縁膜とを備えるものである。 Further, the electronic component according to the present invention constitutes an electronic device such as a semiconductor device or a liquid crystal device which is effectively formed by using the insulating coating of the present invention, that is, a base provided with a conductive layer, An interlayer insulating film provided on a base and comprising an insulating film according to the present invention.

 本発明の絶縁被膜によれば、誘電率が十分に小さくされるので電気特性に優れると共に、ポーラス化による低誘電率化を要しないので機械強度を十分に高めることがきる。また、本発明の電子部品によれば、本発明の絶縁被膜を備えることにより、配線遅延を有効に防止できると共に機械強度に優れ且つ信頼性を向上させることができる。 According to the insulating coating of the present invention, since the dielectric constant is sufficiently reduced, the electrical characteristics are excellent, and the mechanical strength can be sufficiently increased because the dielectric constant does not need to be lowered by making the insulating layer porous. Further, according to the electronic component of the present invention, by providing the insulating coating of the present invention, wiring delay can be effectively prevented, mechanical strength is excellent, and reliability can be improved.

 以下、本発明の絶縁被膜の好適な実施形態について説明する。本発明の絶縁被膜は、分子構造中にボラジン骨格を有する成分を必須成分として含有するものである。このボラジン骨格を有する成分としては、主鎖又は側鎖に置換又は無置換のボラジン骨格を有する重合体であればよく、例えば、Chemical Review 誌、vol 90、pp.73〜91(1990).やCHEMTECH 誌、1994年7月、pp.29〜37.記載の重合体等を挙げることができる。 Hereinafter, preferred embodiments of the insulating film of the present invention will be described. The insulating coating of the present invention contains a component having a borazine skeleton in its molecular structure as an essential component. The component having a borazine skeleton may be a polymer having a substituted or unsubstituted borazine skeleton in the main chain or side chain. For example, Chemical {Review}, vol. 73-91 (1990). And CHEMTECH @, July 1994, pp. 29-37. And the like.

 さらに、成膜性及び化学的安定性の観点から、下記式(1);

Figure 2004140341
で表される繰り返し単位を有してなる有機ケイ素ボラジン系ポリマーが好ましい。 Further, from the viewpoints of film formability and chemical stability, the following formula (1):
Figure 2004140341
An organosilicon borazine-based polymer having a repeating unit represented by

 なお、式(1)において、

Figure 2004140341
は、以下のいずれかを示し、
Figure 2004140341
Note that in equation (1),
Figure 2004140341
Indicates one of the following,
Figure 2004140341

 そして、

Figure 2004140341
は、以下のいずれかを示す。
Figure 2004140341
And
Figure 2004140341
Indicates one of the following:
Figure 2004140341

 また、式(1)における破線は、ボラジン残基におけるアルキニル基由来の炭素に結合が生じていることを意味する。 破 線 Further, the broken line in the formula (1) means that a bond is generated at the carbon derived from the alkynyl group in the borazine residue.

 ここで、式(1)中、R1はアルキル基、アリール基、アラルキル基又は水素原子を示す。この場合、アルキル基の炭素数は1〜24、好ましくは1〜12である。また、アリール基の炭素数は6〜20、好ましくは6〜10である。さらに、アラルキル基の炭素数は7〜24、好ましくは7〜12である。より具体的には、基R1として、メチル基、エチル基、イソプロピル基、t−ブチル基、オクチル基等のアルキル基、フェニル基、ナフチル基、ビフェニル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基、水素原子等が挙げられ、これらの中では、メチル基、エチル基、フェニル基又は水素原子がより好ましい。 Here, in the formula (1), R 1 represents an alkyl group, an aryl group, an aralkyl group or a hydrogen atom. In this case, the alkyl group has 1 to 24, preferably 1 to 12 carbon atoms. The aryl group has 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms. Further, the aralkyl group has 7 to 24 carbon atoms, preferably 7 to 12 carbon atoms. More specifically, as the group R 1 , an alkyl group such as a methyl group, an ethyl group, an isopropyl group, a t-butyl group, an octyl group, an aryl group such as a phenyl group, a naphthyl group, a biphenyl group, a benzyl group, and a phenethyl group And the like. Among them, a methyl group, an ethyl group, a phenyl group or a hydrogen atom is more preferable.

 また、式(1)において、R2はアルキル基、アリール基、アラルキル基又は水素原子を示し、アルキル基の炭素数は1〜24、好ましくは1〜12である。この場合、アリール基の炭素数は6〜20、好ましくは6〜10である。また、アラルキル基の炭素数は7〜24、好ましくは7〜12である。より具体的には、基R2として、メチル基、エチル基、イソプロピル基、t−ブチル基、オクチル基等のアルキル基、フェニル基、ナフチル基、ビフェニル基、アントラセニル基等のアリール基、ベンジル基、フェネチル基、フルオレニル基等のアラルキル基、水素原子等が挙げられ、これらの中では、メチル基、フェニル基又は水素原子がより好ましい。 In the formula (1), R 2 represents an alkyl group, an aryl group, an aralkyl group or a hydrogen atom, and the alkyl group has 1 to 24, preferably 1 to 12 carbon atoms. In this case, the aryl group has 6 to 20, preferably 6 to 10 carbon atoms. The aralkyl group has 7 to 24 carbon atoms, preferably 7 to 12 carbon atoms. More specifically, as the group R 2 , an alkyl group such as a methyl group, an ethyl group, an isopropyl group, a t-butyl group, an octyl group, an aryl group such as a phenyl group, a naphthyl group, a biphenyl group and an anthracenyl group, and a benzyl group And an aralkyl group such as a phenethyl group and a fluorenyl group, and a hydrogen atom. Of these, a methyl group, a phenyl group and a hydrogen atom are more preferable.

 さらに、式(1)において、R3及びR4はアルキル基、アリール基、アラルキル基又は水素原子の中から選ばれる同一又は異なる1価の基を示し、これらの中では、アルキル基、アリール基又は水素原子がより好ましい。この場合、アルキル基の炭素数は1〜24、好ましくは1〜12である。また、アリール基の炭素数は6〜20、好ましくは6〜10である。さらに、アラルキル基の炭素数は7〜24、好ましくは7〜12である。より具体的には、基R3及びR4として、メチル基、エチル基、イソプロピル基、t−ブチル基、オクチル基等のアルキル基、フェニル基、ナフチル基、ビフェニル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基、水素原子等が挙げられ、これらの中ではメチル基、フェニル基又は水素原子がより好ましい。 Further, in the formula (1), R 3 and R 4 represent the same or different monovalent groups selected from an alkyl group, an aryl group, an aralkyl group and a hydrogen atom, and among these, an alkyl group, an aryl group Or a hydrogen atom is more preferred. In this case, the alkyl group has 1 to 24, preferably 1 to 12 carbon atoms. The aryl group has 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms. Further, the aralkyl group has 7 to 24 carbon atoms, preferably 7 to 12 carbon atoms. More specifically, as groups R 3 and R 4 , alkyl groups such as methyl group, ethyl group, isopropyl group, t-butyl group, octyl group, aryl groups such as phenyl group, naphthyl group, biphenyl group, and benzyl group And an aralkyl group such as a phenethyl group, a hydrogen atom and the like. Among them, a methyl group, a phenyl group and a hydrogen atom are more preferable.

 またさらに、式(1)において、R5は置換若しくは未置換の芳香族の2価の基、オキシポリ(ジメチルシロキシ)基、又は酸素原子を示す。この場合、芳香族の2価の基の炭素数は6〜24、好ましくは6〜12である。この芳香族の2価の基には、2価芳香族炭化水素基(アリーレン基等)の他、酸素等のヘテロ原子を連結基として含むアリーレン基等が含まれる。また、この芳香族の2価の基に結合していてもよい置換基としては、アルキル基、アリール基、アラルキル基等が挙げられる。より具体的には、基R5として、フェニレン基、ナフチレン基、ビフェニレン基等のアリーレン基、ジフェニルエーテル基等の置換アリーレン基、酸素原子等が挙げられ、これらの中ではフェニレン基、ジフェニルエーテル基又は酸素原子がより好ましい。 Further, in the formula (1), R 5 represents a substituted or unsubstituted aromatic divalent group, an oxypoly (dimethylsiloxy) group, or an oxygen atom. In this case, the aromatic divalent group has 6 to 24 carbon atoms, preferably 6 to 12 carbon atoms. The aromatic divalent group includes, in addition to a divalent aromatic hydrocarbon group (such as an arylene group), an arylene group containing a heteroatom such as oxygen as a linking group. Examples of the substituent that may be bonded to the aromatic divalent group include an alkyl group, an aryl group, and an aralkyl group. More specifically, as the base R 5, a phenylene group, a naphthylene group, an arylene group such as biphenylene group, a substituted arylene group such as diphenyl ether group, such as an oxygen atom., A phenylene group, diphenyl ether group or oxygen among these Atoms are more preferred.

