JP2004140187A - Subcarrier for optical semiconductor element and optical semiconductor device - Google Patents

Subcarrier for optical semiconductor element and optical semiconductor device Download PDF

Info

Publication number
JP2004140187A
JP2004140187A JP2002303541A JP2002303541A JP2004140187A JP 2004140187 A JP2004140187 A JP 2004140187A JP 2002303541 A JP2002303541 A JP 2002303541A JP 2002303541 A JP2002303541 A JP 2002303541A JP 2004140187 A JP2004140187 A JP 2004140187A
Authority
JP
Japan
Prior art keywords
insulating base
optical semiconductor
base
wiring
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002303541A
Other languages
Japanese (ja)
Other versions
JP4035028B2 (en
Inventor
Naohito Ide
井手 尚人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002303541A priority Critical patent/JP4035028B2/en
Publication of JP2004140187A publication Critical patent/JP2004140187A/en
Application granted granted Critical
Publication of JP4035028B2 publication Critical patent/JP4035028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a subcarrier for an optical semiconductor element wherein wiring conductor layers are formed extendedly from the top face of an insulating base to one side face to enhance reliability of electrical connection. <P>SOLUTION: The subcarrier comprises an insulating base 1 having an approximate cuboid, a PD mounting part 14a which is formed on one side face of the insulating base 1 and composed of a conductor layer on which a photodiode (PD) 2 is mounted, a first wiring pattern 14b connected to the PD mounting part 14a and a second wiring pattern 14c electrically connected to the PD 2 both being formed from the top face to the one side face of the insulating base 1, and L-shaped metal members 15a, 15b which are separately connected to the first and the second patterns 14b, 14c so as to cover them at the corner between the top face and the side face of the insulating base 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光通信分野等で用いられ、フォトダイオード(PD),半導体レーザ(PD)等の光半導体素子を搭載するためのサブキャリアおよび光半導体装置に関する。
【0002】
【従来の技術】
従来、光通信分野においては、光半導体装置が高周波信号を電気−光変換し光ファイバ等へ光信号として伝送するために用いられており、10G(ギガ)ビット/秒(bps)を超えるデータ通信のビットレートを持つものが広く用いられるようになってきている。
【0003】
従来のPD,LD等の光半導体素子を具備した光半導体装置を図3に示す。図3に示すように、101は光半導体素子を搭載するための絶縁基台(サブキャリア)、102はPD、103aはPD102の上部電極と絶縁基台101表面の配線パターンとを電気的に接続する第一のボンディングワイヤ、103bは絶縁基台101表面の配線パターンと回路基板120の回路配線とを電気的に接続するための第二のボンディングワイヤである。また、104はLD、105はLD搭載用のサブマウント、106は測温素子、107はペルチェ素子、108はセラミックス等から成る基体、108aは基体108の平板状の底板部、108bは基体108の側壁部である。また、109は金属等から成る蓋体、110は金属等から成る筒状の光ファイバ固定部材(以下、固定部材ともいう)、111は光ファイバ、112は外部リード端子、120はPD102を制御するための制御回路やインピーダンス整合用の線路導体等が形成された回路基板である。
【0004】
絶縁基台101は、図4に示すように、セラミックス等から成る略直方体の絶縁基材113の表面に導体層から成る各種機能部が形成されており、絶縁基材113の一側面にPDが搭載される導体層から成るPD搭載部114aが形成され、絶縁基材113の上面に第一の配線パターン114bおよび第二の配線パターン114cが形成されている。また、絶縁基材113の一側面には、PD搭載部114aと第一の配線パターン114bを電気的に接続する接続部114d、および第二の配線パターン114cと電気的に接続され、第一のボンディングワイヤ103aがボンディングされるボンディング部114eが形成されている。さらに、絶縁基材113の下面には、基体108の底板部108aの上面にAu−Snロウ材等を介して接着固定される下部導体層114fが形成されている。
【0005】
PD102は、絶縁基台101のPD搭載部114aにAu−Snロウ材等を介して接着固定される。PD102が搭載された絶縁基台101は、基体108の底板部108aの上面にPD102の受光面がLD104や光ファイバ111と光学的に結合するように接着固定されている。また、基体108の底板部108aの上面には、LD104および測温素子106が搭載されたサブマウント105がペルチェ素子107を介して載置されている。
【0006】
光ファイバ111はLD104から発光される光を外部に伝送するとともに、光ファイバ111から伝送された光をPD102に受光させて光信号を電気信号に変換させる。または、PD102はLD104から後方へ出射された光をモニタするためのものである。
【0007】
基体108の下面には、外部リード端子112が固定されており、PD102、LD104、測温素子106、ペルチェ素子107が電気的に接続されている。また、基体108の上面に蓋体109がシーム溶接法等により接合されることにより、光半導体装置を気密に封止する。
【0008】
