JP2004136661A - Insulating film - Google Patents

Insulating film Download PDF

Info

Publication number
JP2004136661A
JP2004136661A JP2003317569A JP2003317569A JP2004136661A JP 2004136661 A JP2004136661 A JP 2004136661A JP 2003317569 A JP2003317569 A JP 2003317569A JP 2003317569 A JP2003317569 A JP 2003317569A JP 2004136661 A JP2004136661 A JP 2004136661A
Authority
JP
Japan
Prior art keywords
group
layer
insulating
insulating film
borazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003317569A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsutani
松谷 寛
Yuko Uchimaru
内丸 祐子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hitachi Chemical Co Ltd
Priority to JP2003317569A priority Critical patent/JP2004136661A/en
Publication of JP2004136661A publication Critical patent/JP2004136661A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Silicon Polymers (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating film or the like which sufficiently reduces a dielectric constant, causes no hydrolysis, and is excellent in stability. <P>SOLUTION: The insulating film 120 has a two-layer structure wherein a B layer 112 containing a non-borazine compound such as SiOF or organic SOG and an A layer 111 containing a borazine compound are laminated in this sequence alternately on a silicon wafer 100 having a silicon base layer. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、絶縁被膜及び電子部品に関する。 The present invention relates to an insulating film and an electronic component.

 昨今の通信機器の小型化、高出力化、及び信号の高速化に伴い、CMPによる膜平坦化の実現とも相俟って、電子部品の絶縁被膜(IMD:メタル層間絶縁膜、ILD:メタル下層間絶縁膜、PMD:前メタル絶縁膜等)には、耐熱性、機械特性、吸湿性、接着性、成形性、高エッチ選択比、等の他、特に低比誘電率が求められている。 With the recent miniaturization, high output, and high-speed signals of communication devices, the realization of film flattening by CMP has been combined with the insulation coating of electronic components (IMD: metal interlayer insulating film, ILD: metal lower layer). Insulation film, PMD: pre-metal insulation film, etc.) are required to have not only heat resistance, mechanical properties, hygroscopicity, adhesiveness, moldability, high etch selectivity, etc. but also particularly low dielectric constant.

 これは一般に、配線の信号の伝搬速度(v)と、配線材料が接する絶縁材料の比誘電率(ε)とは、v=k/√ε(kは定数)で表される関係を有しており、信号の伝搬速度を高速化して配線遅延を低減するためには、使用する周波数領域を高くし、或いは、絶縁材料の比誘電率を極力低くする必要があるからである。 In general, the propagation speed (v) of a signal on a wiring and the relative dielectric constant (ε) of an insulating material with which the wiring material contacts have a relationship represented by v = k / √ε (k is a constant). This is because, in order to increase the signal propagation speed and reduce the wiring delay, it is necessary to increase the frequency range to be used or to lower the relative dielectric constant of the insulating material as much as possible.

 このような絶縁被膜材料として量産ベースで現在実用化されている低誘電率材料としては、比誘電率が3.5程度のSiOF膜(CVD法)が挙げられ、その他に、比誘電率が2.5〜3.0の有機SOG(Spin On Glass)、有機ポリマー等の検討が進行中である。 A low dielectric constant material which is currently put into practical use on a mass production basis as such an insulating coating material is a SiOF film (CVD method) having a relative dielectric constant of about 3.5. Studies on organic SOG (Spin \ On \ Glass) of 0.5 to 3.0, organic polymers, and the like are in progress.

 また、他の低誘電率材料としては、ベンゼンの炭素原子が窒素原子及びホウ素原子で置換された分子構造を有するボラジンは、ベンゼンに比して誘電率の計算値が低いことが知られている(例えば、特許文献1参照。)また、B,B',B"−トリアルキニルボラジン類とヒドロシラン類とを、白金触媒存在下で混合し、その溶液を塗布することによって得られる耐熱性のボラジン含有ケイ素ポリマー薄膜も知られている(例えば、特許文献2参照。)
特開2000−340689号公報 特開2002−155143号公報
In addition, as another low dielectric constant material, borazine having a molecular structure in which carbon atoms of benzene are substituted with nitrogen atoms and boron atoms is known to have a calculated dielectric constant lower than that of benzene. (See, for example, Patent Document 1.) A heat-resistant borazine obtained by mixing B, B ', B "-trialkynylborazines and hydrosilanes in the presence of a platinum catalyst and applying the solution. A silicon-containing thin film containing silicon is also known (for example, see Patent Document 2).
JP 2000-340689 A JP 2002-155143 A

 ところで、前述した有機SOGは低誘電率材料として有望であるものの、メモリ素子や論理素子といった半導体装置から成る電子部品の更なる微細化及び多層化に対応するには、更なる低誘電率化が熱望されている。そこで、有機SOG膜に上記特開2002−155143号公報のボラジン含有ケイ素ポリマーを組み合わせることで更なる低誘電率化が可能であると期待できる。 By the way, the above-mentioned organic SOG is promising as a low dielectric constant material, but in order to cope with further miniaturization and multilayering of electronic components including semiconductor devices such as memory elements and logic elements, further lowering of the dielectric constant is required. Aspired. Therefore, it can be expected that the dielectric constant can be further reduced by combining the organic SOG film with the borazine-containing silicon polymer described in JP-A-2002-155143.

 しかし、硬化前のボラジン含有ケイ素ポリマーは僅かながら加水分解性を有しており、予め水を含んでいる有機SOG前駆体の組成物(ワニス)中に硬化前のボラジン含有ケイ素ポリマーを混合すると、ボラジン含有ケイ素ポリマーが加水分解を生じてしまい、その結果、低誘電率材料としての性能が低下するおそれがある。 However, the borazine-containing silicon polymer before curing has a slight hydrolyzability, and when the borazine-containing silicon polymer before curing is mixed into a composition (varnish) of an organic SOG precursor containing water in advance, The borazine-containing silicon polymer may undergo hydrolysis, and as a result, the performance as a low dielectric constant material may be reduced.

 そこで、本発明はかかる事情に鑑みてなされたものであり、十分な低誘電率化が可能であり且つ加水分解を生じず安定性に優れる絶縁被膜及びそれを用いた電子部品を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an insulating film which is capable of achieving a sufficiently low dielectric constant, has excellent stability without causing hydrolysis, and an electronic component using the same. Aim.

 上記課題を解決するために、本発明者による絶縁被膜は、分子構造中にボラジン骨格を有する化合物を含有して成る少なくとも1つの第1の絶縁層と、その第1の絶縁層と異なる(つまり、分子構造中にボラジン骨格を有しない化合物を含有して成る)する少なくとも1つの第2の絶縁層とが交互に積層されて成るものである。 In order to solve the above problems, an insulating coating according to the present invention is different from at least one first insulating layer containing a compound having a borazine skeleton in a molecular structure, and the first insulating layer (that is, the first insulating layer is different from the first insulating layer). And at least one second insulating layer comprising a compound having no borazine skeleton in its molecular structure).

 このような構成の絶縁被膜は、例えば、2層の交互積層構造を例にとると、予め形成した第1の絶縁層(例えば、ボラジン含有ケイ素ポリマー層)上に第2の絶縁層(例えば、有機SOG膜)を被着させ、或いは、それとは逆に予め形成した第2の絶縁層上に第1の絶縁層を被着させることにより形成することができる。こうすれば、第1の絶縁膜の構成成分と第2の絶縁膜の構成成分との混合が妨げられ、両成分の接触が十分に防止される。よって、第2の絶縁層が水分を含んでいても、その水分が第1の絶縁層へ移行することが抑止され、分子構造中にボラジン骨格を有して加水分解性を示す化合物の分解が防止される。したがって、第1の絶縁層及び第2の絶縁層がそれぞれ固有の誘電率を発現し、絶縁被膜全体の誘電率はそれらの誘電率及び層数等で決定される。 The insulating coating having such a configuration, for example, in the case of a two-layer alternating laminated structure as an example, a second insulating layer (for example, a borazine-containing silicon polymer layer) is formed on a first insulating layer (for example, a borazine-containing silicon polymer layer) formed in advance. (Organic SOG film), or conversely, a first insulating layer is formed on a previously formed second insulating layer. In this case, the components of the first insulating film and the components of the second insulating film are prevented from being mixed, and the contact between the two components is sufficiently prevented. Therefore, even when the second insulating layer contains moisture, the migration of the moisture to the first insulating layer is suppressed, and the decomposition of the compound having a borazine skeleton in the molecular structure and showing hydrolyzability is prevented. Is prevented. Therefore, the first insulating layer and the second insulating layer each exhibit a unique dielectric constant, and the dielectric constant of the entire insulating film is determined by the dielectric constant, the number of layers, and the like.

 さらに、本発明者らの知見によれば、ボラジン含有ケイ素ポリマー層等で構成される第1の絶縁層は、他層への被着能、換言すれば他層との接着能に極めて優れたものである。よって、第1の絶縁層は絶縁体として機能するだけでなく、他層つまり第2の絶縁層を基体等に十分に固着させるための優れた接着層としても機能し得る。 Furthermore, according to the findings of the present inventors, the first insulating layer composed of the borazine-containing silicon polymer layer and the like has extremely excellent adhesion to other layers, in other words, excellent adhesion to other layers. Things. Therefore, the first insulating layer can function not only as an insulator, but also as an excellent adhesive layer for sufficiently fixing the other layer, that is, the second insulating layer, to the base or the like.