 さらにまた、式(1)において、R6はアルキル基、アリール基又はアラルキル基を示す。この場合、アルキル基の炭素数は1〜24、好ましくは1〜12である。また、アリール基の炭素数は6〜20、好ましくは6〜10である。さらに、アラルキル基の炭素数は7〜24、好ましくは7〜12である。より具体的には、基R6として、メチル基、エチル基、イソプロピル基、t−ブチル基、オクチル基等のアルキル基、フェニル基、ナフチル基、ビフェニル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。 Furthermore, in the formula (1), R 6 represents an alkyl group, an aryl group or an aralkyl group. In this case, the alkyl group has 1 to 24, preferably 1 to 12 carbon atoms. The aryl group has 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms. Further, the aralkyl group has 7 to 24 carbon atoms, preferably 7 to 12 carbon atoms. More specifically, as the group R 6 , an alkyl group such as a methyl group, an ethyl group, an isopropyl group, a t-butyl group, an octyl group, an aryl group such as a phenyl group, a naphthyl group, a biphenyl group, a benzyl group, a phenethyl group And the like.

 また、式(1)において、a及びbは、それぞれ繰り返し単位数を表し、aは正の整数であって、好ましくは1〜20000、より好ましくは3〜10000であり、特に好ましくは5〜10000である。また、bは0又は正の整数であって、好ましくは0〜1000、より好ましくは0〜100である。ただし、a及びbはそれらの構成比率を示すものであって、結合状態(ブロック共重合、ランダム共重合等)のいずれかの形態に限定されるものではない。 In the formula (1), a and b each represent the number of repeating units, and a is a positive integer, preferably 1 to 20,000, more preferably 3 to 10,000, and particularly preferably 5 to 10,000. It is. B is 0 or a positive integer, preferably 0 to 1000, more preferably 0 to 100. However, a and b indicate their constituent ratios, and are not limited to any form of the bonding state (block copolymerization, random copolymerization, etc.).

 このような共重合体において、aとbとのそれぞれの個数の比(a:b)は特に制限されず、a/b比がより大きい、つまり高分子主鎖中の鎖状構造の割合が比較的多い場合、溶媒に対する共重合体の溶解度が高められ且つ融点が低くなることにより、共重合体の加工性が向上すると予想される。一方、a/b比がより小さい、つまり高分子主鎖中の架橋構造の割合が比較的多い場合、共重合体の耐熱性、耐燃焼性が向上すると予想される。したがって、用途等に応じて、或いは、共重合体の各モノマーユニットの構造及びその組み合わせに応じて、良好な加工性及び耐熱性、耐燃焼性を与える共重合体の最適なa/b比の範囲を適宜設定することができる。 In such a copolymer, the ratio (a: b) of the respective numbers of a and b is not particularly limited, and the a / b ratio is large, that is, the ratio of the chain structure in the polymer main chain is low. When the amount is relatively large, it is expected that the processability of the copolymer will be improved by increasing the solubility of the copolymer in the solvent and lowering the melting point. On the other hand, when the a / b ratio is small, that is, when the ratio of the crosslinked structure in the polymer main chain is relatively large, it is expected that the heat resistance and the combustion resistance of the copolymer will be improved. Therefore, depending on the use or the like, or the structure of each monomer unit of the copolymer and the combination thereof, the optimum a / b ratio of the copolymer that gives good processability, heat resistance, and combustion resistance is obtained. The range can be set as appropriate.

 さらに、式(1)において、pは0又は正の整数、qは0又は正の整数を示し、後述するnとは、p+q+2=nの関係を有する。pの好ましい範囲は0〜10であり、より好ましくは1〜8である。また、qの好ましい範囲は0〜10であり、より好ましくは1〜8である。 Furthermore, in the formula (1), p represents 0 or a positive integer, q represents 0 or a positive integer, and has a relationship of p + q + 2 = n with n described later. The preferable range of p is 0-10, more preferably 1-8. The preferable range of q is 0 to 10, more preferably 1 to 8.

 またさらに、式(1)において、Z1は下記式(2);

Figure 2004140341
又は下記式(3);
Figure 2004140341
で表される2価の基であり、同一分子鎖において、Z1が式(2)又は(3)のいずれか一方の構造で構成されていても、或いは、両方の構造が同一分子鎖内に含まれていても構わない。なお、式(2)及び(3)におけるR3、R4、R5、R6、p及びpは前述したものと同様である。 Further, in the formula (1), Z 1 is the following formula (2);
Figure 2004140341
Or the following formula (3);
Figure 2004140341
In the same molecular chain, even if Z 1 is constituted by either one of the formulas (2) and (3), or both structures are in the same molecular chain. May be included. Note that R 3 , R 4 , R 5 , R 6 , p and p in the formulas (2) and (3) are the same as those described above.

 このようなボラジン骨格を有する重合体の分子量(ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレンの検量線を使用して換算した値の数平均分子量)は、好ましくは500〜5000000、より好ましくは1000〜1000000である。この分子量(Mn)が過度に低く、例えば500未満の場合、耐熱性、及び後述する絶縁被膜の機械特性が劣る傾向にあり、例えば、かかる絶縁被膜を層間絶縁膜として用いるときにプリベークが困難となったり、成膜後の平坦化をCMPで行うときに剥離等を生じ易くなるおそれがある。これに対し、この分子量(Mn)が過度に高く、例えば5000000を超えると、絶縁被膜の加工性が悪化し、例えば、かかる絶縁被膜にW等の金属プラグ形成用のヴィアホール等を所望の形状に制御し難くなるおそれがある。 The molecular weight of the polymer having such a borazine skeleton (number-average molecular weight of a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve) is preferably 500 to 5,000,000, Preferably it is 1000-1,000,000. When the molecular weight (Mn) is excessively low, for example, less than 500, heat resistance and mechanical properties of an insulating film described later tend to be inferior. For example, when such an insulating film is used as an interlayer insulating film, prebaking is difficult. There is a possibility that peeling or the like may easily occur when flattening after film formation is performed by CMP. On the other hand, if the molecular weight (Mn) is excessively high, for example, more than 5,000,000, the workability of the insulating film deteriorates. For example, a via hole for forming a metal plug such as W is formed in the insulating film in a desired shape. Control may be difficult.

 また、式(1)で表される有機ケイ素ボラジン系ポリマーは、B,B',B"−トリアルキニルボラジン類とヒドロシラン類とを重合溶媒中、金属含有触媒の存在下に重合させ、重合後、その金属含有触媒を取り除くことによって製造することができる。或いは、B,B',B"−トリヒドロボラジン類とビス(アルキニルシラン)類とを、無触媒下でヒドロホウ素化重合させることにより製造することができる。 The organosilicon borazine-based polymer represented by the formula (1) is obtained by polymerizing B, B ', B "-trialkynylborazines and hydrosilanes in a polymerization solvent in the presence of a metal-containing catalyst. Or by removing the metal-containing catalyst by hydroboration polymerization of B, B ', B "-trihydroborazines and bis (alkynylsilanes) in the absence of a catalyst. Can be manufactured.

 B,B',B"−トリアルキニルボラジン類(x)の具体例としては、B,B',B"−トリエチニルボラジン、B,B',B"−トリエチニル−N,N',N"−トリメチルボラジン、B,B',B"−トリ(1−プロピニル)ボラジン、B,B',B"−トリフェニルエチニルボラジン、B,B',B"−トリフェニルエチニル−N,N',N"−トリメチルボラジン、B,B',B"−トリエチニル−N,N',N"−トリフェニルボラジン、B,B',B"−トリフェニルエチニル−N,N',N"−トリフェニルボラジン、B,B',B"−エチニル−N,N',N"−トリベンジルボラジン、B,B',B"−トリス(1−プロピニル)−N,N',N"−トリメチルボラジン等が挙げられる。ただし、これらに限定されるものではない。また、1種のB,B',B"−トリアルキニルボラジン類を単独で用いることもできるが、2種以上のB,B',B"−トリアルキニルボラジン類を組み合わせて用いてもよい。 Specific examples of B, B ', B "-trialkynyl borazines (x) include B, B', B" -triethynyl borazine, B, B ', B "-triethynyl-N, N', N" -Trimethylborazine, B, B ', B "-tri (1-propynyl) borazine, B, B', B" -triphenylethynylborazine, B, B ', B "-triphenylethynyl-N, N', N "-trimethylborazine, B, B ', B" -triethynyl-N, N', N "-triphenylborazine, B, B ', B" -triphenylethynyl-N, N', N "-triphenyl Borazine, B, B ', B "-ethynyl-N, N', N" -tribenzylborazine, B, B ', B "-tris (1-propynyl) -N, N', N" -trimethylborazine Is mentioned. However, it is not limited to these. In addition, one kind of B, B ', B "-trialkynylborazines can be used alone, but two or more kinds of B, B', B" -trialkynylborazines may be used in combination.