この光半導体装置は、PD102が絶縁基台101のPD搭載部114aにAu−Sn合金等から成る低融点ろう材を介して接着固定される。その後、PD102の上部電極とボンディング部114eとを、AuやAl等からなる第一のボンディングワイヤ103aを介して電気的に接続する。そして、PD102が搭載された絶縁基台101は、その下部導体層114fが基体108の底板部108aの上面に、Au−Sn合金やPb−Sn合金等から成るろう材を介して接着固定される。その後、絶縁基台101の第一の配線パターン114bおよび第二の配線パターン114cを、回路基板120の回路配線や線路導体に、AuやAl等からなる第二のボンディングワイヤ103bにより電気的に接続する。同様に、LD104と測温素子106をサブマウント105の上面にろう材を介して接着固定した後、予めろう材を介して基体108の底板部108aの上面に接着固定されたペルチェ素子107の上面にサブマウント105をろう材を介して接着固定する。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来の光半導体装置においては、PD102が搭載された絶縁基台101は、組立工程において、コレット等の搬送治具により挟まれた状態で移動して、基体108の底板部108aの上面に載置されるが、その際、第一の配線パターン114bと接続部114dおよび第二の配線パターン114cとボンディング部114eが電気的に接続される絶縁基材113の稜部が搬送治具と接触し、稜部で導体層が傷付いたり削り取られて、第一の配線パターン114bと接続部114dおよび第二の配線パターン114cとボンディング部114eが断線したり、導通抵抗が増大してしまうという問題点があった。
【0010】
また、絶縁基台101は、PD搭載部114a、接続部114dおよびボンディング部114eが絶縁基材113の同じ一側面に形成されているため、スパッタリング法、真空蒸着法、フォトリソグラフィ法、エッチング法等を用いて同時に形成される。その後、第一の配線パターン114b、第二の配線パターン114cが形成されるが、これら配線パターンの形成がPD搭載部114a、接続部114dおよびボンディング部114eの形成と別々となるため、それらが電気的に接続される稜部において、断線が発生し易いという問題点があった。
【0011】
従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、電気的接続の信頼性を高くして絶縁基材の上面から側面にわたって配線導体層を形成した絶縁基台を具備した光半導体装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明の光半導体素子のサブキャリアは、略直方体の絶縁基台と、該絶縁基台の一側面に形成された、光半導体素子が接合される導体層と、前記絶縁基台の上面から前記一側面にかけて形成された、前記導体層に接続される第一の配線導体層および前記光半導体素子に電気的に接続される第二の配線導体層と、前記第一および第二の配線導体層の前記絶縁基台の上面と前記一側面との間の角部の部位にそれぞれ前記第一および第二の配線導体層を覆うように接合されたL字状の金属部材とを具備したことを特徴とする。
【0013】
本発明のサブキャリアは、第一および第二の配線導体層の絶縁基台の上面と一側面との間の角部の部位にそれぞれ第一および第二の配線導体層を覆うように接合されたL字状の金属部材を有していることから、光半導体装置の組立工程でサブキャリアをコレット等の搬送治具で挟んで移動させた際に、金属部材が第一および第二の配線導体層を保護し、搬送治具の接触等によって第一および第二の配線導体層に断線不良や導通抵抗の増大等が発生するのを防止することができる。また、絶縁基台の上面と一側面に別々に第一および第二の配線導体層を形成すると、上面と一側面との間の一つの稜線(角部)だけで第一および第二の配線導体層が相互に接続されることとなるが、金属部材によって第一および第二の配線導体層の絶縁基台の上面側と一側面側とが確実に接続されることとなり、電気的な接続の信頼性が向上する。
【0014】
さらに、第一および第二の配線導体層よりもかなり厚い金属部材が設けられていることから、第一および第二の配線導体層における導通抵抗がきわめて小さくなり、その結果、光半導体素子の作動性が非常に良好になる。
【0015】
本発明の光半導体装置は、上面に凹部が形成されているとともに該凹部から外側面にかけて形成された貫通孔を有する基体と、前記貫通孔に嵌着された筒状の光ファイバ固定部材と、前記凹部の底面に載置された本発明のサブキャリアと、該サブキャリアの前記導体層に接合されるとともに前記第一および第二の配線導体層に電気的に接続された光半導体素子と、前記基体の上面の前記凹部の周囲に接合された蓋体とを具備したことを特徴とする。
【0016】
本発明の光半導体装置は、上記の構成により、電気的接続の信頼性の高い本発明のサブキャリアを用いた高信頼性かつ高性能のものとなる。
【0017】
【発明の実施の形態】
本発明のサブキャリアおよび光半導体装置について以下に詳細に説明する。図1は本発明の光半導体装置について実施の形態の一例を示す断面図、図2は本発明の光半導体装置に搭載される光半導体素子のサブキャリアについて実施の形態の一例を示す斜視図である。
【0018】
これらの図において、1はサブキャリアを成す絶縁基台、2は光半導体素子としてのPD、3aはPD2の上部電極と絶縁基台1表面の配線パターンとを電気的に接続する第一のボンディングワイヤ、3bは絶縁基台1表面の配線パターンと回路基板20の回路配線とを電気的に接続するための第二のボンディングワイヤ、4はLD、5はサブマウント、6は測温素子、7はペルチェ素子、8は基体、8aは基体8の底板部、8bは基体8の側壁部、9は蓋体、10は固定部材、11は光ファイバ、12は外部リード端子である。
【0019】
また、13は絶縁基台1を構成する略直方体の絶縁基材、14aは絶縁基台1の一側面に形成された導体層としてのPD搭載部、14bは絶縁基台1の上面に形成された第一の配線導体層としての第一の配線パターン、14cは絶縁基台1の上面に形成された第二の配線導体層としての第二の配線パターン、14dはPD搭載部14aと第一の配線パターン14bとを電気的に接続する接続部、14eは第二の配線パターン14cと電気的に接続され、第一のボンディングワイヤ3aがボンディングされるボンディング部、14fは基体8の底板部8aの上面にAu−Snロウ材等を介して接着固定される下部導体層、15a,15bは第一および第二の配線パターン14b,14cの絶縁基台1の上面と一側面との間の角部の部位にそれぞれ第一および第二の配線パターン14b,14cを覆うように接合されたL字状の金属部材である。
【0020】
なお、第一の配線パターン14bはPD搭載部14aに直接的に接続されるようにPD搭載部14aと一体的に形成されているが、第二の配線パターン14cと同様にPD搭載部14aとは別々に形成してボンディングワイヤで電気的に接続してもよい。また、第二の配線パターン14cは第一のボンディングワイヤ3aを介してPD2の露出した主面や受光面等に形成された電極等に電気的に接続される。
【0021】
さらに、20は、第二のボンディングワイヤ3bを介して絶縁基台1の配線パターンと電気的に接続される回路基板である。この回路基板20は、PD2を制御するための制御回路やインピーダンス整合用の線路導体等が形成されたものであり、その上面には回路配線や線路導体が形成されており、第一の配線パターン4bおよび第二の配線パターン4cを、回路基板20の回路配線や線路導体に、AuやAl等からなる第二のボンディングワイヤ3bにより電気的に接続する。
【0022】
本発明のサブキャリアは、略直方体の絶縁基台1と、絶縁基台1の一側面に形成された、光半導体素子(PD2)が接合される導体層(PD搭載部14a)と、絶縁基台1の上面から一側面にかけて形成された、導体層に接続される第一の配線導体層(第一の配線パターン14b)および光半導体素子に電気的に接続される第二の配線導体層(第二の配線パターン14c)と、第一および第二の配線導体層の絶縁基台1の上面と一側面との間の角部の部位にそれぞれ第一および第二の配線導体層を覆うように接合されたL字状の金属部材15a,15bとを具備した構成である。
【0023】
また、本発明の光半導体装置は、上面に凹部が形成されているとともに凹部から外側面にかけて形成された貫通孔を有する基体8と、貫通孔に嵌着された筒状の光ファイバ固定部材10と、凹部の底面に載置された本発明のサブキャリアと、サブキャリアの導体層に接合されるとともに第一および第二の配線導体層に電気的に接続された光半導体素子と、基体8の上面の凹部の周囲に接合された蓋体9とを具備した構成である。
【0024】
本発明の光半導体装置は、基体8の底板部8aの上面に載置された光半導体素子としてのPD2が搭載された絶縁基台1と、ペルチェ素子7を介して載置されたLD4および測温素子6が搭載されたサブマウント5とを具備しており、基体8の側壁部8bの上面に蓋体9を取着することにより気密封止されている。
【0025】