 また、分子構造中にボラジン骨格を有する化合物が下記式(1);

Figure 2004136661
で表される繰り返し単位を有するものであると、成膜性及び化学的安定性の観点から好ましい。 Further, a compound having a borazine skeleton in a molecular structure is represented by the following formula (1):
Figure 2004136661
It is preferable to have a repeating unit represented by the following from the viewpoints of film formability and chemical stability.

 ここで、式中、R1はアルキル基、アリール基、アラルキル基又は水素原子を示し、R2はアルキル基、アリール基、アラルキル基又は水素原子を示し、R3及びR4はアルキル基、アリール基、アラルキル基及び水素原子の中から選ばれる同一又は異なる1価の基を示し、R5は置換若しくは未置換の芳香族の2価の基、オキシポリ(ジメチルシロキシ)基、又は酸素原子を示し、R6はアルキル基、アリール基、アラルキル基又は水素原子を示し、aは正の整数を示し、bは0又は正の整数を示し、pは0又は正の整数を示し、qは0又は正の整数を示す。 Here, in the formula, R1 represents an alkyl group, an aryl group, an aralkyl group or a hydrogen atom, R2 represents an alkyl group, an aryl group, an aralkyl group or a hydrogen atom, and R3 and R4 represent an alkyl group, an aryl group, or an aralkyl group. R5 represents a substituted or unsubstituted aromatic divalent group, an oxypoly (dimethylsiloxy) group or an oxygen atom, and R6 represents an alkyl group. , An aryl group, an aralkyl group or a hydrogen atom, a represents a positive integer, b represents 0 or a positive integer, p represents 0 or a positive integer, and q represents 0 or a positive integer.

 また、本発明による電子部品は、シリコンウェハ等の基体上に本発明による絶縁被膜が設けられたものである。 電子 Further, the electronic component according to the present invention is one in which the insulating coating according to the present invention is provided on a base such as a silicon wafer.

 本発明の絶縁被膜によれば、第1及び第2の絶縁層が交互に積層されてなるので、十分な低誘電率化が可能であり且つ加水分解の発生を防止して安定性を高めることができる。また、第1の絶縁層が第2の絶縁層や基体との優れた接着性を発現するので、絶縁被膜の機械強度が高められ、CMP等の研磨に対する耐剥離性を向上できる。 According to the insulating coating of the present invention, since the first and second insulating layers are alternately laminated, a sufficiently low dielectric constant can be achieved, and the occurrence of hydrolysis can be prevented to increase the stability. Can be. In addition, since the first insulating layer exhibits excellent adhesion to the second insulating layer and the base, the mechanical strength of the insulating coating is increased, and the peeling resistance to polishing such as CMP can be improved.

 本発明の絶縁被膜は、分子構造中にボラジン骨格を有する化合物を含有して成る少なくとも1つの第1の絶縁層(以下、「A層」という)と、該第1の絶縁層と異なる少なくとも1つの第2の絶縁層(以下、「B層」という)とが交互に積層されて成るものである。以下、各層及びその構成成分等、並びに、本発明の電子部品の好適な実施形態について説明する。 The insulating coating of the present invention includes at least one first insulating layer (hereinafter, referred to as “A layer”) containing a compound having a borazine skeleton in a molecular structure, and at least one first insulating layer different from the first insulating layer. And two second insulating layers (hereinafter, referred to as a “B layer”). Hereinafter, each layer, its constituent components, and the like, and preferred embodiments of the electronic component of the present invention will be described.

〈A層〉
 本発明の絶縁被膜を構成するA層は、分子構造中にボラジン骨格を有する化合物を含有して成るものであり、かかる化合物としては、主鎖又は側鎖に置換又は無置換のボラジン骨格を有するものであればよく、ボラジン化合物の単量体及び重合体のいずれでもよく、A層の成膜性や膜強度の観点から重合体を使用することが望ましい。このような重合体としては、例えば、Chemical Review 誌、vol 90、pp.73〜91(1990).やCHEMTECH 誌、1994年7月、pp.29〜37.記載の重合体等を挙げることができる。具体的には以下に示す重合体が好適である。

Figure 2004136661
<A layer>
The A layer constituting the insulating coating of the present invention contains a compound having a borazine skeleton in its molecular structure, and has a substituted or unsubstituted borazine skeleton in a main chain or a side chain. Any of a borazine compound monomer and a polymer may be used, and it is desirable to use a polymer from the viewpoint of the film forming property and film strength of the A layer. Examples of such a polymer include, for example, Chemical Review, vol. 73-91 (1990). And CHEMTECH, July 1994, pp. 29-37. And the like. Specifically, the following polymers are suitable.
Figure 2004136661

 また、好ましくは、下記式(1)又は式(2);

Figure 2004136661
Figure 2004136661
で表される繰り返し単位を有してなる有機ケイ素ボラジン系ポリマーが、成膜性、化学的安定性に優れており、かかる観点より一層好適である。 Also, preferably, the following formula (1) or formula (2);
Figure 2004136661
Figure 2004136661
An organosilicon borazine-based polymer having a repeating unit represented by the formula (1) is excellent in film formability and chemical stability, and is more preferable from this viewpoint.

 なお、式(1)及び(2)において、

Figure 2004136661
は、以下のいずれかを示し、
Figure 2004136661
これと同様に、
Figure 2004136661
は、以下のいずれかを示す。
Figure 2004136661
Note that in equations (1) and (2),
Figure 2004136661
Indicates one of the following,
Figure 2004136661
Similarly,
Figure 2004136661
Indicates one of the following:
Figure 2004136661

 そして、

Figure 2004136661
は、以下のいずれかを示す。
Figure 2004136661
And
Figure 2004136661
Indicates one of the following:
Figure 2004136661

 また、式(1)における破線は、ボラジン残基におけるアルキニル基由来の炭素に結合が生じていることを意味し、式(2)における破線は、ボラジン残基におけるアルケニル基由来の炭素に結合が生じていることを意味する。 Further, the broken line in the formula (1) means that a bond is formed at the carbon derived from the alkynyl group in the borazine residue, and the broken line in the formula (2) is a bond formed at the carbon derived from the alkenyl group in the borazine residue. Means that it has occurred.

 また、式(1)及び(2)において、R1はアルキル基、アリール基、アラルキル基又は水素原子を示す。この場合、アルキル基の炭素数は1〜24、好ましくは1〜12である。また、アリール基の炭素数は6〜20、好ましくは6〜10である。さらに、アラルキル基の炭素数は7〜24、好ましくは7〜12である。より具体的には、基R1として、メチル基、エチル基、イソプロピル基、t−ブチル基、オクチル基等のアルキル基、フェニル基、ナフチル基、ビフェニル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基、水素原子等が挙げられ、これらの中では、メチル基、エチル基、フェニル基又は水素原子がより好ましい。 In the formulas (1) and (2), R 1 represents an alkyl group, an aryl group, an aralkyl group or a hydrogen atom. In this case, the alkyl group has 1 to 24, preferably 1 to 12 carbon atoms. The aryl group has 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms. Further, the aralkyl group has 7 to 24 carbon atoms, preferably 7 to 12 carbon atoms. More specifically, as the group R 1 , an alkyl group such as a methyl group, an ethyl group, an isopropyl group, a t-butyl group, an octyl group, an aryl group such as a phenyl group, a naphthyl group, a biphenyl group, a benzyl group, and a phenethyl group And the like. Among them, a methyl group, an ethyl group, a phenyl group or a hydrogen atom is more preferable.

 また、式(1)及び(2)において、R2はアルキル基、アリール基、アラルキル基又は水素原子を示し、アルキル基の炭素数は1〜24、好ましくは1〜12である。この場合、アリール基の炭素数は6〜20、好ましくは6〜10である。また、アラルキル基の炭素数は7〜24、好ましくは7〜12である。より具体的には、基R2として、メチル基、エチル基、イソプロピル基、t−ブチル基、オクチル基等のアルキル基、フェニル基、ナフチル基、ビフェニル基、アントラセニル基等のアリール基、ベンジル基、フェネチル基、フルオレニル基等のアラルキル基、水素原子等が挙げられ、これらの中では、メチル基、フェニル基又は水素原子がより好ましい。 In the formulas (1) and (2), R 2 represents an alkyl group, an aryl group, an aralkyl group or a hydrogen atom, and the alkyl group has 1 to 24, preferably 1 to 12 carbon atoms. In this case, the aryl group has 6 to 20, preferably 6 to 10 carbon atoms. The aralkyl group has 7 to 24 carbon atoms, preferably 7 to 12 carbon atoms. More specifically, as the group R 2 , an alkyl group such as a methyl group, an ethyl group, an isopropyl group, a t-butyl group, an octyl group, an aryl group such as a phenyl group, a naphthyl group, a biphenyl group and an anthracenyl group, and a benzyl group And an aralkyl group such as a phenethyl group and a fluorenyl group, and a hydrogen atom. Of these, a methyl group, a phenyl group and a hydrogen atom are more preferable.

