JP2004140303A - Terminal for solder connection - Google Patents

Terminal for solder connection Download PDF

Info

Publication number
JP2004140303A
JP2004140303A JP2002305959A JP2002305959A JP2004140303A JP 2004140303 A JP2004140303 A JP 2004140303A JP 2002305959 A JP2002305959 A JP 2002305959A JP 2002305959 A JP2002305959 A JP 2002305959A JP 2004140303 A JP2004140303 A JP 2004140303A
Authority
JP
Japan
Prior art keywords
plating film
solder
gold
solder connection
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002305959A
Other languages
Japanese (ja)
Inventor
Takaaki Nodo
納堂 高明
Kiyoshi Hasegawa
長谷川 清
Sumiko Nakajima
中島 澄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002305959A priority Critical patent/JP2004140303A/en
Publication of JP2004140303A publication Critical patent/JP2004140303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection terminal for soldering, which excels in connection reliability. <P>SOLUTION: The terminal for solder connection, wherein an Ni-plated coating and Au-plated coating are formed successively on a terminal made of a conductor with all the Ni-plated coating and Au-plated coating being dissolved in the solder, when connection is made using the solder. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、はんだ接続用端子に関する。
【0002】
【従来の技術】
電子部品を搭載するプリント配線板や半導体を直接搭載する半導体搭載用基板は、近年高密度化が進んでおり、電子部品の実装方法においては、電子部品の端子ピンを配線板のスルーホールに挿入してはんだで固定する実装方法から、配線板の表面層のはんだ接続端子にはんだで固定する表面実装方法に変わってきている。
【0003】
端子ピンをスルーホールに挿入してはんだで固定する方法は、端子ピンをスルーホールに差し込み、溶融した、はんだ浴に浮かべて、はんだがスルーホール内に毛管現象によって浸透することを利用している。一方、表面実装方法は、配線板上の端子にはんだペーストを印刷して、その後、表面実装用の電子部品をはんだ端子の上に乗せてリフロー炉ではんだを溶融させて電子部品のリードと端子を接合している。
【0004】
表面実装用の電子部品には、はんだ接続用のリード端子を平行2列に形成したデュアルインラインパッケージ(以下、DIPという。)や、正方形のパッケージの4辺にリード端子を設けたクワッドフラットパッケージ(以下、QFPという。)等がある。また、パッケージの裏面に格子状に配列したはんだボールで配線板上の端子と接続するボールグリッドアレイ(以下、BGAという。)がある。このBGAを配線板に搭載する方法は、はんだボール接続用端子上にはんだペーストやフラックスを印刷し、BGAを乗せると共に、その他のはんだバンプを有する電子部品、はんだパンプを有する半導体チップ等を配置して、リフロー炉ではんだを部分的に溶融させて、はんだボールと接合する。はんだボールを接続するのに用いる半導体搭載用基板としては、上記BGAの他にも、チップサイズパッケ−ジ(以下、CSPという。)や、マルチチップモジュール(以下、MCMという。)などが挙げられる。
【0005】
これらのはんだ接続用端子には、基板上に形成された導体端子上にニッケルめっき皮膜および金めっき皮膜を順次形成したものがある。このニッケルめっき皮膜および金めっき皮膜は、はんだ接続以前の熱処理で銅等の導体表面が熱酸化して、はんだの濡れ性が低下して、接続不良になることを防止するために形成されている。
【0006】
【特許文献1】
特開2002−22650号公報
【特許文献2】
特開2002−118135号公報
【0007】
【発明が解決しようとする課題】
ところで、ニッケルのはんだへの溶解性は、銅や金のそれと比較して小さいため、単に、導体端子上にニッケル皮膜と金皮膜を順次形成した従来のはんだ接続用端子では、はんだ接続信頼性が低下してしまうという問題があった。つまり、はんだ接続時、金めっき皮膜がはんだに容易に溶解する一方で、ニッケルめっき皮膜のはんだへの溶解は不十分となり、その結果、はんだとニッケルめっき皮膜との間に生じる界面において接続不良が発生し易くなってしまう。なお、はんだ接続信頼性が低い、または接続性不良とは、はんだ接続部が冷熱繰り返し試験や熱衝撃試験等により破壊され、電気的に不通になるものである。
【0008】
上記を鑑みて、本発明は、はんだ接続信頼性に優れたはんだ接続用端子を提供することを目的とする。
【0009】
【課題を解決するための手段】
すなわち、本発明は、導体の端子上に、ニッケルめっき皮膜および金めっき皮膜が順次形成されているはんだ接続用端子において、はんだ接続時、ニッケルめっき皮膜および金めっき皮膜がすべてはんだに溶解することを特徴とする、はんだ接続用端子を提供する。
【0010】
本発明によれば、導体上のニッケルめっき皮膜および金めっき皮膜がすべてはんだに溶解するため、接続信頼性に優れた、はんだ接続用端子を提供することができる。
【0011】
以下、本発明を詳細に説明する。
【0012】
【発明の実施の形態】
本発明のはんだ接続用端子は、配線板上に形成された導体端子上に、ニッケルめっき皮膜および金めっき皮膜が順次形成された構造であり、はんだ接続時、該ニッケルめっき皮膜および該金めっき皮膜がすべてはんだに溶解することを特徴としている。つまり、ニッケルめっき皮膜の厚さを従来と比較して薄く形成することで、はんだ接続時、はんだと接続用端子の素材が接触することにより、はんだ接続信頼性を向上することができる。ニッケルめっき皮膜の厚さを制御する因子として、めっき液中のニッケルイオン濃度、めっき液温度、浸漬時間等が挙げられるが、ニッケルめっき皮膜を薄く形成するには、浸漬時間を短くするのが最も容易である。
【0013】
本発明のはんだ接続用端子と接続可能なはんだとしては、錫と鉛の組成比がどのようなものであっても使用でき、特に限定されないが、一般的には、60重量%錫と40重量%鉛の共晶はんだがよく使用される。また、鉛を含まない鉛フリーはんだや銀、銅、亜鉛、ビスマス等の一元素以上を含む錫合金でもよい。
【0014】
はんだ接続用端子の素材としては、銅や銅合金等、一般的に導体として使用されている金属を使用することができる。また、はんだ接続用端子の下地である基材としては、セラミック、半導体、樹脂基板等でよく、特に限定されない。樹脂基板としては、フェノール、エポキシ、ポリイミド等のものが使用でき、さらに、剛性の強い板状の基材、柔軟なフレキシブル基材のいずれも用いることができる。
【0015】
本発明のニッケルめっき皮膜は、ニッケル、又はコバルト、タングステン、銅、モリブデン、リン、ホウ素、窒素等の他の一種類以上の元素を含むニッケル合金の電解めっき皮膜、又は無電解めっき皮膜であることが好ましい。電解ニッケルめっきは直流電源を使用して、外部から陰極である導体端子に電気を供給してニッケル皮膜を形成する方法である。電解ニッケルめっき液中のニッケルイオン濃度は50g/Lから150g/Lの間が好ましく、また、めっき時の条件として、電流密度は0.5A/dmから10A/dmの間が好ましく、液温は30℃から70℃の間が好ましく、浸漬時間は0.5分から3分の間が好ましい。また、無電解ニッケルめっき皮膜はニッケルイオンとホスフィン酸塩等の還元剤の化学反応で導体端子上にニッケル皮膜を析出させる方法である。無電解ニッケルめっき液中のニッケルイオン濃度は1g/Lから10g/Lの間が好ましく、還元剤濃度は0.5g/Lから10g/Lの間が好ましく、また、めっき時の条件として、液温は60℃から90℃の間が好ましく、浸漬時間は0.5分から3分の間が好ましい。また、すべてのニッケルめっき皮膜がはんだに溶解するためには、ニッケルめっき皮膜厚みが0.01μmから0.5μmの範囲であることが好ましく、0.05μmから0.3μmの範囲であることがより好ましい。0.01μm未満では、めっきの効果がなく接続の信頼性が向上せず、0.5μmを越えると、ニッケルめっき皮膜のすべてがはんだに溶融しない場合が生じうるため、好ましくない。
【0016】
本発明の金めっき皮膜は、金、又はコバルト、ニッケル、銀等の他の一種類以上の元素を含む金合金の電解めっき皮膜、又は無電解めっき皮膜であることが好ましい。電解金めっきは直流電源を使用して、外部から陰極である導体端子に電気を供給して金皮膜を形成する方法である。また、無電解金めっき皮膜は化学反応で導体端子上に金皮膜を析出させる方法である。また、金めっき皮膜厚みは0.01μmから1μmの範囲であることが好ましい。
【0017】
また、本発明の金めっき皮膜は、置換型無電解金めっき皮膜であることが好ましい。この置換型無電解金めっき皮膜は、導体上の金属がめっき液中に溶解して、代わりにめっき液中の金イオンが導体上に金として析出する、イオン化傾向の違いを利用しためっき反応により形成されるものである。置換型無電解金めっき液中の金イオン濃度は0.5g/Lから10g/Lの間が好ましく、また、めっき時の条件として、液温は60℃から90℃の間が好ましく、浸漬時間は3分から20分の間が好ましい。
【0018】
さらに、本発明の金めっき皮膜は、上記置換型無電解金めっき皮膜上に還元型無電解金めっき皮膜を形成した多層皮膜であることが好ましい。この還元型無電解金めっきは、めっき液中の金イオンが還元剤により置換型無電解金めっき皮膜上に形成されるものである。還元型無電解金めっき液中の金イオン濃度は0.5g/Lから10g/Lの間が好ましく、還元剤濃度は0.1g/Lから10g/Lの間が好ましく、また、めっき時の条件として、液温は40℃から80℃の間が好ましく、浸漬時間は5分から60分の間が好ましい。
【0019】
本発明の端子と各種電子部品とのはんだ接続の条件としては、リフロー炉を用いた方法等、従来公知の一般的な条件でよく、特に限定されないが、はんだの組成、ニッケルめっき皮膜厚さ等によって最適な条件が異なるため、実験により適宜決定することが好ましい。
【0020】
本発明のはんだ接続用端子を形成しうる半導体搭載用基板としては、CSP、BGA、MCM、配線板、および半導体チップの他、はんだバンプを有するCSP、BGA、MCM、配線板、および半導体チップなどが挙げられる。
【0021】
【実施例】
実施例1
厚さ18μmの銅箔を両面に貼り合わせた、厚さ0.5mmの銅張りエポキシ積層板であるMCL−E−679(日立化成工業株式会社製、商品名)の銅箔の不要な箇所をエッチング除去し、エッチングレジストを剥離し、はんだレジストを形成して、銅である導体パターンが露出したはんだ接続用端子を有する半導体搭載用基板を作製した。
【0022】
その半導体搭載用基板を、脱脂液であるZ−200(株式会社ワールドメタル製、商品名)に、液温50℃で1分間浸漬し、室温で2分間水洗し、100g/リットルの過硫酸アンモニウム液に室温で1分間浸漬して、ソフトエッチングし、室温で2分間水洗し、10重量%の硫酸に、室温で1分間浸漬して、酸洗して、室温で2分間水洗し、電解ニッケルめっき液であるレクトロニック(日本エレクトロプレイティングエンジニヤーズ株式会社製、商品名)に液温50℃において2A/dmで1分間浸漬してニッケルめっき皮膜を形成し、室温で2分間水洗して、電解金めっき液であるオートロネクス(日本エレクトロプレイティングエンジニヤーズ株式会社製、商品名)に、液温85℃、2A/dmで10分間浸漬して、金めっき皮膜を形成した。ここで作成したニッケルめっき皮膜の厚みは0.15μmであり、金めっき皮膜は0.35μmであった。
【0023】
実施例2
厚さ18μmの銅箔を両面に貼り合わせた、厚さ0.5mmの銅張りエポキシ積層板であるMCL−E−679(日立化成工業株式会社製、商品名)の銅箔の不要な箇所をエッチング除去し、エッチングレジストを剥離し、半田レジストを形成した、銅である導体パターンが露出したはんだ接続用端子を有する半導体搭載用基板を作製した。
【0024】
その半導体搭載用基板を、脱脂液であるZ−200(株式会社ワールドメタル製、商品名)に、液温50℃で1分間浸漬し、室温で2分間水洗し、100g/リットルの過硫酸アンモニウム液に室温で1分間浸漬して、ソフトエッチングし、室温で2分間水洗し、10重量%の硫酸に、室温で1分間浸漬して、酸洗して、室温で2分間水洗し、SA−100(日立化成工業株式会社製、商品名)に室温で5分間浸漬して無電解めっきのための活性化処理を行い、室温で2分間水洗し、無電解ニッケルめっき液であるNIPS−100(日立化成工業株式会社製、商品名)に液温85℃で1分間浸漬して、Ni−Pめっき皮膜を形成し、室温で2分間水洗し、非シアン系の置換型無電解金めっき液であるHGS−100(日立化成工業株式会社製、商品名)に、液温85℃で10分間浸漬して、純金(純度99.9重量%))の皮膜を形成した。ここで作成したニッケルめっき皮膜の厚みは0.13μmであり、金めっき皮膜は0.05μmであった。
【0025】
実施例3
半導体搭載用基板をシアン系の置換型無電解金めっき液であるIM−GOLD(日本高純度化学株式会社製、商品名)に、液温85℃で10分間浸漬し、純金(純度99.9重量%))の皮膜を形成し、室温で2分間水洗し、続いて還元型無電解金めっき液であるHGS−2000(日立化成工業株式会社製、商品名)に、液温65℃で40分間浸漬し、純金(純度99.9重量%))の皮膜を形成した以外は、実施例2と同様にして、はんだ接続用端子を有する半導体搭載用基板を作製した。ここで作成したニッケルめっき皮膜の厚みは0.14μmであり、金めっき皮膜は0.43μmであった。
【0026】
比較例1
ニッケルめっき皮膜および金めっき皮膜をまったく形成しなかった以外は、実施例1と同様にして、はんだ接続用端子を有する半導体搭載用基板を作製した。
【0027】
比較例2
電解ニッケルめっきの浸漬時間を20分にしてニッケルめっき皮膜を形成した以外は、実施例1と同様にして半導体搭載用基板を作製した。ここで作成したニッケルめっき皮膜の厚みは4.2μmであり、金めっき皮膜は0.37μmであった。
【0028】
比較例3
無電解ニッケルめっきの浸漬時間を20分にして無電解ニッケルめっき皮膜を形成した以外は、実施例2と同様にして半導体搭載用基板を作製した。ここで作成したニッケルめっき皮膜の厚みは4.1μmであり、金めっき皮膜は0.06μmであった。
【0029】
比較例4
無電解ニッケルめっきの浸漬時間を20分にして無電解ニッケルめっき皮膜を形成した以外は、実施例3と同様にして半導体搭載用基板を作製した。ここで作成したニッケルめっき皮膜の厚みは4.4μmであり、金めっき皮膜は0.46μmであった。
【0030】
実施例1、2、3と比較例1、2、3,4で作製した半導体搭載用基板を180℃、2時間加熱した。その後、この基板の256箇所のはんだ接続用端子に、60重量%錫と40重量%鉛の共晶組成であるはんだボールをリフロー炉(最大温度240℃、30秒)によって搭載した後、ボンドテスターSERIES4000(デイジー社製、商品名)を用いて、シェア速度500μm/秒の条件ではんだボールのシェア(剪断)試験を行った。
【0031】
この結果、実施例1、2、3のサンプルは、ニッケルめっき皮膜および金めっき皮膜の全てがはんだに溶解していたため、全てのはんだボールにおいて、はんだボール内での剪断による破壊であり、端子とはんだの接続は良好であった。しかし、比較例1のサンプルは、はんだ接続前の熱処理ではんだ端子の銅表面が酸化されて、はんだが濡れず、接続不良になった。また、比較例2、3、4のサンプルは、ニッケルめっき皮膜がはんだに完全に溶解していなかったため、約50%の端子において、ニッケルめっきとはんだの界面で破壊が発生し、接続信頼性が不良であった。
【0032】
【発明の効果】
以上に説明したとおり、本発明によれば、接続信頼性に優れた、はんだ接続用端子を提供することができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solder connection terminal.
[0002]
[Prior art]
The density of printed wiring boards on which electronic components are mounted and semiconductor mounting substrates on which semiconductors are directly mounted has been increasing in recent years. In the mounting method of electronic components, terminal pins of the electronic components are inserted into through holes of the wiring board. The mounting method has been changed from a mounting method in which the wiring is fixed by soldering to a solder connection terminal on a surface layer of the wiring board by soldering.
[0003]
The method of inserting the terminal pins into the through holes and fixing them with solder utilizes the fact that the terminal pins are inserted into the through holes, floated in a molten solder bath, and the solder penetrates into the through holes by capillary action. . On the other hand, in the surface mounting method, solder paste is printed on the terminals on the wiring board, then the electronic components for surface mounting are placed on the solder terminals, the solder is melted in a reflow furnace, and the leads and terminals of the electronic components are melted. Are joined.
