JP2004139866A - Air supply device - Google Patents

Air supply device Download PDF

Info

Publication number
JP2004139866A
JP2004139866A JP2002304102A JP2002304102A JP2004139866A JP 2004139866 A JP2004139866 A JP 2004139866A JP 2002304102 A JP2002304102 A JP 2002304102A JP 2002304102 A JP2002304102 A JP 2002304102A JP 2004139866 A JP2004139866 A JP 2004139866A
Authority
JP
Japan
Prior art keywords
passage
main passage
fuel cell
temperature
bypass passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002304102A
Other languages
Japanese (ja)
Other versions
JP3938741B2 (en
Inventor
Shigehiro Takagi
高木 成裕
Goji Katano
片野 剛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002304102A priority Critical patent/JP3938741B2/en
Publication of JP2004139866A publication Critical patent/JP2004139866A/en
Application granted granted Critical
Publication of JP3938741B2 publication Critical patent/JP3938741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air supply device for a fuel cell having a low price and reliability and including a bypass mechanism for a temperature adjuster of which the main passage has a small pressure loss. <P>SOLUTION: The device is an OSS (oxidant gas supplying system) comprising a main passage 4 in which a temperature adjuster 3 for adjusting a temperature of compressed air supplied to a fuel cell 1 from a compressor 2 is provided; and a bypass passage 5 disposed in parallel with the main passage 4 and detoured to avoid the temperature adjuster 3. A pressure control valve 7 for controlling an air amount which flows into the main passage 4 and the bypass passage 5 by adjusting the pressure of the main passage 4 is provided on an exit side of the temperature adjuster 3 in the main passage 4, and one end of the bypass passage 5 is connected to the main passage 4 on an upper stream side of the temperature adjuster 3 and another end of the bypass passage 5 is connected to the main passage 4 on a lower stream side of the pressure control valve 7. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用の空気供給装置に関し、詳細には燃料電池に供給される圧縮空気を調温する温調器をバイパスする機構に関する。
【0002】
【従来の技術】
温調器をバイパスする機構として、消音器及び熱交換器(温調器)を備えた主通路と、バイパス通路とを、三方弁を介して接続した燃料電池用の空気供給装置が知られている(例えば、特許文献1参照。)。
この燃料電池システムにおいては、主通路とバイパス通路を接続する二つの三方弁を切替えることによって、圧縮機により圧縮された高温の空気を、バイパス通路と主通路に選択的に供給する。
【0003】
【特許文献1】
特開2002−110213号公報(第7頁、第1図)
【0004】
【発明が解決しようとする課題】
しかしながら従来の技術では、圧縮された空気は、三方弁を切替えることで全量バイパス通路を流通するため、供給する空気の温度を調整することが困難であった。さらに、二つの三方弁を設けた燃料電池システムにおいては、高温の圧縮空気が三方弁を流れることになるので、高温で作動する三方弁が必要となる。しかしながら、このような三方弁は非常に高価である上、信頼性の確保が非常に困難であった。また、主通路の圧力損失、すなわち三方弁での圧力損失を小さくすることが困難であった。
【0005】
本発明は、前述した課題を解決するためになされたものであって、安価で信頼性があり、主通路の圧力損失が小さい温調器のバイパス機構を含む燃料電池用の空気供給装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載の発明は、圧縮機から燃料電池に供給される圧縮空気を調温する温調器を設けた主通路と、この主通路と並列に設けられ、温調器を迂回するバイパス通路と、を含む燃料電池用の空気供給装置において、