 ヒドロシラン類には、ビス(モノヒドロシラン)類、ビス(ジヒドロシラン)類、ビス(トリヒドロシラン)類、ポリ(ヒドロシラン)類が含まれる。具体例としては、m−ビス(ジメチルシリル)ベンゼン、p−ビス(ジメチルシリル)ベンゼン、1,4−ビス(ジメチルシリル)ナフタレン、1,5−ビス(ジメチルシリル)ナフタレン、m−ビス(メチルエチルシリル)ベンゼン、m−ビス(メチルフェニルシリル)ベンゼン、p−ビス(メチルオクチルシリル)ベンゼン、4,4'−ビス(メチルベンジルシリル)ビフェニル、4,4'−ビス(メチルフェネチルシリル)ジフェニルエーテル、m−ビス(メチルシリル)ベンゼン、m−ジシリルベンゼン、1,1,3,3−テトラメチル−1,3−ジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5,7,9−ペンタメチルシクロペンタシロキサン、1,3,5,7−テトラエチルシクロテトラシロキサン、1,3,5−トリフェニルシクロトリシロキサン、1,3,5,7−テトラフェニルシクロテトラシロキサン、1,3,5,7−テトラベンジルシクロテトラシロキサン等が挙げられる。ただし、これらに限定されるものではない。 The hydrosilanes include bis (monohydrosilane) s, bis (dihydrosilane) s, bis (trihydrosilane) s, and poly (hydrosilane) s. Specific examples include m-bis (dimethylsilyl) benzene, p-bis (dimethylsilyl) benzene, 1,4-bis (dimethylsilyl) naphthalene, 1,5-bis (dimethylsilyl) naphthalene, m-bis (methyl) Ethylsilyl) benzene, m-bis (methylphenylsilyl) benzene, p-bis (methyloctylsilyl) benzene, 4,4′-bis (methylbenzylsilyl) biphenyl, 4,4′-bis (methylphenethylsilyl) diphenyl ether , M-bis (methylsilyl) benzene, m-disilylbenzene, 1,1,3,3-tetramethyl-1,3-disiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, 1,3 , 5,7,9-Pentamethylcyclopentasiloxane, 1,3,5,7-tetraethylcyclotetrasiloxy Emissions, 1,3,5 triphenyl cyclotrisiloxane, 1,3,5,7-tetraphenyl cyclotetrasiloxane, 1,3,5,7-tetra benzyl cyclotetrasiloxane and the like. However, it is not limited to these.

 有機ケイ素ボラジン系ポリマーを製造する際に使用する金属含有触媒としては、特に制限されないが、一般にアセチレン類やオレフィン類のヒドロシリル化に使用されるもので、均一系金属含有触媒や不均一系金属含有触媒を用いることができる。これのなかでは、不均一系金属含有触媒が好ましく、特にB,B',B"−トリアルキニルボラジン類とヒドロシラン類の重合反応を促進し、反応基質および後述する重合溶媒中に金属成分が溶出せず、且つ重合終了後に濾別除去可能なものが望ましい。 The metal-containing catalyst used in producing the organosilicon borazine-based polymer is not particularly limited, but is generally used for hydrosilylation of acetylenes and olefins, and contains a homogeneous metal-containing catalyst or a heterogeneous metal-containing catalyst. A catalyst can be used. Among them, a heterogeneous metal-containing catalyst is preferable. Particularly, it promotes the polymerization reaction of B, B ', B "-trialkynylborazines and hydrosilanes, and the metal component is eluted in the reaction substrate and a polymerization solvent described later. It is desirable that the polymer be not filtered and be removed by filtration after the polymerization.

 このような不均一金属含有触媒としては、白金粉末、パラジウム粉末、ニッケル粉末等の金属単体粉末、白金炭素、白金アルミナ、白金シリカ、パラジウム炭素、パラジウムアルミナ、パラジウムシリカ、ロジウム炭素、ロジウムアルミナ、ロジウムシリカ等の坦持金属単体、ラネーニッケル、又は、B.Marciniec編、Comprehensive Handbook on Hydrosilylation、Pergamon Press(1992)やPolymer Journal、34、97−102(2002)に記載のポリマー坦持ロジウム触媒(polym−PPh2・RhCl(PPh33、polym−PPh2・RhCl3、polym−CH2Cl2・RhCl(CO)(PPh32など)やポリマー坦持白金触媒(Polym−CH2SH/H2PtCl6)(ここで、polyはポリ(スチレン−co−ジビニルベンゼン)等の主鎖骨格を意味する。)、表面官能基化シリカゲル坦持白金触媒(Silica−(CH23−SH/H2PtCl6)等が挙げられる。これらの触媒は単独で用いてもよく、或いは、複数を組み合わせて使用してもよい。 Examples of such a heterogeneous metal-containing catalyst include elemental metals such as platinum powder, palladium powder, and nickel powder, platinum carbon, platinum alumina, platinum silica, palladium carbon, palladium alumina, palladium silica, rhodium carbon, rhodium alumina, and rhodium. Carrier metal alone such as silica, Raney nickel, or B.I. Marciniec ed., Comprehensive Handbook on Hydrosilylation, Pergamon Press (1992) and Polymer Journal, polymer-supported rhodium catalyst according to 34,97-102 (2002) (polym-PPh 2 · RhCl (PPh 3) 3, polym-PPh 2 RhCl 3 , polym-CH 2 Cl 2 .RhCl (CO) (PPh 3 ) 2, etc. and polymer-supported platinum catalyst (Polym-CH 2 SH / H 2 PtCl 6 ) (where poly is poly (styrene- main-chain skeleton such as co-divinylbenzene), and surface-functionalized silica gel-supported platinum catalyst (Silica- (CH 2 ) 3 —SH / H 2 PtCl 6 ). These catalysts may be used alone or in combination of two or more.

 また、触媒の使用量としては、B,B',B"−トリアルキニルボラジン類又はヒドロシラン類のうちモル量の少ない方の原料化合物に対する金属原子のモル比が0.000001〜5の範囲であると好適である。 The amount of the catalyst used is such that the molar ratio of the metal atom to the raw material compound having a smaller molar amount among the B, B ', B "-trialkynyl borazines or hydrosilanes is in the range of 0.000001 to 5. It is suitable.

 また、式(1)で表される有機ケイ素ボラジン系ポリマーを製造する際、系の流動性を保つこと、及び、重合後、金属含有触媒の除去を容易にすべく、重合溶媒が用いられる。重合溶媒としては、原料と反応するものを除いた種々の溶媒を用いることができる。具体的には、芳香族炭化水素系、飽和炭化水素系、脂肪族エーテル系、芳香族エーテル系等の溶媒が挙げられ、より具体的には、トルエン、ベンゼン、キシレン、エチルベンゼン、プロピルベンゼン、ヘキシルベンゼン、ヘキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、ジフェニルエーテル等が挙げられる。これらの重合溶媒は単独で用いてもよく、また、複数を組み合わせて使用してもよい。 In addition, when producing the organosilicon borazine-based polymer represented by the formula (1), a polymerization solvent is used to maintain the fluidity of the system and to facilitate removal of the metal-containing catalyst after polymerization. As the polymerization solvent, various solvents other than those that react with the raw materials can be used. Specific examples include aromatic hydrocarbon-based, saturated hydrocarbon-based, aliphatic ether-based, and aromatic ether-based solvents, and more specifically, toluene, benzene, xylene, ethylbenzene, propylbenzene, and hexyl. Examples include benzene, hexane, tetrahydrofuran, ethylene glycol dimethyl ether, diphenyl ether and the like. These polymerization solvents may be used alone or in combination of two or more.

 また、重合溶媒の使用量は、B,B',B"−トリアルキニルボラジン類及びヒドロシラン類の総量100重量部に対して重合溶媒(s)を50〜100000重量部使用することが望ましい。 は Further, the amount of the polymerization solvent used is desirably 50 to 100,000 parts by weight of the polymerization solvent (s) based on 100 parts by weight of the total amount of B, B ', B "-trialkynylborazines and hydrosilanes.