基体8は、底板部8aと側壁部8bとから成り、上面に各種部品を収容するための凹部が形成されている。この基体8は、底板部8aと側壁部8bとが一体的に形成されたものであってもよい。基体8の側壁部8bには凹部から外側面にかけて貫通孔が形成され、その貫通孔には光ファイバ11を固定するための筒状の固定部材10が嵌着接合されている。
【0026】
本発明のサブキャリアにおいて、絶縁基台1の本体部分である絶縁基材13は、セラミックス(焼結体)等の絶縁材料から成り、例えば酸化アルミニウム(Al)質焼結体、窒化アルミニウム(AlN)質焼結体、炭化珪素(SiC)質焼結体、窒化珪素(Si)質焼結体、ガラスセラミックス焼結体等から成る。
【0027】
絶縁基台1の第一および第二の配線パターン14b,14cを含む各導体層は、例えば密着金属層、拡散防止層、主導体層が順次積層された3層構造の導体層から成る。そして、密着金属層は絶縁基材13との密着性の点で、Ti,Cr,Ta,Nb,Ni−Cr合金,TaN等の少なくとも1種より成るのが良い。密着金属層の厚さは0.01〜0.2μm程度が良い。0.01μm未満では強固に密着することが困難となり、0.2μmを超えると成膜時の内部応力によって剥離が生じ易くなる。
【0028】
拡散防止層は、密着金属層と主導体層との相互拡散を防ぐうえで、Pt,Pd,Rh,Ni,Ni−Cr合金,Ti−W合金等の少なくとも1種より成るのが良い。拡散防止層の厚さは0.05〜1μm程度が良く、0.05μm未満では、ピンホール等の欠陥が発生して拡散防止層としての機能を果たしにくくなる。1μmを超えると、成膜時の内部応力により剥離が生じ易くなる。拡散防止層にNi−Cr合金を用いる場合、密着性も確保できるため密着金属層を省くこともできる。
【0029】
さらに主導体層は電気抵抗の小さいAu,Cu,Ni,Ag等より成るのが良く、その厚さは0.1〜5μm程度が良い。0.1μm未満では、電気抵抗が大きくなる傾向があり、5μmを超えると、成膜時の内部応力により剥離を生じ易くなる。また、Auは貴金属で高価であることから、低コスト化の点でなるべく薄く形成することが好ましい。Cuは酸化し易いので、その上にNiおよびAuから成る保護層をメッキ法等で被着するのが良い。
【0030】
絶縁基台1のPD搭載部14aにはPD2を固定するための低融点ろう材をスパッタリング法等により所定厚みに被着させても良い。これにより、PD2を接着固定する際にろう材のプリフォームを配置する手間を省くことができる。低融点ろう材としては、Au−Ge合金(融点約356℃)、Au−Si合金(融点約370℃)、Au−Sn合金(融点約183℃)、In−Pb合金(融点約172℃)、In(融点約157℃)等が好ましい。これらは融点が400℃以下であるため、接着温度を低くすることができる。その結果、光半導体素子が熱衝撃破壊されることがないという利点がある。また、組立工程において、低温接着ができることにより、昇温時間および冷却時間を短くすることができる。その結果、生産コストを低くすることができる。
【0031】
絶縁基台1の上面から一側面にかけて形成された、導体層に接続される第一の配線パターン14bと接続部14d、および光半導体素子に電気的に接続される第二の配線パターン14cおよびボンディング部14eは、絶縁基台1の角部(稜線部)において金属部材15a,15bがそれぞれ接合されている。金属部材15a,15bは、Al,Ag,Au,Pt,Fe,Ni,銅(無酸素銅),SUS(ステンレススチール),真鍮(Cu−Zn合金),Fe(鉄)−Ni(ニッケル)−Co(コバルト)合金,Cu−W(タングステン)合金等の金属から成り、プレス金型による打抜き法や成型法、機械的研削法等により形成される。また、金属部材15a,15bは、その酸化防止とろう材との濡れ性を良好にするために、Niメッキ層,Auメッキ層をメッキ法等で順次被着するのが良い。また、金属部材15a,15bは、上記の低融点ろう材で接合されていることが、上記の理由で好ましい。
【0032】
また、金属部材15a,15bの絶縁基台1の上面における長さ(第一および第二の配線パターン14b,14cの長手方向の長さ)L(図2)および幅(第一および第二の配線パターン14b,14cの幅方向の幅)L(図2)は、0.1mm以上が良い。0.1mm未満だと、金属部材15a,15bと第一および第二の配線パターンとの接合位置を合わせるのが困難となったり、接合強度が低下し易くなる。その結果、絶縁基台1の角部における第一および第二の配線パターン14b,14cの保護、補強の役目を果たさなくなり、電気的な接続の信頼性も低下する。また、幅Lは、第一および第二の配線パターン14b,14cのそれぞれの幅の1/2倍以上1倍以下が好ましい。1/2倍未満では、金属部材15a,15bの幅が小さくなるため、接合強度が低下して、組立工程で搬送治具と接触したときに金属部材15a,15bが脱落したり、絶縁基台1の角部で導体層が傷付いたり削り取られて、断線不良や導通抵抗の増大が発生し易くなる。1倍を超えると、金属部材15a,15bを接合するためのろう材が繋がってショートが発生し易くなる。
【0033】
金属部材15a,15bの厚さは0.05〜0.5mmがよく、0.05mm未満では、金属部材15a,15bの形成時の形状安定性、加工性が劣化し易く、また強度が低下し易くなる。また、0.5mmを超えると、組立工程で搬送治具と接触し易くなり金属部材15a,15bが脱落し易くなる。
【0034】
また、金属部材15a,15bは、その角部(屈曲部)の内側が円弧状等の凹んだ曲面とされていることが好ましい。この場合、金属部材15a,15bの角部の内側にろう材の溜りが適度に形成されて、金属部材15a,15bの接合強度が向上するとともに、電気的な接続が劣化し易い絶縁基台1の角部の接続性を補強することができる。
【0035】
配線導体層としての第一および第二の配線パターン14b,14cは、スパッタリング法や真空蒸着法等の薄膜形成法により成膜されるが、絶縁基台1の上面と一側面に別々に形成することが好ましい。この場合、絶縁基台1の上面と一側面との間の角部が一つの稜線(角部)で形成されているが、一側面に配線導体層を形成する際に部分的に上面に形成された配線導体層に重複して形成されるようにすればよく、金属部材15a,15bによる接続性向上に加え電気的な接続の信頼性がさらに向上し好ましいものとなる。
【0036】
本発明の基体8は、Al質焼結体、AlN質焼結体、ムライト質焼結体、SiC質焼結体、Si質焼結体、ガラスセラミックス等のセラミックス、またはCuを含浸させたタングステン多孔質体、Fe−Ni合金、Fe−Ni−Co合金等の金属から成る。基体8を構成する底板部8aと側壁部8bとは同じ材料から形成されていても良いし、異なる材料から形成されていても良い。ただし、底板部8aと側壁部8bとを異なる材料で形成する場合、両者の熱膨張係数差ができるだけ小さいものとなる組合せを選択することが好ましい。また、底板部8aと側壁部8bとは一体的に形成されていてもよい。
【0037】
基体8の底板部8aの上面には、回路基板20と、ペルチェ素子7が接着固定されている。ペルチェ素子7は、LD4を所定の温度に冷却または加熱するための熱ポンプとして機能し、測温素子6により測定したLD4の温度を検知し、LD4が所定の温度となるように冷却または加熱する。そして、このペルチェ素子7の上面には、サブマウント5が搭載されており、サブマウント5上にLD4および測温素子6が隣接して設置される。
【0038】
さらに、基体8の底板部8aまたは側壁部8bには、Fe−Ni合金やFe−Ni−Co合金等の金属から成る外部リード端子12が容器の外部に突出するようにして設けられている。この外部リード端子12は、基体8の底板部8aまたは側壁部8bを貫通するようにして設けられるかまたは基体8の内部から外部に導出されたメタライズ層等の配線導体に接合されることにより、容器の内部と外部とを電気的に接続している。そして、外部リード端子12には、容器内部の回路基板20、LD4、測温素子6、ペルチェ素子7が電気的に接続される。
【0039】
なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。
【0040】
【発明の効果】
本発明の光半導体素子のサブキャリアは、略直方体の絶縁基台と、絶縁基台の一側面に形成された、光半導体素子が接合される導体層と、絶縁基台の上面から一側面にかけて形成された、導体層に接続される第一の配線導体層および光半導体素子に電気的に接続される第二の配線導体層と、第一および第二の配線導体層の絶縁基台の上面と一側面との間の角部の部位にそれぞれ第一および第二の配線導体層を覆うように接合されたL字状の金属部材とを具備したことにより、光半導体装置の組立工程でサブキャリアをコレット等の搬送治具で挟んで移動させた際に、金属部材が第一および第二の配線導体層を保護し、搬送治具の接触等によって第一および第二の配線導体層に断線不良や導通抵抗の増大等が発生するのを防止することができる。また、絶縁基台の上面と一側面に別々に第一および第二の配線導体層を形成すると、上面と一側面との間の一つの稜線(角部)だけで第一および第二の配線導体層が相互に接続されることとなるが、金属部材によって第一および第二の配線導体層の絶縁基台の上面側と一側面側とが確実に接続されることとなり、電気的な接続の信頼性が向上する。
【0041】
さらに、第一および第二の配線導体層よりもかなり厚い金属部材が設けられていることから、第一および第二の配線導体層における導通抵抗がきわめて小さくなり、その結果、光半導体素子の作動性が非常に良好になる。
【0042】
本発明の光半導体装置は、上面に凹部が形成されているとともに凹部から外側面にかけて形成された貫通孔を有する基体と、貫通孔に嵌着された筒状の光ファイバ固定部材と、凹部の底面に載置された本発明のサブキャリアと、サブキャリアの導体層に接合されるとともに第一および第二の配線導体層に電気的に接続された光半導体素子と、基体の上面の凹部の周囲に接合された蓋体とを具備したことにより、電気的接続の信頼性の高い本発明のサブキャリアを用いた高信頼性かつ高性能のものとなる。
【図面の簡単な説明】
【図1】本発明の光半導体装置について実施の形態の一例を示す断面図である。
【図2】本発明のサブキャリアについて実施の形態の一例を示す斜視図である。
【図3】従来の光半導体装置を示す断面図である。
【図4】従来のサブキャリアを示す斜視図である。
【符号の説明】
1:絶縁基台
2:PD
4:LD
8:基体
9:蓋体
10:光ファイバ固定部材
14b:第一の配線パターン
14c:第二の配線パターン
15a,15b:金属部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a subcarrier for mounting an optical semiconductor element such as a photodiode (PD), a semiconductor laser (PD), and the like, and an optical semiconductor device used in the optical communication field and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in the field of optical communication, an optical semiconductor device has been used to convert a high-frequency signal from light to light and transmit it as an optical signal to an optical fiber or the like, and a data communication exceeding 10 Gbits / sec (bps). Those having a bit rate of have been widely used.
[0003]
FIG. 3 shows a conventional optical semiconductor device including an optical semiconductor element such as a PD or LD. As shown in FIG. 3, 101 is an insulating base (subcarrier) for mounting an optical semiconductor element, 102 is a PD, and 103a is an electrical connection between an upper electrode of the PD 102 and a wiring pattern on the surface of the insulating base 101. The first bonding wire 103b is a second bonding wire for electrically connecting the wiring pattern on the surface of the insulating base 101 and the circuit wiring on the circuit board 120. Reference numeral 104 denotes an LD, 105 denotes a submount for mounting the LD, 106 denotes a temperature measuring element, 107 denotes a Peltier element, 108 denotes a base made of ceramics or the like, 108a denotes a flat bottom plate portion of the base 108, and 108b denotes a base of the base 108. It is a side wall part. Reference numeral 109 denotes a lid made of metal or the like, 110 denotes a cylindrical optical fiber fixing member (hereinafter also referred to as a fixing member) made of metal or the like, 111 denotes an optical fiber, 112 denotes an external lead terminal, and 120 controls the PD 102. Circuit board on which a control circuit and a line conductor for impedance matching are formed.
[0004]
As shown in FIG. 4, the insulating base 101 has various functional parts made of a conductor layer formed on the surface of a substantially rectangular insulating base 113 made of ceramics or the like. A PD mounting portion 114a made of a conductor layer to be mounted is formed, and a first wiring pattern 114b and a second wiring pattern 114c are formed on the upper surface of the insulating base 113. Also, on one side surface of the insulating base material 113, a connecting portion 114d for electrically connecting the PD mounting portion 114a and the first wiring pattern 114b, and a second wiring pattern 114c are electrically connected to each other. A bonding portion 114e to which the bonding wire 103a is bonded is formed. Further, on the lower surface of the insulating base 113, a lower conductor layer 114f is formed, which is bonded and fixed to the upper surface of the bottom plate portion 108a of the base 108 via an Au-Sn brazing material or the like.