前記主通路であって前記温調器の出口側に、前記主通路の圧力を調整することで前記主通路と前記バイパス通路に流れる空気量を調整する圧力制御弁を設け、前記バイパス通路の一端を前記温調器の上流側、他端を前記圧力制御弁の下流側で前記主通路に接続したことを特徴とする。
【0007】
このような燃料電池用の空気供給装置は、圧力を制御する圧力制御弁を主通路の温調器の下流側に配置したことで、バイパス通路に流通する空気流量を制御することが可能になる。さらに、主通路に圧力損失の大きい三方弁に代えて圧力制御弁を用いているので、定常運転時における燃料電池システムの圧力損失を小さくすることが可能となる。
さらに、このような空気供給装置においては、温調器の出口側に設けた圧力制御弁によって、主通路とバイパス通路を流れる圧縮空気の流量調整を行うことができるので、三方弁を設けた燃料電池システムと比較して、容易に調温精度を上げることが可能となる。
【0008】
請求項2に記載の発明は、請求項1に記載の空気供給装置において、前記バイパス通路に逆止弁を設け、前記温調器と前記逆止弁とを熱的に結合したことを特徴とする。
【0009】
ここで、「温調器と逆止弁とを熱的に結合」とは、温調器である水冷されたインタークーラ等からの伝熱によって逆止弁が冷却されるように、温調器に近接して逆止弁を配設することを意味する。
このような燃料電池用の空気供給装置によると、バイパス通路に設けた逆止弁と温調器が熱的に結合しているので、温調器である、例えば水冷されたインタークーラからの伝熱により逆止弁が冷却され、バイパス通路に流れる高温の圧縮空気を冷却することができる。
また、バイパス通路に流れる高温の圧縮空気が逆止弁において冷却されるので、バイパス通路の上流側と下流側を耐熱温度の相対的に低いゴムホースによって接続することが可能となり、より安価で、組立て又はメンテナンスの際に作業効率の良い空気供給装置を提供することができる。
【0010】
【発明の実施の形態】
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
【0011】
図1は、本発明の実施形態に係る燃料電池システムの全体構成を示すブロック図である。
同図に示すように、燃料電池システムFCSは、燃料電池1のカソード極(酸素極)に酸化剤ガス(圧縮空気)を供給する酸化剤ガス供給装置(空気供給装置)OSSと、燃料電池1のアノード極(水素極)に燃料ガス(水素ガス)を供給する燃料ガス供給装置HSSとから構成される。
なお、燃料ガス供給装置HSSは、本発明の要部を構成するものではないので、詳細な説明は省略する。
【0012】
燃料電池1は、供給された酸化剤ガスと燃料ガスを反応させることで発電を行う。燃料電池1は、電解質膜を挟んでアノード極(水素極)側とカソード極(酸素極)側とに分けられ、それぞれの側に白金系の触媒を含んだ電極が設けられており、アノード極及びカソード極を形成している。電解質膜としては固体高分子膜、例えばプロトン交換膜であるパーフロロカーボンスルホン酸膜を電解質として用いたものが知られている。
【0013】
酸化剤ガス供給装置(空気供給装置)OSSは、圧縮機2から燃料電池1に空気Aを供給するもので、インタークーラ(温調器)3を設けた主通路4と、この主通路4と並列に設けられ、インタークーラ3を迂回するバイパス5通路とを含む。
【0014】
圧縮機2は、図示しないスーパーチャージャ(容積型の圧縮機)及びこれを駆動するモータ等から構成され、エアクリーナ(図示せず)を通してろ過された空気Aを、燃料電池1のカソード極側に送出する。圧縮機2の送出力により、空気Aは燃料電池1のカソード極側に供給され、燃料電池1を経た後、排出空気Aeとして燃料電池システムFCSの次の工程に送られる。
【0015】
インタークーラ(温調器)3は、圧縮機2により圧縮され高温となった空気Aを、燃料電池1のカソード極に供給するのに適した温度に調整する。インタークーラ3は、熱伝導率の良いアルミニウム製であり、冷却水を循環させることで、高温圧縮空気の調温を行っている。
【0016】
次に、図2を参照して、本発明の燃料電池システムの要部を詳述する。
図2は、本発明の要部の構成を示す説明図である。
【0017】
同図に示すように、インタークーラ3が設けられた主通路4は、インタークーラ3の入口側と出口側で、バイパス通路5に接続されている。インタークーラ3の出口側には、圧力制御弁としてのバタフライ弁7が設けられている。
バイパス通路5は、一端が逆止弁6を介してインタークーラ3の入口側で主通路4に接続され、他端がバタフライ弁7の下流で主通路4に接続される。逆止弁6は、インタークーラ3と熱的に結合するように近接して配設され、水冷されたインタークーラ3からの伝熱によって冷却される。従って、圧縮機2により圧縮された高温の空気は、逆止弁6を通過する際に冷却されるので、バイパス通路5はゴムホースによって形成される。同様の理由から、逆止弁6のダイヤフラム等もゴム部品によって形成される。
符号3A及び3Bは、インタークーラ3に通流する冷却水の流入通路と流出通路をそれぞれ示す。
符号8は、主通路4の下流側の圧力を逆止弁6に伝える信号圧通路を示す。バイパス通路5と同様に、信号圧通路8もゴムホースによって形成される。
【0018】
図3を参照して、前述した燃料電池システムFCSの作用を説明する。
図3は、燃料電池システムの作用を説明する説明図であり、(a)はバタフライ弁を開いた状態、(b)はバタフライ弁を閉じた状態を示す。
【0019】
バタフライ弁7は、図示しない制御装置に電気的に接続される。制御装置は、燃料電池システムFCSに設けられた流量計や圧力計(図示せず)から入力される検出信号に応じて、バタフライ弁7の開度を調整する。
図3(a)に示す状態では、バタフライ弁7が全開であるので、圧縮機2から供給された圧縮空気は、インタークーラ3を通って主通路4の下流側に流れる。
その際、信号圧通路8によって逆止弁6に伝えられる主通路4の下流側での圧力は、バイパス通路5の入口側の圧力よりも高いので、逆止弁6は閉じたままとなる。従って、圧縮空気はバイパス通路5には流れずに、主通路4のみに流れることになる。
なお、逆止弁6のハンチングを防止するため、信号圧通路8は、バイパス通路5とインタークーラ3の接続部よりも下流側に設けている。
【0020】
図3(b)に示す状態では、バタフライ弁7が全閉であるので、バタフライ弁7の下流では、主通路4の圧力が低くなる。一方、インタークーラ3の入口側の圧力は増大する。信号圧通路8を通して逆止弁6に伝わる信号圧が減少することにより、逆止弁6の印加圧が逆止弁6の開弁圧を超えて逆止弁6が開き、圧縮空気がバイパス通路5に流れる。
【0021】
すなわち、バタフライ弁7を閉じ方向に制御すると、インタークーラ3を通過して主通路4を流れる圧縮空気の流量が減少する。すると、インタークーラ3の出入口間の圧力差が増大し、逆止弁6への印加圧が増大する。逆止弁6の印加圧が逆止弁6の開弁圧を超えると逆止弁6が開き、圧縮空気が主通路4とバイパス通路5に流れる。
バタフライ弁7の開度を制御することで、インタークーラ3の出入口間の圧力差、さらには逆止弁6の印加圧を調整することができるので、インタークーラ3へのバイパス流量比率を制御することが可能となる。
【0022】
次に、図4を参照して、燃料電池システムFCSの処理手順を説明する。
図4は、燃料電池システムの処理手順を示すフローチャートである。
【0023】
同図に示すように、ステップS1では、圧縮機2の出口温度、インタークーラ3の入口における冷却水温度、燃料電池1の入口温度、燃料電池の要求流量及び要求圧力等の検出信号が、制御装置(図示せず)に入力される。
ステップS2では、入力された各検出信号をパラメータとして、予め用意したマップよりインタークーラ/バイパス通路流量比を算出する。
ステップS3では、制御装置が、インタークーラ3の出口側に設けたバタフライ弁7に開度を指令する。
バタフライ弁7の開度を制御した結果、逆止弁6への印加圧が逆止弁6の開弁圧より大きくなると、ステップS4において逆止弁6が開き、バイパス通路5に圧縮空気が流れる。
ステップS5では、インタークーラ3を通過した圧縮空気とバイパス通路5を通過した圧縮空気を、主通路4の下流側で合流し調温を行う。
そして、ステップS6において、図示しない加湿器を通して、調温した圧縮空気を燃料電池1に供給する。
以下、ステップS1に戻って同様の手順を繰り返す。なお、制御装置が行う処理はステップS1、ステップS2、ステップS3である。
【0024】
以上に述べた燃料電池システムFCSによると、インタークーラ3の出口側に設けたバタフライ弁7によって、主通路4とバイパス通路5を流れる圧縮空気の流量調整を行うことができるので、ON/OFFの切替えのみを行う三方弁を設けた燃料電池システムと異なり、インタークーラ3へのバイパス流量比率を制御することが可能となるので、容易に調温精度を上げることが可能となる。また、燃料電池へ供給する空気の温度を制御するために、インタークーラに流れる冷却水の流量や温度を制御する場合と比較し、制御が容易になるとともに空気供給装置の温度調整をインタークーラによる冷却装置と独立して行うことが可能となる。
さらに、このような燃料電池システムFCSにおいては、インタークーラ3の入口側に設けた逆止弁6とインタークーラ3が熱的に結合されているので、水冷されたインタークーラ3からの伝熱により逆止弁6が冷却され、バイパス通路5に流れる高温の圧縮空気を冷却することができる。
このため、高温で作動する三方弁が不要となり、安価な燃料電池システムFCSを提供することが可能となる。また、圧力損失の大きい三方弁に変えてバタフライ弁7や逆止弁6を用いているので、定常運転時における燃料電池システムFCSの圧力損失を小さくすることができる。
【0025】
また、バイパス通路5に流れる高温の圧縮空気が逆止弁6において冷却されるので、バイパス通路を耐熱温度の相対的に低いゴムホースによって構成するとともに、逆止弁6のダイヤフラム等にもゴム部品を用いることが可能となり、より安価で、組立て又はメンテナンスの際に作業効率の良い燃料電池システムFCSを提供することができる。
【0026】
さらに、圧力制御弁としてバタフライ弁7を用いたことにより、簡単な構成で、主通路4とバイパス通路5を流れる圧縮空気の流量調整を行うことができる。
【0027】
以上、本発明の好適な実施形態について述べたが、本発明は前述した実施形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で、様々に変形又は変更することが可能である。
例えば、燃料電池システムFCSの低温運転時に、インタークーラ下流側のバタフライ弁7の開度を閉じることでバイパス通路5を流れる空気流量を増加させ、温度が上昇した圧縮空気を燃料電池1へ供給することで、燃料電池1を早期に暖機することができる。この場合、逆止弁6のハンチングを防止するために、信号圧通路8を圧損要素の下流側で主通路4と接続することが好適である。
【0028】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、温調器の下流側に開度を調整することで圧力制御が可能な圧力制御弁を設けたことで、バイパス通路へ流れる空気流量を制御することができ、容易に温度制御することができる温調器のバイパス機構を含む燃料電池用の空気供給装置を提供することができる。
【0029】
請求項2に係る発明によれば、バイパス通路に設けた逆止弁と温調器が熱的に結合しているので、温調器である、例えば水冷されたインタークーラからの伝熱により逆止弁が冷却され、バイパス通路に流れる高温の圧縮空気を冷却することができる。このためメンテナンス性の高いゴム製品などをバイパス通路に配置することができ、安価で信頼性の高い空気供給装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る燃料電池システムの全体構成を示すブロック図である。
【図2】本発明の要部の構成を示す説明図である。
【図3】燃料電池システムの作用を説明する説明図であり、(a)はバタフライ弁を開いた状態、(b)はバタフライ弁を閉じた状態を示す。
【図4】燃料電池システムの処理手順を示すフローチャートである。
【符号の説明】
FCS            燃料電池システム
OSS            酸化剤ガス供給装置(空気供給装置)
1          燃料電池
2          圧縮機
3          インタークーラ(温調器)
4          主通路
5          バイパス通路
6          逆止弁
7          バタフライ弁(圧力制御弁)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air supply device for a fuel cell, and more particularly, to a mechanism for bypassing a temperature controller for controlling the temperature of compressed air supplied to a fuel cell.
[0002]
[Prior art]
As a mechanism for bypassing a temperature controller, an air supply device for a fuel cell in which a main passage including a muffler and a heat exchanger (temperature controller) and a bypass passage are connected via a three-way valve is known. (For example, see Patent Document 1).
In this fuel cell system, high-temperature air compressed by the compressor is selectively supplied to the bypass passage and the main passage by switching two three-way valves connecting the main passage and the bypass passage.
[0003]
[Patent Document 1]
JP-A-2002-110213 (page 7, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, in the related art, since all of the compressed air flows through the bypass passage by switching the three-way valve, it is difficult to adjust the temperature of the supplied air. Further, in a fuel cell system provided with two three-way valves, high-temperature compressed air flows through the three-way valve, so that a three-way valve that operates at a high temperature is required. However, such a three-way valve is very expensive, and it is very difficult to secure reliability. Further, it has been difficult to reduce the pressure loss in the main passage, that is, the pressure loss in the three-way valve.
[0005]
The present invention has been made to solve the above-described problem, and provides an air supply device for a fuel cell including a bypass mechanism of a temperature controller that is inexpensive, reliable, and has a small pressure loss in a main passage. The purpose is to do.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a main passage provided with a temperature controller for controlling the temperature of compressed air supplied from a compressor to a fuel cell, and a bypass provided in parallel with the main passage and bypassing the temperature controller. An air supply device for a fuel cell comprising:
A pressure control valve that adjusts the amount of air flowing through the main passage and the bypass passage by adjusting the pressure of the main passage is provided at an outlet side of the temperature controller in the main passage, and one end of the bypass passage is provided. Is connected to the main passage on the upstream side of the temperature controller and the other end on the downstream side of the pressure control valve.
[0007]
In such an air supply device for a fuel cell, the flow rate of air flowing through the bypass passage can be controlled by arranging the pressure control valve for controlling the pressure on the downstream side of the temperature controller in the main passage. . Further, since the pressure control valve is used in the main passage instead of the three-way valve having a large pressure loss, it is possible to reduce the pressure loss of the fuel cell system during the steady operation.
Furthermore, in such an air supply device, the flow rate of the compressed air flowing through the main passage and the bypass passage can be adjusted by the pressure control valve provided on the outlet side of the temperature controller. Compared with the battery system, it is possible to easily increase the temperature control accuracy.
[0008]
The invention according to claim 2 is the air supply device according to claim 1, wherein a check valve is provided in the bypass passage, and the temperature controller and the check valve are thermally coupled. I do.
[0009]
Here, “thermally couple the temperature controller and the check valve” means that the temperature controller is cooled by heat transfer from a water-cooled intercooler or the like as the temperature controller. Means that a check valve is disposed in the vicinity of the check valve.
According to such an air supply device for a fuel cell, the check valve provided in the bypass passage is thermally coupled to the temperature controller, so that the transmission from the temperature controller, for example, a water-cooled intercooler is performed. The check valve is cooled by the heat, and the high-temperature compressed air flowing through the bypass passage can be cooled.
Further, since the high-temperature compressed air flowing through the bypass passage is cooled by the check valve, it is possible to connect the upstream side and the downstream side of the bypass passage with a rubber hose having a relatively low heat-resistant temperature, thereby reducing the cost and assembling. Alternatively, it is possible to provide an air supply device with good work efficiency at the time of maintenance.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0011]
FIG. 1 is a block diagram illustrating an overall configuration of a fuel cell system according to an embodiment of the present invention.
As shown in FIG. 1, the fuel cell system FCS includes an oxidant gas supply device (air supply device) OSS that supplies an oxidant gas (compressed air) to a cathode (oxygen electrode) of the fuel cell 1, and a fuel cell 1. And a fuel gas supply device HSS for supplying a fuel gas (hydrogen gas) to the anode electrode (hydrogen electrode).
Since the fuel gas supply device HSS does not constitute a main part of the present invention, a detailed description is omitted.
[0012]
The fuel cell 1 generates power by reacting the supplied oxidizing gas with the fuel gas. The fuel cell 1 is divided into an anode (hydrogen electrode) side and a cathode electrode (oxygen electrode) side with an electrolyte membrane interposed therebetween, and each side is provided with an electrode containing a platinum-based catalyst. And a cathode electrode. As an electrolyte membrane, a solid polymer membrane, for example, a membrane using a perfluorocarbon sulfonic acid membrane which is a proton exchange membrane as an electrolyte is known.
[0013]
The oxidizing gas supply device (air supply device) OSS supplies air A from the compressor 2 to the fuel cell 1, and includes a main passage 4 provided with an intercooler (temperature controller) 3, and a main passage 4. And a bypass 5 passage that is provided in parallel and bypasses the intercooler 3.
[0014]
The compressor 2 includes a supercharger (a positive displacement compressor) (not shown) and a motor for driving the supercharger, and sends out air A filtered through an air cleaner (not shown) to the cathode of the fuel cell 1. I do. The air A is supplied to the cathode side of the fuel cell 1 by the output power of the compressor 2, and after passing through the fuel cell 1, is sent to the next step of the fuel cell system FCS as exhaust air Ae.
[0015]
The intercooler (temperature controller) 3 adjusts the temperature of the air A, which has been compressed by the compressor 2 and has become high temperature, to a temperature suitable for supplying to the cathode of the fuel cell 1. The intercooler 3 is made of aluminum having a good thermal conductivity, and controls the temperature of the high-temperature compressed air by circulating cooling water.
[0016]
Next, with reference to FIG. 2, a main part of the fuel cell system of the present invention will be described in detail.
FIG. 2 is an explanatory diagram showing a configuration of a main part of the present invention.
[0017]
As shown in the figure, the main passage 4 provided with the intercooler 3 is connected to a bypass passage 5 on the inlet side and the outlet side of the intercooler 3. On the outlet side of the intercooler 3, a butterfly valve 7 as a pressure control valve is provided.
The bypass passage 5 has one end connected to the main passage 4 on the inlet side of the intercooler 3 via the check valve 6, and the other end connected to the main passage 4 downstream of the butterfly valve 7. The check valve 6 is arranged close to the intercooler 3 so as to be thermally coupled thereto, and is cooled by heat transfer from the water-cooled intercooler 3. Therefore, the high-temperature air compressed by the compressor 2 is cooled when passing through the check valve 6, so that the bypass passage 5 is formed by a rubber hose. For the same reason, the diaphragm and the like of the check valve 6 are also formed of rubber parts.
Reference numerals 3A and 3B denote an inflow passage and an outflow passage of the cooling water flowing through the intercooler 3, respectively.
Reference numeral 8 denotes a signal pressure passage for transmitting the pressure on the downstream side of the main passage 4 to the check valve 6. Like the bypass passage 5, the signal pressure passage 8 is also formed by a rubber hose.
[0018]
The operation of the fuel cell system FCS described above will be described with reference to FIG.
3A and 3B are explanatory diagrams illustrating the operation of the fuel cell system. FIG. 3A illustrates a state in which the butterfly valve is open, and FIG. 3B illustrates a state in which the butterfly valve is closed.
[0019]
The butterfly valve 7 is electrically connected to a control device (not shown). The control device adjusts the opening of the butterfly valve 7 according to a detection signal input from a flow meter or a pressure gauge (not shown) provided in the fuel cell system FCS.
In the state shown in FIG. 3A, since the butterfly valve 7 is fully opened, the compressed air supplied from the compressor 2 flows downstream of the main passage 4 through the intercooler 3.
At that time, the pressure on the downstream side of the main passage 4 transmitted to the check valve 6 by the signal pressure passage 8 is higher than the pressure on the inlet side of the bypass passage 5, so that the check valve 6 remains closed. Therefore, the compressed air does not flow to the bypass passage 5, but flows only to the main passage 4.
In addition, in order to prevent hunting of the check valve 6, the signal pressure passage 8 is provided on the downstream side of a connection portion between the bypass passage 5 and the intercooler 3.
[0020]
In the state shown in FIG. 3B, since the butterfly valve 7 is fully closed, the pressure in the main passage 4 is reduced downstream of the butterfly valve 7. On the other hand, the pressure on the inlet side of the intercooler 3 increases. As the signal pressure transmitted to the check valve 6 through the signal pressure passage 8 decreases, the applied pressure of the check valve 6 exceeds the valve opening pressure of the check valve 6, and the check valve 6 opens, and the compressed air flows through the bypass passage. 5 flows.
[0021]
That is, when the butterfly valve 7 is controlled in the closing direction, the flow rate of the compressed air flowing through the main passage 4 through the intercooler 3 decreases. Then, the pressure difference between the entrance and exit of the intercooler 3 increases, and the pressure applied to the check valve 6 increases. When the applied pressure of the check valve 6 exceeds the valve opening pressure of the check valve 6, the check valve 6 opens, and compressed air flows through the main passage 4 and the bypass passage 5.
By controlling the opening degree of the butterfly valve 7, the pressure difference between the inlet and the outlet of the intercooler 3 and the applied pressure of the check valve 6 can be adjusted, so that the bypass flow ratio to the intercooler 3 is controlled. It becomes possible.
[0022]
Next, a processing procedure of the fuel cell system FCS will be described with reference to FIG.
FIG. 4 is a flowchart illustrating a processing procedure of the fuel cell system.
[0023]
As shown in the figure, in step S1, detection signals such as an outlet temperature of the compressor 2, a cooling water temperature at an inlet of the intercooler 3, an inlet temperature of the fuel cell 1, a required flow rate and a required pressure of the fuel cell are controlled. It is input to a device (not shown).
In step S2, the flow rate of the intercooler / bypass passage is calculated from a prepared map using each of the input detection signals as a parameter.
In step S3, the control device instructs the butterfly valve 7 provided on the outlet side of the intercooler 3 to open.
When the pressure applied to the check valve 6 becomes larger than the valve opening pressure of the check valve 6 as a result of controlling the opening of the butterfly valve 7, the check valve 6 opens in step S <b> 4, and compressed air flows through the bypass passage 5. .
In step S5, the compressed air that has passed through the intercooler 3 and the compressed air that has passed through the bypass passage 5 are joined on the downstream side of the main passage 4 to control the temperature.
Then, in step S6, the temperature-controlled compressed air is supplied to the fuel cell 1 through a humidifier (not shown).
Hereinafter, returning to step S1, the same procedure is repeated. The processing performed by the control device is step S1, step S2, and step S3.