 さらに、式(1)及び(2)において、R3及びR4はアルキル基、アリール基、アラルキル基又は水素原子の中から選ばれる同一又は異なる1価の基を示し、これらの中では、アルキル基、アリール基又は水素原子がより好ましい。この場合、アルキル基の炭素数は1〜24、好ましくは1〜12である。また、アリール基の炭素数は6〜20、好ましくは6〜10である。さらに、アラルキル基の炭素数は7〜24、好ましくは7〜12である。より具体的には、基R3及びR4として、メチル基、エチル基、イソプロピル基、t−ブチル基、オクチル基等のアルキル基、フェニル基、ナフチル基、ビフェニル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基、水素原子等が挙げられ、これらの中ではメチル基、フェニル基又は水素原子がより好ましい。 Further, in the formulas (1) and (2), R 3 and R 4 represent the same or different monovalent groups selected from an alkyl group, an aryl group, an aralkyl group, and a hydrogen atom. Groups, aryl groups or hydrogen atoms are more preferred. In this case, the alkyl group has 1 to 24, preferably 1 to 12 carbon atoms. The aryl group has 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms. Further, the aralkyl group has 7 to 24 carbon atoms, preferably 7 to 12 carbon atoms. More specifically, as groups R 3 and R 4 , alkyl groups such as methyl group, ethyl group, isopropyl group, t-butyl group, octyl group, aryl groups such as phenyl group, naphthyl group, biphenyl group, and benzyl group And an aralkyl group such as a phenethyl group, a hydrogen atom and the like. Among them, a methyl group, a phenyl group and a hydrogen atom are more preferable.

 またさらに、式(1)及び(2)において、R5は置換若しくは未置換の芳香族の2価の基、オキシポリ(ジメチルシロキシ)基、又は酸素原子を示す。この場合、芳香族の2価の基の炭素数は6〜24、好ましくは6〜12である。この芳香族の2価の基には、2価芳香族炭化水素基(アリーレン基等)の他、酸素等のヘテロ原子を連結基として含むアリーレン基等が含まれる。また、この芳香族の2価の基に結合していてもよい置換基としては、アルキル基、アリール基、アラルキル基等が挙げられる。より具体的には、基R5として、フェニレン基、ナフチレン基、ビフェニレン基等のアリーレン基、ジフェニルエーテル基等の置換アリーレン基、酸素原子等が挙げられ、これらの中ではフェニレン基、ジフェニルエーテル基又は酸素原子がより好ましい。 Further, in the formulas (1) and (2), R 5 represents a substituted or unsubstituted aromatic divalent group, an oxypoly (dimethylsiloxy) group, or an oxygen atom. In this case, the aromatic divalent group has 6 to 24 carbon atoms, preferably 6 to 12 carbon atoms. The aromatic divalent group includes, in addition to a divalent aromatic hydrocarbon group (such as an arylene group), an arylene group containing a heteroatom such as oxygen as a linking group. Examples of the substituent that may be bonded to the aromatic divalent group include an alkyl group, an aryl group, and an aralkyl group. More specifically, as the base R 5, a phenylene group, a naphthylene group, an arylene group such as biphenylene group, a substituted arylene group such as diphenyl ether group, such as an oxygen atom., A phenylene group, diphenyl ether group or oxygen among these Atoms are more preferred.

 さらにまた、式(1)及び(2)において、R6はアルキル基、アリール基又はアラルキル基を示す。この場合、アルキル基の炭素数は1〜24、好ましくは1〜12である。また、アリール基の炭素数は6〜20、好ましくは6〜10である。さらに、アラルキル基の炭素数は7〜24、好ましくは7〜12である。より具体的には、基R6として、メチル基、エチル基、イソプロピル基、t−ブチル基、オクチル基等のアルキル基、フェニル基、ナフチル基、ビフェニル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。 Furthermore, in the formulas (1) and (2), R 6 represents an alkyl group, an aryl group or an aralkyl group. In this case, the alkyl group has 1 to 24, preferably 1 to 12 carbon atoms. The aryl group has 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms. Further, the aralkyl group has 7 to 24 carbon atoms, preferably 7 to 12 carbon atoms. More specifically, as the group R6, an alkyl group such as a methyl group, an ethyl group, an isopropyl group, a t-butyl group, an octyl group, an aryl group such as a phenyl group, a naphthyl group, a biphenyl group, a benzyl group, a phenethyl group, and the like Aralkyl groups and the like.

 また、式(1)及び(2)において、a及びbは、それぞれ繰り返し単位数を表し、aは正の整数であって、好ましくは1〜20000、より好ましくは3〜10000であり、特に好ましくは5〜10000である。また、bは0又は正の整数であって、好ましくは0〜1000、より好ましくは0〜100である。ただし、a及びbはそれらの構成比率を示すものであって、結合状態(ブロック共重合、ランダム共重合等)のいずれかの形態に限定されるものではない。 In the formulas (1) and (2), a and b each represent the number of repeating units, and a is a positive integer, preferably from 1 to 20,000, more preferably from 3 to 10,000, and particularly preferably. Is 5 to 10,000. B is 0 or a positive integer, preferably 0 to 1000, more preferably 0 to 100. However, a and b indicate their constituent ratios, and are not limited to any form of the bonding state (block copolymerization, random copolymerization, etc.).

 このような共重合体において、aとbとのそれぞれの個数の比(a:b)は特に制限されず、a/b比がより大きい、つまり高分子主鎖中の鎖状構造の割合が比較的多い場合、溶媒に対する共重合体の溶解度が高められ且つ融点が低くなることにより、共重合体の加工性が向上すると予想される。一方、a/b比がより小さい、つまり高分子主鎖中の架橋構造の割合が比較的多い場合、共重合体の耐熱性、耐燃焼性が向上すると予想される。したがって、用途等に応じて、或いは、共重合体の各モノマーユニットの構造及びその組み合わせに応じて、良好な加工性及び耐熱性、耐燃焼性を与える共重合体の最適なa/b比の範囲を適宜設定することができる。 In such a copolymer, the ratio (a: b) of the respective numbers of a and b is not particularly limited, and the a / b ratio is large, that is, the ratio of the chain structure in the polymer main chain is low. When the amount is relatively large, it is expected that the processability of the copolymer will be improved by increasing the solubility of the copolymer in the solvent and lowering the melting point. On the other hand, when the a / b ratio is small, that is, when the ratio of the crosslinked structure in the polymer main chain is relatively large, it is expected that the heat resistance and the combustion resistance of the copolymer will be improved. Therefore, depending on the use or the like, or the structure of each monomer unit of the copolymer and the combination thereof, the optimum a / b ratio of the copolymer that gives good processability, heat resistance, and combustion resistance is obtained. The range can be set as appropriate.

 さらに、式(1)及び(2)において、pは0又は正の整数、qは0又は正の整数を示し、後述するnとは、p+q+2=nの関係を有する。pの好ましい範囲は0〜10であり、より好ましくは1〜8である。また、qの好ましい範囲は0〜10であり、より好ましくは1〜8である。 Furthermore, in the formulas (1) and (2), p represents 0 or a positive integer, q represents 0 or a positive integer, and has a relationship of p + q + 2 = n with n described later. The preferable range of p is 0-10, more preferably 1-8. The preferable range of q is 0 to 10, more preferably 1 to 8.

 またさらに、式(1)及び(2)において、Z1は下記式(3);

Figure 2004136661
 又は下記式(4);
Figure 2004136661
 で表される2価の基であり、同一分子鎖において、Z1が式(3)又は(4)のいずれか一方の構造で構成されていても、或いは、両方の構造が同一分子鎖内に含まれていても構わない。なお、式(3)及び(4)におけるR3、R4、R5、R6、p及びpは前述したものと同様である。 Furthermore, in the formulas (1) and (2), Z 1 is the following formula (3);
Figure 2004136661
Or the following formula (4);
Figure 2004136661
In the same molecular chain, Z 1 may be composed of either one of the formulas (3) and (4), or both structures may be in the same molecular chain. May be included. Note that R 3 , R 4 , R 5 , R 6 , p and p in the formulas (3) and (4) are the same as those described above.

 このようなボラジン骨格を有する重合体の分子量(Mn;ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレンの検量線を使用して換算した値の数平均分子量)は、好ましくは500〜5000000、より好ましくは1000〜1000000である。この分子量(Mn)が過度に低く、例えば500未満の場合、耐熱性、及び後述する絶縁被膜の機械特性が劣る傾向にあり、例えば、かかる絶縁被膜を層間絶縁膜として用いるときにプリベークが困難となったり、成膜後の平坦化をCMPで行うときに剥離等を生じ易くなるおそれがある。これに対し、この分子量(Mn)が過度に高く、例えば5000000を超えると、絶縁被膜の加工性が悪化し、例えば、かかる絶縁被膜にW等の金属プラグ形成用のヴィアホール等を所望の形状に制御し難くなるおそれがある。 The molecular weight (Mn; number average molecular weight of a value measured by gel permeation chromatography (GPC) and converted using a calibration curve of standard polystyrene) of the polymer having a borazine skeleton is preferably 500 to 5,000,000. , More preferably 1,000 to 1,000,000. When the molecular weight (Mn) is excessively low, for example, less than 500, heat resistance and mechanical properties of an insulating film described later tend to be inferior. For example, when such an insulating film is used as an interlayer insulating film, prebaking is difficult. There is a possibility that peeling or the like may easily occur when flattening after film formation is performed by CMP. On the other hand, if the molecular weight (Mn) is excessively high, for example, more than 5,000,000, the workability of the insulating film deteriorates. For example, a via hole for forming a metal plug such as W is formed in the insulating film in a desired shape. Control may be difficult.