 さらに、式(4)で表される有機ケイ素ボラジン系ポリマーを製造する際のB,B',B"−トリアルキニルボラジン類とヒドロシラン類の仕込みモル比は、B,B',B"−トリアルキニルボラジン類1モルに対して、ヒドロシラン類が0.1〜10モルの範囲であると好適であり、より好ましくは、B,B',B"−トリアルキニルボラジン類1モルに対して、ヒドロシラン類が0.2〜5モルの範囲である。 Further, when the organosilicon borazine-based polymer represented by the formula (4) is produced, the charged molar ratio of B, B ', B "-trialkynylborazines and hydrosilanes is B, B', B" -trialkyl. The amount of the hydrosilane is preferably in the range of 0.1 to 10 mol per mol of the alkynylborazine, and more preferably, the amount of the hydrosilane is preferably 1 mol per mol of B, B ', B "-trialkynylborazine. Are in the range of 0.2 to 5 moles.

 またさらに、式(4)で表される有機ケイ素ボラジン系ポリマーを製造する際の反応温度及び反応時間は、B,B',B"−トリアルキニルボラジン類とヒドロシラン類とが重合し、所望の分子量を有する有機ケイ素ボラジン系ポリマーが得られる条件であれば特に制限されない。具体的には、原料の反応性や触媒の活性によって異なるが、反応温度は−20℃〜200℃の範囲で冷却又は加熱することができる。より好ましい反応温度としては0℃〜150℃、更に好ましくは0℃〜100℃の範囲とされる。一方、反応時間は好ましくは1分〜10日であり、より好ましくは1時間〜10日、特に好ましくは2時間〜7日の範囲とされる。 Furthermore, the reaction temperature and the reaction time for producing the organosilicon borazine-based polymer represented by the formula (4) are as follows: B, B ', B "-trialkynylborazines and hydrosilanes are polymerized, There is no particular limitation as long as an organosilicon borazine-based polymer having a molecular weight can be obtained.Specifically, the reaction temperature depends on the reactivity of the raw materials and the activity of the catalyst, but the reaction temperature is within a range of -20 ° C to 200 ° C. The reaction temperature is more preferably in the range of 0 ° C. to 150 ° C., more preferably 0 ° C. to 100 ° C. On the other hand, the reaction time is preferably 1 minute to 10 days, more preferably The range is 1 hour to 10 days, particularly preferably 2 hours to 7 days.

 なお、重合反応は乾燥窒素やアルゴン等の不活性雰囲気下で行うことが望ましく、装置構成を簡略化する観点から、大気下でも行うことが可能である。 The polymerization reaction is desirably performed in an inert atmosphere such as dry nitrogen or argon, and can be performed in the air from the viewpoint of simplifying the device configuration.

 有機ケイ素ボラジン系ポリマーの合成後、反応液を濾過して金属含有触媒を除去することにより、有機ケイ素ボラジン系ポリマーを含んだ濾液を得ることができる。濾過の方法としては、一般的に用いられる自然濾過、吸引濾過、加圧濾過等の濾過法を用いることができる。また、濾材には濾紙、濾布、樹脂膜等を使用でき、さらに、自然沈降や遠心分離等によって触媒を除去することも本発明の「濾過」の態様に含まれる。 合成 After the synthesis of the organosilicon borazine-based polymer, the reaction solution is filtered to remove the metal-containing catalyst, whereby a filtrate containing the organosilicon borazine-based polymer can be obtained. As a filtration method, a commonly used filtration method such as natural filtration, suction filtration, and pressure filtration can be used. Further, as the filter medium, filter paper, filter cloth, resin membrane and the like can be used, and the removal of the catalyst by natural sedimentation or centrifugal separation is also included in the "filtration" aspect of the present invention.

 また、重合反応後、重合系に不溶で金属触媒由来の金属成分を吸着することができる粒子(メタルスカベンジャー)を重合系(重合液)に添加し、その後、重合液中に残留する金属成分が吸着したメタルスカベンジャーを濾別してもよい。かかる処理は、特に均一系金属含有触媒を用いた場合に金属含有量を低減するのに有効である。 Further, after the polymerization reaction, particles (metal scavenger) which are insoluble in the polymerization system and can adsorb the metal component derived from the metal catalyst are added to the polymerization system (polymerization solution), and thereafter, the metal components remaining in the polymerization solution are removed. The adsorbed metal scavenger may be filtered off. Such treatment is effective in reducing the metal content, particularly when a homogeneous metal-containing catalyst is used.

 そして、このようにして得た有機ケイ素ボラジン系ポリマーを含んだ濾液を減圧濃縮又は加熱濃縮することにより溶媒を除去し、固形状のポリマーとして絶縁被膜材料としてのボラジン系樹脂組成物の原料とすることもできる。また、再沈殿、ゲル濾過カラム、GPC(ゲルパーミエーションクロマトグラム)カラム等により分取したもの等をかかるボラジン系樹脂組成物の原料とすることも可能である。 Then, the filtrate containing the organosilicon borazine-based polymer thus obtained is concentrated under reduced pressure or concentrated by heating to remove the solvent, and is used as a raw material of the borazine-based resin composition as an insulating coating material as a solid polymer. You can also. Further, a material obtained by reprecipitation, gel filtration column, GPC (gel permeation chromatogram) column, or the like can be used as a raw material of the borazine-based resin composition.

 また、絶縁被膜材料としてのボラジン系樹脂組成物は、前述した有機ケイ素ボラジン系ポリマーを製造する過程で得た反応液の濾液、その濾液に重合溶媒より高沸点の溶剤を加えて低沸点の重合溶媒を留去したもの(したがって、かかる高沸点の溶剤と有機ケイ素ボラジン系ポリマーの混合物となる。)、又は、固形状の有機ケイ素ボラジン系ポリマーを溶剤中に溶解したもの等が挙げられ、それぞれの方法を用いても製造することができる。 In addition, the borazine-based resin composition as the insulating coating material is obtained by adding a solvent having a higher boiling point than the polymerization solvent to the filtrate of the reaction solution obtained in the process of producing the organosilicon borazine-based polymer described above, and polymerizing the filtrate. The solvent is distilled off (therefore, a mixture of the high-boiling point solvent and the organosilicon borazine-based polymer is obtained), or the solid-state organosilicon borazine-based polymer is dissolved in the solvent. It can also be manufactured by using the method described above.

 このようなボラジン系樹脂組成物を溶解可能な溶媒又は希釈溶剤としては、主鎖又は側鎖にボラジン骨格を有する重合体つまり有機ケイ素ボラジン系ポリマーと反応せずに溶解せしめるものが挙げられる。具体的には、トルエン、ベンゼン、キシレン、メシチレン、エチルベンゼン、プロピルベンゼン、ヘキシルベンゼン、テトラリン、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、ジメチルシクロヘキサン等の炭化水素系溶剤、エチレングリコールジメチルエーテル、テトラヒドロフラン、1,4−ジオキサン、ジフェニルエーテル等のエーテル系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸ブチル、酢酸ペンチル、γ−ブチロラクトン等のエステル系溶剤、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−シクロヘキシル−2−ピロリドン、キノリン等の含窒素溶剤、クロロホルム等のハロゲン系溶剤、ジメチルスルホキシド等が挙げられる。 Examples of the solvent or diluting solvent capable of dissolving such a borazine-based resin composition include those having a polymer having a borazine skeleton in the main chain or side chain, that is, those capable of dissolving without reacting with an organosilicon borazine-based polymer. Specifically, hydrocarbon solvents such as toluene, benzene, xylene, mesitylene, ethylbenzene, propylbenzene, hexylbenzene, tetralin, pentane, hexane, heptane, cyclohexane, dimethylcyclohexane, ethylene glycol dimethyl ether, tetrahydrofuran, 1,4- Ether solvents such as dioxane and diphenyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone and cyclohexanone; ester solvents such as ethyl acetate, butyl acetate, pentyl acetate and γ-butyrolactone; , N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, quinoline Halogen-based solvents such as chloroform, dimethyl sulfoxide and the like.

 これらの溶媒又は希釈溶剤は単独で用いてもよく、或いは、複数組み合わせて使用してもよい。溶媒又は希釈溶剤の使用量は、有機ケイ素ボラジン系ポリマーの固形分濃度が0.1〜60質量%となるような量とすることが好ましい。 These solvents or diluting solvents may be used alone or in combination of two or more. The amount of the solvent or the diluent used is preferably such that the solid content concentration of the organosilicon borazine-based polymer is 0.1 to 60% by mass.