[0024]
According to the above-described fuel cell system FCS, the flow rate of the compressed air flowing through the main passage 4 and the bypass passage 5 can be adjusted by the butterfly valve 7 provided on the outlet side of the intercooler 3, so that the ON / OFF state can be controlled. Unlike a fuel cell system provided with a three-way valve that performs only switching, the ratio of bypass flow to the intercooler 3 can be controlled, so that the accuracy of temperature control can be easily increased. Also, compared to controlling the flow rate and temperature of the cooling water flowing to the intercooler to control the temperature of the air supplied to the fuel cell, the control becomes easier and the temperature control of the air supply device is controlled by the intercooler. This can be performed independently of the cooling device.
Furthermore, in such a fuel cell system FCS, since the check valve 6 provided on the inlet side of the intercooler 3 and the intercooler 3 are thermally coupled, heat transfer from the water-cooled intercooler 3 The check valve 6 is cooled, and the high-temperature compressed air flowing through the bypass passage 5 can be cooled.
Therefore, a three-way valve that operates at a high temperature is not required, and an inexpensive fuel cell system FCS can be provided. Further, since the butterfly valve 7 and the check valve 6 are used instead of the three-way valve having a large pressure loss, the pressure loss of the fuel cell system FCS during the steady operation can be reduced.
[0025]
In addition, since the high-temperature compressed air flowing through the bypass passage 5 is cooled in the check valve 6, the bypass passage is formed by a rubber hose having a relatively low heat-resistant temperature, and a rubber part is also provided on the diaphragm of the check valve 6 and the like. It is possible to provide a fuel cell system FCS that can be used, is less expensive, and has high working efficiency during assembly or maintenance.
[0026]
Further, by using the butterfly valve 7 as the pressure control valve, the flow rate of the compressed air flowing through the main passage 4 and the bypass passage 5 can be adjusted with a simple configuration.
[0027]
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and may be variously modified or changed within the scope of the invention described in the claims. Is possible.
For example, during low-temperature operation of the fuel cell system FCS, by closing the opening of the butterfly valve 7 on the downstream side of the intercooler, the flow rate of air flowing through the bypass passage 5 is increased, and the compressed air whose temperature has increased is supplied to the fuel cell 1. Thus, the fuel cell 1 can be warmed up at an early stage. In this case, in order to prevent hunting of the check valve 6, it is preferable to connect the signal pressure passage 8 to the main passage 4 downstream of the pressure loss element.
[0028]
【The invention's effect】
As described above, according to the first aspect of the invention, the air flow rate flowing to the bypass passage is provided by providing the pressure control valve capable of controlling the pressure by adjusting the opening degree downstream of the temperature controller. Can be controlled, and an air supply device for a fuel cell including a bypass mechanism of a temperature controller that can easily control the temperature can be provided.
[0029]
According to the second aspect of the present invention, since the check valve provided in the bypass passage and the temperature controller are thermally coupled to each other, the check valve is operated by heat transfer from the temperature controller, for example, a water-cooled intercooler. The stop valve is cooled, and the high-temperature compressed air flowing through the bypass passage can be cooled. For this reason, a rubber product or the like having high maintainability can be arranged in the bypass passage, and an inexpensive and highly reliable air supply device can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an overall configuration of a fuel cell system according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a configuration of a main part of the present invention.
3A and 3B are explanatory diagrams illustrating the operation of the fuel cell system, wherein FIG. 3A illustrates a state in which a butterfly valve is opened, and FIG. 3B illustrates a state in which the butterfly valve is closed.
FIG. 4 is a flowchart showing a processing procedure of the fuel cell system.
[Explanation of symbols]
FCS Fuel cell system OSS Oxidizing gas supply device (air supply device)
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Compressor 3 Intercooler (temperature controller)
4 Main passage 5 Bypass passage 6 Check valve 7 Butterfly valve (pressure control valve)

Claims (2)

圧縮機から燃料電池に供給される圧縮空気を調温する温調器を設けた主通路と、この主通路と並列に設けられ、温調器を迂回するバイパス通路と、を含む燃料電池用の空気供給装置において、
前記主通路であって前記温調器の出口側に、前記主通路の圧力を調整することで前記主通路と前記バイパス通路に流れる空気量を調整する圧力制御弁を設け、前記バイパス通路の一端を前記温調器の上流側、他端を前記圧力制御弁の下流側で前記主通路に接続したことを特徴とする空気供給装置。
A main passage provided with a temperature controller for controlling the temperature of compressed air supplied from the compressor to the fuel cell, and a bypass passage provided in parallel with the main passage and bypassing the temperature controller, for a fuel cell. In the air supply device,
A pressure control valve that adjusts the amount of air flowing through the main passage and the bypass passage by adjusting the pressure of the main passage is provided at an outlet side of the temperature controller in the main passage, and one end of the bypass passage is provided. An air supply device connected to the main passage on the upstream side of the temperature controller and the other end on the downstream side of the pressure control valve.