 また、かかるボラジン骨格を有する化合物を含有して成るA層(第1の絶縁層)は、シリコンウェハ等の基体上又は後述するB層(第2の絶縁層)の上に、前述したボラジン骨格を有する化合物、及びボラジン骨格を有する化合物の分解を促進する或いは絶縁層としての性能を低下させない単一又は複数の成分から成る薄膜を、CVD法により、又はスピンコート法を用いて塗布・硬化することによって形成できる。 Further, the layer A (first insulating layer) containing the compound having the borazine skeleton is provided on a base such as a silicon wafer or a layer B (second insulating layer) described later on by the above-mentioned borazine skeleton. And a thin film composed of a single or a plurality of components that do not promote the decomposition of the compound having a borazine skeleton or reduce the performance as an insulating layer by a CVD method or a spin coating method. Can be formed.

〈B層〉
 本発明の絶縁被膜を構成するB層は、その組成又は成分がA層と異なり、分子構造中にボラジン骨格を有する化合物を含まない絶縁層である。具体的には、CVD法によって形成されるSiOF、有機SOG、非ボラジン系有機ポリマー等の非ボラジン系の化合物(非ボラジン化合物)膜であって一般的な低誘電率材料として用いられるものから構成される。より具体的には、日立化成工業社製のHSGシリーズ、JSR社製のLKDシリーズ、ダウケミカル社製のSiLK、ハネウエル社製のTシリーズ、FLARE等を挙げることができる。
<B layer>
The layer B constituting the insulating coating of the present invention is an insulating layer which has a different composition or component from the layer A and does not contain a compound having a borazine skeleton in its molecular structure. Specifically, a non-borazine-based compound (non-borazine compound) film such as SiOF, organic SOG, or non-borazine-based organic polymer formed by a CVD method, which is formed of a material used as a general low dielectric constant material Is done. More specifically, HSG series manufactured by Hitachi Chemical Co., Ltd., LKD series manufactured by JSR, SiLK manufactured by Dow Chemical Company, T series manufactured by Honeywell, FLARE and the like can be mentioned.

 かかる構成のB層(第2の絶縁層)は、シリコンウェハ等の基体上又は前述したA層(第1の絶縁層)の上に、前述したボラジン骨格を有する化合物を含まない低誘電率材料の薄膜を、CVD法により、又はスピンコート法を用いて塗布・硬化することによって形成できる。スピンコート法を用いる場合、加熱硬化時にB層から水分を十分に除去することが望ましい。過度の水分が残留したままボラジン化合物を含むA層を積層すると、場合によっては、ボラジン化合物の一部が加水分解するおそれがあり、好ましくない。 The layer B (the second insulating layer) having such a structure is formed on a substrate such as a silicon wafer or the above-mentioned layer A (the first insulating layer) on a low dielectric constant material which does not contain the compound having a borazine skeleton. Can be formed by coating and curing using a CVD method or a spin coating method. When the spin coating method is used, it is desirable to sufficiently remove moisture from the layer B during heat curing. If the layer A containing the borazine compound is laminated with excessive moisture remaining, a part of the borazine compound may be hydrolyzed in some cases, which is not preferable.

〈絶縁被膜〉
 本発明の絶縁被膜は、先述したように、分子構造中にボラジン骨格を有する化合物を含有して成るA層と、A層と異なりボラジン骨格を有する化合物を含まないB層とが交互に積層したものである。絶縁被膜は、A層とB層が交互に積層していれば、層数に特に制限はないが、工程の簡便化の観点からは、層数が2〜5層であると好ましい。また、A層は他層への被着能(つまり、他層との接着能)に極めて優れている。よって、A層及びB層を交互に積層することにより、層間の固着が強められる。その結果、絶縁被膜全体の機械的強度を向上させることができ、例えば絶縁被膜がCMP等の研磨に供された場合、A層又はB層の層間剥離を十分に抑止できる。
<Insulating coating>
As described above, the insulating film of the present invention is obtained by alternately laminating the A layer containing the compound having the borazine skeleton in the molecular structure and the B layer containing no compound having the borazine skeleton unlike the A layer. Things. The number of layers of the insulating coating is not particularly limited as long as the layer A and the layer B are alternately stacked, but from the viewpoint of simplification of the process, the number of layers is preferably two to five. Further, the layer A is extremely excellent in the ability to adhere to another layer (that is, the ability to adhere to another layer). Therefore, by alternately laminating the A layer and the B layer, the adhesion between the layers is strengthened. As a result, the mechanical strength of the entire insulating film can be improved. For example, when the insulating film is subjected to polishing such as CMP, delamination of the A layer or the B layer can be sufficiently suppressed.

 さらに、A層とB層の積層の順序、つまり基体上に設ける場合、A層及びB層のいずれを基体の直上に被着せしめるか、或いは、絶縁被膜の最上層をA層及びB層のいずれにするかについては特に制限はないものの、基体への被着性、及び絶縁被膜上に設けられる他の層(例えば、保護膜、ハードマスク、レジスト膜、配線膜等)との接着性を高める観点からは、絶縁被膜の両端層をA層にするのが好ましい場合がある。 Furthermore, in the order of lamination of the A layer and the B layer, that is, when provided on the substrate, which of the A layer and the B layer is applied directly on the substrate, or the uppermost layer of the insulating film is formed of the A layer and the B layer. Although there is no particular limitation as to which one, adhesion to a substrate and adhesion to other layers (for example, a protective film, a hard mask, a resist film, a wiring film, etc.) provided on an insulating film are improved. From the viewpoint of enhancement, it may be preferable that the both end layers of the insulating coating be the A layers.

 図1〜4は、それぞれ本発明による絶縁被膜の構成例を示す模式断面図である。図1及び2における絶縁被膜110,120は、シリコン基層を有するシリコンウェハ100上に、A層111(第1の絶縁層)及びB層112(第2の絶縁層)が交互に積層された2層構造を成しており、絶縁被膜110はA層111−B層112の順に積層され、絶縁被膜120は、その逆順に積層されたものである。また、図3及び4における絶縁被膜130,140は、2層構造を成しており、絶縁被膜130はA層111−B層112−A層111の順に積層され、絶縁被膜140は、B層112−A層111−B層112の順に積層されたものである。なお、3層以上の積層構造を有する絶縁被膜については図示を省略する。 FIGS. 1 to 4 are schematic cross-sectional views each showing an example of the configuration of an insulating film according to the present invention. The insulating coatings 110 and 120 in FIGS. 1 and 2 are formed by alternately stacking A layers 111 (first insulating layers) and B layers 112 (second insulating layers) on a silicon wafer 100 having a silicon base layer. The insulating film 110 has a layer structure, in which the insulating film 110 is laminated in the order of the A layer 111-B layer 112, and the insulating film 120 is laminated in the reverse order. The insulating coatings 130 and 140 in FIGS. 3 and 4 have a two-layer structure. The insulating coating 130 is laminated in the order of layer A 111 -layer B 112 -layer A 111. The layers are stacked in the order of 112-A layer 111-B layer 112. The illustration of the insulating coating having a laminated structure of three or more layers is omitted.

〈電子部品〉
 本発明の絶縁被膜を用いた本発明の電子部品としては、半導体素子、液晶素子、多層配線板等の絶縁被膜を有するもの等が挙げられる。本発明の絶縁被膜は、半導体素子においては、表面保護膜、バッファーコート膜、層間絶縁膜といった絶縁膜等として、液晶素子においては表面保護膜、絶縁膜等として、多層配線基板においては、層間絶縁膜として好ましく用いることができる。
<Electronic components>
Examples of the electronic component of the present invention using the insulating coating of the present invention include those having an insulating coating such as a semiconductor element, a liquid crystal element, and a multilayer wiring board. The insulating film of the present invention is used as an insulating film such as a surface protective film, a buffer coat film, and an interlayer insulating film in a semiconductor device, as a surface protective film and an insulating film in a liquid crystal device, and as an interlayer insulating film in a multilayer wiring board. It can be preferably used as a film.

 具体的には、半導体素子としては、ダイオード、トランジスタ、キャパシタ、化合物半導体素子、サーミスタ、バリスタ、サイリスタ等の個別半導体素子、DRAM(ダイナミック・ランダム・アクセス・メモリ)、SRAM(スタティック・ランダム・アクセス・メモリ)、EPROM(イレイザブル・プログラマブル・リード・オンリー・メモリー)、マスクROM(マスク・リード・オンリー・メモリ)、EEPROM(エレクトリカル・イレイザブル・プログラマブル・リード・オンリー・メモリー)、フラッシュメモリー等の記憶(メモリ)素子、マイクロプロセッサー、DSP、ASIC等の理論(回路)素子、MMIC(モノリシック・マイクロウェーブ集積回路)に代表される化合物半導体等の集積回路素子、混成集積回路(ハイブリッドIC)、発光ダイオード、電荷結合素子等の光電変換素子、発光素子、半導体レーザ素子等が挙げられる。また、多層配線基板としては、MCM等の高密度配線基板等が挙げられる。 Specifically, the semiconductor element includes individual semiconductor elements such as a diode, a transistor, a capacitor, a compound semiconductor element, a thermistor, a varistor, and a thyristor, a DRAM (dynamic random access memory), and an SRAM (static random access memory). Memory (memory), EPROM (erasable programmable read only memory), mask ROM (mask read only memory), EEPROM (electrically erasable programmable read only memory), flash memory, etc. ) Devices, microprocessors, theoretical (circuit) devices such as DSP and ASIC, integrated circuit devices such as compound semiconductors represented by MMIC (monolithic microwave integrated circuit), hybrid integrated circuits (Hybrid IC), light emitting diode, a photoelectric conversion element such as a charge coupled device, the light emitting element, such as a semiconductor laser element and the like. Examples of the multilayer wiring board include a high-density wiring board such as an MCM.

 ここで、図5は、本発明による電子部品の好適な一実施形態を示す模式断面図である。メモリキャパシタセル8(電子部品)は、拡散領域1A,1Bが形成されたシリコンウェハ1(基体)上に酸化膜から成るゲート絶縁膜2Bを介して設けられたゲート電極3(ワード線として機能する。)と、その上方に設けられた対向電極8Cとの間に、絶縁層5,7から成る2層構造の層間絶縁膜(絶縁被膜)が形成されたものである。このような層間絶縁膜としては、例えば図1及び2に示す絶縁被膜110,120を用いることができる。この場合、絶縁層5,7は、それぞれA層111又はB層112、及びB層112又はA層111に相当する。或いは、各絶縁層5,7がそれぞれA層111及びB層112の複合膜であってもよい。 FIG. 5 is a schematic sectional view showing a preferred embodiment of the electronic component according to the present invention. The memory capacitor cell 8 (electronic component) functions as a gate electrode 3 (word line) provided on a silicon wafer 1 (base) on which diffusion regions 1A and 1B are formed via a gate insulating film 2B made of an oxide film. ) And a counter electrode 8C provided thereabove, an interlayer insulating film (insulating film) having a two-layer structure including insulating layers 5 and 7 is formed. As such an interlayer insulating film, for example, insulating films 110 and 120 shown in FIGS. 1 and 2 can be used. In this case, the insulating layers 5 and 7 correspond to the A layer 111 or the B layer 112 and the B layer 112 or the A layer 111, respectively. Alternatively, each of the insulating layers 5 and 7 may be a composite film of the A layer 111 and the B layer 112, respectively.

 また、ゲート電極3の側壁には、側壁酸化膜4A,4Bが形成されており、さらに、ゲート電極の側方における拡散領域1Bにはフィールド酸化膜2Aが形成され、素子分離がなされている。絶縁層5におけるゲート電極3近傍にはビット線として機能する電極6が埋め込まれたコンタクトホール5Aが形成されている。さらに、平坦化された絶縁層5上には平坦化された絶縁層7が被着されており、両者を貫通するように形成されたコンタクトホール7Aには蓄積電極8Aが埋め込まれている。そして、蓄積電極8A上に高誘電体から成るキャパシタ絶縁膜8Bを介して対向電極8Cが設けられている。 (4) Side wall oxide films 4A and 4B are formed on the side wall of the gate electrode 3, and a field oxide film 2A is formed in a diffusion region 1B on the side of the gate electrode, thereby performing element isolation. In the vicinity of the gate electrode 3 in the insulating layer 5, a contact hole 5A in which an electrode 6 functioning as a bit line is embedded is formed. Further, a flattened insulating layer 7 is adhered on the flattened insulating layer 5, and a storage electrode 8A is buried in a contact hole 7A formed to penetrate both. The counter electrode 8C is provided on the storage electrode 8A via a capacitor insulating film 8B made of a high dielectric substance.

 このように構成された本発明の絶縁被膜が形成されたメモリキャパシタセル8等の電子部品によれば、絶縁被膜の比誘電率が従来に比して十分に低減されるので、信号伝搬における配線遅延時間を十分に短縮できる。また、絶縁被膜の膜強度が十分に高められているので、メモリキャパシタセル8等の電子部品の製造プロセスにおけるCMP等の研磨工程において、層剥離が防止され、製品歩留まりの低下を防止できると共に、デバイスの信頼性を向上できる。 According to the electronic component such as the memory capacitor cell 8 having the insulating film of the present invention configured as described above, the relative permittivity of the insulating film is sufficiently reduced as compared with the related art, so that the wiring in the signal propagation is reduced. The delay time can be sufficiently reduced. In addition, since the film strength of the insulating film is sufficiently increased, delamination is prevented in a polishing step such as CMP in a manufacturing process of an electronic component such as the memory capacitor cell 8, and a reduction in product yield can be prevented. Device reliability can be improved.

 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

〈合成例1〉
(ボラジン系樹脂組成物1の製造)
 B,B',B"−トリエチニル−N,N',N"−トリメチルボラジン0.1g(0.50mmol)、p−ビス(ジメチルシリル)ベンゼン0.1g(0.50mmol)をエチルベンゼン8mlに溶解し、白金ジビニルテトラメチルジシロキサンのキシレン溶液(白金2%含有)10μlを加え、窒素下室温で3日間撹拌してボラジン化合物を得た。反応液の一部を取り出し、ガスクロマトグラフィー(GC)分析を行ったところ、モノマーであるB,B',B"−トリエチニル−N,N',N"−トリメチルボラジンのピークが殆ど消失し、また、p−ビス(ジメチルシリル)ベンゼンのピークが消失していることが確認された。
<Synthesis Example 1>
(Production of borazine-based resin composition 1)
0.1 g (0.50 mmol) of B, B ', B "-triethynyl-N, N', N" -trimethylborazine and 0.1 g (0.50 mmol) of p-bis (dimethylsilyl) benzene are dissolved in 8 ml of ethylbenzene. Then, 10 μl of a xylene solution of platinum divinyltetramethyldisiloxane (containing 2% of platinum) was added, and the mixture was stirred at room temperature under nitrogen for 3 days to obtain a borazine compound. When a part of the reaction solution was taken out and subjected to gas chromatography (GC) analysis, the peak of the monomer B, B ', B "-triethynyl-N, N', N" -trimethylborazine almost disappeared, Further, it was confirmed that the peak of p-bis (dimethylsilyl) benzene had disappeared.

 図6は、この重合開始直後の反応液のガスクロマトグラムを示すグラフであり、図7は、重合開始から3日間攪拌後の反応液のガスクロマトグラムを示すグラフである。図6における「a」は、p−ビス(ジメチルシリル)ベンゼンに対応するピークであり、図6及び7における「b」は、B,B',B"−トリエチニル−N,N',N"−トリメチルボラジンに対応するピークである。また、GPC分析から生成したボラジン系樹脂組成物1(ボラジン骨格を有する化合物を含有する)の分子量(標準ポリスチレン基準)は、Mn=4300(Mw/Mn=2.5)であった。図8は、得られたボラジン系樹脂組成物1のGPCチャートを示すグラフである。 FIG. 6 is a graph showing a gas chromatogram of the reaction solution immediately after the start of the polymerization, and FIG. 7 is a graph showing a gas chromatogram of the reaction solution after stirring for 3 days from the start of the polymerization. "A" in FIG. 6 is a peak corresponding to p-bis (dimethylsilyl) benzene, and "b" in FIGS. 6 and 7 is B, B ', B "-triethynyl-N, N', N". -A peak corresponding to trimethylborazine. The molecular weight (based on standard polystyrene) of the borazine-based resin composition 1 (containing a compound having a borazine skeleton) generated from GPC analysis was Mn = 4300 (Mw / Mn = 2.5). FIG. 8 is a graph showing a GPC chart of the obtained borazine-based resin composition 1.

〈合成例2〉
(ボラジン系樹脂組成物2の製造)
 B,B’,B”−トリス(1’−プロピニル)−N,N’,N”−トリメチルボラジン3.6g(15mmol)、1,3,5,7−テトラメチルシクロテトラシロキサン3.6g(15mmol)をメシチレン150mlに溶解し、白金ジビニルテトラメチルジシロキサンのキシレン溶液(白金2%含有)30μlを加え、窒素下40℃で1日間攪拌した。そこへ白金ジビニルテトラメチルジシロキサンのキシレン溶液(白金2%含有)30μlを追加し、窒素下40℃で1日間攪拌した。続いて、1,3,5,7−テトラメチルシクロテトラシロキサン0.36g(1.5mmol)を加え、窒素下40℃で1日間攪拌した。反応液の一部を取り出し、ガスクロマトグラフィー(GC)分析を行なったところ、モノマーであるB,B’,B”−トリス(1’−プロピニル)−N,N’,N”−トリメチルボラジンと1,3,5,7−テトラメチルシクロテトラシロキサンのピークが消失していることを確認した。
<Synthesis Example 2>
(Production of borazine-based resin composition 2)
B, B ', B "-tris (1'-propynyl) -N, N', N" -trimethylborazine 3.6 g (15 mmol), 1,3,5,7-tetramethylcyclotetrasiloxane 3.6 g ( 15 mmol) was dissolved in 150 ml of mesitylene, 30 μl of a xylene solution of platinum divinyltetramethyldisiloxane (containing 2% of platinum) was added, and the mixture was stirred at 40 ° C. for 1 day under nitrogen. Thereto was added 30 μl of a xylene solution of platinum divinyltetramethyldisiloxane (containing 2% of platinum), and the mixture was stirred at 40 ° C. for 1 day under nitrogen. Subsequently, 0.36 g (1.5 mmol) of 1,3,5,7-tetramethylcyclotetrasiloxane was added, and the mixture was stirred at 40 ° C. for 1 day under nitrogen. A part of the reaction solution was taken out, and subjected to gas chromatography (GC) analysis. As a result, the monomer B, B ′, B ″ -tris (1′-propynyl) -N, N ′, N ″ -trimethylborazine was removed. It was confirmed that the peak of 1,3,5,7-tetramethylcyclotetrasiloxane had disappeared.

 図9は、得られたボラジン系樹脂組成物2(ボラジン骨格を有する化合物を含有する)のGPCチャートを示すグラフである。GPC分析から生成物の分子量(標準ポリスチレン基準)は、Mn=11000(Mw/Mn=29)であった。 FIG. 9 is a graph showing a GPC chart of the obtained borazine-based resin composition 2 (containing a compound having a borazine skeleton). According to GPC analysis, the molecular weight (based on standard polystyrene) of the product was Mn = 11000 (Mw / Mn = 29).

〈実施例1〉
(絶縁被膜1の形成)
 まず、SOG型低誘電率材料HSG−R7(日立化成工業社製)を低抵抗率シリコンウェハ(抵抗率<10Ωcm)上に2000rpm/30秒でスピンコートした。塗布後、窒素雰囲気下で150℃/1分、つづいて250℃/1分で溶媒除去後、O2濃度が100ppm前後にコントロールされている石英チューブ炉で400℃/30分間かけて被膜を硬化してB層を形成した。
<Example 1>
(Formation of insulating film 1)
First, SOG type low dielectric constant material HSG-R7 (manufactured by Hitachi Chemical Co., Ltd.) was spin-coated on a low resistivity silicon wafer (resistivity <10 Ωcm) at 2000 rpm / 30 seconds. After the application, the solvent is removed at 150 ° C for 1 minute in a nitrogen atmosphere, then at 250 ° C for 1 minute, and then the film is cured at 400 ° C for 30 minutes in a quartz tube furnace in which the O 2 concentration is controlled to around 100 ppm. Thus, a layer B was formed.

 次に、このB層上に、合成例1で得たボラジン系樹脂組成物1をフィルターで濾過し、濾液を1000rpm/30秒でスピンコートした。このシリコンウェハを窒素雰囲気中ホットプレートを用いて200℃で1時間加熱した後、O2濃度が100ppm前後にコントロールされている石英チューブ炉を用いて、300℃/30分、つづいて400℃/30分間ベークしてA層を形成し、図2に示す絶縁被膜120と同様の2層構造を有する絶縁被膜1を得た。 Next, on the layer B, the borazine-based resin composition 1 obtained in Synthesis Example 1 was filtered with a filter, and the filtrate was spin-coated at 1000 rpm / 30 seconds. After heating this silicon wafer at 200 ° C. for 1 hour using a hot plate in a nitrogen atmosphere, using a quartz tube furnace in which the O 2 concentration is controlled to about 100 ppm, 300 ° C./30 minutes, then 400 ° C. / The layer A was formed by baking for 30 minutes to obtain an insulating coating 1 having a two-layer structure similar to the insulating coating 120 shown in FIG.

〈実施例2〉
(絶縁被膜2の形成)
 A層及びB層を形成する順序を逆にしたこと以外は、実施例1と同様にして図1に示す絶縁被膜110と同様の2層構造を有する絶縁被膜2を得た。
<Example 2>
(Formation of insulating film 2)
An insulating film 2 having the same two-layer structure as the insulating film 110 shown in FIG. 1 was obtained in the same manner as in Example 1 except that the order of forming the A layer and the B layer was reversed.

〈実施例3〉
(絶縁被膜3の形成)
 まず、有機ポリマー型低誘電率材料SiLK(ダウケミカル社製)を低抵抗率シリコンウェハ(抵抗率<10Ωcm)上に2000rpm/20秒でスピンコートした。塗布後、窒素雰囲気中ホットプレートで70℃/20秒で加熱して溶媒除去後、O濃度が100ppm前後にコントロールされている石英チューブ炉で325℃/2分、つづいて450℃/2分かけて被膜を硬化しB層を形成した。
<Example 3>
(Formation of insulating film 3)
First, an organic polymer type low dielectric constant material SiLK (manufactured by Dow Chemical Company) was spin-coated on a low resistivity silicon wafer (resistivity <10 Ωcm) at 2000 rpm / 20 seconds. After coating, the solvent is removed by heating at 70 ° C./20 seconds on a hot plate in a nitrogen atmosphere, and then 325 ° C./2 minutes in a quartz tube furnace in which the O 2 concentration is controlled to about 100 ppm, followed by 450 ° C./2 minutes. The coating was cured to form a layer B.

 次に、このB層上に、合成例1で得たボラジン系樹脂組成物1をフィルターで濾過し、濾液を1000rpm/30秒でスピンコートした。このシリコンウェハを窒素雰囲気中ホットプレートを用いて200℃で1時間加熱した後、O2濃度が100ppm前後にコントロールされている石英チューブ炉を用いて、300℃/30分、つづいて400℃/30分間ベークしてA層を形成し、図2に示す絶縁被膜120と同様の2層構造を有する絶縁被膜3を得た。 Next, on the layer B, the borazine-based resin composition 1 obtained in Synthesis Example 1 was filtered with a filter, and the filtrate was spin-coated at 1000 rpm / 30 seconds. After heating this silicon wafer at 200 ° C. for 1 hour using a hot plate in a nitrogen atmosphere, using a quartz tube furnace in which the O 2 concentration is controlled around 100 ppm, 300 ° C./30 minutes, then 400 ° C. / Baking was performed for 30 minutes to form an A layer, and an insulating coating 3 having a two-layer structure similar to the insulating coating 120 shown in FIG. 2 was obtained.

〈実施例4〉
(絶縁被膜4の形成)
 A層及びB層を形成する順序を逆にしたこと以外は、実施例3と同様にして図1に示す絶縁被膜110と同様の2層構造を有する絶縁被膜4を得た。
<Example 4>
(Formation of insulating film 4)
An insulating coating 4 having the same two-layer structure as the insulating coating 110 shown in FIG. 1 was obtained in the same manner as in Example 3, except that the order of forming the A layer and the B layer was reversed.

〈実施例5〉
(絶縁被膜5の形成)
 まず、SOG型低誘電率材料HSG−R7(日立化成工業社製)を低抵抗率シリコンウェハ(抵抗率<10Ωcm)上に2000rpm/30秒でスピンコートした。塗布後、窒素雰囲気下で150℃/1分、つづいて250℃/1分で溶媒除去後、O2濃度が100ppm前後にコントロールされている石英チューブ炉で400℃/30分間かけて被膜を硬化してB層を形成した。
<Example 5>
(Formation of insulating film 5)
First, SOG type low dielectric constant material HSG-R7 (manufactured by Hitachi Chemical Co., Ltd.) was spin-coated on a low resistivity silicon wafer (resistivity <10 Ωcm) at 2000 rpm / 30 seconds. After the application, the solvent is removed at 150 ° C for 1 minute in a nitrogen atmosphere, then at 250 ° C for 1 minute, and then the film is cured at 400 ° C for 30 minutes in a quartz tube furnace in which the O 2 concentration is controlled to about 100 ppm. Thus, a layer B was formed.

 次に、このB層上に、合成例2で得たボラジン系樹脂組成物2をフィルターで濾過し、濾液を1000rpm/30秒でスピンコートした。このシリコンウェハを窒素雰囲気中ホットプレートを用いて200℃で1時間加熱した後、O2濃度が100ppm前後にコントロールされている石英チューブ炉を用いて、300℃/30分、つづいて400℃/30分間ベークしてA層を形成し、図2に示す絶縁被膜120と同様の2層構造を有する絶縁被膜5を得た。 Next, on the layer B, the borazine-based resin composition 2 obtained in Synthesis Example 2 was filtered with a filter, and the filtrate was spin-coated at 1000 rpm / 30 seconds. After heating this silicon wafer at 200 ° C. for 1 hour using a hot plate in a nitrogen atmosphere, using a quartz tube furnace in which the O 2 concentration is controlled around 100 ppm, 300 ° C./30 minutes, then 400 ° C. / The layer A was formed by baking for 30 minutes to obtain an insulating film 5 having the same two-layer structure as the insulating film 120 shown in FIG.

〈実施例6〉
(絶縁被膜6の形成)
 A層及びB層を形成する順序を逆にしたこと以外は、実施例5と同様にして図1に示す絶縁被膜110と同様の2層構造を有する絶縁被膜6を得た。
<Example 6>
(Formation of insulating film 6)
An insulating film 6 having the same two-layer structure as the insulating film 110 shown in FIG. 1 was obtained in the same manner as in Example 5, except that the order of forming the A layer and the B layer was reversed.

〈実施例7〉
(絶縁被膜7の形成)
 まず、有機ポリマー型低誘電率材料SiLK(ダウケミカル社製)を低抵抗率シリコンウェハ(抵抗率<10Ωcm)上に2000rpm/20秒でスピンコートした。塗布後、窒素雰囲気中ホットプレートで70℃/20秒で加熱して溶媒除去後、O濃度が100ppm前後にコントロールされている石英チューブ炉で325℃/2分、つづいて450℃/2分かけて被膜を硬化しB層を形成した。
<Example 7>
(Formation of insulating film 7)
First, an organic polymer type low dielectric constant material SiLK (manufactured by Dow Chemical Company) was spin-coated on a low resistivity silicon wafer (resistivity <10 Ωcm) at 2000 rpm / 20 seconds. After coating, the solvent is removed by heating at 70 ° C./20 seconds on a hot plate in a nitrogen atmosphere, and then 325 ° C./2 minutes in a quartz tube furnace in which the O 2 concentration is controlled to about 100 ppm, followed by 450 ° C./2 minutes. The coating was cured to form a layer B.

 次に、このB層上に、合成例2で得たボラジン系樹脂2をフィルターで濾過し、濾液を1000rpm/30秒でスピンコートした。このシリコンウェハを窒素雰囲気中ホットプレートを用いて200℃で1時間加熱した後、O2濃度が100ppm前後にコントロールされている石英チューブ炉を用いて、300℃/30分、つづいて400℃/30分間ベークしてA層を形成し、図2に示す絶縁被膜120と同様の2層構造を有する絶縁被膜7を得た。 Next, on this B layer, the borazine-based resin 2 obtained in Synthesis Example 2 was filtered with a filter, and the filtrate was spin-coated at 1000 rpm / 30 seconds. After heating this silicon wafer at 200 ° C. for 1 hour using a hot plate in a nitrogen atmosphere, using a quartz tube furnace in which the O 2 concentration is controlled around 100 ppm, 300 ° C./30 minutes, then 400 ° C. / The layer A was formed by baking for 30 minutes to obtain an insulating film 7 having the same two-layer structure as the insulating film 120 shown in FIG.

〈実施例8〉
(絶縁被膜8の形成)
 A層及びB層を形成する順序を逆にしたこと以外は、実施例7と同様にして図1に示す絶縁被膜110と同様の2層構造を有する絶縁被膜8を得た。
<Example 8>
(Formation of insulating film 8)
An insulating coating 8 having the same two-layer structure as the insulating coating 110 shown in FIG. 1 was obtained in the same manner as in Example 7, except that the order of forming the A layer and the B layer was reversed.

〈比較例1〉
(絶縁被膜9の形成)
 日立化成工業社製HSG−R7(濃度約40%)1mlと合成例1で得たボラジン系樹脂組成物1(濃度約3%)8mlを混合し、フィルターで濾過して、濾液を低抵抗率シリコンウェハ(抵抗率<10Ωcm)上に1500rpm/30秒でスピンコートした。次いで、このシリコンウェハを窒素雰囲気中ホットプレートを用いて200℃で1時間加熱した後、O2濃度が100ppm前後にコントロールされた石英チューブ炉を用い、300℃で30分、つづいて400℃で30分間ベークして絶縁被膜層9を得た。
<Comparative Example 1>
(Formation of insulating film 9)
1 ml of HSG-R7 (concentration of about 40%) manufactured by Hitachi Chemical Co., Ltd. and 8 ml of borazine-based resin composition 1 (concentration of about 3%) obtained in Synthesis Example 1 were mixed, and the mixture was filtered through a filter. Spin coating was performed on a silicon wafer (resistivity <10 Ωcm) at 1500 rpm / 30 seconds. Next, the silicon wafer was heated at 200 ° C. for 1 hour using a hot plate in a nitrogen atmosphere, and then, at 300 ° C. for 30 minutes, and then at 400 ° C. for 30 minutes using a quartz tube furnace in which the O 2 concentration was controlled to around 100 ppm. After baking for minutes, an insulating coating layer 9 was obtained.

〈比誘電率測定〉
 実施例1〜8及び比較例1で得た絶縁被膜1〜9の比誘電率を測定した。ここで、本発明における絶縁被膜の「比誘電率」とは、23℃±2℃、湿度40±10%の雰囲気下で測定された値をいい、Al金属とN型低抵抗率基板(Siウエハ)間の電荷容量の測定から求められる。
<Relative permittivity measurement>
The relative dielectric constants of the insulating coatings 1 to 9 obtained in Examples 1 to 8 and Comparative Example 1 were measured. Here, the “relative dielectric constant” of the insulating film in the present invention refers to a value measured in an atmosphere of 23 ° C. ± 2 ° C. and a humidity of 40 ± 10%, and is composed of an Al metal and an N-type low resistivity substrate (Si). It is determined from the measurement of the charge capacity between wafers.

 具体的には、各絶縁被膜1〜9を形成した後、それらの絶縁被膜上に、真空蒸着装置でAl金属を直径2mmの円で、厚さ約0.1μmになるように真空蒸着する。これにより、絶縁被膜がAl金属と低抵抗率基板との間に配置された構造が形成される。次に、この構造体の電荷容量を、LFインピーダンスアナライザー(横河電機社製:HP4192A)に誘電体テスト・フィクスチャー(横河電機製:HP16451B)を接続した装置を用い、使用周波数1MHzにて測定した。 Specifically, after each of the insulating coatings 1 to 9 are formed, Al metal is vacuum-deposited on the insulating coatings in a vacuum evaporation apparatus so as to be a circle having a diameter of 2 mm and a thickness of about 0.1 μm. As a result, a structure in which the insulating coating is disposed between the Al metal and the low resistivity substrate is formed. Next, the charge capacity of this structure was measured at an operating frequency of 1 MHz using a device in which a dielectric test fixture (HP16451B, manufactured by Yokogawa Electric) was connected to an LF impedance analyzer (HP4192A, manufactured by Yokogawa Electric). It was measured.

 そして、電荷容量の測定値を下記式;
 絶縁被膜の比誘電率=3.597×10-2×電荷容量(pF)×絶縁被膜の膜厚(μm)、
 に代入し、絶縁被膜の比誘電率を算出した。なお、絶縁被膜の膜厚としては、ガートナー製のエリプソメーターL116Bで測定した値を用いた。
Then, the measured value of the charge capacity is calculated by the following equation;
Relative dielectric constant of insulating film = 3.597 × 10 −2 × charge capacity (pF) × film thickness of insulating film (μm);
And the relative dielectric constant of the insulating film was calculated. As the thickness of the insulating film, a value measured by an ellipsometer L116B manufactured by Gartner was used.

〈ヤング率測定〉
 各絶縁被膜に対して、MTS社製のナノインデンターDCMを用い、膜強度の指標としてヤング率を測定した。
<Young's modulus measurement>
For each of the insulating coatings, the Young's modulus was measured as an index of the film strength using a nano indenter DCM manufactured by MTS.

 表1に、絶縁被膜1〜9の膜厚、比誘電率、及びヤング率の測定結果を示す。

Figure 2004136661
Table 1 shows the measurement results of the film thickness, the relative dielectric constant, and the Young's modulus of the insulating coatings 1 to 9.
Figure 2004136661

 表1より、A層及びB層が交互に積層されて成る絶縁被膜1〜8(実施例1〜8)は、比誘電率がボラジン化合物と非ボラジン化合物との混合液を用いて形成した絶縁被膜9(比較例1)に比して有意に低減されており、且つ、ヤング率が各段に向上されることが確認された。絶縁被膜5は、混合液中のボラジン化合物の加水分解が生じたものと推察される。 As shown in Table 1, the insulating coatings 1 to 8 (Examples 1 to 8) in which the A layers and the B layers are alternately laminated have the relative dielectric constants formed by using a mixed solution of a borazine compound and a non-borazine compound. It was confirmed that it was significantly reduced as compared with the coating 9 (Comparative Example 1), and that the Young's modulus was improved in each step. It is presumed that the borazine compound in the mixed solution was hydrolyzed in the insulating coating 5.

本発明による絶縁被膜の構成例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view illustrating a configuration example of an insulating film according to the present invention. 本発明による絶縁被膜の構成例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view illustrating a configuration example of an insulating film according to the present invention. 本発明による絶縁被膜の構成例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view illustrating a configuration example of an insulating film according to the present invention. 本発明による絶縁被膜の構成例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view illustrating a configuration example of an insulating film according to the present invention. 本発明による電子部品の好適な一実施形態を示す模式断面図である。FIG. 1 is a schematic sectional view showing a preferred embodiment of an electronic component according to the present invention. 合成例1における重合開始直後の反応液のガスクロマトグラムを示すグラフである。4 is a graph showing a gas chromatogram of a reaction solution immediately after the start of polymerization in Synthesis Example 1. 合成例1における重合開始から3日間攪拌後の反応液のガスクロマトグラムを示すグラフである。4 is a graph showing a gas chromatogram of a reaction solution after stirring for 3 days from the start of polymerization in Synthesis Example 1. 合成例1で得られた重合体のGPCチャートを示すグラフである。4 is a graph showing a GPC chart of the polymer obtained in Synthesis Example 1. 合成例2で得られた重合体のGPCチャートを示すグラフである。6 is a graph showing a GPC chart of a polymer obtained in Synthesis Example 2.

符号の説明Explanation of reference numerals

 1…シリコンウェハ(基体)、1A,1B…拡散領域、2A…フィールド酸化膜、2B…ゲート絶縁膜、3…ゲート電極、4A,4B…側壁酸化膜、5,7…絶縁層(絶縁被膜)、5A,7A…コンタクトホール、6…ビット線、8…メモリセルキャパシタ(電子部品)、8A…蓄積電極、8B…キャパシタ絶縁膜、8C…対向電極、110,120,130,140…絶縁被膜、111…A層(第1の絶縁層)、112…B層(第2の絶縁層)、a…p−ビス(ジメチルシリル)ベンゼンに対応するピーク、b…B,B',B"−トリエチニル−N,N',N"−トリメチルボラジンに対応するピーク。 DESCRIPTION OF SYMBOLS 1 ... Silicon wafer (substrate), 1A, 1B ... Diffusion area, 2A ... Field oxide film, 2B ... Gate insulating film, 3 ... Gate electrode, 4A, 4B ... Side wall oxide film, 5, 7 ... Insulating layer (insulating coating) 5A, 7A contact hole, 6 bit line, 8 memory cell capacitor (electronic component), 8A storage electrode, 8B capacitor insulating film, 8C counter electrode, 110, 120, 130, 140 insulating coating, 111 ... A layer (first insulating layer), 112 ... B layer (second insulating layer), a ... peak corresponding to p-bis (dimethylsilyl) benzene, b ... B, B ', B "-triethynyl Peak corresponding to -N, N ', N "-trimethylborazine.

Claims (3)

分子構造中にボラジン骨格を有する化合物を含有して成る少なくとも1つの第1の絶縁層と、該第1の絶縁層と異なる少なくとも1つの第2の絶縁層とが交互に積層されて成る絶縁被膜。 Insulating coating formed by alternately stacking at least one first insulating layer containing a compound having a borazine skeleton in a molecular structure and at least one second insulating layer different from the first insulating layer . 前記分子構造中にボラジン骨格を有する化合物が、下記式(1);
Figure 2004136661
(式中、R1はアルキル基、アリール基、アラルキル基又は水素原子を示し、R2はアルキル基、アリール基、アラルキル基又は水素原子を示し、R3及びR4はアルキル基、アリール基、アラルキル基及び水素原子の中から選ばれる同一又は異なる1価の基を示し、R5は置換若しくは未置換の芳香族の2価の基、オキシポリ(ジメチルシロキシ)基、又は酸素原子を示し、R6はアルキル基、アリール基、アラルキル基又は水素原子を示し、aは正の整数を示し、bは0又は正の整数を示し、pは0又は正の整数を示し、qは0又は正の整数を示す。)、
で表される繰り返し単位を有するものである、
請求項1記載の絶縁被膜。
The compound having a borazine skeleton in the molecular structure is represented by the following formula (1);
Figure 2004136661
(Wherein, R 1 represents an alkyl group, an aryl group, an aralkyl group or a hydrogen atom, R 2 represents an alkyl group, an aryl group, an aralkyl group or a hydrogen atom, and R 3 and R 4 represent an alkyl group, an aryl group, R 5 represents the same or different monovalent group selected from an aralkyl group and a hydrogen atom; R 5 represents a substituted or unsubstituted aromatic divalent group, an oxypoly (dimethylsiloxy) group, or an oxygen atom; 6 represents an alkyl group, an aryl group, an aralkyl group or a hydrogen atom, a represents a positive integer, b represents 0 or a positive integer, p represents 0 or a positive integer, q represents 0 or a positive integer. Indicates an integer.),
Having a repeating unit represented by
The insulating coating according to claim 1.
基体上に設けられた請求項1又は2に記載の絶縁被膜を備える電子部品。

















An electronic component comprising the insulating coating according to claim 1 provided on a base.

















JP2003317569A 2002-09-26 2003-09-09 Insulating film Pending JP2004136661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317569A JP2004136661A (en) 2002-09-26 2003-09-09 Insulating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002281986 2002-09-26
JP2003317569A JP2004136661A (en) 2002-09-26 2003-09-09 Insulating film

Publications (1)

Publication Number Publication Date
JP2004136661A true JP2004136661A (en) 2004-05-13

Family

ID=32473158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317569A Pending JP2004136661A (en) 2002-09-26 2003-09-09 Insulating film

Country Status (1)

Country Link
JP (1) JP2004136661A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056871A (en) * 2012-09-11 2014-03-27 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device, substrate processing method, substrate processing device, and program
JP2015126177A (en) * 2013-12-27 2015-07-06 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus and program
JP2015198184A (en) * 2014-04-02 2015-11-09 株式会社日立国際電気 Method for manufacturing semiconductor device, apparatus for processing substrate and program
JP2016066688A (en) * 2014-09-24 2016-04-28 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus and program
KR101624452B1 (en) 2014-01-10 2016-05-25 가부시키가이샤 히다치 고쿠사이 덴키 Semiconductor device manufacturing method, substrate processing apparatus and program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056871A (en) * 2012-09-11 2014-03-27 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device, substrate processing method, substrate processing device, and program
US9431240B2 (en) 2012-09-11 2016-08-30 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device
JP2015126177A (en) * 2013-12-27 2015-07-06 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus and program
KR20150077357A (en) * 2013-12-27 2015-07-07 가부시키가이샤 히다치 고쿠사이 덴키 Semiconductor device manufacturing method, substrate processing apparatus and program
US9281181B2 (en) 2013-12-27 2016-03-08 Hitachi Kokusai Electric Inc. Film forming method and recording medium for performing the method
KR101639490B1 (en) 2013-12-27 2016-07-13 가부시키가이샤 히다치 고쿠사이 덴키 Semiconductor device manufacturing method, substrate processing apparatus and program
KR101624452B1 (en) 2014-01-10 2016-05-25 가부시키가이샤 히다치 고쿠사이 덴키 Semiconductor device manufacturing method, substrate processing apparatus and program
US9816181B2 (en) 2014-01-10 2017-11-14 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2015198184A (en) * 2014-04-02 2015-11-09 株式会社日立国際電気 Method for manufacturing semiconductor device, apparatus for processing substrate and program
US9330903B2 (en) 2014-04-02 2016-05-03 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
JP2016066688A (en) * 2014-09-24 2016-04-28 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus and program

Similar Documents

Publication Publication Date Title
US6395649B1 (en) Low dielectric constant polyorganosilicon coatings generated from polycarbosilanes
JP4546094B2 (en) Three-layer masking architecture for patterning dual damascene interconnects
CN101044604B (en) Novel polyorganosiloxane dielectric materials
JP4461215B2 (en) Low dielectric constant insulating material and semiconductor device using the same
US5773197A (en) Integrated circuit device and process for its manufacture
CN101021680B (en) Material for forming exposure light-blocking film, multilayer interconnection structure and manufacturing method thereof, and semiconductor device
JP2004136661A (en) Insulating film
TWI254716B (en) Semiconductor device and semiconductor package
JP4730724B2 (en) Method for producing borazine resin
KR20110011487A (en) Boron-containing hydrogen silsesquioxane polymer, integrated circuit device formed using the same, and associated methods
JP4730723B2 (en) Method for producing borazine resin
CN102047411B (en) Semiconductor device and manufacture method thereof
JP4535703B2 (en) Insulation coating and electronic components
JP5540416B2 (en) Borazine resin composition and method for producing the same, insulating coating film and method for forming the same, and electronic component
JP2002359240A (en) Interlayer insulating film made of low dielectric constant borazine-silicon based polymer, and semiconductor device constituted of the same
JP7302228B2 (en) Photosensitive resin composition, wiring layer and semiconductor device
JP4688411B2 (en) Composite insulation coating
JP5550118B2 (en) Borazine resin composition, insulating coating and method for forming the same
JP2003252982A (en) Organic insulating film material, manufacturing method thereof, method for forming organic insulating film, and semiconductor device equipped with organic insulating film
JP2004115680A (en) Organosilicon borazine polymer, its production method, borazine resin composition, electrical insulating film and its formation method
JP4324786B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, INSULATING FILM AND SEMICONDUCTOR DEVICE
KR20020076116A (en) Low-dielectric-constant interlayer insulating film composed of borazine-silicon-based polymer and semiconductor device
JP2004137476A (en) Borazine-based resin composition, its manufacturing method, insulating film and its forming method
KR20180065651A (en) Composition for forming silica layer, method for manufacturing silica layer, and electric device includimg silica layer
JP2004137474A (en) Borazine-based resin composition, porous insulating film and its forming method