 また、分子構造中にボラジン骨格を含む成分ひいてはこれを含有して成る本発明の絶縁被膜には、金属成分が含有されることは好ましくなく、金属不純物含有量が30ppm以下のボラジン系樹脂組成物から形成されて成ると好ましく、10ppm以下であるとより好ましい。この金属不純物濃度が30ppmを超えると、絶縁被膜中に残留し得る金属成分に起因するリーク電流の発生が顕著となり、或いは、絶縁被膜の比誘電率が過度に上昇する等のおそれがあり、デバイス性能そのものに影響を与えることがある。 Further, it is not preferable that a metal component is contained in the component having a borazine skeleton in the molecular structure and thus the insulating coating of the present invention containing the borazine skeleton, and a borazine-based resin composition having a metal impurity content of 30 ppm or less. And more preferably 10 ppm or less. If the metal impurity concentration exceeds 30 ppm, the occurrence of a leak current due to a metal component remaining in the insulating film becomes remarkable, or the relative dielectric constant of the insulating film may be excessively increased. The performance itself may be affected.

 このようなボラジン系樹脂組成物を用いて本発明による絶縁被膜を形成する方法としては、以下を例示できる。まず、浸漬法、スプレー法、スクリーン印刷法、回転塗布法等によってシリコンウェハ、金属基板、セラミック基板等の基体上にボラジン系樹脂組成物を塗布して塗膜を形成する。それから、60〜500℃、10秒〜2時間程度、空気中又は窒素等の不活性ガス中でその塗膜を加熱乾燥して溶剤を除去する。これにより、ベタツキのない薄膜から成る絶縁被膜を得ることができる。この絶縁被膜の膜厚は特に制限されないものの、耐熱性等の観点から、好ましくは0.05〜50μm、より好ましくは0.1〜10μm、特に好ましくは0.2〜5μmとされる。 方法 The following can be exemplified as a method for forming an insulating film according to the present invention using such a borazine-based resin composition. First, a borazine-based resin composition is applied to a substrate such as a silicon wafer, a metal substrate, or a ceramic substrate by an immersion method, a spray method, a screen printing method, a spin coating method, or the like to form a coating film. Then, the coating is heated and dried in air or an inert gas such as nitrogen at 60 to 500 ° C. for about 10 seconds to 2 hours to remove the solvent. Thus, an insulating coating made of a thin film without stickiness can be obtained. The thickness of the insulating film is not particularly limited, but is preferably 0.05 to 50 μm, more preferably 0.1 to 10 μm, and particularly preferably 0.2 to 5 μm from the viewpoint of heat resistance and the like.

 また、このように形成される絶縁被膜を用いた本発明による電子部品としては、半導体素子、液晶素子、多層配線板等の絶縁被膜を有するもの等が挙げられる。本発明の絶縁被膜は、半導体素子においては、表面保護膜、バッファーコート膜、層間絶縁膜といった絶縁膜等として、液晶素子においては表面保護膜、絶縁膜等として、多層配線基板においては、層間絶縁膜として好ましく用いることができる。 電子 Further, examples of the electronic component according to the present invention using the insulating film formed as described above include those having an insulating film such as a semiconductor element, a liquid crystal element, and a multilayer wiring board. The insulating film of the present invention is used as an insulating film such as a surface protective film, a buffer coat film, and an interlayer insulating film in a semiconductor device, as a surface protective film and an insulating film in a liquid crystal device, and as an interlayer insulating film in a multilayer wiring board. It can be preferably used as a film.

 具体的には、半導体素子としては、ダイオード、トランジスタ、キャパシタ、化合物半導体素子、サーミスタ、バリスタ、サイリスタ等の個別半導体素子、DRAM(ダイナミック・ランダム・アクセス・メモリ)、SRAM(スタティック・ランダム・アクセス・メモリ)、EPROM(イレイザブル・プログラマブル・リード・オンリー・メモリー)、マスクROM(マスク・リード・オンリー・メモリ)、EEPROM(エレクトリカル・イレイザブル・プログラマブル・リード・オンリー・メモリー)、フラッシュメモリー等の記憶(メモリ)素子、マイクロプロセッサー、DSP、ASIC等の理論(回路)素子、MMIC(モノリシック・マイクロウェーブ集積回路)に代表される化合物半導体等の集積回路素子、混成集積回路(ハイブリッドIC)、発光ダイオード、電荷結合素子等の光電変換素子、発光素子、半導体レーザ素子等が挙げられる。また、多層配線基板としては、MCM等の高密度配線基板等が挙げられる。 Specifically, the semiconductor element includes individual semiconductor elements such as a diode, a transistor, a capacitor, a compound semiconductor element, a thermistor, a varistor, and a thyristor, a DRAM (dynamic random access memory), and an SRAM (static random access memory). Memory (memory), EPROM (erasable programmable read only memory), mask ROM (mask read only memory), EEPROM (electrically erasable programmable read only memory), flash memory, etc. ) Devices, microprocessors, theoretical (circuit) devices such as DSP and ASIC, integrated circuit devices such as compound semiconductors represented by MMIC (monolithic microwave integrated circuit), hybrid integrated circuits (Hybrid IC), light emitting diode, a photoelectric conversion element such as a charge coupled device, the light emitting element, such as a semiconductor laser element and the like. Examples of the multilayer wiring board include a high-density wiring board such as an MCM.

 ここで、図1は、本発明による電子部品の好適な一実施形態を示す模式断面図である。メモリキャパシタセル8(電子部品)は、拡散領域1A,1Bが形成されたシリコンウェハ1(基体)上に酸化膜から成るゲート絶縁膜2Bを介して設けられたゲート電極3(ワード線として機能する。)と、その上方に設けられた対向電極8Cとの間に二層構造の層間絶縁膜5,7(絶縁被膜)が形成されたものである。ゲート電極3の側壁には、側壁酸化膜4A,4Bが形成されており、また、ゲート電極の側方における拡散領域1Bにはフィールド酸化膜2Aが形成され、素子分離がなされている。 Here, FIG. 1 is a schematic sectional view showing a preferred embodiment of an electronic component according to the present invention. The memory capacitor cell 8 (electronic component) functions as a gate electrode 3 (word line) provided on a silicon wafer 1 (base) on which diffusion regions 1A and 1B are formed via a gate insulating film 2B made of an oxide film. ) And an opposing electrode 8C provided thereabove. Interlayer insulating films 5 and 7 (insulating coatings) having a two-layer structure are formed. Side wall oxide films 4A and 4B are formed on the side wall of the gate electrode 3, and a field oxide film 2A is formed in the diffusion region 1B on the side of the gate electrode, thereby performing element isolation.

 層間絶縁膜5は、これらのゲート電極3及びフィールド酸化膜2A上に被着されており、上述したボラジン系樹脂組成物をスピンコートして形成されたものである。層間絶縁膜5におけるゲート電極3近傍にはビット線として機能する電極6が埋め込まれたコンタクトホール5Aが形成されている。さらに、平坦化された層間絶縁膜5上には平坦化された層間絶縁膜7が被着されており、両者を貫通するように形成されたコンタクトホール7Aには蓄積電極8Aが埋め込まれている。層間絶縁膜7は、層間絶縁膜5と同様にボラジン系樹脂組成物をスピンコートして形成されたものである。そして、蓄積電極8A上に高誘電体から成るキャパシタ絶縁膜8Bを介して対向電極8Cが設けられている。なお、層間絶縁膜5,7は同一の組成を有していても異なる組成を有していてもよい。 (4) The interlayer insulating film 5 is applied on the gate electrode 3 and the field oxide film 2A, and is formed by spin-coating the borazine-based resin composition described above. In the vicinity of the gate electrode 3 in the interlayer insulating film 5, a contact hole 5A in which an electrode 6 functioning as a bit line is embedded is formed. Further, a flattened interlayer insulating film 7 is applied on the flattened interlayer insulating film 5, and a storage electrode 8A is embedded in a contact hole 7A formed so as to penetrate both. . The interlayer insulating film 7 is formed by spin-coating a borazine-based resin composition similarly to the interlayer insulating film 5. The counter electrode 8C is provided on the storage electrode 8A via a capacitor insulating film 8B made of a high dielectric substance. The interlayer insulating films 5 and 7 may have the same composition or different compositions.

 このように構成された本発明の絶縁被膜が形成されたメモリキャパシタセル8等の電子部品によれば、絶縁被膜の比誘電率が従来に比して十分に低減されるので、信号伝搬における配線遅延時間を十分に短縮できると共に、リーク電流の発生を有効に防止できる。その結果、素子の高性能化を達成できると同時に高信頼性をも実現できる。 According to the electronic component such as the memory capacitor cell 8 having the insulating film of the present invention configured as described above, the relative permittivity of the insulating film is sufficiently reduced as compared with the related art, so that the wiring in the signal propagation is reduced. The delay time can be sufficiently reduced, and the generation of a leak current can be effectively prevented. As a result, high performance of the element can be achieved, and high reliability can be realized.

 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

〈製造例1〉
(ボラジン系樹脂組成物1の製造)
 B,B',B"−トリエチニル−N,N',N"−トリメチルボラジン0.50mmol、p−ビス(ジメチルシリル)ベンゼン0.50mmolをエチルベンゼン4mlに溶解し、5%白金アルミナ(白金換算で0.1mmol)を加え、窒素下50℃で7日間撹拌した。反応液の一部を取り出し、ガスクロマトグラフィー(GC)分析を行なったところ、モノマーであるB,B',B"−トリエチニル−N,N',N"−トリメチルボラジンとp−ビス(ジメチルシリル)ベンゼンのピークが消失していることを確認した。また、GPC分析から生成物の分子量(標準ポリスチレン基準)は、Mn=2500(Mw/Mn=2.0)であった。白金アルミナ触媒を含む反応液をADVANTEC社製ディスポーザブルメンブランフィルターユニットで濾過し、ボラジン系樹脂組成物1を得た。
<Production Example 1>
(Production of borazine-based resin composition 1)
B, B ', B "-triethynyl-N, N', N" -trimethylborazine (0.50 mmol) and p-bis (dimethylsilyl) benzene (0.50 mmol) are dissolved in ethylbenzene (4 ml), and 5% platinum alumina (in terms of platinum) 0.1 mmol) and stirred at 50 ° C. under nitrogen for 7 days. A part of the reaction solution was taken out and subjected to gas chromatography (GC) analysis. As a result, the monomers B, B ', B "-triethynyl-N, N', N" -trimethylborazine and p-bis (dimethylsilyl) ) It was confirmed that the benzene peak had disappeared. From GPC analysis, the molecular weight (based on standard polystyrene) of the product was Mn = 2500 (Mw / Mn = 2.0). The reaction solution containing the platinum-alumina catalyst was filtered with a disposable membrane filter unit manufactured by ADVANTEC to obtain a borazine-based resin composition 1.

〈製造例2〉
(ボラジン系樹脂組成物2の製造)
 B,B',B"−トリエチニル−N,N',N"−トリメチルボラジン0.50mmol、1,3,5,7−テトラメチルシクロテトラシロキサン0.50mmolをエチルベンゼン4mlに溶解し、5%白金アルミナ(白金換算で0.1mmol)を加え、窒素下50℃で7日間撹拌した。反応液の一部を取り出し、ガスクロマトグラフィー(GC)分析を行なったところ、モノマーであるB,B',B"−トリエチニル−N,N',N"−トリメチルボラジンのピークが消失していることを確認した。また、GPC分析から生成物の分子量(標準ポリスチレン基準)は、Mn=3000(Mw/Mn=2.2)であった。白金アルミナ触媒を含む反応液をADVANTEC社製ディスポーザブルメンブランフィルターユニットで濾過し、ボラジン系樹脂組成物2を得た。
<Production Example 2>
(Production of borazine-based resin composition 2)
B, B ', B "-triethynyl-N, N', N" -trimethylborazine (0.50 mmol) and 1,3,5,7-tetramethylcyclotetrasiloxane (0.50 mmol) were dissolved in ethylbenzene (4 ml), and 5% platinum was added. Alumina (0.1 mmol in terms of platinum) was added, and the mixture was stirred at 50 ° C. for 7 days under nitrogen. A part of the reaction solution was taken out and subjected to gas chromatography (GC) analysis. As a result, the peak of the monomer B, B ', B "-triethynyl-N, N', N" -trimethylborazine disappeared. It was confirmed. From GPC analysis, the molecular weight (based on standard polystyrene) of the product was Mn = 3000 (Mw / Mn = 2.2). The reaction solution containing the platinum-alumina catalyst was filtered with a disposable membrane filter unit manufactured by ADVANTEC to obtain a borazine-based resin composition 2.

〈製造例3〉
(ボラジン系樹脂組成物3の製造)
 B,B',B"−トリエチニル−N,N',N"−トリメチルボラジン0.50mmol、p−ビス(ジメチルシリル)ベンゼン0.50mmolをエチルベンゼン4mlに溶解し、Polymer Journal、34、97−102(2002)に記載のポリマー坦持白金触媒(Polym−CH2SH/H2PtCl6)(白金換算で0.01mmol)を加え、窒素下50℃で5日間撹拌した。反応液の一部を取り出し、ガスクロマトグラフィー(GC)分析を行なったところ、モノマーであるB,B',B"−トリエチニル−N,N',N"−トリメチルボラジンとp−ビス(ジメチルシリル)ベンゼンのピークが消失していることを確認した。また、GPC分析から生成物の分子量(標準ポリスチレン基準)は、Mn=3800(Mw/Mn=2.5)であった。ポリマー坦持白金触媒を含む反応液をADVANTEC社製ディスポーザブルメンブランフィルターユニットで濾過し、ボラジン系樹脂組成物3を得た。
<Production Example 3>
(Production of borazine-based resin composition 3)
B, B ', B "-triethynyl-N, N', N" -trimethylborazine (0.50 mmol) and p-bis (dimethylsilyl) benzene (0.50 mmol) were dissolved in ethylbenzene (4 ml). Polymer Journal, 34, 97-102. A polymer-supported platinum catalyst (Polym-CH2SH / H2PtCl6) described in (2002) (0.01 mmol in terms of platinum) was added, and the mixture was stirred at 50 ° C under nitrogen for 5 days. A part of the reaction solution was taken out and subjected to gas chromatography (GC) analysis. As a result, the monomers B, B ', B "-triethynyl-N, N', N" -trimethylborazine and p-bis (dimethylsilyl) ) It was confirmed that the benzene peak had disappeared. From GPC analysis, the molecular weight (based on standard polystyrene) of the product was Mn = 3800 (Mw / Mn = 2.5). The reaction solution containing the polymer-supported platinum catalyst was filtered through a disposable membrane filter unit manufactured by ADVANTEC to obtain a borazine-based resin composition 3.

〈製造例4〉
(ボラジン系樹脂組成物4の製造)
B,B’,B”−トリス(1’−プロピニル)−N,N’,N”−トリメチルボラジン3.6g(15mmol)、1,3,5,7−テトラメチルシクロテトラシロキサン3.6g(15mmol)をメシチレン150mlに溶解し、白金ジビニルテトラメチルジシロキサンのキシレン溶液(白金2%含有)30μlを加え、窒素下40℃で1日間攪拌した。そこへ白金ジビニルテトラメチルジシロキサンのキシレン溶液(白金2%含有)30μlを追加し、窒素下40℃で1日間攪拌した。続いて、1,3,5,7−テトラメチルシクロテトラシロキサン0.36g(1.5mmol)を加え、窒素下40℃で1日間攪拌した。反応液の一部を取り出し、ガスクロマトグラフィー(GC)分析を行なったところ、モノマーであるB,B’,B”−トリス(1’−プロピニル)−N,N’,N”−トリメチルボラジンと1,3,5,7−テトラメチルシクロテトラシロキサンのピークが消失していることを確認した。また、GPC分析から生成物の分子量(標準ポリスチレン基準)は、Mn=11000(Mw/Mn=29)であった。
<Production Example 4>
(Production of borazine-based resin composition 4)
B, B ', B "-tris (1'-propynyl) -N, N', N" -trimethylborazine 3.6 g (15 mmol), 1,3,5,7-tetramethylcyclotetrasiloxane 3.6 g ( 15 mmol) was dissolved in 150 ml of mesitylene, 30 μl of a xylene solution of platinum divinyltetramethyldisiloxane (containing 2% of platinum) was added, and the mixture was stirred at 40 ° C. for 1 day under nitrogen. Thereto was added 30 μl of a xylene solution of platinum divinyltetramethyldisiloxane (containing 2% of platinum), and the mixture was stirred at 40 ° C. for 1 day under nitrogen. Subsequently, 0.36 g (1.5 mmol) of 1,3,5,7-tetramethylcyclotetrasiloxane was added, and the mixture was stirred at 40 ° C. for 1 day under nitrogen. A part of the reaction solution was taken out, and subjected to gas chromatography (GC) analysis. As a result, the monomer B, B ′, B ″ -tris (1′-propynyl) -N, N ′, N ″ -trimethylborazine was removed. It was confirmed that the peak of 1,3,5,7-tetramethylcyclotetrasiloxane had disappeared. From GPC analysis, the molecular weight (based on standard polystyrene) of the product was Mn = 11000 (Mw / Mn = 29).

 この反応液に式(4)のメタルスカベンジャー(3−メルカプトプロピル−官能基化シリカゲル、アルドリッチ社製)1.0gを加え、室温で2時間攪拌した。その後、白金が吸着したメタルスカベンジャーをADVANTEC社製PTFEメンブランフィルター上で濾過し、本発明のボラジン系樹脂組成物4を得た。

Figure 2004140341
1.0 g of a metal scavenger of formula (4) (3-mercaptopropyl-functionalized silica gel, manufactured by Aldrich) was added to the reaction solution, and the mixture was stirred at room temperature for 2 hours. Thereafter, the metal scavenger on which platinum was adsorbed was filtered through a PTFE membrane filter manufactured by ADVANTEC to obtain a borazine-based resin composition 4 of the present invention.
Figure 2004140341

〈製造例5〉
(白金含有ボラジン系樹脂組成物5の製造)
 B,B',B"−トリエチニル−N,N',N"−トリメチルボラジン0.50mmol、p−ビス(ジメチルシリル)ベンゼン0.50mmolをエチルベンゼン8mlに溶解し、均一系金属触媒の白金ジビニルテトラメチルジシロキサンのキシレン溶液(白金2%含有)15μlを加え、窒素下室温で3日間撹拌した。反応液の一部を取り出し、ガスクロマトグラフィー(GC)分析を行なったところ、モノマーであるB,B',B"−トリエチニル−N,N',N"−トリメチルボラジンとp−ビス(ジメチルシリル)ベンゼンのピークは消失していることを確認した。また、GPC分析から生成物の分子量(標準ポリスチレン基準)は、Mn=4300(Mw/Mn=2.5)であった。この反応液をボラジン系樹脂組成物5とした。
<Production Example 5>
(Production of Platinum-Containing Borazine Resin Composition 5)
B, B ', B "-triethynyl-N, N', N" -trimethylborazine (0.50 mmol) and p-bis (dimethylsilyl) benzene (0.50 mmol) were dissolved in ethylbenzene (8 ml), and a homogeneous metal catalyst, platinum divinyltetrane, was dissolved. 15 μl of a xylene solution of methyldisiloxane (containing 2% of platinum) was added, and the mixture was stirred at room temperature under nitrogen for 3 days. A part of the reaction solution was taken out and subjected to gas chromatography (GC) analysis. As a result, the monomers B, B ', B "-triethynyl-N, N', N" -trimethylborazine and p-bis (dimethylsilyl) ) It was confirmed that the benzene peak had disappeared. From GPC analysis, the molecular weight (based on standard polystyrene) of the product was Mn = 4300 (Mw / Mn = 2.5). This reaction liquid was used as borazine-based resin composition 5.

〈実施例1〉
(絶縁被膜1の製造)
 製造例1で得たボラジン系樹脂組成物1をフィルター濾過し、濾液を低抵抗率シリコンウェハ(基体;抵抗率<10Ωcm)上に滴下してスピンコートした。次いで、このシリコンウェハを窒素雰囲気中ホットプレートで200℃で1時間加熱した後、300℃で30分、400℃で30分間ベークして、本発明の絶縁被膜1を得た。
<Example 1>
(Manufacture of insulating coating 1)
The borazine-based resin composition 1 obtained in Production Example 1 was filtered through a filter, and the filtrate was dropped on a low-resistivity silicon wafer (substrate; resistivity <10 Ωcm) and spin-coated. Next, the silicon wafer was heated on a hot plate at 200 ° C. for 1 hour in a nitrogen atmosphere, and then baked at 300 ° C. for 30 minutes and at 400 ° C. for 30 minutes to obtain an insulating film 1 of the present invention.

〈実施例2〉
(絶縁被膜2の製造)
 ボラジン系樹脂組成物1の代わりに製造例2で得たボラジン系樹脂組成物2を用いたこと以外は実施例1と同様にして本発明の絶縁被膜2を得た。
<Example 2>
(Manufacture of insulating film 2)
An insulating coating 2 of the present invention was obtained in the same manner as in Example 1 except that the borazine-based resin composition 2 obtained in Production Example 2 was used instead of the borazine-based resin composition 1.

〈実施例3〉
(絶縁被膜3の製造)
 ボラジン系樹脂組成物1の代わりに製造例3で得たボラジン系樹脂組成物3を用いたこと以外は実施例1と同様にして本発明の絶縁被膜3を得た。
<Example 3>
(Manufacture of insulating coating 3)
An insulating coating 3 of the present invention was obtained in the same manner as in Example 1, except that the borazine-based resin composition 3 obtained in Production Example 3 was used instead of the borazine-based resin composition 1.

〈実施例4〉
(絶縁被膜4の製造)
 ボラジン系樹脂組成物1の代わりに製造例4で得たボラジン系樹脂組成物4を用いたこと以外は実施例1と同様にして本発明の絶縁被膜4を得た。
<Example 4>
(Manufacture of insulating coating 4)
An insulating film 4 of the present invention was obtained in the same manner as in Example 1 except that the borazine-based resin composition 4 obtained in Production Example 4 was used instead of the borazine-based resin composition 1.

〈比較例1〉
(絶縁被膜5の製造)
 ボラジン系樹脂組成物1の代わりに製造例5で得たボラジン系樹脂組成物5を用いたこと以外は実施例1と同様にして絶縁被膜5を得た。
<Comparative Example 1>
(Manufacture of insulating coating 5)
An insulating coating 5 was obtained in the same manner as in Example 1 except that the borazine-based resin composition 5 obtained in Production Example 5 was used instead of the borazine-based resin composition 1.

〈金属含有量測定〉
 ボラジン系樹脂組成物の金属含有量を、島津製作所製AA−6650Gを用いて原子吸光法により測定した。ボラジン系樹脂組成物1〜5に含まれる白金濃度を表1に示す。

Figure 2004140341
<Metal content measurement>
The metal content of the borazine-based resin composition was measured by an atomic absorption method using AA-6650G manufactured by Shimadzu Corporation. Table 1 shows the concentration of platinum contained in the borazine-based resin compositions 1 to 5.

Figure 2004140341

〈比誘電率測定〉
 各実施例及び比較例で得た各絶縁被膜の比誘電率を測定した。ここで、本発明における絶縁被膜の「比誘電率」とは、23℃±2℃、湿度40±10%の雰囲気下で測定された値をいい、Al金属とN型低抵抗率基板(Siウエハ)間の電荷容量の測定から求められる。
<Relative permittivity measurement>
The relative dielectric constant of each insulating film obtained in each of the examples and comparative examples was measured. Here, the “relative dielectric constant” of the insulating film in the present invention refers to a value measured in an atmosphere of 23 ° C. ± 2 ° C. and a humidity of 40 ± 10%, and is composed of an Al metal and an N-type low resistivity substrate (Si). It is determined from the measurement of the charge capacity between wafers.

 具体的には、各実施例及び比較例で絶縁被膜を形成した後、絶縁被膜上に、真空蒸着装置でAl金属を直径2mmの円で、厚さ約0.1μmになるように真空蒸着する。これにより、絶縁被膜がAl金属と低抵抗率基板との間に配置された構造が形成される。次に、この構造体の電荷容量を、LFインピーダンスアナライザー(横河電機社製:HP4192A)に誘電体テスト・フィクスチャー(横河電機製:HP16451B)を接続した装置を用い、使用周波数1MHzにて測定した。 Specifically, after forming an insulating film in each of the examples and comparative examples, Al metal is vacuum-deposited on the insulating film in a vacuum evaporation apparatus so as to have a thickness of about 0.1 μm in a circle having a diameter of 2 mm. . As a result, a structure in which the insulating coating is disposed between the Al metal and the low resistivity substrate is formed. Next, the charge capacity of this structure was measured at an operating frequency of 1 MHz using a device in which a dielectric test fixture (HP16451B, manufactured by Yokogawa Electric) was connected to an LF impedance analyzer (HP4192A, manufactured by Yokogawa Electric). It was measured.

 そして、電荷容量の測定値を下記式;
絶縁被膜の比誘電率=3.597×10-2×電荷容量(pF)×絶縁被膜の膜厚(μm)、
に代入し、絶縁被膜の比誘電率を算出した。なお、絶縁被膜の膜厚としては、ガートナー製のエリプソメーターL116Bで測定した値を用いた。
Then, the measured value of the charge capacity is calculated by the following equation;
Relative dielectric constant of insulating film = 3.597 × 10 −2 × charge capacity (pF) × film thickness of insulating film (μm);
And the relative dielectric constant of the insulating film was calculated. As the thickness of the insulating film, a value measured by an ellipsometer L116B manufactured by Gartner was used.

〈リーク電流測定〉
 比誘電率を測定した各ウェハを用い、リーク電流測定装置を使用してリーク電流を測定した。
<Leak current measurement>
Using each wafer for which the relative permittivity was measured, a leak current was measured using a leak current measuring device.

〈ヤング率測定〉
 各絶縁被膜に対して、MTS社製のナノインデンターDCMを用い、膜強度の指標としてヤング率を測定した。
<Young's modulus measurement>
For each of the insulating coatings, the Young's modulus was measured as an index of the film strength using a nano indenter DCM manufactured by MTS.

 絶縁被膜1〜5の比誘電率、リーク電流、及びヤング率の測定結果を表2に示す。

Figure 2004140341
Table 2 shows the measurement results of the relative dielectric constant, leak current, and Young's modulus of the insulating coatings 1 to 5.
Figure 2004140341

本発明による電子部品の好適な一実施形態を示す模式断面図である。FIG. 1 is a schematic sectional view showing a preferred embodiment of an electronic component according to the present invention.

符号の説明Explanation of reference numerals

 1...シリコンウェハ(基体)、1A,1B...拡散領域、2A...フィールド酸化膜、2B...ゲート絶縁膜、3...ゲート電極、4A,4B...側壁酸化膜、5,7...層間絶縁膜(絶縁被膜)、5A,7A...コンタクトホール、6...ビット線、8...メモリセルキャパシタ(電子部品)、8A...蓄積電極、8B...キャパシタ絶縁膜、8C...対向電極。 DESCRIPTION OF SYMBOLS 1 ... Silicon wafer (substrate), 1A, 1B ... Diffusion area, 2A ... Field oxide film, 2B ... Gate insulating film, 3 ... Gate electrode, 4A, 4B ... Side wall oxidation Film, 5,7 ... Interlayer insulating film (insulating film), 5A, 7A ... Contact hole, 6 ... Bit line, 8 ... Memory cell capacitor (electronic component), 8A ... Storage electrode , 8B ... capacitor insulating film, 8C ... counter electrode.

Claims (3)

分子構造中にボラジン骨格を有する成分を含有して成り、比誘電率が2.6以下であり、ヤング率が5GPa以上であり、且つ、リーク電流が1×10-8A/cm2以下であることを特徴とする絶縁被膜。 It has a molecular structure containing a component having a borazine skeleton, has a relative dielectric constant of 2.6 or less, a Young's modulus of 5 GPa or more, and a leak current of 1 × 10 −8 A / cm 2 or less. An insulating coating characterized by the following. 金属不純物含有量が30ppm以下のボラジン系樹脂組成物から形成されて成る、請求項1記載の絶縁被膜。 The insulating coating according to claim 1, wherein the insulating coating is formed from a borazine-based resin composition having a metal impurity content of 30 ppm or less. 導電層が設けられた基体と、該基体上に設けられており且つ請求項1又は2に記載の絶縁被膜から成る層間絶縁膜と、を備える電子部品。


An electronic component comprising: a base provided with a conductive layer; and an interlayer insulating film formed on the base and comprising the insulating coating according to claim 1.


JP2003317568A 2002-09-26 2003-09-09 Insulation coating and electronic components Expired - Lifetime JP4535703B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003317568A JP4535703B2 (en) 2002-09-26 2003-09-09 Insulation coating and electronic components
US10/529,369 US7625642B2 (en) 2002-09-26 2003-09-26 Borazine-based resin, and method for production thereof, borazine based resin composition, insulating coating and method for formation thereof, and electronic parts having the insulating coating
PCT/JP2003/012357 WO2004030070A1 (en) 2002-09-26 2003-09-26 Borazine based resin and method for production thereof, borazine based resin composition, insulating coating and method for formation thereof, and electronic parts having the insulating coating
US12/475,849 US8362199B2 (en) 2002-09-26 2009-06-01 Borazine-based resin, process for its production, borazine-based resin composition, insulating film and method for its formation
US13/219,342 US20110313122A1 (en) 2002-09-26 2011-08-26 Borazine-based resin, process for its production, borazine-based resin composition, insulating film and method for its formation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002282005 2002-09-26
JP2003317568A JP4535703B2 (en) 2002-09-26 2003-09-09 Insulation coating and electronic components

Publications (2)

Publication Number Publication Date
JP2004140341A true JP2004140341A (en) 2004-05-13
JP4535703B2 JP4535703B2 (en) 2010-09-01

Family

ID=32473163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317568A Expired - Lifetime JP4535703B2 (en) 2002-09-26 2003-09-09 Insulation coating and electronic components

Country Status (1)

Country Link
JP (1) JP4535703B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043205A1 (en) * 2005-10-14 2007-04-19 Yatabe Massao Irradiation unit, method of irradiation and semiconductor device
WO2007058365A1 (en) * 2005-11-17 2007-05-24 Mitsubishi Electric Corporation Composition for chemical vapor deposition film-formation and method for production of low dielectric constant film
US7824784B2 (en) 2003-12-01 2010-11-02 Mitsubishi Denki Kabushiki Kaisha Composition for low dielectric material, low dielectric material and method for production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340689A (en) * 1999-06-01 2000-12-08 Mitsubishi Electric Corp Heat resistant low dielectric constant material, semiconductor interlayer insulating film and semiconductor device employing it
JP2001015496A (en) * 1999-06-28 2001-01-19 Mitsubishi Electric Corp Heat-resistance low dielectric constant thin film, formation method therefor, semiconductor interlayer insulating film made of the heat-resistance low dielectric constant thin film, and semiconductor device using the semiconductor interlayer insulating film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340689A (en) * 1999-06-01 2000-12-08 Mitsubishi Electric Corp Heat resistant low dielectric constant material, semiconductor interlayer insulating film and semiconductor device employing it
JP2001015496A (en) * 1999-06-28 2001-01-19 Mitsubishi Electric Corp Heat-resistance low dielectric constant thin film, formation method therefor, semiconductor interlayer insulating film made of the heat-resistance low dielectric constant thin film, and semiconductor device using the semiconductor interlayer insulating film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824784B2 (en) 2003-12-01 2010-11-02 Mitsubishi Denki Kabushiki Kaisha Composition for low dielectric material, low dielectric material and method for production thereof
WO2007043205A1 (en) * 2005-10-14 2007-04-19 Yatabe Massao Irradiation unit, method of irradiation and semiconductor device
WO2007058365A1 (en) * 2005-11-17 2007-05-24 Mitsubishi Electric Corporation Composition for chemical vapor deposition film-formation and method for production of low dielectric constant film
JP2009516069A (en) * 2005-11-17 2009-04-16 三菱電機株式会社 Chemical vapor deposition film forming composition and method for producing low dielectric constant film
US8846148B2 (en) 2005-11-17 2014-09-30 Nippon Shokubai Co., Ltd. Composition for chemical vapor deposition film-formation and method for production of low dielectric constant film

Also Published As

Publication number Publication date
JP4535703B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4461215B2 (en) Low dielectric constant insulating material and semiconductor device using the same
US6395649B1 (en) Low dielectric constant polyorganosilicon coatings generated from polycarbosilanes
US20030100175A1 (en) Low dielectric constant material, process for preparing the same, insulating film comprising the same and semiconductor device
US6841256B2 (en) Low dielectric constant polyorganosilicon materials generated from polycarbosilanes
KR101157730B1 (en) Polymer for forming insulating film, composition for forming insulating film, insulating film, and electronic device having insulating film
JP2007091935A (en) Polymer, composition for forming film, insulating film and method for producing the same
WO2004030070A1 (en) Borazine based resin and method for production thereof, borazine based resin composition, insulating coating and method for formation thereof, and electronic parts having the insulating coating
US6451381B2 (en) Electrically insulating crosslinked thin-film-forming organic resin composition and method for forming thin film therefrom
JP4730724B2 (en) Method for producing borazine resin
JP4535703B2 (en) Insulation coating and electronic components
JP5540416B2 (en) Borazine resin composition and method for producing the same, insulating coating film and method for forming the same, and electronic component
JP4730723B2 (en) Method for producing borazine resin
KR20040068857A (en) Organic compositions
JP3840127B2 (en) Interlayer insulating film made of low dielectric constant borazine-silicon polymer and semiconductor device comprising the same
KR20040104453A (en) Organic Compositions
JP5550118B2 (en) Borazine resin composition, insulating coating and method for forming the same
JP2004136661A (en) Insulating film
JP2004115680A (en) Organosilicon borazine polymer, its production method, borazine resin composition, electrical insulating film and its formation method
JP3468717B2 (en) Method for manufacturing low dielectric constant material and interlayer insulating film
JP2004137476A (en) Borazine-based resin composition, its manufacturing method, insulating film and its forming method
JP3906985B2 (en) Metal diffusion barrier film, metal diffusion barrier film forming method, and semiconductor device
US6924545B2 (en) Low-dielectric-constant interlayer insulating film composed of borazine-silicon-based polymer and semiconductor device
JP2004137474A (en) Borazine-based resin composition, porous insulating film and its forming method
CN114672025B (en) Heterocycle-containing POSS siloxane compound and preparation method and application thereof
JP4143768B2 (en) Low dielectric constant interlayer insulating film material and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4535703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term