[0004]
Examples of surface mount electronic components include a dual in-line package (hereinafter, referred to as DIP) in which lead terminals for solder connection are formed in two parallel rows, and a quad flat package in which lead terminals are provided on four sides of a square package ( Hereinafter, referred to as QFP). There is also a ball grid array (hereinafter, referred to as BGA) connected to terminals on a wiring board by solder balls arranged in a grid on the back surface of the package. The method of mounting this BGA on the wiring board is to print solder paste or flux on the solder ball connection terminals, place the BGA, and place other electronic components with solder bumps, semiconductor chips with solder pumps, etc. Then, the solder is partially melted in a reflow furnace and joined to the solder balls. As the semiconductor mounting substrate used to connect the solder balls, in addition to the BGA, a chip size package (hereinafter, referred to as CSP), a multi-chip module (hereinafter, referred to as MCM), and the like can be given. .
[0005]
Some of these solder connection terminals are formed by sequentially forming a nickel plating film and a gold plating film on a conductor terminal formed on a substrate. The nickel plating film and the gold plating film are formed in order to prevent a conductor surface such as copper from being thermally oxidized by a heat treatment before the solder connection, thereby reducing the wettability of the solder and causing a connection failure. .
[0006]
[Patent Document 1]
JP 2002-22650 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-118135
[Problems to be solved by the invention]
By the way, since the solubility of nickel in solder is smaller than that of copper or gold, the solder connection reliability of a conventional solder connection terminal in which a nickel film and a gold film are sequentially formed on a conductor terminal is simply low. There was a problem that it would decrease. In other words, at the time of solder connection, while the gold plating film dissolves easily in the solder, the nickel plating film dissolves insufficiently in the solder, resulting in poor connection at the interface between the solder and the nickel plating film. It is easy to occur. In addition, low solder connection reliability or poor connection means that the solder connection portion is broken by a cold / hot repetition test, a thermal shock test, or the like, and becomes electrically disconnected.
[0008]
In view of the above, an object of the present invention is to provide a solder connection terminal having excellent solder connection reliability.
[0009]
[Means for Solving the Problems]
That is, the present invention relates to a solder connection terminal in which a nickel plating film and a gold plating film are sequentially formed on a terminal of a conductor, and when the solder is connected, the nickel plating film and the gold plating film are completely dissolved in the solder. A solder connection terminal is provided.
[0010]
According to the present invention, since the nickel plating film and the gold plating film on the conductor are all dissolved in the solder, it is possible to provide a solder connection terminal having excellent connection reliability.
[0011]
Hereinafter, the present invention will be described in detail.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The solder connection terminal of the present invention has a structure in which a nickel plating film and a gold plating film are sequentially formed on a conductor terminal formed on a wiring board, and at the time of solder connection, the nickel plating film and the gold plating film are formed. Are all dissolved in solder. That is, by forming the thickness of the nickel plating film thinner than before, the solder connection reliability can be improved due to the contact between the solder and the material of the connection terminal at the time of solder connection. Factors that control the thickness of the nickel plating film include the nickel ion concentration in the plating solution, the plating solution temperature, and the immersion time. Easy.
[0013]
The solder that can be connected to the solder connection terminal of the present invention can be used regardless of the composition ratio of tin and lead, and is not particularly limited. Generally, 60% by weight tin and 40% by weight are used. % Lead eutectic solder is often used. Further, a lead-free solder containing no lead or a tin alloy containing one or more elements such as silver, copper, zinc, and bismuth may be used.
[0014]
As a material of the solder connection terminal, a metal generally used as a conductor, such as copper or a copper alloy, can be used. In addition, the base material serving as the base of the solder connection terminal may be a ceramic, semiconductor, resin substrate, or the like, and is not particularly limited. As the resin substrate, phenol, epoxy, polyimide or the like can be used, and further, any of a rigid plate-like base material and a flexible base material can be used.
[0015]
The nickel plating film of the present invention is an electrolytic plating film of nickel or a nickel alloy containing one or more other elements such as cobalt, tungsten, copper, molybdenum, phosphorus, boron, and nitrogen, or an electroless plating film. Is preferred. Electrolytic nickel plating is a method in which a DC power supply is used to externally supply electricity to a conductor terminal serving as a cathode to form a nickel film. The nickel ion concentration in the electrolytic nickel plating solution is preferably between 50 g / L and 150 g / L, and the current density is preferably between 0.5 A / dm 2 and 10 A / dm 2 as plating conditions. The temperature is preferably between 30 ° C and 70 ° C, and the immersion time is preferably between 0.5 minutes and 3 minutes. The electroless nickel plating film is a method in which a nickel film is deposited on a conductor terminal by a chemical reaction between nickel ions and a reducing agent such as a phosphinate. The nickel ion concentration in the electroless nickel plating solution is preferably between 1 g / L and 10 g / L, and the reducing agent concentration is preferably between 0.5 g / L and 10 g / L. The temperature is preferably between 60 ° C and 90 ° C, and the immersion time is preferably between 0.5 minutes and 3 minutes. In order for all the nickel plating film to be dissolved in the solder, the thickness of the nickel plating film is preferably in the range of 0.01 μm to 0.5 μm, more preferably in the range of 0.05 μm to 0.3 μm. preferable. If the thickness is less than 0.01 μm, there is no effect of plating and the connection reliability is not improved. If the thickness exceeds 0.5 μm, the entire nickel plating film may not be melted in the solder, which is not preferable.
[0016]
The gold plating film of the present invention is preferably an electroplating film of gold or a gold alloy containing one or more other elements such as cobalt, nickel, silver or the like, or an electroless plating film. Electrolytic gold plating is a method in which a DC power supply is used to externally supply electricity to a conductor terminal as a cathode to form a gold film. The electroless gold plating film is a method of depositing a gold film on a conductor terminal by a chemical reaction. Further, the thickness of the gold plating film is preferably in the range of 0.01 μm to 1 μm.
[0017]
Further, the gold plating film of the present invention is preferably a substitution type electroless gold plating film. This substitution type electroless gold plating film is formed by a plating reaction using the difference in ionization tendency, in which the metal on the conductor dissolves in the plating solution and the gold ions in the plating solution precipitate as gold on the conductor instead. Is formed. The gold ion concentration in the substitutional electroless gold plating solution is preferably between 0.5 g / L and 10 g / L, and the plating temperature is preferably between 60 ° C. and 90 ° C. Is preferably between 3 and 20 minutes.
[0018]