前記バイパス通路に逆止弁を設け、前記温調器と前記逆止弁とを熱的に結合したことを特徴とする空気供給装置。An air supply device, wherein a check valve is provided in the bypass passage, and the temperature controller and the check valve are thermally coupled.
JP2002304102A 2002-10-18 2002-10-18 Air supply device Expired - Fee Related JP3938741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304102A JP3938741B2 (en) 2002-10-18 2002-10-18 Air supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304102A JP3938741B2 (en) 2002-10-18 2002-10-18 Air supply device

Publications (2)

Publication Number Publication Date
JP2004139866A true JP2004139866A (en) 2004-05-13
JP3938741B2 JP3938741B2 (en) 2007-06-27

Family

ID=32451631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304102A Expired - Fee Related JP3938741B2 (en) 2002-10-18 2002-10-18 Air supply device

Country Status (1)

Country Link
JP (1) JP3938741B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277801A (en) * 2009-05-28 2010-12-09 Toyota Motor Corp Fuel cell system, and valve set for fuel cell system
WO2014148151A1 (en) * 2013-03-22 2014-09-25 日産自動車株式会社 Fuel-cell system and method for controlling fuel-cell system
JP2015095287A (en) * 2013-11-08 2015-05-18 日産自動車株式会社 Fuel cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277801A (en) * 2009-05-28 2010-12-09 Toyota Motor Corp Fuel cell system, and valve set for fuel cell system
WO2014148151A1 (en) * 2013-03-22 2014-09-25 日産自動車株式会社 Fuel-cell system and method for controlling fuel-cell system
JPWO2014148151A1 (en) * 2013-03-22 2017-02-16 日産自動車株式会社 FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
US9620796B2 (en) 2013-03-22 2017-04-11 Nissan Motor Co., Ltd. Fuel cell system and control method therefor
CN105009339B (en) * 2013-03-22 2017-06-09 日产自动车株式会社 The control method of fuel cell system and fuel cell system
JP2015095287A (en) * 2013-11-08 2015-05-18 日産自動車株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP3938741B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US11545677B2 (en) Fuel cell vehicle thermal management system with cold start function and control method thereof
US8298713B2 (en) Thermally integrated fuel cell humidifier for rapid warm-up
US8263279B2 (en) Apparatus for optimized cooling of a drive unit and a fuel cell in a fuel cell vehicle
US8053126B2 (en) Water transfer efficiency improvement in a membrane humidifier by reducing dry air inlet temperature
CN113675442B (en) Auxiliary low-temperature cold start system applied to fuel cell and control method thereof
JP4758741B2 (en) Fuel cell system
US20070065694A1 (en) Advanced control for an electrical heatable wax thermostat in the thermal coolant loop of fuel cell systems
US10535887B2 (en) Fuel cell system
CN109638314B (en) Fuel cell air supply system and air supply method
CN213660456U (en) Fuel cell heat dissipation system
CN114198157B (en) Fuel cell energy recovery system and control method
CN113972389B (en) Water heat management integrated device of multi-stack fuel cell system and working method thereof
US20070065695A1 (en) Coolant flow estimation for the thermal loop of a fuel cell system using stack loss power
CN210554237U (en) Fuel cell system and automobile
CN111682243A (en) Quick cold start system and quick cold start method for fuel cell
CN210866371U (en) Fuel cell heating system
JP3938741B2 (en) Air supply device
JP2004527090A (en) Electronic bypass control of fuel cell cathode gas to combustor
JP4950386B2 (en) Fuel cell warm-up device
JP4328035B2 (en) Fuel cell warm-up device
WO2023025001A1 (en) Gas supply system of fuel cell, and gas supply method
JP4546703B2 (en) Fuel cell system and warm-up method thereof
JP4908686B2 (en) Temperature control device for supply gas supplied to fuel cell
CN218123462U (en) Fuel cell temperature control system and vehicle
JP3631521B2 (en) Cogeneration system cooling water circuit equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees