JP2004349274A - Substrate for mounting light emitting and light emitting device - Google Patents

Substrate for mounting light emitting and light emitting device Download PDF

Info

Publication number
JP2004349274A
JP2004349274A JP2003108256A JP2003108256A JP2004349274A JP 2004349274 A JP2004349274 A JP 2004349274A JP 2003108256 A JP2003108256 A JP 2003108256A JP 2003108256 A JP2003108256 A JP 2003108256A JP 2004349274 A JP2004349274 A JP 2004349274A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
conductor layer
light
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003108256A
Other languages
Japanese (ja)
Inventor
Mitsuhiko Nozuma
光彦 野妻
Yukio Morita
幸雄 森田
Tadashi Miyawaki
匡史 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003108256A priority Critical patent/JP2004349274A/en
Publication of JP2004349274A publication Critical patent/JP2004349274A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for mounting a high performance light emitting element capable of enduring several times of repair and realizing high luminance, and to provide a light emitting device. <P>SOLUTION: The substrate 4 for mounting a light emitting element comprises an insulating substrate 1 having a mounting part 1a of the light emitting element 5 on the upper surface, and a wiring conductor 2 formed from the mounting part on the upper surface or the vicinity thereof to the lower surface of the insulating substrate 1 where the electrode of the light emitting element 5 is connected electrically with the end part on the mounting part 1a side, and the wiring conductor layer of an external electric circuit board is connected electrically with the end part on the lower surface side through a low melting point soldering material. The wiring conductor 2 on the lower surface is formed by sequentially depositing a first conductor layer 2a of Ti or an Ni-Cr alloy, a second conductor layer 2b of Au, a third conductor layer 2c of Ni and a fourth conductor layer 2d of Au. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【発明の属する技術分野】
本発明は、発光ダイオード等の発光素子が搭載される発光素子搭載用基板およびそれを用いた発光装置に関する。
【従来の技術】
近年、高輝度で高出力の発光素子を実装した発光装置が開発され、種々の分野に利用されている。このような発光装置は小型、低消費電力や軽量などの特徴を生かして、例えば、光プリンターヘッドの光源、液晶バックライトの光源、各種インジケーターの光源などに利用されている。
特に、この発光装置を照明用として使用するようになってきており、輝度および放熱性の点でより高特性の発光装置が要求されている。また、照明用に使用される場合、発光装置の長寿命化が特に重要な問題である。
従来の発光素子搭載用基板の断面図を図3に、従来の発光装置の断面図を図4に示す。これらの図において、11は絶縁性および耐熱性に優れる、例えば、BTレジン(ビスマレイミドトリアジン)、PBT樹脂(ポリブチレンテレフタレート樹脂)、ガラスエポキシ樹脂、液晶ポリマー、セラミックスあるいはシリコン基板等から成る絶縁基板、11aは発光素子が搭載される搭載部、12は配線導体、14は発光素子搭載用基板、15は発光素子、16はAuやAl等から成るボンディングワイヤ、17はリフレクタと呼ばれる側壁、18は発光素子15を保護する透明樹脂、19は発光装置である。
発光素子搭載用基板14は、上面に発光素子の搭載部11aを有する絶縁基板11と、この上面の搭載部11aまたはその近傍から絶縁基板11の下面にかけて形成された配線導体12とを具備し、搭載部11aには発光素子15がAgペーストや樹脂から成る接着剤でダイボンドされたり、SBB(Stud Bump Bonding)法等で実装される。また、発光素子15の電極(図示せず)は、配線導体12にAuやAl等から成るボンディングワイヤ16を介して電気的に接続され、発光素子15にはこれら配線導体12やボンディングワイヤ16を介して、外部電気回路基板(図示せず)から電力や駆動電流が供給される。
なお、配線導体12は、絶縁基板11がセラミックスから成る場合、タングステンやモリブデン−マンガン等を含む導体ペーストを絶縁基板11となるグリーンシートに従来周知のスクリーン印刷法を用いて印刷し、これをグリーンシートと同時に焼成することにより絶縁基板11所定の箇所にメタライズ層を形成し、その上にめっき法によりNiめっき層やAuめっき層を施すことにより形成される。
また、絶縁基板11がBTレジン、PBT樹脂、ガラスエポキシ樹脂あるいは液晶ポリマー樹脂等の有機樹脂から成る場合、配線導体12は、銅貼りガラスエポキシあるいは銅箔を圧着したBTレジンの銅をケミカルエッチングして所望のパターンに形成し、この銅から成るパターンを有機樹脂に接着剤で貼り合わせることにより形成される。
さらに、携帯電話機やPHS(Personal handyphone System)、PDA(Personal Digital Assistant)等の小型機器の液晶表示器のバックライト用途としての発光素子搭載用基板14においては、基板の小型化に伴い、微細化・高精度化に適した薄膜形成技術を用いた薄膜金属から成る配線導体12が使用されるようになってきている。配線導体12が薄膜形成技術を用いた薄膜金属から成る場合、配線導体12は例えば、密着金属層12a、拡散防止層12b、主導体層12cが順次積層された3層構造の導体層から構成されている。そして、密着金属層12aは、絶縁基板11との密着性の観点から、Ti,Cr,Ta,Nb,Ni−Cr合金およびTaNの少なくとも1種から成る。また、拡散防止層12bは、密着金属層12aと主導体層12cとの相互拡散を防ぐうえで、Pt,Pd,Rh,Ni,Ni−Cr合金およびTi−W合金の少なくとも1種より成る。さらに、主導体層12cは電気抵抗の小さいAu,Cu,NiおよびAgより成る。なお、主導体層12cにCuを用いる場合、Cuは酸化し易いので、通常は、その上にNiおよびAuから成る保護層(図示せず)がめっき法等により被着される。
そして、絶縁基板11に発光素子15を実装後、発光素子15は、これを保護するために透明樹脂18により覆われる。この透明樹脂18は、側壁17の内側に熱硬化性のエポキシ樹脂等を充填し、これを加熱硬化することにより形成される。なお、透明樹脂18は、発光素子15を発光素子搭載用基板14に強固に密着させる働きも有する。
このような発光装置は、外部電気回路基板から供給される駆動電流によって発光素子15を発光させ、可視光を発光することにより、各種インジケーター、光センサ、ディスプレイ、ホトカプラ、バックライト、光プリンタヘッド用に用いられる。なお、発光装置19は、発光素子15から直接装置外へ発光される可視光の他に、絶縁基板11の表面や配線導体12の表面で反射された可視光を装置外へ発光することにより高輝度化、高出力化、小型化が図られている。
しかしながら、このような発光素子搭載用基板14に実装された発光素子15は静電気などに弱い場合が多く、取り扱い時などに生ずる静電気などで静電破壊される場合がある。また、発光素子15は極めて細いボンディングワイヤ16などにより、発光素子搭載用基板14の配線導体12と電気的に接続されるが、取り扱い時などにボンディングワイヤ16が切れて、電気的接続不良が発生する場合もある。
これらの不具合が発生した場合、検査工程で発光不良として検出され、発光素子15が搭載された発光素子搭載用基板14は外部電気回路基板等から取り除かれ、発光素子15の交換等が行われ、再実装するという、いわゆるリペアが行なわれている。
〔特許文献1〕
特開平9−293904号公報
〔特許文献2〕
特開2000−216440号公報
〔特許文献3〕
特開2002−344029号公報
【発明が解決しようとする課題】
しかしながら、上記従来の発光素子搭載用基板では、外部電気回路基板との半田等の低融点ろう材で実装を行なうと発光素子搭載用基板の配線導体に半田食われという現象が発生する。なお、ここで言う半田食われとは、発光素子搭載用基板の配線導体と、実装に用いられる半田とが、接続時あるいはその後の経時変化により、半田の成分と配線導体の成分とが相互に拡散して配線導体を構成する金属材料が消失していく現象である。このような現象に伴って、半田と配線導体の金属材料から成る合金層が生成されるため、接合部分が脆く高抵抗になるといった問題が発生するとともに、半田食われが進行すると、配線導体と発光素子搭載用基板の母材である絶縁基板との密着性が低下し、配線導体が絶縁基板から剥離し、発光素子搭載用基板として、使用することができなくなってしまうという問題点があった。
また、外部電気回路基板に発光素子搭載基板を半田等の低融点ろう材で実装を行なう際、低融点ろう材の量が多いと、発光素子搭載用基板の上面の配線導体に沿ってろう材が這い上がり、発光素子に低融点ろう材が付着し、発光素子が作動しなかったり、発光素子の発光する光の輝度が著しく低下するという問題点があった。
本発明は、かかる従来技術の問題点に鑑み完成されたものであり、その目的は、数回にわたるリペア工程にも半田食われが発生することのない発光素子搭載用基板および発光装置を提供することにある。
【課題を解決するための手段】
本発明の発光素子搭載用基板は、上面に発光素子の搭載部を有する絶縁基板と、前記上面の前記搭載部またはその近傍から前記絶縁基板の下面にかけて形成された、前記搭載部側の端部に前記発光素子の電極が電気的に接続され、前記下面側の端部に外部電気回路基板の配線導体層が低融点ろう材を介して電気的に接続される配線導体とを具備する発光素子搭載用基板において、前記下面に形成された前記配線導体は、TiまたはNi−Cr合金から成る第一の導体層、Auから成る第二の導体層、Niから成る第三の導体層およびAuから成る第四の導体層が順次積層されて形成されていることを特徴とするものである。
本発明の発光素子搭載用基板によれば、配線導体がTiまたはNi−Cr合金から成る第一の導体層、Auから成る第二の導体層、Niから成る第三の導体層およびAuから成る第四の導体層が順次積層されて形成されていることから、TiまたはNi−Cr合金から成る第一の導体層が絶縁基板に強固に密着するとともに、発光素子搭載用基板の配線導体を外部電気回路基板の配線導体層に低融点ろう材を介して電気的に接続する際、Auから成る第四の導体層は低融点ろう材に拡散してAuから成る第四の導体層と低融点ろう材との合金層が形成されるが、Niから成る第三の導体層がバリア層となり、Auから成る第二の導体層は低融点ろう材に拡散され難くなり消失することはなく、その結果、数回のリペアにも耐え得る発光素子搭載用基板とすることができる。
また、本発明の発光素子搭載用基板は、好ましくは、前記第四の導体層は、前記絶縁基板上面の外周部および側面の少なくとも一方に位置する部位の表面にCrまたはPtから成る第五の導体層が形成されていることを特徴とする。
本発明の発光素子搭載用基板によれば、第四の導体層は絶縁基板上面の外周部および側面の少なくとも一方に位置する部位の表面にCrまたはPtから成る第五の導体層が形成されていることから、CrまたはPtはAuよりもろう材が濡れ難いので発光素子搭載用基板の上面の配線導体への低融点ろう材の這い上がりをこの第五の導体層で有効に抑制することができ、発光素子に低融点ろう材が付着して歩留まりを低下させることのない生産性に優れた発光素子搭載用基板とすることができる。また、特に380nmの波長領域の発光装置に用いられる場合、第五の導体層がAuより光反射率の高いCrまたはPtから成ることから、発光素子から発光された光が吸収されて輝度が低下するのを有効に抑制することができ、高輝度の発光を可能にする発光素子搭載用基板とすることができる。
本発明の発光装置は、上記構成の発光素子搭載用基板の前記搭載部に電子部品を搭載し、この電子部品の電極と前記配線導体の前記搭載部側の端部とを電気的に接続して成ることを特徴とするものである。
本発明の発光装置によれば、上記構成の発光素子搭載用基板の搭載部に電子部品を搭載し、この電子部品の電極と配線導体の搭載部側の端部とを電気的に接続して成ることから、数回のリペアにも絶え得るとともに、高輝度化を実現することができる高性能の発光装置となる。
【発明の実施の形態】
次に本発明の発光素子搭載用基板および発光装置を添付の図面に基づいて詳細に説明する。
図1は、本発明の発光素子搭載用基板の実施の形態の一例の断面図であり、図2は本発明の発光装置の実施の形態の一例の断面図である。
これらの図において、1は絶縁基板、1aは発光素子の搭載部、2は配線導体であり、主にこれらで本発明の発光素子搭載用基板4が構成される。また、5は発光素子、6は電気的接続部材であるボンディングワイヤ、7は側壁、8は透明樹脂であり、主に発光素子搭載用基板4と、発光素子5と、電気的接続部材であるボンディングワイヤ6とで本発明の発光装置9が構成される。
絶縁基板1は、発光素子5の支持基板としての機能を有し、その大きさが2mm×1mm×0.3mm程度の直方体状であり、その上面には発光素子5を搭載する搭載部1aを有している。このような絶縁基板1は、BTレジン(ビスマレイミドトリアジン)やPBT樹脂(ポリブチレンテレフタレート樹脂)、ガラスエポキシ樹脂、液晶ポリマー、酸化アルミニウム(アルミナ:Al)質焼結体、窒化アルミニウム(AlN)質焼結体、窒化珪素(Si)質焼結体、ガラスセラミックス焼結体等のセラミックスあるいはシリコン基板等の絶縁材料から成り、絶縁基板1が例えば酸化アルミニウム質焼結体から成る場合、先ずアルミナ(Al)やシリカ(SiO)、カルシア(CaO)、マグネシア(MgO)等の原料粉末に適当な有機溶剤、溶媒を添加混合して泥漿状と成し、これを従来周知のドクターブレード法やカレンダーロール法等によりシート状に成形してセラミックグリーンシート(以下、グリーンシートともいう)を得る。その後、グリーンシートを所定形状に打ち抜き加工するとともに必要に応じて複数枚積層し、約1600℃の温度で焼成することにより製作される。
なお、絶縁基板1の材料として、特に酸化アルミニウム(アルミナ:Al)質焼結体や窒化アルミニウム(AlN)質焼結体を用いた場合には、これらの材料は熱伝導率が40W/m・K以上と高いため、発光素子5が駆動時に熱を発しても、その熱は絶縁基板1を介して良好に伝達される。そのため、発光素子5の放熱性が向上し、発光素子5を長期にわたり正常かつ安定的に作動させることも可能となる。
また、絶縁基板1は、その搭載部1aまたはその近傍から絶縁基板1の下面にかけて、幅が100〜200μm程度、厚みが1.2〜5μm程度の配線導体2が被着形成されている。配線導体2は、絶縁基板1の下面にかけて形成されており、一部が絶縁基板1の下面に形成されている。また、図1および図2には、絶縁基板1の上面および下面に形成された配線導体2を、絶縁基板1の側面に形成した配線導体2で接続した場合の例を示しており、例えば図示はしないが、上面および下面に形成された配線導体2同士を絶縁基板1の内部に形成した貫通導体で電気的に接続してもよい。
配線導体2は、絶縁基板1に搭載される発光素子5の電極(図示せず)と外部電気回路基板の配線導体層(図示せず)とを電気的に接続する機能を有し、その搭載部1a側の端部には発光素子5の電極がボンディングワイヤ6等の電気的接続部材を介して電気的に接続され、下面側の端部には外部電気回路基板の配線導体層が低融点ろう材を介して電気的に接続される。
なお、ここでいう低融点ろう材とは、融点が300℃以下のろう材を意味し、例えば、Sn37質量%−Pb63質量%(融点183℃)やAu80質量%−Sn20質量%(融点280℃),Au10質量%−Sn90質量%(融点217℃),Sn96.5質量%−Ag3.5質量%(融点217℃),Sn99.3質量%−Cu0.7質量%(融点228℃),Sn99質量%−Cu0.7質量%−Ag0.3質量%(融点228℃)等のろう材が例示される。
本発明の発光素子搭載用基板4においては、下面に形成された配線導体2は、TiまたはNi−Cr合金から成る第一の導体層2a、Auから成る第二の導体層2b、Niから成る第三の導体層2cおよびAuから成る第四の導体層2dが順次積層されて形成されており、またこのことが重要である。
本発明の発光素子搭載用基板4によれば、配線導体2がTiまたはNi−Cr合金から成る第一の導体層2a、Auから成る第二の導体層2b、Niから成る第三の導体層2cおよびAuから成る第四の導体層2dが順次積層されて形成されていることから、TiまたはNi−Cr合金から成る第一の導体層2aが絶縁基板1に強固に密着するとともに、発光素子搭載用基板4の配線導体2を外部電気回路基板の配線導体層に低融点ろう材を介して電気的に接続する際、Auから成る第四の導体層2dは低融点ろう材に拡散してAuから成る第四の導体層2dと低融点ろう材との合金層が形成されるが、Niから成る第三の導体層2cがバリア層となり、Auから成る第二の導体層2bは低融点ろう材に拡散され難くなり消失することはなく、その結果、数回のリペアにも耐え得る発光素子搭載用基板とすることができる。
なお、第一の導体層2aはTiまたはNi−Cr合金から成り、絶縁基板1が酸化アルミニウム(アルミナ:Al)質焼結体や窒化アルミニウム(AlN)質焼結体から成る場合には、絶縁基板1と熱膨張係数が近似していることから、絶縁基板1と配線導体2との密着性を良好なものとすることができる。また、第二の導体層2bはAuから成り、Auは低抵抗材料であるとともに、酸化し難い物質であることから、外部回路基板等との電気的接続を長期にわたり、安定して実現することができる。さらに、第三の導体層2cはNiから成り、半田等の低融点ろう材に対して耐熱性の良好な物質であることから、第三の導体層2cを半田等の低融点金属から保護するバリア層としての役目を果たす。また、第四の導体層2dはAuから成り、ろう材との濡れ性が良好な物質であることから、発光素子搭載用基板4と外部電気回路基板の配線導体層とを強固に接合する役目を果たす。
このような配線導体2は、真空蒸着法やスパッタリング法、フォトリソグラフィ法、電解めっき法、無電解めっき法等の従来周知の薄膜形成技術を用いることにより形成される。例えば真空蒸着法を用いて形成する場合には、絶縁基板1を真空蒸着装置の成膜室に取り付けて、成膜室内の蒸着源に配線導体2の第一の導体層2a、第二の導体層2bと成る金属片を配置し、その後、成膜室内を真空状態(10−2Pa以下の圧力)にするとともに、蒸着源に配置された金属片を加熱して蒸発させ、この蒸発した金属片の分子が絶縁基板1に被着することにより、配線導体2の第一の導体層2a、第二の導体層2bと成る薄膜金属が形成される。そして、薄膜金属が形成された絶縁基板1をフォトリソグラフィ法を用いて配線導体2の反転パターンと成るレジストパターンを形成した後、電解めっき法を用いて薄膜金属上に第三の導体層2c、第四の導体層2dを順次積層する。その後、フォトリソグラフィ法を用いて配線導体2の反転パターンと成るレジストパターンを除去し、余分な薄膜金属を除去することにより、配線導体2が形成される。
なお、第一の導体層2aは、その厚みが0.1〜0.5μmが好ましく、0.1μm未満では強固に密着することが困難となる傾向があり、0.5μmを超えると、成膜時の内部応力によって剥離が生じ易くなる傾向がある。また、第二の導体層2bは、その厚みが0.1〜0.5μmが好ましく、0.1μm未満では強固に密着することが困難となる傾向があり、0.5μmを超えると、成膜時の内部応力によって剥離が生じ易くなる傾向がある。さらに、第三の導体層2cは、その厚みが0.5〜2μmが好ましく、0.5μm未満では半田食われを防止することが困難となる傾向があり、2μmを超えると、成膜時の内部応力によって剥離が生じ易くなる傾向がある。また、第四の導体層2dは、その厚みが0.5〜2μmが好ましく、0.5μm未満では電気抵抗が大きくなる傾向があるとともに、ワイヤボンディングができなくなる傾向があり、2μmを超えると、成膜時の内部応力によって剥離が生じ易くなる傾向がある。また、Auは貴金属で高価であることから、低コスト化の点でなるべく薄く形成することが好ましい。
また、絶縁基板1の上面および側面の配線導体2も、絶縁基板1の下面の配線導体2と同時に、同じ構成・方法により形成すればよい。
また、本発明の発光素子搭載用基板4においては、好ましくは、図2に示すように第四の導体層2dは、絶縁基板1上面の外周部および側面の少なくとも一方に位置する部位の表面にCrまたはPtから成る第五の導体層3が形成されているのがよい。
これにより、CrまたはPtはAuよりもろう材が濡れ難いので発光素子搭載用基板4の上面の配線導体2への低融点ろう材の這い上がりをこの第五の導体層3で有効に抑制することができ、発光素子5に低融点ろう材が付着して歩留まりを低下させることのない生産性に優れた発光素子搭載用基板4とすることができる。また、特に380nmの波長領域の発光装置9に用いられる場合、第五の導体層3がAuより光反射率の高いCrまたはPtから成ることから、発光素子5から発光された光が吸収されて輝度が低下するのを有効に抑制することができ、高輝度の発光を可能にする発光素子搭載用基板4とすることができる。
即ち、第五の導体層3を構成するCrまたはPtは、銀白色系の金属であり全可視域において一定の反射率を持つのに対し、第四の導体層2dを構成するAuは、全可視域において一定の反射率を持たず、特に青色、青緑色あるいは緑色の光を吸収して380nmの波長領域での反射率が低下するため、Auから成る第四の導体層2dが露出している発光素子搭載用基板4よりもさらに高輝度化を実現することができる。
このような第五の導体層3の厚さは0.01〜0.5μmが良い。0.01μm未満では、第五の導体層3が第四の導体層2dに強固に密着するのが困難になり、第五の導体層3が剥離し易くなる。また、0.5μmを超えると、成膜時の内部応力によって第五の導体層3に剥離やクラックが生じ易くなる。
なお、第五の導体層3は、配線導体2の絶縁基板1の下面側の端部および搭載部1a側の端部を除く部位に形成されているのがよい。即ち、第五の導体層3は、絶縁基板1の側面のみ、絶縁基板1の上面の外周部のみ、あるいは絶縁基板1の上面の外周部から側面にかけて形成されているのがよい。これにより、配線導体2のボンディングワイヤ6との接続部および外部電気回路基板との接合部にろう材との密着性に優れるAuから成る第四の導体層2dを露出させることができ、ボンディングワイヤ6と配線導体2との接合強度および外部電気回路基板と配線導体2との接合強度を強固にすることができる。
また、第五の導体層3が絶縁基板1の側面に形成されている場合、第五の導体層3は絶縁基板1の側面の中央部よりも上側にあるのがよい。これにより、絶縁基板1の側面に形成された配線導体2の下側の部位にろう材との密着性に優れるAuから成る第四の導体層2dを露出させることができ、外部電気回路基板に発光素子搭載用基板4をろう材により接合した際、この第四の導体層2dが露出した側面の部位と外部電気回路基板の配線導体層との間に大きなメニスカスを形成することができる。その結果、発光素子搭載用基板4と外部電気回路基板との接合強度をより向上させることができる。
次に、本発明の発光装置9について説明する。本発明の発光装置9は、上述の発光素子搭載用基板4の搭載部1aに発光素子5を搭載し、この発光素子5の電極と配線導体2の搭載部1a側の端部とを電気的に接続することにより製作される。
発光素子5としては、例えばGaN系などの青色LED素子やGaAs系、AlGaAs系、AlGaIP系、InP系などの赤色LED素子や緑色LED素子等が用いられる。また、発光素子5は、発光素子搭載用基板4の搭載部1aに載置された後、Agペーストやカーボンペースト、ITOペースト等のペースト、あるいはSBB(Stud Bump Bonding)法等による金属バンプ等を用いて固定される。
また、発光素子搭載用基板4の搭載部1aの面には、搭載部1aを取囲んで枠体が被着されており、これが後述する透明樹脂8を保持する側壁7となる。このような枠体は、エポキシ樹脂、アクリル樹脂、イミド樹脂等の熱硬化性樹脂や酸化アルミニウム質焼結体等のセラミック材料、アルミニウム等の金属材料を用いて形成される。なお、枠体が熱硬化性樹脂から成る場合は、発光素子搭載用基板4にシリコン系やエポキシ系等の樹脂接着剤を介して接合され、セラミック材料および金属材料から成る場合は、シリコン系やエポキシ系等の樹脂接着剤あるいは、側壁7の接合部にAu等の金属層を設けてAg−Cuろう等の金属ろう材やPb−Sn合金、Au−Sn合金、Au−Si合金等の低融点ろう材を介して、接合される。
また、側壁7となる枠体は、湿度や熱、紫外線等に対する高い耐候性を有し、発光素子5の発光する光に対して高い光反射率を有することが望ましい。このため、側壁7となる枠体を熱硬化性樹脂等の有機樹脂やセラミックス等で形成する場合、側壁7の内周面全体に金属膜を被着させて、側壁7内周面の光反射率を高めることが好ましい。
また、側壁7の内周面は、上方に向かって広がる傾斜面であることが好ましい。さらに、側壁7の内周面は、この内周面と絶縁基板1の上面とのなす角度が35〜60°の傾斜面であることが好ましい。内周面と絶縁基板1の上面とのなす角度が35°未満になると、発行素子5の発光した光の放射角度が20°以上に広がり、分散した光の量が多くなり、光の輝度が低下する。一方、角度が60°を超えると、発光装置9の外部に良好に放射されずに発光装置9内で乱反射する光が多くなる。
また、側壁7で囲まれた内部には、透明樹脂8が充填される。透明樹脂は、絶縁基板1に発光素子5を実装後、これを保護するための機能を有する。このような透明樹脂8は、熱硬化性のエポキシ樹脂不飽和ポリエステル樹脂、シリコン樹脂、ユリア・メラミン樹脂等から成り、発光素子5を実装後、側壁7で囲まれた内部にをディスペンサ等により注入することにより充填され、しかる後、これを加熱することにより硬化される。なお、透明樹脂8は、発光素子5を発光素子搭載用基板4に強固に密着させる働きも有する。
かくして、本発明の発光装置9によれば、上記構成の発光素子搭載用基板4の搭載部1aに発光素子5を搭載し、この発光素子5の電極と配線導体2の搭載部1a側の端部とを電気的に接続して成ることから、数回のリペアにも耐え得るとともに、高輝度化を実現することができる高性能の発光装置9とすることができる。
なお、本発明は上記実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変更を行うことは何等差し支えない。
【発明の効果】
本発明の発光素子搭載用基板によれば、配線導体がTiまたはNi−Cr合金から成る第一の導体層、Auから成る第二の導体層、Niから成る第三の導体層およびAuから成る第四の導体層が順次積層されて形成されていることから、TiまたはNi−Cr合金から成る第一の導体層が絶縁基板に強固に密着するとともに、発光素子搭載用基板の配線導体を外部電気回路基板の配線導体層に低融点ろう材を介して電気的に接続する際、Auから成る第四の導体層は低融点ろう材に拡散してAuから成る第四の導体層と低融点ろう材との合金層が形成されるが、Niから成る第三の導体層がバリア層となり、Auから成る第二の導体層は低融点ろう材に拡散され難くなり消失することはなく、その結果、数回のリペアにも耐え得る発光素子搭載用基板とすることができる。
本発明の発光素子搭載用基板によれば、第四の導体層は絶縁基板上面の外周部および側面の少なくとも一方に位置する部位の表面にCrまたはPtから成る第五の導体層が形成されていることから、CrまたはPtはAuよりもろう材が濡れ難いので発光素子搭載用基板の上面の配線導体への低融点ろう材の這い上がりをこの第五の導体層で有効に抑制することができ、発光素子に低融点ろう材が付着して歩留まりを低下させることのない生産性に優れた発光素子搭載用基板とすることができる。また、特に380nmの波長領域の発光装置に用いられる場合、第五の導体層がAuより光反射率の高いCrまたはPtから成ることから、発光素子から発光された光が吸収されて輝度が低下するのを有効に抑制することができ、高輝度の発光を可能にする発光素子搭載用基板とすることができる。
本発明の発光装置によれば、上記構成の発光素子搭載用基板の搭載部に電子部品を搭載し、この電子部品の電極と配線導体の搭載部側の端部とを電気的に接続して成ることから、数回のリペアにも絶え得るとともに、高輝度化を実現することができる高性能の発光装置となる。
【図面の簡単な説明】
【図1】本発明の発光素子搭載用基板の実施の形態の一例を示す断面図である。
【図2】本発明の発光装置の実施の形態の一例を示す断面図である。
【図3】従来の発光素子搭載用基板の断面図である。
【図4】従来の発光装置の断面図である。
【符号の説明】
1:絶縁基板
2:配線導体
2a:第一の導体層
2b:第ニの導体層
2c:第三の導体層
2d:第四の導体層
3:第五の導体層
4:発光素子搭載用基板
5:発光素子
6:ボンディングワイヤ
7:側壁
8:透明樹脂
9:発光装置
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting element mounting board on which a light emitting element such as a light emitting diode is mounted, and a light emitting device using the same.
[Prior art]
2. Description of the Related Art In recent years, light-emitting devices on which high-luminance, high-output light-emitting elements are mounted have been developed and used in various fields. Such a light emitting device is used as a light source of an optical printer head, a light source of a liquid crystal backlight, a light source of various indicators, and the like, by utilizing features such as small size, low power consumption, and light weight.
In particular, the light emitting device has been used for lighting, and a light emitting device having higher characteristics in terms of luminance and heat dissipation has been demanded. In addition, when used for lighting, extending the life of the light emitting device is a particularly important problem.
FIG. 3 is a sectional view of a conventional light emitting element mounting substrate, and FIG. 4 is a sectional view of a conventional light emitting device. In these figures, reference numeral 11 denotes an insulating substrate made of, for example, BT resin (bismaleimide triazine), PBT resin (polybutylene terephthalate resin), glass epoxy resin, liquid crystal polymer, ceramics, or a silicon substrate, which has excellent insulation and heat resistance. , 11a is a mounting portion on which the light emitting element is mounted, 12 is a wiring conductor, 14 is a light emitting element mounting substrate, 15 is a light emitting element, 16 is a bonding wire made of Au, Al, or the like, 17 is a side wall called a reflector, 18 is A transparent resin for protecting the light emitting element 15 and 19 is a light emitting device.
The light emitting element mounting board 14 includes an insulating substrate 11 having a light emitting element mounting portion 11a on the upper surface, and a wiring conductor 12 formed from the mounting portion 11a on the upper surface or its vicinity to the lower surface of the insulating substrate 11, The light emitting element 15 is die-bonded to the mounting portion 11a with an adhesive made of Ag paste or resin, or mounted by an SBB (Stud Bump Bonding) method or the like. Further, electrodes (not shown) of the light emitting element 15 are electrically connected to the wiring conductor 12 via a bonding wire 16 made of Au, Al, or the like. Power and drive current are supplied from an external electric circuit board (not shown) via the power supply.
When the insulating substrate 11 is made of ceramics, the wiring conductor 12 is formed by printing a conductive paste containing tungsten, molybdenum-manganese, or the like on a green sheet serving as the insulating substrate 11 by using a conventionally known screen printing method. A metallized layer is formed at a predetermined location on the insulating substrate 11 by firing simultaneously with the sheet, and a Ni plating layer or an Au plating layer is formed thereon by a plating method.
When the insulating substrate 11 is made of an organic resin such as a BT resin, a PBT resin, a glass epoxy resin, or a liquid crystal polymer resin, the wiring conductor 12 is formed by chemically etching copper of a BT resin to which a glass epoxy or a copper foil is pressed. To form a desired pattern, and the copper pattern is bonded to an organic resin with an adhesive.
Further, the light-emitting element mounting substrate 14 used as a backlight for a liquid crystal display of a small device such as a mobile phone, a PHS (Personal handyphone System), and a PDA (Personal Digital Assistant) has been miniaturized along with the miniaturization of the substrate. A wiring conductor 12 made of a thin film metal using a thin film forming technique suitable for high precision is being used. When the wiring conductor 12 is made of a thin film metal using a thin film forming technique, the wiring conductor 12 is formed of, for example, a conductor layer having a three-layer structure in which an adhesion metal layer 12a, a diffusion prevention layer 12b, and a main conductor layer 12c are sequentially laminated. ing. The adhesion metal layer 12a is made of Ti, Cr, Ta, Nb, Ni-Cr alloy, and Ta from the viewpoint of adhesion to the insulating substrate 11. 2 And at least one of N. The diffusion prevention layer 12b is made of at least one of Pt, Pd, Rh, Ni, a Ni—Cr alloy, and a Ti—W alloy in order to prevent mutual diffusion between the adhesion metal layer 12a and the main conductor layer 12c. Further, the main conductor layer 12c is made of Au, Cu, Ni and Ag having small electric resistance. When Cu is used for the main conductor layer 12c, since Cu is easily oxidized, a protective layer (not shown) made of Ni and Au is usually applied thereon by plating or the like.
After mounting the light emitting element 15 on the insulating substrate 11, the light emitting element 15 is covered with a transparent resin 18 to protect the light emitting element 15. The transparent resin 18 is formed by filling the inside of the side wall 17 with a thermosetting epoxy resin or the like and heating and curing the same. Note that the transparent resin 18 also has a function of firmly adhering the light emitting element 15 to the light emitting element mounting substrate 14.
Such a light emitting device emits visible light by causing the light emitting element 15 to emit light by a drive current supplied from an external electric circuit board, and is used for various indicators, optical sensors, displays, photocouplers, backlights, and optical printer heads. Used for The light emitting device 19 emits visible light reflected from the surface of the insulating substrate 11 and the surface of the wiring conductor 12 to the outside of the device in addition to visible light emitted directly from the light emitting element 15 to the outside of the device. Brightness, high output, and miniaturization have been achieved.
However, the light emitting element 15 mounted on such a light emitting element mounting board 14 is often vulnerable to static electricity or the like, and may be electrostatically damaged by static electricity generated during handling or the like. Further, the light emitting element 15 is electrically connected to the wiring conductor 12 of the light emitting element mounting board 14 by an extremely thin bonding wire 16 or the like. In some cases.
When these inconveniences occur, light emission failure is detected in the inspection process, the light emitting element mounting board 14 on which the light emitting element 15 is mounted is removed from an external electric circuit board or the like, and the light emitting element 15 is replaced, and the like. The so-called repair of re-mounting is performed.
[Patent Document 1]
JP-A-9-293904
[Patent Document 2]
JP 2000-216440 A
[Patent Document 3]
JP-A-2002-344029
[Problems to be solved by the invention]
However, in the above-mentioned conventional light emitting element mounting board, when mounting with a low melting point brazing material such as solder to an external electric circuit board, a phenomenon that the wiring conductor of the light emitting element mounting board is eroded by solder occurs. The solder erosion referred to here means that the wiring conductor of the light emitting element mounting board and the solder used for mounting are mutually changed due to a change with time during or after connection. This is a phenomenon in which the metal material constituting the wiring conductor is diffused and disappears. Along with such a phenomenon, an alloy layer made of a metal material of the solder and the wiring conductor is generated, so that a problem that the joining portion becomes brittle and high resistance occurs, and when the solder erosion progresses, the wiring conductor and the wiring conductor are formed. There has been a problem that the adhesion between the light emitting element mounting substrate and the insulating substrate, which is the base material of the light emitting element, is reduced, and the wiring conductor is separated from the insulating substrate, and cannot be used as a light emitting element mounting substrate. .
Also, when mounting the light emitting element mounting board on the external electric circuit board with a low melting point brazing material such as solder, if the amount of the low melting point brazing material is large, the brazing material will follow the wiring conductor on the upper surface of the light emitting element mounting board. This causes a problem that the low melting point brazing material adheres to the light emitting element, the light emitting element does not operate, and the luminance of light emitted from the light emitting element is significantly reduced.
The present invention has been completed in view of the problems of the related art, and an object of the present invention is to provide a light-emitting element mounting substrate and a light-emitting device that do not suffer from solder erosion even in a repair process performed several times. It is in.
[Means for Solving the Problems]
The light-emitting element mounting substrate of the present invention includes an insulating substrate having a light-emitting element mounting portion on an upper surface, and an end portion on the mounting portion side formed from the mounting portion on or near the upper surface to a lower surface of the insulating substrate. An electrode of the light emitting element is electrically connected to the light emitting element, and a wiring conductor to which a wiring conductor layer of an external electric circuit board is electrically connected via a low melting point brazing material at an end on the lower surface side. In the mounting substrate, the wiring conductor formed on the lower surface includes a first conductor layer made of Ti or a Ni—Cr alloy, a second conductor layer made of Au, a third conductor layer made of Ni, and Au. The fourth conductor layer is formed by sequentially laminating the fourth conductor layers.
According to the light emitting element mounting substrate of the present invention, the wiring conductor includes the first conductor layer made of Ti or Ni—Cr alloy, the second conductor layer made of Au, the third conductor layer made of Ni, and Au. Since the fourth conductor layer is formed by sequentially laminating, the first conductor layer made of Ti or Ni-Cr alloy firmly adheres to the insulating substrate, and the wiring conductor of the light emitting element mounting substrate is externally connected. When electrically connecting to the wiring conductor layer of the electric circuit board via the low melting point brazing material, the fourth conductor layer made of Au diffuses into the low melting point brazing material and is connected to the fourth conductor layer made of Au and the low melting point brazing material. An alloy layer with the brazing material is formed, but the third conductor layer made of Ni becomes a barrier layer, and the second conductor layer made of Au is hardly diffused into the low melting point brazing material and does not disappear. As a result, a light-emitting device withstands several repairs. It is possible to use substrate.
In the light-emitting element mounting substrate according to the present invention, preferably, the fourth conductor layer is formed of Cr or Pt on a surface of a portion located on at least one of an outer peripheral portion and a side surface of the upper surface of the insulating substrate. It is characterized in that a conductor layer is formed.
According to the light emitting element mounting substrate of the present invention, the fourth conductor layer has a fifth conductor layer made of Cr or Pt formed on the surface of at least one of the outer peripheral portion and the side surface of the upper surface of the insulating substrate. Therefore, Cr or Pt is less likely to wet the brazing material than Au, so that the creeping of the low melting point brazing material onto the wiring conductor on the upper surface of the light emitting element mounting substrate can be effectively suppressed by the fifth conductor layer. Thus, it is possible to provide a light emitting element mounting substrate excellent in productivity without lowering the yield due to the low melting point brazing material adhering to the light emitting element. Further, particularly when used in a light emitting device in a wavelength region of 380 nm, since the fifth conductor layer is made of Cr or Pt having a higher light reflectance than Au, the light emitted from the light emitting element is absorbed and the luminance is reduced. Can be effectively suppressed, and a light emitting element mounting substrate capable of emitting light with high luminance can be obtained.
The light emitting device of the present invention mounts an electronic component on the mounting portion of the light emitting element mounting substrate having the above configuration, and electrically connects an electrode of the electronic component to an end of the wiring conductor on the mounting portion side. It is characterized by comprising.
According to the light emitting device of the present invention, an electronic component is mounted on the mounting portion of the light emitting element mounting substrate having the above configuration, and the electrode of the electronic component is electrically connected to the end of the wiring conductor on the mounting portion side. As a result, a high-performance light-emitting device that can be repaired several times and that can achieve high luminance can be obtained.
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a light emitting element mounting substrate and a light emitting device of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view of an example of an embodiment of a light emitting element mounting substrate of the present invention, and FIG. 2 is a sectional view of an example of an embodiment of a light emitting device of the present invention.
In these figures, reference numeral 1 denotes an insulating substrate, 1a denotes a light emitting element mounting portion, and 2 denotes a wiring conductor. These mainly constitute a light emitting element mounting substrate 4 of the present invention. Reference numeral 5 denotes a light emitting element, 6 denotes a bonding wire as an electrical connection member, 7 denotes a side wall, and 8 denotes a transparent resin, and mainly includes the light emitting element mounting substrate 4, the light emitting element 5, and the electrical connection member. The light emitting device 9 of the present invention is constituted by the bonding wires 6.
The insulating substrate 1 has a function as a support substrate for the light emitting element 5, has a rectangular parallelepiped shape of about 2 mm × 1 mm × 0.3 mm, and has a mounting portion 1 a on which the light emitting element 5 is mounted on its upper surface. Have. Such an insulating substrate 1 is made of BT resin (bismaleimide triazine), PBT resin (polybutylene terephthalate resin), glass epoxy resin, liquid crystal polymer, aluminum oxide (alumina: Al 2 O 3 ) Sintered body, aluminum nitride (AlN) sintered body, silicon nitride (Si 3 N 4 In the case where the insulating substrate 1 is made of an insulating material such as a ceramic such as a silicon sintered body or a ceramic such as a glass ceramic sintered body or the like, and the insulating substrate 1 is made of an aluminum oxide 2 O 3 ) And silica (SiO 2 ), Calcia (CaO), magnesia (MgO), etc., to an appropriate organic solvent and solvent, and mixed to form a slurry, which is formed into a sheet by a well-known doctor blade method or calender roll method. By molding, a ceramic green sheet (hereinafter, also referred to as a green sheet) is obtained. Thereafter, the green sheet is manufactured by punching into a predetermined shape, laminating a plurality of sheets as necessary, and firing at a temperature of about 1600 ° C.
In addition, as a material of the insulating substrate 1, in particular, aluminum oxide (alumina: Al 2 O 3 ) When a high-quality sintered body or an aluminum nitride (AlN) -based sintered body is used, since these materials have a high thermal conductivity of 40 W / m · K or more, the light emitting element 5 generates heat when driven. The heat is well transmitted through the insulating substrate 1. Therefore, the heat dissipation of the light emitting element 5 is improved, and the light emitting element 5 can be normally and stably operated for a long period of time.
The insulating substrate 1 is formed with a wiring conductor 2 having a width of about 100 to 200 μm and a thickness of about 1.2 to 5 μm from the mounting portion 1 a or its vicinity to the lower surface of the insulating substrate 1. The wiring conductor 2 is formed over the lower surface of the insulating substrate 1, and a part thereof is formed on the lower surface of the insulating substrate 1. FIGS. 1 and 2 show an example in which the wiring conductors 2 formed on the upper and lower surfaces of the insulating substrate 1 are connected by the wiring conductors 2 formed on the side surfaces of the insulating substrate 1. However, the wiring conductors 2 formed on the upper surface and the lower surface may be electrically connected to each other by a through conductor formed inside the insulating substrate 1.
The wiring conductor 2 has a function of electrically connecting an electrode (not shown) of the light emitting element 5 mounted on the insulating substrate 1 to a wiring conductor layer (not shown) of the external electric circuit board. An electrode of the light emitting element 5 is electrically connected to an end on the side of the portion 1a via an electrical connecting member such as a bonding wire 6, and a wiring conductor layer of an external electric circuit board has a low melting point on an end on a lower surface side. It is electrically connected via the brazing material.
Here, the low melting point brazing material means a brazing material having a melting point of 300 ° C. or less, for example, Sn 37 mass% -Pb 63 mass% (melting point 183 ° C.) or Au 80 mass% -Sn 20 mass% (melting point 280 ° C.) ), Au 10 mass% -Sn 90 mass% (melting point 217 ° C.), Sn 96.5 mass% -Ag 3.5 mass% (melting point 217 ° C.), Sn 99.3 mass% -Cu 0.7 mass% (melting point 228 ° C.), Sn99 A brazing material such as mass% -0.7 mass% of Cu-0.3 mass% of Ag (melting point: 228 ° C.) is exemplified.
In the light emitting element mounting substrate 4 of the present invention, the wiring conductor 2 formed on the lower surface is composed of a first conductor layer 2a made of Ti or Ni—Cr alloy, a second conductor layer 2b made of Au, and Ni. The third conductor layer 2c and the fourth conductor layer 2d made of Au are sequentially laminated and formed, and this is important.
According to the light emitting element mounting substrate 4 of the present invention, the wiring conductor 2 is made of Ti or a Ni—Cr alloy, the first conductor layer 2a, the second conductor layer 2b made of Au, and the third conductor layer made of Ni. Since the fourth conductor layer 2d made of 2c and Au is sequentially laminated and formed, the first conductor layer 2a made of Ti or Ni—Cr alloy is firmly adhered to the insulating substrate 1 and the light emitting element When the wiring conductor 2 of the mounting substrate 4 is electrically connected to the wiring conductor layer of the external electric circuit board via the low melting point brazing material, the fourth conductor layer 2d made of Au diffuses into the low melting point brazing material. An alloy layer of the fourth conductor layer 2d made of Au and the low melting point brazing material is formed, but the third conductor layer 2c made of Ni serves as a barrier layer, and the second conductor layer 2b made of Au has a low melting point. Difficult to diffuse into brazing material and does not disappear As a result, it is possible to be the number of times of the light emitting element mounting substrate that can withstand repair.
Note that the first conductor layer 2a is made of Ti or a Ni—Cr alloy, and the insulating substrate 1 is made of aluminum oxide (alumina: Al). 2 O 3 In the case where the insulating substrate 1 and the aluminum nitride (AlN) sintered body are formed, since the thermal expansion coefficient is close to that of the insulating substrate 1, the adhesion between the insulating substrate 1 and the wiring conductor 2 is improved. Things. In addition, since the second conductor layer 2b is made of Au, and Au is a low-resistance material and a substance that is not easily oxidized, it is necessary to stably realize an electrical connection with an external circuit board or the like for a long time. Can be. Furthermore, since the third conductor layer 2c is made of Ni and has a good heat resistance to low melting point brazing material such as solder, the third conductor layer 2c is protected from low melting point metal such as solder. Acts as a barrier layer. Since the fourth conductor layer 2d is made of Au and has good wettability with the brazing material, the fourth conductor layer 2d serves to firmly join the light emitting element mounting substrate 4 and the wiring conductor layer of the external electric circuit board. Fulfill.
Such a wiring conductor 2 is formed by using a conventionally known thin film forming technique such as a vacuum evaporation method, a sputtering method, a photolithography method, an electrolytic plating method, and an electroless plating method. For example, in the case of forming using a vacuum evaporation method, the insulating substrate 1 is attached to a film formation chamber of a vacuum evaporation apparatus, and the first conductor layer 2a of the wiring conductor 2 and the second conductor A metal piece to be the layer 2b is arranged, and then the inside of the film formation chamber is vacuumed (10 -2 (Pressure of not more than Pa) and the metal pieces arranged in the evaporation source are heated and evaporated, and the molecules of the evaporated metal pieces are adhered to the insulating substrate 1, whereby the first conductor of the wiring conductor 2 is formed. A thin-film metal to be the layer 2a and the second conductor layer 2b is formed. Then, after forming a resist pattern serving as an inverted pattern of the wiring conductor 2 on the insulating substrate 1 on which the thin-film metal is formed by photolithography, a third conductor layer 2c is formed on the thin-film metal by electrolytic plating. The fourth conductor layer 2d is sequentially laminated. Then, the wiring conductor 2 is formed by removing the resist pattern serving as the reverse pattern of the wiring conductor 2 by using a photolithography method and removing the excess thin-film metal.
The first conductor layer 2a preferably has a thickness of 0.1 to 0.5 μm, and if the thickness is less than 0.1 μm, it tends to be difficult to firmly adhere to the first conductor layer 2a. Separation tends to occur easily due to internal stress at the time. Further, the second conductor layer 2b preferably has a thickness of 0.1 to 0.5 μm. If the thickness is less than 0.1 μm, it tends to be difficult to firmly adhere to the second conductor layer 2b. Separation tends to occur easily due to internal stress at the time. Further, the third conductor layer 2c preferably has a thickness of 0.5 to 2 μm, and if it is less than 0.5 μm, it tends to be difficult to prevent solder erosion. Separation tends to occur easily due to internal stress. Further, the fourth conductor layer 2d preferably has a thickness of 0.5 to 2 μm. If the thickness is less than 0.5 μm, the electric resistance tends to increase, and wire bonding tends to be impossible. Separation tends to occur easily due to internal stress during film formation. Further, since Au is a noble metal and expensive, it is preferable to form it as thin as possible from the viewpoint of cost reduction.
The wiring conductors 2 on the upper and side surfaces of the insulating substrate 1 may be formed by the same configuration and method at the same time as the wiring conductors 2 on the lower surface of the insulating substrate 1.
Further, in the light emitting element mounting substrate 4 of the present invention, preferably, as shown in FIG. 2, the fourth conductor layer 2d is formed on the surface of a portion located on at least one of the outer peripheral portion and the side surface of the upper surface of the insulating substrate 1. A fifth conductor layer 3 made of Cr or Pt is preferably formed.
As a result, the fifth conductor layer 3 effectively suppresses the creeping of the low melting point brazing material onto the wiring conductor 2 on the upper surface of the light emitting element mounting substrate 4 because Cr or Pt is less likely to wet the brazing material than Au. Thus, the light-emitting element mounting substrate 4 excellent in productivity without lowering the yield due to the low melting point brazing material adhering to the light-emitting element 5 can be obtained. In addition, when the fifth conductor layer 3 is made of Cr or Pt having a higher light reflectivity than Au, the light emitted from the light emitting element 5 is absorbed particularly when used in the light emitting device 9 in the wavelength region of 380 nm. A decrease in luminance can be effectively suppressed, and the light-emitting element mounting substrate 4 capable of emitting light with high luminance can be provided.
That is, Cr or Pt constituting the fifth conductor layer 3 is a silver-white metal and has a constant reflectivity in the entire visible range, whereas Au constituting the fourth conductor layer 2d has a The fourth conductive layer 2d made of Au is exposed because it does not have a constant reflectance in the visible region, and in particular absorbs blue, blue-green or green light and reduces the reflectance in the 380 nm wavelength region. It is possible to realize higher brightness than the light emitting element mounting substrate 4.
The thickness of the fifth conductor layer 3 is preferably 0.01 to 0.5 μm. If it is less than 0.01 μm, it becomes difficult for the fifth conductor layer 3 to firmly adhere to the fourth conductor layer 2d, and the fifth conductor layer 3 is easily peeled. On the other hand, if the thickness exceeds 0.5 μm, peeling and cracks are easily generated in the fifth conductor layer 3 due to internal stress during film formation.
The fifth conductor layer 3 is preferably formed at a portion other than the end of the wiring conductor 2 on the lower surface side of the insulating substrate 1 and the end on the mounting portion 1a side. That is, the fifth conductor layer 3 is preferably formed only on the side surface of the insulating substrate 1, only on the outer peripheral portion of the upper surface of the insulating substrate 1, or from the outer peripheral portion of the upper surface of the insulating substrate 1 to the side surface. Thus, the fourth conductor layer 2d made of Au having excellent adhesion to the brazing material can be exposed at the connection portion between the wiring conductor 2 and the bonding wire 6 and at the connection portion with the external electric circuit board. 6 and the wiring conductor 2 and the bonding strength between the external electric circuit board and the wiring conductor 2 can be increased.
When the fifth conductor layer 3 is formed on the side surface of the insulating substrate 1, the fifth conductor layer 3 is preferably located above the center of the side surface of the insulating substrate 1. Thereby, the fourth conductor layer 2d made of Au having excellent adhesion to the brazing material can be exposed at a lower portion of the wiring conductor 2 formed on the side surface of the insulating substrate 1, and can be exposed to the external electric circuit board. When the light-emitting element mounting substrate 4 is joined with a brazing material, a large meniscus can be formed between the portion of the side surface where the fourth conductor layer 2d is exposed and the wiring conductor layer of the external electric circuit board. As a result, the bonding strength between the light emitting element mounting board 4 and the external electric circuit board can be further improved.
Next, the light emitting device 9 of the present invention will be described. In the light emitting device 9 of the present invention, the light emitting element 5 is mounted on the mounting part 1a of the light emitting element mounting substrate 4 described above, and the electrode of the light emitting element 5 and the end of the wiring conductor 2 on the mounting part 1a side are electrically connected. It is manufactured by connecting to.
As the light-emitting element 5, for example, a blue LED element such as a GaN-based element, a red LED element such as a GaAs-based, AlGaAs-based, AlGaIP-based, or InP-based element, or a green LED element is used. Further, after the light emitting element 5 is mounted on the mounting portion 1a of the light emitting element mounting substrate 4, a paste such as an Ag paste, a carbon paste, or an ITO paste, or a metal bump formed by an SBB (Stud Bump Bonding) method or the like is used. Fixed using.
In addition, a frame is attached to the surface of the mounting portion 1a of the light emitting element mounting substrate 4 so as to surround the mounting portion 1a, and serves as a side wall 7 for holding a transparent resin 8 described later. Such a frame is formed using a thermosetting resin such as an epoxy resin, an acrylic resin, or an imide resin, a ceramic material such as an aluminum oxide sintered body, or a metal material such as aluminum. When the frame is made of a thermosetting resin, the frame is bonded to the light-emitting element mounting substrate 4 via a resin adhesive such as a silicon or epoxy resin. A resin layer such as an epoxy-based resin or a metal layer such as Au is provided at the joint of the side wall 7 to form a metal brazing material such as Ag-Cu brazing, a Pb-Sn alloy, an Au-Sn alloy, an Au-Si alloy or the like. Joined via the melting point brazing material.
In addition, it is desirable that the frame body serving as the side wall 7 has high weather resistance to humidity, heat, ultraviolet light, and the like, and has high light reflectance to light emitted by the light emitting element 5. For this reason, when the frame to be the side wall 7 is formed of an organic resin such as a thermosetting resin, ceramics, or the like, a metal film is applied to the entire inner peripheral surface of the side wall 7 to reflect light on the inner peripheral surface of the side wall 7. It is preferable to increase the rate.
Further, the inner peripheral surface of the side wall 7 is preferably an inclined surface that spreads upward. Further, the inner peripheral surface of the side wall 7 is preferably an inclined surface having an angle between the inner peripheral surface and the upper surface of the insulating substrate 1 of 35 to 60 °. When the angle between the inner peripheral surface and the upper surface of the insulating substrate 1 is less than 35 °, the emission angle of the light emitted from the light emitting element 5 spreads to 20 ° or more, the amount of dispersed light increases, and the brightness of the light increases. descend. On the other hand, when the angle exceeds 60 °, the amount of light that is not satisfactorily emitted to the outside of the light emitting device 9 and diffusely reflected inside the light emitting device 9 increases.
The inside surrounded by the side wall 7 is filled with a transparent resin 8. The transparent resin has a function of protecting the light emitting element 5 after mounting the light emitting element 5 on the insulating substrate 1. Such a transparent resin 8 is made of a thermosetting epoxy resin, an unsaturated polyester resin, a silicon resin, a urea-melamine resin, or the like. After the light emitting element 5 is mounted, the inside surrounded by the side wall 7 is injected by a dispenser or the like. And then cured by heating. The transparent resin 8 also has a function to firmly adhere the light emitting element 5 to the light emitting element mounting substrate 4.
Thus, according to the light emitting device 9 of the present invention, the light emitting element 5 is mounted on the mounting portion 1a of the light emitting element mounting substrate 4 having the above-described configuration, and the electrode of the light emitting element 5 and the end of the wiring conductor 2 on the mounting portion 1a side. Since the components are electrically connected to each other, a high-performance light-emitting device 9 that can withstand several repairs and can achieve high luminance can be obtained.
Note that the present invention is not limited to the above-described embodiment, and various changes may be made without departing from the spirit of the present invention.
【The invention's effect】
According to the light emitting element mounting substrate of the present invention, the wiring conductor includes the first conductor layer made of Ti or Ni—Cr alloy, the second conductor layer made of Au, the third conductor layer made of Ni, and Au. Since the fourth conductor layer is formed by sequentially laminating, the first conductor layer made of Ti or Ni-Cr alloy firmly adheres to the insulating substrate, and the wiring conductor of the light emitting element mounting substrate is externally connected. When electrically connecting to the wiring conductor layer of the electric circuit board via the low melting point brazing material, the fourth conductor layer made of Au diffuses into the low melting point brazing material and is connected to the fourth conductor layer made of Au and the low melting point brazing material. An alloy layer with the brazing material is formed, but the third conductor layer made of Ni becomes a barrier layer, and the second conductor layer made of Au is hardly diffused into the low melting point brazing material and does not disappear. As a result, a light-emitting device withstands several repairs. It is possible to use substrate.
According to the light emitting element mounting substrate of the present invention, the fourth conductor layer has a fifth conductor layer made of Cr or Pt formed on the surface of at least one of the outer peripheral portion and the side surface of the upper surface of the insulating substrate. Therefore, Cr or Pt is less likely to wet the brazing material than Au, so that the creeping of the low melting point brazing material onto the wiring conductor on the upper surface of the light emitting element mounting substrate can be effectively suppressed by the fifth conductor layer. Thus, it is possible to provide a light emitting element mounting substrate excellent in productivity without lowering the yield due to the low melting point brazing material adhering to the light emitting element. Further, particularly when used in a light emitting device in a wavelength region of 380 nm, since the fifth conductor layer is made of Cr or Pt having a higher light reflectance than Au, the light emitted from the light emitting element is absorbed and the luminance is reduced. Can be effectively suppressed, and a light emitting element mounting substrate capable of emitting light with high luminance can be obtained.
According to the light emitting device of the present invention, an electronic component is mounted on the mounting portion of the light emitting element mounting substrate having the above configuration, and the electrode of the electronic component is electrically connected to the mounting portion side end of the wiring conductor. Therefore, a high-performance light-emitting device that can be repaired several times and can achieve high luminance can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a light emitting element mounting substrate of the present invention.
FIG. 2 is a cross-sectional view illustrating an example of a light emitting device according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a conventional light emitting element mounting substrate.
FIG. 4 is a cross-sectional view of a conventional light emitting device.
[Explanation of symbols]
1: Insulating substrate
2: Wiring conductor
2a: first conductor layer
2b: Second conductor layer
2c: Third conductor layer
2d: fourth conductor layer
3: Fifth conductor layer
4: Light emitting element mounting substrate
5: Light emitting element
6: bonding wire
7: Side wall
8: Transparent resin
9: Light emitting device

Claims (3)

上面に発光素子の搭載部を有する絶縁基板と、前記上面の前記搭載部またはその近傍から前記絶縁基板の下面にかけて形成された、前記搭載部側の端部に前記発光素子の電極が電気的に接続され、前記下面側の端部に外部電気回路基板の配線導体層が低融点ろう材を介して電気的に接続される配線導体とを具備する発光素子搭載用基板において、前記下面に形成された前記配線導体は、TiまたはNi−Cr合金から成る第一の導体層、Auから成る第二の導体層、Niから成る第三の導体層およびAuから成る第四の導体層が順次積層されて形成されていることを特徴とする発光素子搭載用基板。An insulating substrate having a light-emitting element mounting portion on the upper surface, and an electrode of the light-emitting element electrically connected to the mounting portion side end formed from the mounting portion on or near the upper surface to the lower surface of the insulating substrate. A wiring conductor layer of an external electric circuit board connected to an end of the lower surface side, the wiring conductor layer being electrically connected via a low melting point brazing material. The wiring conductor has a first conductor layer made of Ti or Ni-Cr alloy, a second conductor layer made of Au, a third conductor layer made of Ni, and a fourth conductor layer made of Au, which are sequentially laminated. A light emitting element mounting substrate characterized by being formed by: 前記第四の導体層は、前記絶縁基板上面の外周部および側面の少なくとも一方に位置する部位の表面にCrまたはPtから成る第五の導体層が形成されていることを特徴とする請求項1記載の発光素子搭載用基板。2. The fourth conductor layer according to claim 1, wherein a fifth conductor layer made of Cr or Pt is formed on a surface of a portion located on at least one of an outer peripheral portion and a side surface of the upper surface of the insulating substrate. The substrate for mounting a light-emitting element according to the above. 請求項1または請求項2記載の発光素子搭載用基板の前記搭載部に電子部品を搭載し、該電子部品の電極と前記配線導体の前記搭載部側の端部とを電気的に接続して成ることを特徴とする発光装置。An electronic component is mounted on the mounting portion of the light emitting element mounting board according to claim 1, and an electrode of the electronic component is electrically connected to an end of the wiring conductor on the mounting portion side. A light-emitting device, comprising:
JP2003108256A 2003-03-27 2003-04-11 Substrate for mounting light emitting and light emitting device Pending JP2004349274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108256A JP2004349274A (en) 2003-03-27 2003-04-11 Substrate for mounting light emitting and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003089257 2003-03-27
JP2003108256A JP2004349274A (en) 2003-03-27 2003-04-11 Substrate for mounting light emitting and light emitting device

Publications (1)

Publication Number Publication Date
JP2004349274A true JP2004349274A (en) 2004-12-09

Family

ID=33543034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108256A Pending JP2004349274A (en) 2003-03-27 2003-04-11 Substrate for mounting light emitting and light emitting device

Country Status (1)

Country Link
JP (1) JP2004349274A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190847A (en) * 2005-01-06 2006-07-20 Citizen Electronics Co Ltd Lcd backlight employing light emitting diode
JP2012023107A (en) * 2010-07-12 2012-02-02 Ricoh Co Ltd Surface emission laser element, optical scanner and image forming apparatus
US9472715B2 (en) 2013-03-15 2016-10-18 Nichia Corporation Method of detaching sealing member of light emitting device
KR20200030972A (en) * 2018-09-13 2020-03-23 엘지이노텍 주식회사 A VERTICAL-CAVITY SURFACE-EMITTING LASER DEVICE and APPARATUS HAVING THE SAME
WO2020138221A1 (en) * 2018-12-26 2020-07-02 京セラ株式会社 Wiring substrate, electronic device, and electronic module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190847A (en) * 2005-01-06 2006-07-20 Citizen Electronics Co Ltd Lcd backlight employing light emitting diode
JP2012023107A (en) * 2010-07-12 2012-02-02 Ricoh Co Ltd Surface emission laser element, optical scanner and image forming apparatus
US9472715B2 (en) 2013-03-15 2016-10-18 Nichia Corporation Method of detaching sealing member of light emitting device
US9755121B2 (en) 2013-03-15 2017-09-05 Nichia Corporation Method of detaching sealing member of light emitting device
KR20200030972A (en) * 2018-09-13 2020-03-23 엘지이노텍 주식회사 A VERTICAL-CAVITY SURFACE-EMITTING LASER DEVICE and APPARATUS HAVING THE SAME
KR102544296B1 (en) * 2018-09-13 2023-06-16 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 A VERTICAL-CAVITY SURFACE-EMITTING LASER DEVICE and APPARATUS HAVING THE SAME
WO2020138221A1 (en) * 2018-12-26 2020-07-02 京セラ株式会社 Wiring substrate, electronic device, and electronic module
JPWO2020138221A1 (en) * 2018-12-26 2021-11-04 京セラ株式会社 Wiring boards, electronic devices and electronic modules
JP7191982B2 (en) 2018-12-26 2022-12-19 京セラ株式会社 Wiring substrates, electronic devices and electronic modules

Similar Documents

Publication Publication Date Title
US7491980B2 (en) Semiconductor light-emitting device mounting member, light-emitting diode constituting member using same, and light-emitting diode using same
KR101900352B1 (en) Semiconductor device and fabrication method for same
JP6290380B2 (en) Light emitting device substrate, light emitting device, and method of manufacturing light emitting device substrate
JP5842813B2 (en) Light emitting device and method for manufacturing light emitting device
JP6332290B2 (en) Light emitting device
JP2008071955A (en) Light-emitting device
JP2011181699A (en) Light emitting device
JP2016072269A (en) Light emission device and board for the same
JP2006093486A (en) Light emitting element mounting board and light emitting device
JP4846506B2 (en) Light emitting device and manufacturing method thereof
JP2004288937A (en) Package for accommodating light emitting element and light emitting device
JP2003273405A (en) Light emitting device accommodating package
JP2000216439A (en) Chip-type light emitting element and its manufacture
JP2005191203A (en) Package for housing light-emitting element, and light-emitting device
JP6642552B2 (en) Light emitting device
JP2005136019A (en) Package for light-emitting element and its manufacturing method
JP2004207258A (en) Package for light emitting element and light emitting device
JP2006128265A (en) Wiring board for light emitting element and light emitting device
JP2004349274A (en) Substrate for mounting light emitting and light emitting device
JP2004311920A (en) Package for housing light emitting element and light emitting device
JP6010891B2 (en) Semiconductor device
JP5349416B2 (en) Light emitting element mounting substrate and light emitting device
JP2007311588A (en) Method for manufacturing light emitting device
JP2005019687A (en) Substrate for mounting light emitting element and light emitting device
JP2004207363A (en) Package for housing light emitting element and light emitting device