Further, the gold plating film of the present invention is preferably a multilayer film in which a reduced electroless gold plating film is formed on the substitutional electroless gold plating film. In this reduction type electroless gold plating, gold ions in a plating solution are formed on a substitution type electroless gold plating film by a reducing agent. The gold ion concentration in the reduced electroless gold plating solution is preferably between 0.5 g / L and 10 g / L, and the reducing agent concentration is preferably between 0.1 g / L and 10 g / L. As conditions, the liquid temperature is preferably between 40 ° C. and 80 ° C., and the immersion time is preferably between 5 minutes and 60 minutes.
[0019]
The condition of the solder connection between the terminal of the present invention and various electronic components may be a conventionally known general condition such as a method using a reflow furnace, and is not particularly limited, and is not particularly limited, and the composition of the solder, the thickness of the nickel plating film, etc. Since the optimum conditions vary depending on the conditions, it is preferable to appropriately determine the conditions by experiments.
[0020]
Examples of the semiconductor mounting substrate on which the solder connection terminal of the present invention can be formed include CSP, BGA, MCM, wiring board, and semiconductor chip, as well as CSP, BGA, MCM, wiring board, and semiconductor chip having solder bumps. Is mentioned.
[0021]
【Example】
Example 1
Unnecessary portions of the copper foil of MCL-E-679 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a copper-clad epoxy laminate having a thickness of 0.5 mm, in which a copper foil having a thickness of 18 μm is stuck on both sides. Etching was removed, the etching resist was peeled off, and a solder resist was formed. Thus, a semiconductor mounting substrate having a solder connection terminal with a copper conductive pattern exposed was manufactured.
[0022]
The semiconductor mounting substrate was immersed in a degreasing liquid Z-200 (trade name, manufactured by World Metal Co., Ltd.) at a liquid temperature of 50 ° C. for 1 minute, washed with water at room temperature for 2 minutes, and then subjected to a 100 g / liter ammonium persulfate liquid. Immersed in water at room temperature for 1 minute, soft-etched, washed with water at room temperature for 2 minutes, immersed in 10% by weight sulfuric acid at room temperature for 1 minute, pickled, washed with water at room temperature for 2 minutes, electrolytic nickel plating A nickel plating film was formed by immersion in a solution of Lectronic (trade name, manufactured by Japan Electroplating Engineers Co., Ltd.) at a liquid temperature of 50 ° C. at 2 A / dm 2 for 1 minute, and washed with water at room temperature for 2 minutes. an electrolytic gold plating solution Otoronekusu (Nippon Electroplating engineers Yards Co., Ltd., trade name), liquid temperature 85 ° C., and immersed in 2A / dm 2 10 minutes, the gold plating Film was formed. The thickness of the nickel plating film prepared here was 0.15 μm, and the thickness of the gold plating film was 0.35 μm.
[0023]
Example 2
Unnecessary portions of copper foil of MCL-E-679 (manufactured by Hitachi Chemical Co., Ltd.), which is a copper-clad epoxy laminate having a thickness of 0.5 mm, in which a copper foil having a thickness of 18 μm is bonded to both surfaces, A semiconductor mounting substrate having a solder connection terminal in which a copper conductive pattern was exposed was formed by etching and removing the etching resist to form a solder resist.
[0024]
The semiconductor mounting substrate was immersed in a degreasing liquid Z-200 (trade name, manufactured by World Metal Co., Ltd.) at a liquid temperature of 50 ° C. for 1 minute, washed with water at room temperature for 2 minutes, and then subjected to a 100 g / liter ammonium persulfate liquid. Immersion in 10% by weight of sulfuric acid at room temperature for 1 minute, pickling, rinsing with water for 2 minutes at room temperature, and SA-100 (Hitachi Kasei Kogyo Co., Ltd., trade name) for 5 minutes at room temperature to perform an activation treatment for electroless plating, washed for 2 minutes at room temperature, and NIPS-100 (Hitachi Chemical Co., Ltd.) It is a non-cyanide substitutional electroless gold plating solution formed by immersing in a chemical product (trade name, manufactured by Kasei Kogyo Co., Ltd.) at a liquid temperature of 85 ° C. for 1 minute to form a Ni-P plating film, washing with water at room temperature for 2 minutes. HGS-100 (Hitachi Chemical Industries, Ltd.) , Trade name), was immersed for 10 minutes at a liquid temperature of 85 ° C., to form a film of pure gold (purity 99.9 wt%)). The thickness of the nickel plating film prepared here was 0.13 μm, and the thickness of the gold plating film was 0.05 μm.
[0025]
Example 3
The substrate for mounting a semiconductor was immersed in IM-GOLD (trade name, manufactured by Nippon Kojundo Chemical Co., Ltd.), which is a cyan-based substitutional electroless gold plating solution, at a liquid temperature of 85 ° C. for 10 minutes to obtain pure gold (purity 99.9). %)), Washed with water at room temperature for 2 minutes, and then added to HGS-2000 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a reduction type electroless gold plating solution, at a solution temperature of 65 ° C. for 40 minutes. A semiconductor mounting substrate having terminals for solder connection was prepared in the same manner as in Example 2 except that a film of pure gold (purity: 99.9% by weight) was formed by immersion for minutes. The thickness of the nickel plating film prepared here was 0.14 μm, and the thickness of the gold plating film was 0.43 μm.
[0026]
Comparative Example 1
A semiconductor mounting substrate having solder connection terminals was prepared in the same manner as in Example 1 except that no nickel plating film and no gold plating film were formed.
[0027]
Comparative Example 2
A substrate for mounting a semiconductor was produced in the same manner as in Example 1, except that the immersion time for electrolytic nickel plating was 20 minutes to form a nickel plating film. The thickness of the nickel plating film prepared here was 4.2 μm, and the thickness of the gold plating film was 0.37 μm.
[0028]
Comparative Example 3
A substrate for mounting a semiconductor was produced in the same manner as in Example 2, except that the immersion time of the electroless nickel plating was set to 20 minutes to form an electroless nickel plating film. The thickness of the nickel plating film prepared here was 4.1 μm, and that of the gold plating film was 0.06 μm.
[0029]
Comparative Example 4
A substrate for mounting a semiconductor was produced in the same manner as in Example 3, except that the immersion time of the electroless nickel plating was set to 20 minutes to form an electroless nickel plating film. The thickness of the nickel plating film prepared here was 4.4 μm, and that of the gold plating film was 0.46 μm.
[0030]
The semiconductor mounting substrates manufactured in Examples 1, 2, and 3 and Comparative Examples 1, 2, 3, and 4 were heated at 180 ° C. for 2 hours. Thereafter, solder balls having a eutectic composition of 60% by weight of tin and 40% by weight of lead were mounted on the solder connection terminals at 256 places of the substrate by a reflow furnace (maximum temperature 240 ° C., 30 seconds), and then a bond tester was used. Using SERIES4000 (trade name, manufactured by Daisy Corporation), a shear (shear) test of the solder ball was performed under the conditions of a shear speed of 500 μm / sec.
[0031]
As a result, in the samples of Examples 1, 2, and 3, all of the nickel plating film and the gold plating film were dissolved in the solder. The solder connection was good. However, in the sample of Comparative Example 1, the copper surface of the solder terminal was oxidized by the heat treatment before the solder connection, and the solder was not wet, resulting in poor connection. Further, in the samples of Comparative Examples 2, 3, and 4, the nickel plating film was not completely dissolved in the solder, so that about 50% of the terminals were broken at the interface between the nickel plating and the solder, and the connection reliability was poor. It was bad.
[0032]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a solder connection terminal having excellent connection reliability.

Claims (5)

導体の端子上に、ニッケルめっき皮膜および金めっき皮膜が順次形成されているはんだ接続用端子において、はんだ接続時、前記ニッケルめっき皮膜および前記金めっき皮膜がすべてはんだに溶解することを特徴とする、はんだ接続用端子。On a terminal of a conductor, in a solder connection terminal in which a nickel plating film and a gold plating film are sequentially formed, at the time of solder connection, the nickel plating film and the gold plating film are all dissolved in the solder, Terminal for solder connection. 前記ニッケルめっき皮膜が、ニッケル、又はニッケル合金の電解めっき皮膜、又は無電解めっき皮膜であることを特徴とする、請求項1に記載のはんだ接続用端子。2. The solder connection terminal according to claim 1, wherein the nickel plating film is a nickel or nickel alloy electrolytic plating film or an electroless plating film. 3. 前記金めっき皮膜が、金、又は金合金の電解めっき皮膜、又は無電解めっき皮膜であることを特徴とする、請求項1または2に記載のはんだ接続用端子。The solder connection terminal according to claim 1, wherein the gold plating film is a gold or gold alloy electrolytic plating film or an electroless plating film. 4. 前記金めっき皮膜が、置換型無電解金めっき皮膜であることを特徴とする、請求項1または2に記載のはんだ接続用端子。3. The solder connection terminal according to claim 1, wherein the gold plating film is a substitution type electroless gold plating film. 前記金めっき皮膜が、置換型無電解金めっき皮膜上に還元型無電解金めっき皮膜を形成した多層皮膜であることを特徴とする、請求項1または2に記載のはんだ接続用端子。3. The solder connection terminal according to claim 1, wherein the gold plating film is a multilayer film formed by forming a reduction type electroless gold plating film on a substitution type electroless gold plating film. 4.
JP2002305959A 2002-10-21 2002-10-21 Terminal for solder connection Pending JP2004140303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305959A JP2004140303A (en) 2002-10-21 2002-10-21 Terminal for solder connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305959A JP2004140303A (en) 2002-10-21 2002-10-21 Terminal for solder connection

Publications (1)

Publication Number Publication Date
JP2004140303A true JP2004140303A (en) 2004-05-13

Family

ID=32452903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305959A Pending JP2004140303A (en) 2002-10-21 2002-10-21 Terminal for solder connection

Country Status (1)

Country Link
JP (1) JP2004140303A (en)

Similar Documents

Publication Publication Date Title
JP5428667B2 (en) Manufacturing method of semiconductor chip mounting substrate
KR100688833B1 (en) Method for plating on printed circuit board and printed circuit board produced therefrom
JP2007031826A (en) Connection terminal and substrate for mounting semiconductor having the same
KR100705637B1 (en) Flexible wiring base material and process for producing the same
JP3345529B2 (en) Wire bonding terminal, method of manufacturing the same, and method of manufacturing semiconductor mounting substrate using the wire bonding terminal
JPH10287994A (en) Plating structure of bonding part
EP1209958A2 (en) Laminated structure for electronic equipment and method of electroless gold plating
US6838009B2 (en) Rework method for finishing metallurgy on chip carriers
JPH05327187A (en) Printed circuit board and manufacture thereof
JPH0828561B2 (en) Manufacturing method of printed wiring board
JP2007262573A (en) Palladium plating solution
JP2000277897A (en) Terminal for solder-ball connection and its formation method and as manufacture of board for semiconductor mounting
JP4798451B2 (en) Wiring board and manufacturing method thereof
JP2004140303A (en) Terminal for solder connection
JP2005317729A (en) Connection terminal, semiconductor package using the same, and method for manufacturing semiconductor package
JP5682678B2 (en) Semiconductor chip mounting substrate and manufacturing method thereof
JPH11140659A (en) Substrate for mounting semiconductor and its production
JP2002118134A (en) Connection terminal and semiconductor package using the same as well as manufacturing method thereof
JP4409356B2 (en) Manufacturing method of surface-treated Al plate for heat sink
JPH11140658A (en) Substrate for mounting semiconductor and its production
JP3596335B2 (en) Semiconductor mounting substrate using wire bonding terminals
JP2002280728A (en) Wiring board with solder ball and its manufacturing method
JP3244102B2 (en) IC package
Beigle Alternate metal finishes for wire bond and soldering applications
JP2002280731A (en) Wiring board equipped with solder ball and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A131 Notification of reasons for refusal

Effective date: 20080219

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080417

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080909

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081031