[0005]
The PD 102 is bonded and fixed to the PD mounting portion 114a of the insulating base 101 via an Au-Sn brazing material or the like. The insulating base 101 on which the PD 102 is mounted is bonded and fixed to the upper surface of the bottom plate 108 a of the base 108 so that the light receiving surface of the PD 102 is optically coupled to the LD 104 and the optical fiber 111. A submount 105 on which the LD 104 and the temperature measuring element 106 are mounted is mounted on the upper surface of the bottom plate 108 a of the base 108 via a Peltier element 107.
[0006]
The optical fiber 111 transmits the light emitted from the LD 104 to the outside and causes the PD 102 to receive the light transmitted from the optical fiber 111 to convert an optical signal into an electric signal. Alternatively, the PD 102 is for monitoring the light emitted backward from the LD 104.
[0007]
External lead terminals 112 are fixed to the lower surface of the base 108, and the PD 102, the LD 104, the temperature measuring element 106, and the Peltier element 107 are electrically connected. Further, the optical semiconductor device is hermetically sealed by joining the lid 109 to the upper surface of the base 108 by a seam welding method or the like.
[0008]
In this optical semiconductor device, the PD 102 is bonded and fixed to the PD mounting portion 114a of the insulating base 101 via a low melting point brazing material made of an Au-Sn alloy or the like. After that, the upper electrode of the PD 102 and the bonding portion 114e are electrically connected via the first bonding wire 103a made of Au, Al, or the like. The insulating base 101 on which the PD 102 is mounted has its lower conductor layer 114f bonded and fixed to the upper surface of the bottom plate portion 108a of the base 108 via a brazing material made of an Au-Sn alloy, a Pb-Sn alloy, or the like. . Thereafter, the first wiring pattern 114b and the second wiring pattern 114c of the insulating base 101 are electrically connected to the circuit wiring and the line conductor of the circuit board 120 by the second bonding wire 103b made of Au, Al, or the like. I do. Similarly, after the LD 104 and the temperature measuring element 106 are bonded and fixed to the upper surface of the submount 105 via a brazing material, the upper surface of the Peltier element 107 previously bonded and fixed to the upper surface of the bottom plate 108a of the base 108 via the brazing material. The submount 105 is bonded and fixed via a brazing material.
[0009]
[Problems to be solved by the invention]
However, in the above-described conventional optical semiconductor device, the insulating base 101 on which the PD 102 is mounted moves in a state of being sandwiched by a conveying jig such as a collet in an assembling process, so that the upper surface of the bottom plate 108 a of the base 108 is moved. At this time, the ridge of the insulating base material 113 where the first wiring pattern 114b and the connection portion 114d and the second wiring pattern 114c and the bonding portion 114e are electrically connected to each other, The conductor layer is damaged or scraped off at the ridge, and the first wiring pattern 114b and the connection part 114d and the second wiring pattern 114c and the bonding part 114e are disconnected or the conduction resistance increases. There was a problem.
[0010]
Further, since the insulating base 101 has the PD mounting portion 114a, the connecting portion 114d, and the bonding portion 114e formed on the same one side surface of the insulating base 113, a sputtering method, a vacuum evaporation method, a photolithography method, an etching method, or the like. Are formed at the same time. After that, a first wiring pattern 114b and a second wiring pattern 114c are formed. Since the formation of these wiring patterns is separate from the formation of the PD mounting portion 114a, the connection portion 114d, and the bonding portion 114e, they are not electrically connected. There is a problem that disconnection is likely to occur at the ridge portion that is electrically connected.
[0011]
Therefore, the present invention has been completed in view of the above problems, and an object of the present invention is to provide an insulating base in which a wiring conductor layer is formed from the upper surface to the side surface of an insulating base material with high reliability of electrical connection. Provided is an optical semiconductor device having the same.
[0012]
[Means for Solving the Problems]
The subcarrier of the optical semiconductor device of the present invention is a substantially rectangular parallelepiped insulating base, formed on one side of the insulating base, a conductor layer to which the optical semiconductor element is bonded, and the upper surface of the insulating base. A first wiring conductor layer formed over one side surface and connected to the conductor layer, a second wiring conductor layer electrically connected to the optical semiconductor element, and the first and second wiring conductor layers An L-shaped metal member joined so as to cover the first and second wiring conductor layers at corner portions between the upper surface of the insulating base and the one side surface. Features.
[0013]
The subcarrier of the present invention is bonded to the corner portions between the upper surface and one side surface of the insulating base of the first and second wiring conductor layers so as to cover the first and second wiring conductor layers, respectively. The L-shaped metal member, when the sub-carrier is moved by sandwiching it with a conveying jig such as a collet in the assembling process of the optical semiconductor device, the metal member becomes the first and second wirings. It is possible to protect the conductor layer and prevent the first and second wiring conductor layers from being caused by a disconnection failure, an increase in conduction resistance, and the like due to a contact of a transport jig or the like. Further, when the first and second wiring conductor layers are separately formed on the upper surface and one side surface of the insulating base, the first and second wiring lines are formed only by one ridge (corner) between the upper surface and one side surface. Although the conductor layers are connected to each other, the upper surface side and one side surface side of the insulating base of the first and second wiring conductor layers are securely connected by the metal member, and the electrical connection is made. Reliability is improved.
[0014]
Further, since the metal member which is considerably thicker than the first and second wiring conductor layers is provided, the conduction resistance in the first and second wiring conductor layers becomes extremely small. The properties are very good.
[0015]
The optical semiconductor device of the present invention has a concave portion formed on the upper surface and a base having a through hole formed from the concave portion to the outer surface, a cylindrical optical fiber fixing member fitted into the through hole, A subcarrier of the present invention mounted on the bottom surface of the concave portion, and an optical semiconductor element bonded to the conductor layer of the subcarrier and electrically connected to the first and second wiring conductor layers, A lid joined to the periphery of the recess on the upper surface of the base.
[0016]
With the above configuration, the optical semiconductor device of the present invention has high reliability and high performance using the subcarrier of the present invention having high electrical connection reliability.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The subcarrier and the optical semiconductor device of the present invention will be described below in detail. FIG. 1 is a sectional view showing an example of an embodiment of an optical semiconductor device of the present invention, and FIG. 2 is a perspective view showing an example of an embodiment of a subcarrier of an optical semiconductor element mounted on the optical semiconductor device of the present invention. is there.
[0018]
In these figures, 1 is an insulating base forming a subcarrier, 2 is a PD as an optical semiconductor element, 3a is a first bonding for electrically connecting an upper electrode of the PD 2 and a wiring pattern on the surface of the insulating base 1. A wire 3b is a second bonding wire for electrically connecting a wiring pattern on the surface of the insulating base 1 to a circuit wiring of the circuit board 20, 4 is an LD, 5 is a submount, 6 is a temperature sensor, 7 Is a Peltier element, 8 is a base, 8a is a bottom plate of the base 8, 8b is a side wall of the base 8, 9 is a lid, 10 is a fixing member, 11 is an optical fiber, and 12 is an external lead terminal.
[0019]
Further, 13 is a substantially rectangular parallelepiped insulating base material constituting the insulating base 1, 14a is a PD mounting portion as a conductor layer formed on one side surface of the insulating base 1, and 14b is formed on the upper surface of the insulating base 1. A first wiring pattern as a first wiring conductor layer, 14c a second wiring pattern as a second wiring conductor layer formed on the upper surface of the insulating base 1, and 14d a first wiring pattern with the PD mounting portion 14a. The connection portion 14e is electrically connected to the second wiring pattern 14c, the bonding portion to which the first bonding wire 3a is bonded, and 14f is the bottom plate portion 8a of the base 8. A lower conductor layer 15a, 15b is bonded and fixed to the upper surface of the insulating base 1 via an Au-Sn brazing material or the like, and a corner between the upper surface and one side surface of the insulating base 1 of the first and second wiring patterns 14b, 14c. Each part First and second wiring patterns 14b, an L-shaped metal member joined to cover 14c.
[0020]
The first wiring pattern 14b is formed integrally with the PD mounting portion 14a so as to be directly connected to the PD mounting portion 14a. However, like the second wiring pattern 14c, the first wiring pattern 14b is connected to the PD mounting portion 14a. May be formed separately and electrically connected by a bonding wire. In addition, the second wiring pattern 14c is electrically connected to electrodes and the like formed on the exposed main surface and the light receiving surface of the PD 2 via the first bonding wires 3a.
[0021]
Further, reference numeral 20 denotes a circuit board which is electrically connected to the wiring pattern of the insulating base 1 via the second bonding wires 3b. The circuit board 20 has a control circuit for controlling the PD 2 and a line conductor for impedance matching formed thereon, and has a circuit wiring and a line conductor formed on an upper surface thereof. The second wiring pattern 4b and the second wiring pattern 4c are electrically connected to the circuit wiring and the line conductor of the circuit board 20 by the second bonding wire 3b made of Au, Al, or the like.
[0022]
The subcarrier of the present invention includes an insulating base 1 having a substantially rectangular parallelepiped shape, a conductor layer (PD mounting portion 14a) formed on one side surface of the insulating base 1 and joined to the optical semiconductor element (PD2), A first wiring conductor layer (first wiring pattern 14b) connected to the conductor layer and a second wiring conductor layer electrically connected to the optical semiconductor element (formed from the upper surface to one side surface of the base 1) The second wiring pattern 14c) and the corner portions between the upper surface and one side surface of the insulating base 1 of the first and second wiring conductor layers cover the first and second wiring conductor layers, respectively. And L-shaped metal members 15a and 15b joined to the metal member.
[0023]
In addition, the optical semiconductor device of the present invention includes a base 8 having a concave portion formed on the upper surface and having a through hole formed from the concave portion to the outer surface, and a cylindrical optical fiber fixing member 10 fitted into the through hole. A subcarrier of the present invention mounted on the bottom surface of the concave portion, an optical semiconductor element joined to the conductor layer of the subcarrier and electrically connected to the first and second wiring conductor layers; And a lid 9 joined to the periphery of the concave portion on the upper surface of.
[0024]
The optical semiconductor device of the present invention includes an insulating base 1 on which a PD 2 as an optical semiconductor element is mounted on an upper surface of a bottom plate 8 a of a base 8, an LD 4 mounted via a Peltier element 7, and a measuring device. It has a submount 5 on which a temperature element 6 is mounted, and is hermetically sealed by attaching a lid 9 to the upper surface of the side wall 8 b of the base 8.
[0025]
The base 8 includes a bottom plate portion 8a and a side wall portion 8b, and a concave portion for accommodating various components is formed on an upper surface. The base 8 may be formed by integrally forming the bottom plate 8a and the side wall 8b. A through hole is formed in the side wall portion 8b of the base body 8 from the concave portion to the outer surface, and a cylindrical fixing member 10 for fixing the optical fiber 11 is fitted and joined to the through hole.
[0026]
In the subcarrier of the present invention, the insulating base material 13, which is the main body of the insulating base 1, is made of an insulating material such as ceramics (sintered body), for example, aluminum oxide (Al 2 O 3 ) sintered body, nitrided It is composed of an aluminum (AlN) -based sintered body, a silicon carbide (SiC) -based sintered body, a silicon nitride (Si 3 N 4 ) -based sintered body, a glass ceramic sintered body, and the like.
[0027]
Each conductor layer including the first and second wiring patterns 14b and 14c of the insulating base 1 is formed of, for example, a three-layer conductor layer in which an adhesion metal layer, a diffusion prevention layer, and a main conductor layer are sequentially laminated. The adhesion metal layer in terms of adhesion to the insulating substrate 13, Ti, Cr, Ta, Nb, Ni-Cr alloy, is good comprising at least one such Ta 2 N. The thickness of the adhesion metal layer is preferably about 0.01 to 0.2 μm. When the thickness is less than 0.01 μm, it is difficult to firmly adhere, and when the thickness is more than 0.2 μm, separation easily occurs due to internal stress during film formation.
[0028]
The diffusion preventing layer is preferably made of at least one of Pt, Pd, Rh, Ni, a Ni—Cr alloy, a Ti—W alloy, and the like, for preventing mutual diffusion between the adhesion metal layer and the main conductor layer. The thickness of the diffusion prevention layer is preferably about 0.05 to 1 μm. If the thickness is less than 0.05 μm, defects such as pinholes are generated and the function as the diffusion prevention layer is hardly achieved. If it exceeds 1 μm, peeling is likely to occur due to internal stress during film formation. When a Ni—Cr alloy is used for the diffusion preventing layer, the adhesion can be ensured, and the adhesion metal layer can be omitted.
[0029]
Further, the main conductor layer is preferably made of Au, Cu, Ni, Ag or the like having a small electric resistance, and its thickness is preferably about 0.1 to 5 μm. If it is less than 0.1 μm, the electrical resistance tends to increase, and if it exceeds 5 μm, peeling tends to occur due to internal stress during film formation. Further, since Au is a noble metal and expensive, it is preferable to form it as thin as possible from the viewpoint of cost reduction. Since Cu is easily oxidized, a protective layer made of Ni and Au is preferably applied thereon by plating or the like.
[0030]
A low-melting brazing material for fixing the PD 2 may be applied to the PD mounting portion 14a of the insulating base 1 to a predetermined thickness by a sputtering method or the like. This can save the trouble of arranging the brazing material preform when the PD 2 is bonded and fixed. As the low melting point brazing material, Au-Ge alloy (melting point: about 356 ° C), Au-Si alloy (melting point: about 370 ° C), Au-Sn alloy (melting point: about 183 ° C), In-Pb alloy (melting point: about 172 ° C) , In (melting point: about 157 ° C.) and the like are preferable. Since these have a melting point of 400 ° C. or less, the bonding temperature can be lowered. As a result, there is an advantage that the optical semiconductor element is not destroyed by thermal shock. Further, in the assembling process, the low-temperature bonding can be performed, so that the time for raising the temperature and the time for cooling can be shortened. As a result, production costs can be reduced.
[0031]
A first wiring pattern 14b and a connection portion 14d, which are formed from the upper surface to one side surface of the insulating base 1 and are connected to the conductor layer, and a second wiring pattern 14c which is electrically connected to the optical semiconductor element, and a bonding. The metal members 15a and 15b are joined to the portion 14e at the corners (ridges) of the insulating base 1, respectively. The metal members 15a and 15b are made of Al, Ag, Au, Pt, Fe, Ni, copper (oxygen-free copper), SUS (stainless steel), brass (Cu-Zn alloy), Fe (iron) -Ni (nickel)- It is made of a metal such as a Co (cobalt) alloy or a Cu-W (tungsten) alloy, and is formed by a punching method using a press die, a molding method, a mechanical grinding method, or the like. Further, in order to prevent the metal members 15a and 15b from being oxidized and to improve the wettability with the brazing material, it is preferable to sequentially apply a Ni plating layer and an Au plating layer by a plating method or the like. Further, it is preferable that the metal members 15a and 15b are joined with the low melting point brazing material for the above-described reason.
[0032]
The metal member 15a, the length of the insulating upper surface of the base 1 of 15b (the longitudinal length of the first and second wiring patterns 14b, 14c) L 1 (FIG. 2) and a width (first and second wiring patterns 14b, the width direction of the width of 14c) L 2 (FIG. 2), it is more than 0.1 mm. If it is less than 0.1 mm, it becomes difficult to match the joining positions of the metal members 15a, 15b and the first and second wiring patterns, or the joining strength tends to decrease. As a result, the protection and reinforcement of the first and second wiring patterns 14b and 14c at the corners of the insulating base 1 are not performed, and the reliability of the electrical connection is reduced. The width L 2, the first and second wiring patterns 14b, the following 1 times half the width of each of the 14c is preferred. If it is less than 1/2 times, the width of the metal members 15a and 15b becomes small, so that the joining strength is reduced, and the metal members 15a and 15b fall off when coming into contact with the transport jig in the assembling process, or the insulating base is not provided. The conductor layer is damaged or scraped off at the corners of 1, and disconnection failure and increase in conduction resistance are likely to occur. If it exceeds 1, the brazing material for joining the metal members 15a and 15b is connected, and a short circuit is likely to occur.
[0033]
The thickness of the metal members 15a and 15b is preferably 0.05 to 0.5 mm. If the thickness is less than 0.05 mm, the shape stability and workability at the time of forming the metal members 15a and 15b are likely to deteriorate, and the strength is reduced. It will be easier. On the other hand, if it exceeds 0.5 mm, the metal member 15a, 15b is likely to come off in the assembling process and to fall off.
[0034]
The metal members 15a and 15b preferably have a concave curved surface such as an arc inside the corners (bent portions). In this case, the brazing material pool is appropriately formed inside the corners of the metal members 15a and 15b, so that the joining strength of the metal members 15a and 15b is improved, and the electrical base 1 is apt to deteriorate in the electrical connection. Can be reinforced.
[0035]
The first and second wiring patterns 14b and 14c as the wiring conductor layers are formed by a thin film forming method such as a sputtering method or a vacuum evaporation method, and are separately formed on the upper surface and one side surface of the insulating base 1. Is preferred. In this case, the corner between the upper surface and one side surface of the insulating base 1 is formed by one ridge line (corner), but when the wiring conductor layer is formed on one side surface, it is partially formed on the upper surface. It is preferable that the metal members 15a and 15b improve the connectivity and the reliability of the electrical connection is further improved, which is preferable.
[0036]
The substrate 8 of the present invention is made of ceramics such as Al 2 O 3 sintered body, AlN based sintered body, mullite sintered body, SiC based sintered body, Si 3 N 4 based sintered body, glass ceramic or the like, or It is made of a metal such as a tungsten porous body impregnated with Cu, an Fe-Ni alloy, and an Fe-Ni-Co alloy. The bottom plate 8a and the side wall 8b constituting the base 8 may be formed from the same material or different materials. However, when the bottom plate portion 8a and the side wall portion 8b are formed of different materials, it is preferable to select a combination in which the difference in thermal expansion coefficient between the two is as small as possible. Further, the bottom plate portion 8a and the side wall portion 8b may be formed integrally.
[0037]
The circuit board 20 and the Peltier element 7 are adhesively fixed to the upper surface of the bottom plate 8a of the base 8. The Peltier element 7 functions as a heat pump for cooling or heating the LD 4 to a predetermined temperature, detects the temperature of the LD 4 measured by the temperature measuring element 6, and cools or heats the LD 4 to a predetermined temperature. . A submount 5 is mounted on the upper surface of the Peltier element 7, and the LD 4 and the temperature measuring element 6 are installed adjacent to the submount 5.
[0038]
Further, an external lead terminal 12 made of a metal such as an Fe-Ni alloy or an Fe-Ni-Co alloy is provided on the bottom plate portion 8a or the side wall portion 8b of the base 8 so as to protrude outside the container. The external lead terminal 12 is provided so as to penetrate the bottom plate portion 8a or the side wall portion 8b of the base 8 or is joined to a wiring conductor such as a metallized layer led out from the inside of the base 8 to the outside. The inside and outside of the container are electrically connected. The circuit board 20, the LD 4, the temperature measuring element 6, and the Peltier element 7 inside the container are electrically connected to the external lead terminals 12.
[0039]
It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the spirit of the present invention.
[0040]
【The invention's effect】
The subcarrier of the optical semiconductor device of the present invention includes a substantially rectangular parallelepiped insulating base, a conductor layer formed on one side surface of the insulating base, to which the optical semiconductor element is bonded, and a top surface to one side surface of the insulating base. The formed first wiring conductor layer connected to the conductor layer and the second wiring conductor layer electrically connected to the optical semiconductor element, and the upper surface of the insulating base of the first and second wiring conductor layers And an L-shaped metal member joined so as to cover the first and second wiring conductor layers, respectively, at corner portions between the first and second side surfaces. The metal member protects the first and second wiring conductor layers when the carrier is sandwiched and moved by a conveyance jig such as a collet, and is moved to the first and second wiring conductor layers by contact of the conveyance jig or the like. It is possible to prevent disconnection failure and increase in conduction resistance from occurring. Further, when the first and second wiring conductor layers are separately formed on the upper surface and one side surface of the insulating base, the first and second wiring lines are formed only by one ridge (corner) between the upper surface and one side surface. Although the conductor layers are connected to each other, the upper surface side and one side surface side of the insulating base of the first and second wiring conductor layers are securely connected by the metal member, and the electrical connection is made. Reliability is improved.
[0041]
Further, since the metal member which is considerably thicker than the first and second wiring conductor layers is provided, the conduction resistance in the first and second wiring conductor layers becomes extremely small. The properties are very good.
[0042]
The optical semiconductor device of the present invention includes a base having a concave portion formed on the upper surface and having a through hole formed from the concave portion to the outer surface, a cylindrical optical fiber fixing member fitted into the through hole, The subcarrier of the present invention mounted on the bottom surface, the optical semiconductor element joined to the conductor layer of the subcarrier and electrically connected to the first and second wiring conductor layers, and the concave portion on the upper surface of the base With the provision of the lid joined to the periphery, high reliability and high performance can be obtained by using the subcarrier of the present invention having high reliability of electrical connection.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of an optical semiconductor device of the present invention.
FIG. 2 is a perspective view showing an example of an embodiment of a subcarrier according to the present invention.
FIG. 3 is a sectional view showing a conventional optical semiconductor device.
FIG. 4 is a perspective view showing a conventional subcarrier.
[Explanation of symbols]
1: Insulation base 2: PD
4: LD
8: Base 9: Lid 10: Optical fiber fixing member 14b: First wiring pattern 14c: Second wiring pattern 15a, 15b: Metal member

Claims (2)

略直方体の絶縁基台と、該絶縁基台の一側面に形成された、光半導体素子が接合される導体層と、前記絶縁基台の上面から前記一側面にかけて形成された、前記導体層に接続される第一の配線導体層および前記光半導体素子に電気的に接続される第二の配線導体層と、前記第一および第二の配線導体層の前記絶縁基台の上面と前記一側面との間の角部の部位にそれぞれ前記第一および第二の配線導体層を覆うように接合されたL字状の金属部材とを具備したことを特徴とする光半導体素子のサブキャリア。A substantially rectangular parallelepiped insulating base, a conductor layer formed on one side surface of the insulating base, to which an optical semiconductor element is bonded, and the conductor layer formed from the upper surface of the insulating base to the one side surface. A first wiring conductor layer to be connected and a second wiring conductor layer electrically connected to the optical semiconductor element; an upper surface and the one side surface of the insulating base of the first and second wiring conductor layers And an L-shaped metal member joined so as to cover the first and second wiring conductor layers, respectively, at corner portions between the subcarriers. 上面に凹部が形成されているとともに該凹部から外側面にかけて形成された貫通孔を有する基体と、前記貫通孔に嵌着された筒状の光ファイバ固定部材と、前記凹部の底面に載置された請求項1記載のサブキャリアと、該サブキャリアの前記導体層に接合されるとともに前記第一および第二の配線導体層に電気的に接続された光半導体素子と、前記基体の上面の前記凹部の周囲に接合された蓋体とを具備したことを特徴とする光半導体装置。A base having a recess formed in the upper surface and having a through hole formed from the recess to the outer surface; a cylindrical optical fiber fixing member fitted in the through hole; and a base mounted on the bottom of the recess. The subcarrier according to claim 1, an optical semiconductor element bonded to the conductor layer of the subcarrier and electrically connected to the first and second wiring conductor layers, and the upper surface of the base body. An optical semiconductor device, comprising: a lid joined to a periphery of the concave portion.
JP2002303541A 2002-10-17 2002-10-17 Subcarrier of optical semiconductor element and optical semiconductor device Expired - Fee Related JP4035028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303541A JP4035028B2 (en) 2002-10-17 2002-10-17 Subcarrier of optical semiconductor element and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303541A JP4035028B2 (en) 2002-10-17 2002-10-17 Subcarrier of optical semiconductor element and optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2004140187A true JP2004140187A (en) 2004-05-13
JP4035028B2 JP4035028B2 (en) 2008-01-16

Family

ID=32451285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303541A Expired - Fee Related JP4035028B2 (en) 2002-10-17 2002-10-17 Subcarrier of optical semiconductor element and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP4035028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123464A (en) * 2005-10-27 2007-05-17 Kyocera Corp Subcarrier and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123464A (en) * 2005-10-27 2007-05-17 Kyocera Corp Subcarrier and semiconductor device
JP4688632B2 (en) * 2005-10-27 2011-05-25 京セラ株式会社 Subcarrier and semiconductor device

Also Published As

Publication number Publication date
JP4035028B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP3987765B2 (en) Subcarrier of optical semiconductor element and optical semiconductor device
JP4035028B2 (en) Subcarrier of optical semiconductor element and optical semiconductor device
JP2009283898A (en) Electronic part container, package for storing electronic part using the same and electronic device
JP2004296948A (en) Subcarrier for optical semiconductor element and optical semiconductor device
JP4688632B2 (en) Subcarrier and semiconductor device
JP2001102674A (en) Board for mounting semiconductor laser element and semiconductor laser module
JP2004356391A (en) Package for encasing semiconductor element and semiconductor device
JP4404649B2 (en) Subcarrier of optical semiconductor element and optical semiconductor device
JP2004282027A (en) Submount
JP2003273372A (en) Optical semiconductor device
JP3623179B2 (en) Semiconductor element storage package and semiconductor device
JP2004349274A (en) Substrate for mounting light emitting and light emitting device
JP2006310378A (en) Submount and mounting method of electronic element
JP4467320B2 (en) Subcarrier of optical semiconductor element and optical semiconductor device
JP2001102671A (en) Board for mounting semiconductor laser element and semiconductor laser module
JP2003249584A (en) Package for storing semiconductor element, and semiconductor device
JP2008034580A (en) Submount, electronic apparatus, and mounting method of electronic element
JP2001102670A (en) Board for mounting semiconductor laser element and semiconductor laser module
JP3810334B2 (en) Semiconductor element storage package and semiconductor device
JP4160888B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP4018964B2 (en) I / O terminal and semiconductor element storage package
JP4726457B2 (en) Submount
JP3898571B2 (en) Semiconductor element storage package and semiconductor device
JP2006128267A (en) I/o terminal, package for storing electronic component using same, and electronic device
JP2007095930A (en) Submount and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees