JP2004136312A - Thin steel sheet fillet welded joint having high fatigue strength, and method for improving its fatigue strength - Google Patents

Thin steel sheet fillet welded joint having high fatigue strength, and method for improving its fatigue strength Download PDF

Info

Publication number
JP2004136312A
JP2004136312A JP2002302274A JP2002302274A JP2004136312A JP 2004136312 A JP2004136312 A JP 2004136312A JP 2002302274 A JP2002302274 A JP 2002302274A JP 2002302274 A JP2002302274 A JP 2002302274A JP 2004136312 A JP2004136312 A JP 2004136312A
Authority
JP
Japan
Prior art keywords
weld
weld metal
less
fatigue strength
fillet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002302274A
Other languages
Japanese (ja)
Other versions
JP4523755B2 (en
Inventor
Tadashi Kasuya
糟谷 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002302274A priority Critical patent/JP4523755B2/en
Publication of JP2004136312A publication Critical patent/JP2004136312A/en
Application granted granted Critical
Publication of JP4523755B2 publication Critical patent/JP4523755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin steel sheet fillet welded joint having high fatigue strength and a method for improving the fatigue strength of the fillet welded joint, which is more excellent in the economical profit and the toughness of welding metal than before. <P>SOLUTION: In the thin steel sheet fillet welded joint having a welding end portion, the welded joint is composed of steel sheets having the thickness of 1.0-4.0 mm and the tensile strength larger than 590 MPa, and the welded bead having a welding metal having the depth of penetration smaller than 1/3 of the thickness of the thin steel sheet, the transformation starting temperature of 475-600°C from austenite to martensite or bainite, and the tensile strength larger than 590 MPa. Further, the welding end portion is recessed from the surface of the steel sheet by the amount larger than 0.03 mm and smaller than 1/4 of the thickness of the steel sheet over the range at least 10 mm from the end portions of the starting portion of the weld bead and the crater portion. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、特に自動車の足回り部品の製作などに適用される鋼板の隅肉溶接方法およびそれを用いた溶接継手に関し、より詳しくは、引っ張り強度が590MPa以上の薄鋼板の高疲労強度溶接継手および高疲労強度が得られる隅肉溶接方法に関するものである。
【0002】
【従来の技術】
溶接鋼構造物の安全性および信頼性に重大な影響を与える疲労亀裂は、溶接部に発生しやすいため、従来から溶接鋼構造物の溶接部の疲労特性を向上させる方法が種々検討されてきた。
【0003】
従来から溶接部のうちで最も疲労亀裂が発生しやすい部位が溶接止端部であり、その主な原因が溶接止端部で発生しやすい引っ張りの残留応力による応力集中であることが知られている。
【0004】
従って、従来の溶接継手の疲労特性の改善方法として、溶接後にTIGなめ付け溶接(化粧溶接)や研削等の機械加工などにより溶接止端形状を改善する方法、ピーニングなどにより溶接止端形状の改善と圧縮残留応力の導入を同時に行う方法などがあった。これら方法は、溶接線全線に対して処理しなければ継手全体としての疲労強度の確保ができず、作業負荷が大きくなり、経済的には好ましい方法ではない。最近では、ピーニングを行う際に超音波を用いるピーニング、すなわち超音波ピーニング技術について、例えば米国において多くの技術が開示されている(例えば特許文献1〜3)。この技術は、従来のピーニング方法に比べ、超音波を用いることによりピーニングの効率が大幅に改善されたものであり、これによりピーニング作業負荷の軽減が期待できる。しかし、溶接継手全体の疲労強度向上のためには、溶接線全線にわたってピーニング処理をしなければならないことにはかわりはなく、作業工程がその分増え、経済的負荷が増加するという問題は未可決のままである。
【0005】
一方、最近では、溶接金属の変態温度が低くなるように溶接で使用する溶接材料の成分を設計し、溶接時に変態に伴う体積膨張を利用し圧縮残留応力を導入することで溶接止端部の引っ張り残留応力を低減させ、疲労特性を改善する技術が提案されている(例えば特許文献4。以降、このような溶接材料を総称して低温変態溶接材料と呼ぶ)。これによれば、低温変態溶接材料を用いて溶接して変態開始温度が170℃〜250℃の低温域で溶接金属をマルテンサイト変態およびそれによる体積膨張させることにより、その後の熱収縮起因の引張応力を相殺し室温での溶接止端部の引っ張り残留応力を低減あるいは圧縮残留応力とする技術が開示されている。
【0006】
このような溶接金属の低温変態膨張を利用した技術は、主に溶接に使用する溶接材料の成分設計を変更するだけで継手の疲労強度が改善できるという点で上述の溶接後の後処理技術に比べて作業工程が少なく、その分人件費が節約できる経済的に優れた方法である。
【0007】
しかし、特許文献4などで開示される溶接金属の低温変態膨張を利用した技術は、大きく3つの問題がある。
【0008】
つまり、▲1▼溶接に用いる低温変態溶接材料は、変態温度を低下するために高価な合金元素を多く添加しなければならず、その分溶接材料のコストが高い、▲2▼同じ合金元素を多く添加した理由により溶接施工時の作業性が悪くなり、作業効率劣化を招きそれだけ工作コストが高い、▲3▼低温域で変態開始するマルテンサイト変態の体積膨張を利用しているため室温での溶接金属がマルテンサイト主体の硬質組織となり、機械的特性、特に靭性が劣化する、などの点が挙げられる。
【0009】
このように、溶接金属の変態膨張を利用する方法や超音波ピーニング法には、まだ解決が望まれている問題点が存在し、これら問題を解決した高疲労強度溶接継手および溶接継手の疲労強度向上方法が強く望まれていた。
【0010】
【特許文献1】
US 6171415 B1
【特許文献2】
US 6338765 B1
【特許文献3】
US 2002/0014100 A1
【特許文献4】
特開平11−138290号公報
【0011】
【発明が解決しようとする課題】
溶接金属の変態開始温度を充分下げて疲労強度を向上させる技術は、特に新しい製造工程を必要とするわけではないためメリットが大きいが、作業性が悪い、高コストである、などの問題が現存している。一方、従来継手に対してピーニング処理をして疲労強度を向上させる方法は、全溶接線に対して実行しなければならず、製造コスト増加につながる方法である。
【0012】
本発明は、上記従来技術の問題点に鑑みて、従来よりも溶接金属の変態温度が高い条件での変態膨張を利用して溶接継手の疲労強度を十分に向上させ、ピーニング処理を、ビード形状が乱れやすいスタート部分とクレーター部分に限定させることにより、従来低温変態のために必要であった高価な合金元素の添加量を大幅に低減させ、かつピーニング範囲を狭くすることにより従来よりも経済性および溶接金属の靭性に優れる、薄鋼板の高疲労隅肉溶接継手および隅肉溶接継手の疲労強度向上方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、上記の技術的課題を解決するものであり、つまり、その要旨とするところは、次の通りである。
【0014】
(1) 溶接止端部を有する薄鋼板の隅肉溶接継手において、板厚が1.0〜4.0mmで、かつ、引っ張り強度が590MPa以上である鋼板と、溶け込み深さが前記鋼板の板厚の1/3以下であり、オーステナイトからマルテンサイトまたはベイナイトに変態開始する温度が475〜600℃であり、かつ、引っ張り強度が590MPa以上である溶接金属を有する溶接部からなり、該溶接部の溶接ビードのスタート部とクレーター部の端部から少なくとも10mm以上の範囲にわたって溶接止端部が鋼材表面より0.03mm以上かつ板厚の1/4以下へこんでいることを特徴とする高疲労強度隅肉溶接継手。
【0015】
(2) 前記溶接金属が、質量%で、C:0.2〜0.4%、Si:0.1〜0.8%、Mn:0.4〜2.0%、P:0.03%以下、S:0.02%以下を含有し、残部が鉄および不可避不純物からなることを特徴とする前記(1)の高疲労強度隅肉溶接継手。
【0016】
(3) 前記溶接金属が、さらに、質量%で、Ni、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする前記(2)記載の高疲労強度隅肉溶接継手。
【0017】
(4) 前記溶接金属が、質量%で、C:0.03〜0.2%未満、Si:0.1〜0.8%、Mn:1.0〜2.0%、P:0.03%以下、S:0.02%以下、Ni:2.0〜4.0%未満を含有し、残部が鉄および不可避不純物からなることを特徴とする前記(1)に記載の高疲労強度隅肉溶接継手。
【0018】
(5) 前記溶接金属が、さらに、質量%で、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする前記(4)記載の高疲労強度隅肉溶接継手。
【0019】
(6) 溶接止端部を有する薄鋼板の隅肉溶接継手において、板厚が1.0〜4.0mmで、かつ、引っ張り強度が590MPa以上である鋼板と、溶け込み深さが前記鋼板の板厚の1/3以下であり、オーステナイトからマルテンサイトまたはベイナイトに変態開始する温度が400〜475℃未満であり、かつ、引っ張り強度が590MPa以上であることを特徴とする溶接金属であり、かつ、溶接ビードのスタート部とクレーター部の端部から少なくとも10mm以上の範囲にわたって溶接止端部が鋼材表面より0.03mm以上かつ板厚の1/4以下へこんでいることを特徴とする高疲労強度隅肉溶接継手。
【0020】
(7) 前記溶接金属が、質量%で、C:0.03〜0.2%未満、Si:0.1〜0.8%、Mn:1.0〜2.0%、P:0.03%以下、S:0.02%以下、Ni:4.0〜7.5%を含有し、残部が鉄および不可避不純物からなることを特徴とする前記(6)に記載の高疲労強度隅肉溶接継手。
【0021】
(8) 前記溶接金属が、さらに、質量%で、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする前記(7)記載の高疲労強度隅肉溶接継手。
【0022】
(9) 鋼板の隅肉溶接する方法において、板厚が1.0〜4.0mmで、かつ、引っ張り強度が590MPa以上の鋼板を用い、該鋼板の溶接部の拘束度が4000N/mm・mm以下、かつ、該溶接部における溶接金属の溶け込み深さが前記鋼板の板厚の1/3以下、かつ、該溶接部に溶接金属の変態開始温度が475〜600℃、かつ、引っ張り強度が590MPa以上の溶接金属を形成し、該溶接部の溶接ビードのスタート部分およびクレーター部分の端部から少なくとも10mm以上の範囲にわたって溶接止端部をピーニング処理することを特徴とする隅肉溶接部の疲労強度向上方法。
【0023】
(10) 前記溶接金属が、質量%で、C:0.2〜0.4%、Si:0.1〜0.8%、Mn:0.4〜2.0%、P:0.03%以下、S:0.02%以下を含有し、残部が鉄および不可避不純物からなることを特徴とする前記(9)記載の隅肉溶接部の疲労強度向上方法。
【0024】
(11) 前記溶接金属が、さらに、質量%で、Ni、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする前記(10)記載の隅肉溶接部の疲労強度向上方法。
【0025】
(12) 前記溶接金属が、質量%で、C:0.03〜0.2%未満、Si:0.1〜0.8%、Mn:1.0〜2.0%、P:0.03%以下、S:0.02%以下、Ni:2.0〜4.0%未満を含有し、残部が鉄および不可避不純物からなることを特徴とする前記(11)記載の隅肉溶接部の疲労強度向上方法。
【0026】
(13) 前記溶接金属が、さらに、質量%で、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする前記(12)記載の隅肉溶接部の疲労強度向上方法。
【0027】
(14) 鋼板の隅肉溶接する方法において、板厚が1.0〜4.0mmで、かつ、引っ張り強度が590MPa以上の鋼板を用い、該鋼板の溶接部の拘束度が8000N/mm・mm以下、かつ、該溶接部における溶接金属の溶け込み深さが前記鋼板の板厚の1/3以下、かつ、該溶接部に溶接金属の変態開始温度が400〜475℃未満、かつ、引っ張り強度が590MPa以上の溶接金属を形成し、該溶接部の溶接ビードのスタート部分およびクレーター部分の端部から少なくとも10mm以上の範囲にわたって溶接止端部をピーニング処理することを特徴とする隅肉溶接部の疲労強度向上方法。
【0028】
(15) 前記溶接金属が、質量%で、C:0.03〜0.2%未満、Si:0.1〜0.8%、Mn:1.0〜2.0%、P:0.03%以下、S:0.02%以下、Ni:4.0〜7.5%を含有し、残部が鉄および不可避不純物からなることを特徴とする前記(14)に記載の隅肉溶接部の疲労強度向上方法。
【0029】
(16) 前記溶接金属が、さらに、質量%で、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする前記(15)記載の隅肉溶接部の疲労強度向上方法。
【0030】
(17) ピーニング方法として、周波数が20kHz〜60kHzの範囲内にある超音波を用いた方法を用いることを特徴とする、前記(9)〜(15)または(16)のいずれかに記載の隅肉溶接部の疲労強度向上方法。
【0031】
(18) ピーニングを行なう際の、溶接部に衝撃を加える先端部分に、直径が1.5mm〜7.0mmの範囲内にあるピンを1本または複数本用い、かつ、ピン先端の硬度が、ビッカース硬さで450以上900以下であるピンを用いることを特徴とする前記(17)記載の隅肉溶接部の疲労強度向上方法。
【0032】
(19) 前記(9)〜(17)または(18)記載の隅肉溶接部の疲労強度向上方法を用いて作製された前記(1)〜(7)または(8)記載の高疲労強度隅肉溶接継手。
【0033】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0034】
まず、本発明の技術思想について述べる。本発明の技術思想は大きく2つ存在し、第1の技術思想は、溶接金属の変態膨張を利用し溶接残留応力を低減する技術に関するものであり、第2の技術思想はピーニング処理に関するものである。初めに第1の技術思想について述べる。
【0035】
本発明は、従来の低温変態溶材を用いた溶接方法、つまり、溶接時に低温域での溶接金属の変態膨張を利用して溶接止端部に圧縮応力を発生させ、その圧縮応力を室温まで維持させることにより溶接止端部の引張残留応力を低減する方法と比べて、溶接金属の変態膨張を利用して溶接止端部に圧縮応力を発生させる点では同じであるものの、その変態開始温度が従来に比べて高い点が大きく異なる。
【0036】
溶接における溶接部の残留応力の発生過程を考察すると、溶接後、溶接金属が凝固、冷却されてその変態開始温度になると、溶接金属は変態により体積膨張し、その周囲の母材熱影響部の反力との関係で溶接止端部に圧縮応力が発生する。
【0037】
この際、溶接金属の変態開始温度が高い場合は、溶接金属の変態による体積膨張が高温で発生するために、変態膨張終了後の冷却過程での熱収縮により溶接止端部には引っ張り応力が発生し、室温まで冷却された時点での溶接止端部の残留応力は引っ張り応力状態となる。そのため、従来の低温変態溶接材料を用いる溶接技術は、溶接金属の変態開始温度をできるだけ低温側(250℃以下)にすることにより、溶接金属の変態膨張終了時点から室温までの温度差を小さしてこの間の冷却・熱収縮量を低減し、室温で溶接止端部の残留応力を圧縮応力側に移行させることを技術思想とするものである。
【0038】
これに対し、本発明では、従来のように溶接金属の変態開始温度を低温域(250℃以下)にしなくても、つまり、変態開始温度が400℃〜600℃と非常に高い温度域で溶接金属の変態膨張が生じても、その変態膨張終了から室温までの冷却・熱収縮に起因して溶接止端部に発生する引っ張り応力自体を抑制することにより、変態膨張時に溶接止端部で発生した圧縮応力を維持し、室温での溶接止端部の残留応力を圧縮応力側に移行させることを目的としている。
【0039】
さらに詳述すると、本発明は、(1)高温域での溶接金属の変態膨張開始から変態膨張終了までの間に、その変態に伴う体積膨張を利用して溶接止端部に圧縮応力を発生させるために、溶接金属および母材の引っ張り強度を所定値以上確保するとともに、溶接金属の溶け込み深さを所定値以下に制限することにより、溶接金属の変態膨張に伴う体積膨張を溶接金属の下および周囲にある熱影響部を含む母材部で押さえ付け、溶接金属にはその変態膨張の拘束力により、また、溶接止端部には溶接金属の変態膨張の拘束力のためにに発生する反力として、圧縮の残留応力を導入する、(2)上記(1)のメカニズムにより圧縮応力が導入されて溶接金属の変態膨張が終了し、その後室温までの冷却・熱収縮過程において、熱収縮部分を拘束することなく自由収縮させることにより、熱収縮による溶接止端部での引っ張り応力の発生を抑制する。これが可能であれば上記(1)により導入された圧縮応力が室温まで冷却しても保持される。そのためには、まず、板厚を所定値以下に薄くすることにより溶接金属の変態膨張終了までにその下部の熱影響部を含む母材に溶接熱の熱伝導を完了させる必要がある。これは、板厚方向の温度差をなくし、圧縮応力が生じている表面の溶接止端部が板裏面から拘束されないようにすることを意味する。板の表裏面の温度が同じならば、表裏面の熱収縮も同じになるため、表面は裏面から拘束されないのである。次に、溶接部の拘束度を所定値以下に低下させ、溶接金属が変態膨張終了してから生じる室温までの熱収縮を、できるだけ自由に発生させる必要がある。これにより、圧縮応力が生じている溶接止端部は、板裏面のみならず周囲からも拘束されない状態が実現する。このようなプロセスを経ることにより、溶接金属が変態膨張したときに発生した圧縮応力は、その後の熱収縮により引っ張り応力に変わることなく、室温に冷却されるまで維持される。
【0040】
本発明における第1の技術思想は、このように比較的高温で生じる溶接金属の変態膨張に伴う圧縮応力を、板厚方向の温度差を小さくし、かつ拘束度を低減させることで室温まで維持させようというものである。
【0041】
本発明における第2の技術思想は、溶接ビードのスタート部分とクレーター部分に対して、ピーニング処理をほどこして、そこの部分の疲労強度を確保しようというものである。スタート部分およびクレーター部分は、ビード形状が乱れやすいという問題に加え、構造的にも応力集中しやすい部分である。そのため、本発明では、スタート部分とクレーター部分以外の溶接止端部については第1の技術思想を用いて疲労強度を確保し、スタート部分とクレーター部分についてはピーニング処理を用いて疲労強度を確保することにより、溶接継手全体としての高疲労強度を実現させている。このように、ピーニング処理をスタート部分とクレーター部分近傍に限定することにより、ピーニング作業の負荷をできるだけ低減させることが可能になる。
【0042】
本発明は、ピーニング処理として、特に超音波を用いたピーニングを用いることを特徴としている。超音波ピーニングを用いると、その分、ピーニング処理をする時間が短縮され、それだけメリットは大きい。本発明の本意は、できるだけ簡便な方法で疲労強度を向上させる技術の提供を目的としているため、超音波ピーニングを使用する意義は大きい。
【0043】
以下に、本発明の隅肉溶接方法およびそれを用いた溶接継手の構成およびその限定理由について説明する。
【0044】
(母材板厚1.0〜4.0mmの限定)
母材板厚を限定した理由について述べる。
【0045】
本発明では、溶接時に溶接熱がすぐに被接合材の裏面まで伝達させるために、鋼材の板厚を薄くする。これは、溶接熱が裏面まで達した後では溶接金属は鋼材裏面から拘束を受けず、溶接金属の熱収縮と板裏面の熱収縮が同時に発生するためである。鋼材の板厚が厚くなるほど、溶接熱の伝達に時間がかかり、溶接金属が変態終了しても裏面まで溶接熱が伝わらないため、その変態終了後から室温まで冷却され熱収縮する過程で溶接金属はその下部の鋼材から拘束を受け、溶接止端部に引っ張り応力が発生してしまう。
【0046】
本発明では、従来の低温変態溶材の変態温度に比べて200℃近く高い変態開始温度を有する溶接材料を用い、溶接金属の変態開始温度が600℃〜400℃と高く、その変態膨張が終了する温度も高いため、このような高い温度領域から室温までの冷却で生じる溶接金属の熱収縮を抑制し、溶接金属の変態膨張により生成した溶接止端部での圧縮残留応力を室温まで保持しつづけるためには、少なくとも溶接金属の変態膨張が終了する時点で熱が裏面まで伝達していなければならない。
【0047】
また、変態開始温度のコントロールを低コストで実現するために高価な合金元素を減らしCを高めに添加した成分系の溶接材料を用いて溶接する場合には、溶接金属中のC量が高くなり、特に、鋼材板厚が厚い場合の突合せ凝固時に凝固割れが発生しやすい。
【0048】
この凝固割れの原因となる突合せ凝固は、鋼材板厚が厚くなると、鋼材そのものの熱容量が大きくなるため溶接熱が溶接ビードの幅方向に伝達されやすくなることによって発生するため、高Cの成分系の溶接材料を用いて溶接する場合には、溶接金属の凝固割れ防止の意味からも鋼材板厚を薄くする必要がある。
【0049】
さらに、鋼材の板厚は、後述する拘束度を低下させる観点からも薄い方が有利である。溶接金属の熱収縮が受ける拘束は、鋼材の裏面からの拘束の他に、溶接継手の構造全体からも拘束を受けるが、この拘束を低減するためにも鋼材板厚を薄くすることは意味がある。
【0050】
鋼材の板厚が4.0mmを上回る場合は、溶接熱の裏面への伝達が遅くなり、溶接金属の変態終了時点で溶接熱が裏面まで伝わらず、その後の室温までの冷却、熱収縮過程で溶接金属が鋼材下部から拘束を受け、溶接止端部に引っ張り応力が発生するため溶接継手の疲労強度が低下する。また、高Cの成分系の溶接材料を用いて溶接する場合には、溶接金属の凝固割れが発生する危険が高くなる。さらには、溶接継手の構造との関係で決まる拘束度が高くなり、十分低い拘束度が得られない。
【0051】
一方、鋼材板厚が1.0mm未満に薄くなると、後述する溶接金属の溶け込み深さを板厚に対する相対値を制限することが難しくなるばかりではなく、溶接金属の変態膨張時に反力として作用する溶接金属直下の母材部分が少なくなり、溶接止端部への圧縮応力の導入が難しくなる。従って、本発明では、鋼材の板厚の上限を4.0mm、その下限を1.0mmとする。
【0052】
(拘束度4000N/mm・mm以下又は8000N/mm・mm以下の規定)
溶接継手の拘束度を限定した理由について述べる。
【0053】
溶接継手の拘束度は、従来は、溶接時に溶接部に生じる割れを評価するために一般に用いられていたパラメータであるが、本発明では、溶接金属の変態膨張終了後の冷却、熱収縮過程で溶接金属がその周囲からどれだけ強く拘束されているかを定量的にあらわす指標として採用した。
【0054】
一般に、拘束度(R)は、溶接開先を単位長さだけ縮めるために必要な溶接線方向の単位長さあたりの荷重と定義され、中央に開先部を作製した試験片の両端を固定した場合の両固定端間の長さ(L)と、板厚(H)と、ヤング率(E)との関係から、開先幅が固定端間の距離(L)に対して十分小さい場合には、以下の(1)式で与えられる。
(N/mm・mm)=E(N/mm)・H(mm)/L(mm)・ ・ ・(1)
なお、拘束度(R)の単位は、慣例上N/mm・mmと表現されている。
【0055】
(1)式の関係から、拘束度(R)は、溶接時の鋼材の板厚(H)が薄くするか、又は、溶接継手構造によって決まる固定端間の距離(L)を長くすることにより低下させられる。実際の溶接施工において拘束度(R)を調整する方法としては、拘束冶具を工夫してその固定端の距離を変化させる方法や、溶接部材の設計に工夫を加え鋼板の板厚Hを変化させる方法などが考えられる。
【0056】
本発明では、溶接金属の変態膨張終了から室温までの冷却・熱収縮過程において、溶接金属の熱収縮が自由収縮に近い状態にし、溶接止端部での引っ張り応力の発生を抑制するために、上述のように鋼材板厚の上限を4mm以下に規制するとともに、溶接金属の熱収縮時の周囲からの拘束状態の指標として拘束度(R)の上限を以下のように規制する。
【0057】
先に述べた通り、溶接継手の疲労強度を向上することを目的とし、室温時の溶接止端部の残留応力を圧縮側に保持するためには、▲1▼溶接金属の変態膨張開始から変態膨張終了までの体積膨張時において、その膨張が拘束されることにより発生する応力とその周囲の母材熱影響部に生じる反力を確保し、溶接止端部に圧縮応力を発生させるとともに、▲2▼溶接金属の変態膨張終了から室温までの熱収縮時において、溶接金属の周囲からの拘束を小さくし自由収縮させることで溶接止端部での引っ張り応力の発生を抑制することが必要である。このうち、拘束度の上限規制は、上記▲2▼の溶接金属の熱収縮における溶接止端部での引っ張り応力の発生を抑制する作用を有し、溶接金属の変態開始温度が同じ条件では、拘束度の上限を低くすることにより、室温時の溶接止端部の残留応力は圧縮側に移行し、溶接継手の疲労強度は向上する。
【0058】
しかし、溶接金属の変態開始温度が高くなるとともに、上記▲1▼の溶接金属の変態膨張時の溶接金属に発生する応力と、その周囲の母材熱影響部に発生する反力が低下するため、溶接止端部で発生する圧縮応力は低下し、かつ、変態終了温度も高くなり室温との温度差が大きくなるため、上記▲2▼の溶接金属の熱収縮による溶接止端部での引っ張り応力も増加する。その結果、上記▲2▼の作用により室温時の残留応力を圧縮側にするためには、溶接金属の変態開始温度の増加に応じて拘束度をより低下する必要がある。
【0059】
本発明では後述するように実用上、2種類の成分系の溶接材料を用いて溶接することにより、溶接金属の変態開始温度が475〜600℃と、400℃〜475℃未満の異なる2種類の変態開始温度条件で溶接を行うため、これらの変態開始温度に応じて拘束度の上限値を以下のように規定する。
【0060】
つまり、本発明では2種類の変態開始温度のうちで、溶接金属の変態開始温度がより高い方である変態開始温度が475〜600℃の場合は、拘束度の上限値を4000N/mm・mmとより低くし、もう一方の変態開始温度が400℃〜475℃の場合は、拘束度の上限値を8000N/mm・mmとする。いずれの変態開始温度の上限値を超えた場合も、溶接金属の変態膨張終了後の熱収縮によって溶接止端部で発生する引っ張り応力を低減する効果が不十分となり、室温時の残留応力を圧縮側にすることは困難となり、溶接継手の疲労強度を十分に向上できない。
【0061】
(溶接金属および鋼材の引っ張り強度590MPa以上の規定)
溶接金属および鋼材の引っ張り強度を限定した理由について述べる。
本発明では、溶接金属の変態開始温度が従来よりもかなり高い条件で溶接を行うため、溶接金属の変態膨張開始温度から変態膨張終了温度までの体積膨張過程における溶接金属およびその周囲の母材熱影響部の引っ張り強度は、従来よりも相当低いものと考えられる。また、従来の低温変態溶接材料を用いた溶接では、溶接金属が合金成分が多く焼入れ性が高い成分系であり、マルテンサイト変態による体積膨張を利用するものであるため、溶接金属の変態膨張時にはマルテンサイトの硬質組織に起因して、変態膨張時に溶接金属の強度を十分確保することができる。しかし、本発明の高温変態溶接材料を用いた溶接では、低温変態溶接材料の場合に比べて、溶接金属は合金成分が少なく焼入れ性が低い成分系であり、従来技術における低温変態溶接材料を用いた場合に比べて変態膨張時の溶接金属の強度は低い。
【0062】
本発明では、先に述べた通り、板厚および拘束度の条件を制限することにより溶接金属の変態膨張終了から室温までの熱収縮時において発生する溶接止端部での引っ張り応力を低減することが可能であるが、室温時の溶接止端部の残留応力を圧縮応力側にするためには、これに加えて、溶接金属の変態膨張開始から変態膨張終了までの体積膨張を利用し溶接止端部に十分な圧縮応力を発生するための、溶接金属の膨張が拘束されることにより発生する応力とその周辺の母材熱影響部に生じる反力を確保する必要があり、そのためにはそれらに相当する溶接金属および鋼材の引っ張り強度が確保されていなければならない。例えば、もし溶接金属の変態膨張時の温度域での溶接金属の引っ張り強度が0となった場合には、溶接金属の変態膨張時には溶接金属は塑性変形し単に変態膨張が塑性歪に変化するだけであり溶接止端部での圧縮応力は0のままであり、仮に、その後、室温に冷却されるまで溶接金属の熱収縮を抑制し、この状態が保持されたとしても、溶接止端部を圧縮残留応力とすることはできない。
【0063】
以上のことを踏まえて、本発明では、溶接金属の変態による体積膨張を利用し溶接止端部に十分な圧縮応力を発生するための最低限の溶接金属に生じる応力とその周辺の母材熱影響部の反力を確保するため、溶接金属および鋼材の引っ張り強度をそれぞれ590MPa以上とした。
【0064】
なお、本発明では、鋼材および溶接金属の引っ張り強度の上限は特に規定する必要はなく、特に溶接金属はその変態開始温度の下限の規定によりその引っ張り強度も制約される。しかし、鋼材および溶接金属の引っ張り強度が高くする場合には、鋼材および溶接金属に相当量の合金元素を添加する必要があるため、溶接部の靱性向上や製造コスト低減の観点から、好ましくは、鋼材および溶接金属の引っ張り強度の上限値を980MPaとすることが望ましい。
【0065】
(溶接金属の溶け込み深さが鋼板の板厚の1/3以下の規定)
溶接金属の溶け込み深さを限定した理由について述べる。
【0066】
溶接金属の溶け込み深さが過度に大きい場合は溶接金属の変態膨張時にその下部の熱影響部を含む鋼材の反力が十分に得られず、溶接止端部での圧縮残留応力が小さくなるため疲労強度は十分に改善しない。例えば、図1に示すように溶接金属Wの溶け込み深さが大きい場合は、溶接金属の変態膨張時にAで示された未溶融部分が少なくなるため溶接金属の膨張をほとんど拘束することができず塑性変形し、溶接金属はほとんど自由に膨張してしまい、溶接止端部には圧縮残留応力が発生しない。これに対して、Aの未溶融部分の拘束に頼らずに、溶接継手の構造や拘束具などの拘束により、拘束度を高く維持して溶接する方法を用いると、溶接金属の変態膨張時には溶接止端部は圧縮応力状態になるものの、溶接金属の変態終了後から室温までの冷却による熱収縮で溶接止端部に引っ張り応力が発生し、変態膨張時の圧縮応力を相殺する結果となるため有効な方法とはいえない。
【0067】
鋼材板厚が比較的厚い条件での溶接では、このような溶接金属の溶け込み深さによる溶接金属下部の母材拘束低下の問題はなくなるが、先に述べた理由で本発明では溶接金属下部の母材の熱伝導性を確保するために鋼材板厚を4mm以下に制限するため、このような板厚の薄い場合は溶接金属の溶け込み深さを制限しなければ溶接金属下部の熱影響部を含む母材の拘束が低下し溶接止端部の圧縮残留応力を十分に発生できず、その結果、溶接継手の疲労強度を向上させることができない。
【0068】
本発明では、上記と同様な溶接金属の変態膨張時の下部未溶融部分の拘束を十分に確保するために溶接金属の溶け込み深さを鋼材板厚の1/3に規定する。ここで、溶け込み深さとは、溶接金属のうちで最も溶け込み深さが大きい、溶け込み深さの最大値と示すものであり、鋼材板厚とは、溶接する前の板厚である。
【0069】
(溶接金属の変態開始温度475〜600℃又は400〜475℃未満の規定)
溶接金属の変態開始温度の範囲を限定した理由について述べる。
本発明における溶接金属の変態開始温度は、従来の溶接金属の変態伴う体積膨張を利用した溶接継手の疲労強度向上技術とは、大きく異なる点であり、溶接金属の変態開始温度が従来に比べて200℃以上高い条件での溶接金属の変態膨張を利用するものである。本発明では、溶接金属の変態開始温度が非常に高いため、従来のような変態開始温度が低い条件での変態ではなく、マルテンサイト以外にもベイナイト変態又はフェライトパーライト変態による体積膨張を利用するものであり、溶接継手の溶接金属は従来のマルテンサイト主体の硬質組織よりも硬さが低いベイナイト変態又はフェライトパーライト主体組織となり、靭性が高い溶接金属が得られる。また、本発明では、溶接金属の変態開始温度が従来の低温変態溶接材料を用いた溶接に比べて非常に高いため、溶接材料中に溶接金属の変態開始温度を低下させるために必要な高価な合金成分の添加量を低減できるため、従来に比べ溶接材料の製造コストを低減できる。
【0070】
しかし、一般に溶接金属や母材の強度は、温度が高くなるに従って低くなるため、本発明のように溶接金属の変態開始温度が高い条件で溶接を行う場合には、その分強度が低くなるため、溶接金属の変態膨張時にその膨張が拘束されることにより発生する応力とその周囲の熱影響部を含む母材に生じる反力が低下するため変態膨張時に溶接止端部で発生する圧縮応力は低下し、かつ、変態終了温度と室温との温度差が大きくなるため、その温度間での冷却による溶接金属の熱収縮で生じる溶接止端部での引っ張り応力も増加し、その結果、室温時の溶接止端部の残留応力を圧縮側にし溶接継手の疲労強度を向上することが困難になる。従って、本発明では、先に述べたように、溶接における拘束度のレベルに応じて溶接金属の変態開始温度を規定することにより、溶接金属の変態終了後の熱収縮時に自由収縮させて溶接止端部での引っ張り応力の増加を抑制させる。
【0071】
本発明では、溶接における溶接金属の変態開始温度条件を以下のように変態開始温度が高い475〜600℃と、それよりも低い400℃〜475℃未満の異なる2つの変態開始温度レベルに分類する。
【0072】
溶接金属の変態開始温度が475℃〜600℃となる条件で溶接する場合は、より高温で溶接金属の変態が開始するため、溶接継手の溶接金属がベイナイト変態又はフェライトパーライト主体組織でかつより硬度が低くより靭性に優れた溶接継手が得られ、溶接材料中に変態開始温度を低下させるために添加する高価な合金成分の添加量をより低減でき、溶接継手の製造コストもより低減できる。なお、溶接金属の変態開始温度が475℃〜600℃の条件で溶接止端部に圧縮応力を導入して室温時の残留応力と圧縮応力側にすることで溶接継手の疲労強度を十分確保するためには、先に述べた通り、拘束度を4000N/mm・mm以下に規定する必要がある。しかし、このような低い拘束度条件で溶接した場合でも、溶接金属の変態開始温度が600℃を上回ると、溶接止端部の残留応力を圧縮応力側にすることが困難となり溶接継手の疲労強度が十分に向上できないため、溶接金属の変態開始温度の上限値を600℃とした。一方、溶接金属の変態開始温度の下限値は、変態開始温度が475℃より低い場合には溶接継手の疲労強度の改善効果は得られるが、変態開始温度の低下に伴う上記の理由で溶接継手の製造コストおよび溶接部の靭性が低下するため、経済性および製造コストの観点から溶接金属の変態開始温度の下限値を475℃とした。
【0073】
溶接金属の変態開始温度が400℃〜475℃未満となる条件で溶接する場合は、上記の溶接金属の変態開始温度が高い溶接条件に比べて溶接継手の溶接金属がベイナイト変態又はフェライトパーライト主体組織となるものの硬度が少し高くなり溶接部の靭性は若干低下し、かつ溶接材料中に溶接金属の変態開始温度を低下させるために添加する高価な合金成分の添加量も増加し溶接継手の製造コストも少し増加するが、拘束度が8000N/mm・mm以下の高い拘束条件で溶接しても、溶接止端部の残留応力を圧縮応力側にすることができ、溶接継手の疲労強度を十分に確保することが可能である。従って、溶接継手の構造上、拘束度を十分に低下した施工条件で溶接することが困難な場合の溶接で、特に有効となり、溶接施工条件の自由度を向上させることができる。
【0074】
この溶接条件では比較的拘束度が高く、溶接金属の変態膨張終了後の熱収縮の影響が比較的大きくなりやすいため、溶接金属の変態開始温度の上限を475℃未満と低く規制しなければ、溶接金属の変態膨張終了後の熱収縮過程で収縮部が拘束されることにより溶接止端部の残留応力が引っ張り応力側に移行してしまい、十分な疲労強度の向上が得られなくなるため、溶接金属の変態開始温度の上限を475℃未満とする。一方、溶接金属の変態開始温度の下限値は、変態開始温度が400℃より低い場合でも溶接継手の疲労強度の改善効果は得られるが、変態開始温度の低下に伴う溶接継手の製造コストおよび溶接部の靭性が低下するため、経済性および製造コストの観点から溶接金属の変態開始温度の下限値を400℃とした。
【0075】
次に、溶接止端部の鋼材表面からのへこみ量を限定した理由について述べる。
【0076】
本発明では、溶接継手の疲労強度向上を、溶接金属の変態膨張とピーニング処理の2つを併用して達成させている。溶接金属の変態膨張を用いて疲労強度を向上させる方法は、溶接金属の変態開始温度を限定したり、溶接金属の成分を限定することにより疲労強度向上効果を確保することができるが、ピーニング処理を行った場合、その処理で疲労強度向上効果が得られているのかどうかは必ずしも明確ではない。そこで、本発明者らは、ピーニング処理をした後の溶接止端部のへこみ量に着目し、疲労強度向上効果が得られるへこみ量を調査した。へこみ量の下限0.03mmは、これを下回るへこみ量では、ピーニング処理の効果が小さく疲労強度が向上しないためこの値を設定した。上限の板厚の1/4は、これ以上のへこみ量となるピーニング処理は、板厚減少による局部応力の増加を引き起こし、継手としての疲労強度向上からは好ましくないためこの値を設定した。次に、止端部へのピーニング処理を行う領域または止端部のへこみが存在する領域の範囲を限定した理由について述べる。
【0077】
本発明において、ピーニング処理を行う目的は、ビード形状が不良となる溶接ビードのスタート部分とクレーター部分の疲労強度を確保することである。そのため、ピーニング処理を行う、またはそれによって止端部のへこみが存在する領域はビード形状が不良となる領域をカバーする必要がある。特に疲労特性上問題となる部分はビードの両端部分である。そのため、止端部へのピーニング処理または止端部へのへこみは、この両端部分を少なくともカバーしていなければならない。そして、ビード形状が悪い、両端部から10mmの範囲は、確実にピーニング処理を実施しへこみが確保されていなければならない。本発明で、止端部へのピーニング処理を行う領域また止端部へのへこみがスタート部とクレーター部の端部から少なくとも10mm以上の範囲にわたると限定した理由は以上のことによる。また本発明では、ピーニング処理領域またはへこみ部領域の上限を特に設けていない。上限を設けることにより疲労強度がさらに向上するという効果が必ずしも得られないからである。しかし、ピーニング処理そのものは製造コストの上昇を招き、また本発明では低温変態溶接金属で疲労強度向上が達成されているため、好ましくはこの上限を100mmとすることが望ましい。
【0078】
(溶接金属の成分の規定)
溶接金属の成分を限定した理由について述べる。
【0079】
本発明の溶接金属の成分系の実施形態として、上記の変態開始温度が比較的高い475〜600℃と、それよりも低い400℃〜475℃未満の異なる2つの変態開始温度レベルに応じて、以下の2種類の成分系が用いられる。
【0080】
変態開始温度が比較的高い475〜600℃の溶接金属の成分系としては、主としてCを比較的多く添加することにより溶接金属の変態開始温度を下げる成分系(以下、C系とする。)と主としてNiを添加することにより変態開始温度を下げる成分系(以下、Ni系とする。)を用いた。また、変態開始温度が比較的低い400℃〜475℃未満の溶接金属の成分系としては、主としてNiを添加することにより変態開始温度を下げる成分系(以下、Ni系成分とする。)を用いた。
【0081】
これらのうち、C系の溶接金属は、高価な合金元素の添加量が少ないため、その溶接金属を得るための溶接材料の製造コストが低減でき、溶接金属の靭性はやや劣るものの疲労特性に優れた溶接継手を製造する際に経済性の観点から有利である。一方、Ni系の溶接金属は、高価なNi合金元素を比較的多く添加するため、溶接継手の経済性の観点からは不利であるが、溶接金属の変態開始温度が同じ条件においてさらにNiの作用を用いて靭性を向上できるため、疲労特性とともに高い靭性レベルが要求される溶接継手を製造する際に有効である。これらの溶接金属の成分系およびそれを実現する溶接材料の選択は、それぞれの特徴を踏まえて、選択されるものである。
【0082】
(C系溶接金属の成分規定)
C系溶接金属の成分およびその含有量の限定理由について説明する。
Cは、焼入れ元素で、溶接金属の強度向上および変態温度低減の両方の点から有効な元素である。C含有量の下限0.2%は、これを下回る添加量では、C系溶接金属の変態開始温度を475〜600℃の範囲内に調整することができないばかりではなく、溶接金属の強度を確保する上でも問題が生じてくるためこの値を設定した。一方、Cの含有量が高くなると特に鋼材板厚が厚い場合の突合せ凝固時に溶接金属に凝固割れを発生させる危険性が高まるため、Cの添加量の上限を0.4%とした。
【0083】
Siは、主として脱酸元素として添加し、溶接中の空気の混入などによる溶接金属の酸素濃度の上昇時にもその酸素レベルを下げる効果がある。Si含有量の下限は、0.1%を下回る添加量では脱酸効果が不十分で溶接金属中の酸素を十分低減できなくなり、溶接金属の機械的特性、特に靭性の劣化を招くためその含有量の下限を0.1%とした。一方、Siが0.8%を上回る量添加し場合にも靱性劣化を招くためその含有量の上限を0.8%とした。
【0084】
Mnは、焼入れ元素であり、溶接金属の強度を向上し、かつその変態温度を下げる作用を持つ。溶接金属の強度の確保は、本発明における溶接止端部の残留引っ張り応力低減のメカニズムである溶接金属の変態膨張時に降伏強度を確保し溶接止端部に十分な圧縮応力を発生させる点から重要となる。
【0085】
Mn含有量の下限は、溶接金属の強度確保の点からその最低限の添加量として0.4%とした。溶接金属の変態温度を下げるという観点からは、Cの補完成分としてMnの添加量を調整するが、その添加量が過度に多くなると、溶接材料の製造コストが高くなり経済性の観点から好ましくないためMnの添加量の上限を2.0%とした。
【0086】
PおよびSは、不可避的不純物元素であり、本発明では、これら元素が溶接金属中に多く存在するとその靭性が劣化するため、PおよびSの含有量の上限をそれぞれ0.03%、0.02%とした。
【0087】
以上が、本発明におけるC系溶接金属の基本成分であり、これらの成分規定により溶接金属の疲労強度は十分得られるが、さらに、溶接金属の強度および靭性をより向上させるために、それらの要求特性に応じて、Ni、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有させても良い。この含有量の合計値の下限は、溶接金属の強度および靭性を向上させるために最低限必要な含有量であり、その上限は、過度に合金元素の含有量を増加させことにより溶接継手の製造コストが増加するためにその上限を1.0%とした。
【0088】
(Ni系溶接金属の成分規定)
Ni系溶接金属の成分およびその含有量の限定理由について説明する。
【0089】
Cは、焼入れ元素であり、溶接金属の強度向上および変態温度の低減の点から有効な元素であるが、Ni系成分では、溶接金属の変態開始温度を主としてNi添加により実現し、Cは、Niの溶接金属の変態温度低下効果を補完しかつその強度を十分得るために最低限の含有量としてその下限を0.03%と規定する。一方、Cの過度の添加は、溶接金属の靱性劣化を引き起こすため、その含有量の上限を0.2%未満とした。
【0090】
Siは、主として脱酸元素として添加し、溶接中の空気の混入などによる溶接金属の酸素濃度の上昇時にもその酸素レベルを下げる効果がある。Si含有量の下限は、Si量が0.1%に満たない場合、脱酸効果が低下し溶接金属中の酸素レベルが高くなりすぎ、溶接金属の機械的特性、特に靭性の劣化を引き起こす危険性があるため、その含有量の下限を0.1%とした。一方、Siの過度の添加も靱性劣化を発生させるため、その含有量の上限を0.8%とした。
【0091】
Mnは、焼入れ元素であり、溶接金属の強度を向上し、かつその変態温度を下げる作用を持つ。溶接金属の強度の確保は、本発明における溶接止端部の残留引っ張り応力低減のメカニズムである溶接金属の変態膨張時に降伏強度を確保し溶接止端部に十分な圧縮応力を発生させる点から重要となる。
【0092】
Mn含有量の下限は、溶接金属の強度確保の点からその最低限の添加量として1.0%とした。溶接金属の変態温度を下げるという観点からは、Niの補完成分としてMnの添加量を調整するが、その添加量が過度に多くなると、溶接金属の靱性劣化を引き起こすためその上限を2.0%とした。
【0093】
PおよびSは、不可避的不純物元素であり、本発明では、これら元素が溶接金属に多く存在するとその靭性が劣化するため、PおよびSの含有量の上限をそれぞれ0.03%、0.02%とした。
【0094】
Niは、オーステナイト構造(面心構造)を有する金属元素であり、高温域での溶接金属のオーステナイト状態をより安定化し、低温域でのフェライト(体心構造)への変態を遅らせるため、その変態温度を低下させる元素である。また、Niは、同じ含有量を添加しても、Cに比べて溶接金属の凝固割れの危険性を高めないため、溶接金属の靭性を維持しつつさらに変態温度を低下させるために有効な元素である。
【0095】
本発明において、Ni系溶接金属の変態開始温度を475〜600℃の範囲に調整する場合には、C添加量を低減しても、C系溶接金属と同様に溶接継手の疲労強度の向上ができるとともに、C系溶接金属に比べてさらに靭性も向上することができる。そのためのNi含有量の下限は、溶接継手の疲労強度の向上のために2.0%とする。一方、Ni含有量の上限は、溶接継手の経済性、靭性および溶接性を十分に維持するために4.0%未満とする。
【0096】
本発明において、Ni系溶接金属の変態開始温度を400〜475℃未満の範囲に調整する場合には、C系溶接金属では、C含有量の増加による溶接金属の凝固割れ発生の問題が生じやすいが、Ni含有量を4.0〜7.5%とすることで凝固割れを抑制しつつ溶接金属の変態開始温度を低くして400〜475℃未満に調整できる。また、NiはCと異なり、多少添加量を増やしても靱性劣化は必ずしも生じないため、この場合でもC系溶接金属と同等以上の靭性を確保できる。Ni含有量の下限は、溶接継手の疲労強度の向上のために4.0%とした。一方、Ni含有量の上限は、7.5%を超えて添加すると、溶接継手の経済性の悪化とともに、靭性および溶接凝固割れなどの溶接性が劣化する可能性が生じるためその含有量の上限を7.5%と規定した。
【0097】
以上が、本発明におけるNi系溶接金属の基本成分であり、これらの成分規定により溶接金属の疲労強度は十分得られるが、さらに、溶接金属の強度および靭性をより向上させるためには、それらの要求特性に応じて、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有させても良い。この含有量の合計値の下限は、溶接金属の強度および靭性を向上させるために最低限必要な含有量であり、その上限は、過度に合金元素の含有量を増加させことにより溶接継手の製造コストが増加するためにその上限を1.0%とした。
【0098】
以上、C系およびNi系の溶接金属の成分およびその含有量の限定理由について説明したが、溶接金属の成分含有量の調整は、溶接に用いる、溶接ワイヤ、溶接ワイヤと充填フラックスとの組み合わせ、又は溶接棒の心線および被覆フラックスのうちの何れかを用いて溶接する際の溶接金属中への成分歩留まりを考慮してそれぞれの溶接材料の成分設計を行うことで実現可能となる。
【0099】
次に、ピーニング処理について特に超音波を用いたピーニング処理に限定した理由について述べる。
【0100】
ここで超音波ピーニングとは周波数が20kHzから60kHzの範囲内にある周波数を持つものをいう。超音波を用いる最大のメリットは、ピーニング先端のピンの重さが小さくても十分大きな衝撃力を与えることができ、その結果少ない作業時間で十分なピーニング効果をあげることができる点である。ピーニング処理をすることによる疲労強度向上原理は、そこの部分の形状を改善させるとともに圧縮の残留応力を付与することによる。そのためには、ピーニング部分に塑性歪を導入させなければならない。弾性歪の範囲内では、応力が残留しないからである。塑性歪を導入するためには、材料が持つ降伏強度以上の衝撃応力を加える必要があるが、これをもし、静的応力で実現しようとする場合は、溶接部に降伏応力以上の応力を加える必要があり、その分装置が大きくなってしまい、作業負荷の増大をまねく。一方、超音波を用いると、ピーニング部分に加わる応力はピンの質量が例えば10g程度でも十分大きな応力になることがわかる。
【0101】
この原理を簡単に説明する。
【0102】
周波数を33kHzとし、ピンの質量を10g、ピンが振動する範囲を0.03mmとし、ピン先端の直径を3mmと仮定する。このとき、ピンのスピード、Vは、
V=0.03×33000=1000mm/s=1m/s
である。ピンは1/33000秒に1回スピードを+1m/sから−1m/sに変化させると考えると、その変化は、ピーニング処理部分にピンがぶつかる瞬間に発生する。このスピード変化が1回の周波数内の1/10の時間すなわち、1/330000秒の間で生じるとすると、速度の時間変化、すなわち加速度、Aは、
A=dV/dt=2×330000=660000m/s
となる。衝撃力Fは、上記加速度にピンの重さ10g=1/100kgをかければ求まり、
F=660000×1/100=6600N
となる。応力Sは、これをピンの断面積、1.5×1.5×3.14=7.1mmで割れば計算でき、
S=6600/7.1=930N/mm2=930MPa
となる。注意すべきは、この応力は、ピンの重さがわずかに10gとした場合の値である点である。実際の超音波ピーニングの場合は、速度反転が生じる時間間隔が上記計算の設定よりさらに短いと考えられるため、より大きな衝撃応力が出ているものと考えられる。
【0103】
以上のように、ピーニング処理のうち、特に超音波を用いる方法は、ピンの質量が小さくて済み、その分装置の軽量化ができるなどの利点を有することがわかる。
【0104】
次に超音波ピーニングの周波数を限定した理由について述べる。
【0105】
下限の20kHzは、これを下回る周波数の場合、人間が聞こえる周波数すなわち可聴周波数の範囲の入ってしまい、ピーニング作業の観点からは好ましいことではない。本発明の本意は、簡便な疲労強度向上方法を提供することにあるため、作業環境が劣化するような方法は本発明の本意からはずれる。また、上記衝撃応力の試算からわかるように、超音波の周波数は高いほど衝撃応力が高くなりそれだけ有利となる。下限の20kHzは、簡便な装置で十分なピーニング効果を得られる周波数として、また作業環境を劣悪なものとしない値として設定した。なお、下限の20kHzは、より高い衝撃応力を得る観点から、好ましくは23kHz以上とすることが望ましい。上限の60kHzは、これ以上の周波数になると、現在の技術では簡便な装置で超音波を得ることが難しくなり、かつ人間の耳には聞こえないものの健康管理上の問題が生じてくるためこの値を設定した。
【0106】
次に、ピンの硬さを限定した理由について述べる。
【0107】
本発明では、鋼材および溶接金属の強度を限定している。これは、溶接金属の変態膨張を有効に圧縮弾性歪みに変化させることを目的としている。しかし、溶接ビードのスタート部、クレーター部に関してはビード形状の劣化からピーニング処理などで疲労強度を確保する必要がある。一方、強度に関しては、スタート部、クレーター部も所定の強度を有している。例えば、引っ張り強度が780MPaの場合、硬さは280Hv程度ある。980MPaになると、硬さは350Hv近くある。ピーニングによりそこの部分の形状改善や残留応力低減を実行するには、ピーニング部分に塑性ひずみを導入しなければならない。そのためには、ピンの硬さを鋼材および溶接金属より硬くする必要がある。そのため本発明ではピンの硬さの下限を450Hvとした。上限の900Hvは、これ以上硬い材料はあるものの、ピンそのもののコストが大きくなり、またピーニング効果が格段に大きくなるというわけではないため、この値を設定した。
【0108】
次にピンの直径を限定した理由について述べる。
【0109】
前述の衝撃応力試算例からわかるように、最終的な衝撃応力は、衝撃力をピン断面積で割ることにより求めることができ、また断面積が小さいほど衝撃応力は大きくなる傾向にある。より大きい衝撃応力を得るためにはピンを例えば針のように細くすればいいが、この場合、ピンが折れたり座屈したりする危険があり、不必要な細形はかえってマイナスである。下限1.5mmは、ピンが座屈や折れたりしないで十分ピーニング処理に耐えうる値として設定した。逆にピンの直径が大きすぎると、上限の7mmは、これ以上の直径ではピンの断面積が大きすぎ、衝撃力としては十分であるものの衝撃応力が所定の値にならない場合があるためこの値を設定した。
【0110】
【実施例】
以下に、本発明の実施例を示す。
【0111】
図2および図3に本実施例で用いた疲労試験法の概略図を示す。実際の溶接時の部材の拘束度は、有限要素法などの数値計算やあるいは溶接前の開先部に荷重を負荷しそのときの開先幅の変化を測定することにより決定する方法が考えられる。しかし、このような方法では、必ずしも任意に拘束度を制御できるわけではなく、また、試験費用が膨大になるという問題もある。これらの試験法の問題に鑑みて、本実施例では、図2および図3に示すように疲労試験片を溶接により作製する際に、その拘束度を任意に定められるために考案した疲労試験方法である。ここでは、隅肉溶接継手の形状として図2および図3に示す2種類の継手を準備した。いずれの継手においても、溶接前に予め冶具4、5にて疲労試験片を固定した。これは、溶接継手の拘束度を一定に保つためである。次に、この状態で隅肉溶接を行ない、疲労試験片を作製した。なお、疲労試験片の隅肉溶接は、ワイヤを用いCO溶接により行い、その溶接条件は、電流125A、電圧17Vを一定とし、溶接時の入熱量は溶接速度を変化することにより調整した。通常、疲労試験片に用いられる溶接継手は、溶接ビードのスタート部とクレーター部が試験片に残らないように機械加工で削除する。しかし、実構造物によっては、スタート部とクレーター部の削除が不可能または技術的・経済的に困難である場合も存在する。そこで、このような構造物の疲労挙動を再現できるようにしたのが図2および図3の継手形状である。図2の継手(以降継手Aと呼ぶ)は、溶接ビードがコの字型になっていて、図3の継手(以降継手Bと呼ぶ)はV字型になっている。継手A、B共にスタート部1とクレーター部2はビードが乱れやすいという条件に加え、構造的な応力集中部であることは明白である。これらスタート部1とクレーター部2以外にも、コーナー部3が構造的な応力集中である。
【0112】
また、疲労試験片作成時の溶接における拘束度(R)は、試験片が冶具4、5で固定されている間の距離(図2、3のL)を変化させることにより、下記の(1)式を用いて計算させれる拘束度を任意に設定した。
(N/mm・mm)=E(N/mm2)・H(mm)/L(mm)    ・ ・ ・(1)
但し、R:拘束度、E:ヤング率、H:試験材板厚、L:固定端間の距離(L)
【0113】
溶接して作製した疲労試験片に対し、スタート部、クレーター部にピーニング処理をしたものとしなかったものを用意し、図2および3に示す矢印の方向に疲労荷重を負荷することにより疲労試験を行った。疲労強度は、500万回荷重を負荷しても破断しない負荷荷重を示し、例えば、疲労強度が1000Nであるということは、応力比が0.1で負荷荷重が111〜1111Nの間で500万回繰り返し負荷しても破断せず、それを上回る応力範囲では、500万回より少ない繰り返し数で破断してしまうことを意味する。なお、疲労破断の判断は、試験片のスタート部、クレーター部およびコーナー部に歪ゲージを貼り付けておき、疲労試験中にその歪ゲージの読みが初期の値より20%減少したときを疲労破断したとみなしたものである。また、歪ゲージは溶接後に試験片に貼り付けたため、溶接残留応力の影響は含まれていない。また、疲労試験片の溶接金属の溶け込み深さは、疲労試験を終了後に試験片から断面マクロ試験片を採取して、図4に示してある溶け込み深さ6を実測した。同様に、ピーニング処理した時のへこみ量も、疲労試験終了後マクロ試験片を採取し、図5に示すへこみ量7を実測した。
【0114】
表1には、同じ溶接条件で作製した複数の疲労試験片の溶接金属部から試験片を採取し測定した溶接金属の成分組成、変態開始温度、引っ張り強度および0℃シャルピー吸収エネルギーを示す。溶接金属の変態開始温度は、フォーマスター試験を用いて測定し、0℃シャルピー吸収エネルギーは、JIS Z3111に従って、270A−30V−25cm/minの溶接条件でオールデポ試験を実施して求めた。但し、表1に示す本発明が規定するC系溶接金属に相当する溶接金属No.1および2については、C含有量が高く、高温割れが発生する可能性が高いためこれを防ぐ目的で疲労試験片の作製時の溶接条件、すなわち125A−17V−40cm/minでオールデポ試験を行った。
【0115】
表1において、溶接金属記号A、B、EおよびFは、本発明で規定する溶接金属の変態開始温度:475〜600℃の範囲を満足するものであり、そのうち、溶接金属AおよびBが本発明で規定するC:0.2〜0.4%のC系溶接金属に該当し、溶接金属EおよびFが本発明で規定するNi:2.0〜4.0%未満(C:0.03〜0.2%未満)のNi系溶接金属に該当するものである。溶接金属HおよびIは、本発明で規定する溶接金属の変態開始温度:400〜475℃未満の範囲を満足するものであり、本発明で規定するNi:4.0〜7.5%(C:0.03〜0.2%未満)のNi系溶接金属に該当するものである。また、溶接金属C、DおよびGは、本発明で規定する溶接金属の変態開始温度範囲を外れるものである。溶接金属A、B、E、F、HおよびIのそれぞれの機械特性を比べると、何れも同レベルの引っ張り強度を有するが、溶接金属E、F、HおよびIの本発明規定のNi系溶接金属の0℃のシャルピー吸収エネルギーは100Jを上回り、溶接金属AおよびBの本発明規定のC系溶接金属のそれ(vE0:70から75J)に比べてより高かった。
【0116】
表2には、表1に示す溶接金属記号と疲労試験片の作製時の条件を示す。継手形状のA、Bは、図2および図3に示す継手A、Bであり、また、溶け込み深さは、試験片から断面マクロを採取して測定した結果である。また、拘束度は、板厚とLを用いて(1)式で計算した値である。また、本発明の範囲外の条件については、範囲外の項目も表2に載せた。
【0117】
表2の試験片に対し、種々の条件でピーニング処理を行い、疲労試験片を用意し疲労試験を行った。表3、表4は継手形状が図2に示す継手Aの疲労試験結果であり、表5、表6は図3の継手Bの結果である。各継手に対し、異なる板厚が含まれているため、板厚2mm以上の場合と2mm未満の場合に分けて疲労試験結果を示した。表3、表5は板厚が2mm以上の場合であり、表4、表6は2mm未満の場合である。なお、各表におけるピーニングの範囲とは、溶接ビードのスタート部およびクレーター部の両端部からのピーニングを実施した範囲を示している。
【0118】
表3に示された、試験No.2は、ピーニング処理以外の条件は本発明の範囲内であるものの、ピーニング処理を実施していないため、スタート部およびクレーター部から疲労が発生し、500万回疲労限は11.5kNとなった場合である。試験No.3は、ピーニング範囲が狭すぎ、スタート部およびクレーター部の疲労発生を十分防げなかった場合である。試験No.4および8は、溶接金属の変態開始温度および強度が本発明の範囲外で、ピーニングをしスタート部およびクレーター部の疲労強度は向上しているものの、コーナー部からの疲労発生が防げなかった場合である。試験No.5は、試験No.4にピーニング処理を省略した場合であり、表3の中で最も疲労強度が低かった場合である。試験No.6はピーニング処理条件、鋼材および溶接金属は本発明の範囲内にあるものの溶接条件時の拘束度が高く(試験No.6の溶接金属Eは、変態開始温度が表2から530℃であるため、本発明の範囲内であるためには、拘束度が4000N/mm・mm以下である必要がある)、残留応力低減が不十分でコーナー部の疲労強度が不十分であった場合である。試験No.7はピン直径が1mmと細すぎ、ピーニング途中でピンがが折れてしまい、ピーニング処理が不十分であった場合である。それに対し、本発明の範囲内である試験No.1は疲労強度が20.3kNと他の継手より約2倍の疲労強度が得られている。
【0119】
表4は、表3と継手形状は同じものの、板厚が2mm未満の場合の実施例である。試験No.12は、鋼材強度が本発明例の範囲外であり、溶接金属の変態開始温度が本発明例の範囲内であるものの鋼材からの反力が不十分であったため溶接残留応力が十分低減できなかった場合である。試験No.13は、ピーニング処理を過度に行なった場合であり、へこみ量が板厚の1/3になり、ここでの板厚が減少し局部的な応力が高くなって、疲労強度が向上しなかった場合である。それに対し、同じ鋼材および溶接金属でも、試験No.11はピーニング処理条件が本発明の範囲内であるために疲労強度は試験No.12、13に比べ約2倍の高さになっている。
【0120】
表5は、継手形状が図3のBであり、かつ板厚が2mmの場合における疲労試験結果である。試験No.21は、溶接金属が表2のGであり、変態開始温度が本発明例の範囲外であった場合であり、図3のコーナー部から疲労亀裂が発生し、疲労強度が不十分であった場合である。試験No.22は試験No.21でピーニング処理を実施しなかった場合で、スタート部およびクレーター部の疲労強度がコーナー部より低く、表5の中では最も疲労強度が低い場合に相当する。試験No.23はピーニング範囲が5mmと狭く、スタート部およびクレーター部の疲労強度が不十分であった。試験No.24は試験No.23でピーニング範囲が本発明の範囲内である場合であり、疲労強度は20kNを上回った場合である。試験No.25は継手拘束度が8400N/mm・mmと表2の条件の中で最も高く、溶接金属の変態開始温度は430℃と本発明の範囲内であるにもかかわらず残留応力低減が不十分なため、コーナー部から疲労亀裂が発生した場合である。このような高い拘束度での残留応力低減は、特許文献4にあるような従来技術における低温変態溶接材料を用いる必要がある。試験No.26は、鋼材強度が240MPaと低く、鋼材反力が小さかったため残留応力が十分低減できなかった場合である。試験No.27は、ピンの硬さが低すぎ、ピーニング処理を十分に行なうことができず、結果的にへこみ量が不十分になった場合である。試験No.28は、ピンの直径が10mmと本発明例の範囲外で、試験No.27同様、ピーニング効果が不十分であった場合である。試験No.29は、表2の条件No.13に示すように板厚が5mmと厚く、溶接金属が変態する温度領域でもまだ板厚方向に温度差が残っており、板裏面からの拘束を取り除くことができず、残留応力低減効果が不十分であった場合である。これら試験に対し、試験No.24は本発明例の範囲内であり、表6の中では、唯一疲労強度が20kNを上回った場合であり、疲労強度向上効果は明らかである。
【0121】
表6は、継手形状が図3のBであり、かつ板厚が2mm未満の場合の実施例である。試験No.31は、板厚が0.6mmと本発明の範囲外であり、結果的に溶け込み深さが板厚の1/3を上回ってしまい、残留応力低減が不十分となった場合である。試験No.33は、板厚が本発明例の範囲内であるものの、その板厚に対する溶接条件が適切ではなく、溶け込みが板厚の半分になってしまい残留応力低減が不十分となった場合である。試験No.33に対し、試験No.32は同じ板厚でも溶接条件選択が適切で溶け込み深さが板厚の1/3以下になった場合であり、疲労強度は9.5kNと他の二つの比較例に対し約2倍の疲労強度を示している。
【0122】
【表1】

Figure 2004136312
【0123】
【表2】
Figure 2004136312
【0124】
【表3】
Figure 2004136312
【0125】
【表4】
Figure 2004136312
【0126】
【表5】
Figure 2004136312
【0127】
【表6】
Figure 2004136312
【0128】
【発明の効果】
以上のように、本発明によれば、溶接継手の疲労強度は従来継手より格段に向上させることが可能である。したがって、本発明は工業的価値がきわめて大きい発明である。
【図面の簡単な説明】
【図1】図1は、重ね継手部の概念図である。
【図2】図2は、継手Aの試験片形状と疲労荷重負荷方向を説明した図である。
【図3】図3は、継手Bの試験片形状と疲労荷重負荷方向を説明した図である。
【図4】図4は、溶け込み深さを説明した概念図である。
【図5】図5は、溶接止端部のへこみ量を説明した図である。
【符号の説明】
1 スタート部
2 クレーター部
3 コーナー部
4 冶具
5 冶具
6 溶け込み深さ
7 へこみ量[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fillet welding method for a steel sheet and a welded joint using the same, particularly applied to the manufacture of underbody parts for automobiles, and more particularly to a high fatigue strength welded joint for a thin steel sheet having a tensile strength of 590 MPa or more. And a fillet welding method capable of obtaining high fatigue strength.
[0002]
[Prior art]
Since fatigue cracks, which have a significant effect on the safety and reliability of welded steel structures, are likely to occur in welds, various methods for improving the fatigue properties of welds in welded steel structures have been studied in the past. .
[0003]
It has been known from the past that the most prone to fatigue cracks in welds is the weld toe, and that the main cause is stress concentration due to residual tensile stress that tends to occur at the weld toe. I have.
[0004]
Therefore, as a conventional method for improving the fatigue characteristics of a welded joint, a method of improving the weld toe shape by machining such as TIG tanning welding (decorative welding) or grinding after welding, and an improvement of the weld toe shape by peening or the like. And the simultaneous introduction of compressive residual stress. If these methods are not applied to the entire welding line, the fatigue strength of the entire joint cannot be ensured, the work load increases, and this method is not economically preferable. Recently, many techniques have been disclosed in the United States for peening using ultrasonic waves when performing peening, that is, ultrasonic peening techniques (for example, Patent Documents 1 to 3). In this technique, the efficiency of peening is greatly improved by using ultrasonic waves as compared with the conventional peening method, and thus, the peening work load can be expected to be reduced. However, in order to improve the fatigue strength of the entire welded joint, peening must be performed over the entire weld line, and the problem of increasing the number of work processes and increasing the economic load has not been resolved. Remains.
[0005]
On the other hand, recently, the composition of the welding material used in welding has been designed so that the transformation temperature of the weld metal is low, and compressive residual stress is introduced by utilizing the volume expansion accompanying transformation during welding, to thereby form a weld toe at the weld toe. A technique for reducing tensile residual stress and improving fatigue properties has been proposed (for example, Patent Document 4. Hereinafter, such welding materials are collectively referred to as low-temperature transformation welding materials). According to this, by using a low-temperature transformation welding material and performing a martensitic transformation and a volume expansion of the weld metal in a low-temperature region having a transformation start temperature of 170 ° C. to 250 ° C., a subsequent tensile contraction caused by heat shrinkage occurs. A technique has been disclosed in which the stress is offset to reduce the residual tensile stress at the weld toe at room temperature or to reduce the residual compressive stress at room temperature.
[0006]
The technology utilizing low-temperature transformation expansion of the weld metal is a post-weld post-treatment technology described above in that the fatigue strength of the joint can be improved simply by changing the component design of the welding material used for welding. This is an economically superior method that requires fewer work processes and saves labor costs.
[0007]
However, the technique using the low-temperature transformation expansion of the weld metal disclosed in Patent Document 4 and the like has three major problems.
[0008]
In other words, (1) low-temperature transformation welding materials used for welding must add a large amount of expensive alloy elements in order to lower the transformation temperature, which increases the cost of welding materials. The workability during welding is deteriorated due to the reason of adding a large amount, and the work efficiency is degraded and the work cost is correspondingly high. (3) Since the volume expansion of the martensitic transformation that starts transformation in the low temperature range is used, The weld metal becomes a hard structure mainly composed of martensite, and mechanical properties, particularly, toughness are deteriorated.
[0009]
As described above, there is still a problem that needs to be solved in the method utilizing the transformation expansion of the weld metal and the ultrasonic peening method, and the fatigue strength of a high fatigue strength welded joint and a welded joint that has solved these problems has been solved. An improvement method was strongly desired.
[0010]
[Patent Document 1]
US $ 6171415 $ B1
[Patent Document 2]
US $ 6338765B1
[Patent Document 3]
US $ 2002/0014100 $ A1
[Patent Document 4]
JP-A-11-138290
[0011]
[Problems to be solved by the invention]
The technology to sufficiently lower the transformation start temperature of the weld metal to improve the fatigue strength has great advantages because it does not require a new manufacturing process, but it still has problems such as poor workability and high cost. are doing. On the other hand, the conventional method of improving the fatigue strength by peening the joint has to be performed for all the welding lines, which leads to an increase in manufacturing cost.
[0012]
In view of the above problems of the prior art, the present invention sufficiently improves the fatigue strength of a welded joint by utilizing the transformation expansion under a condition in which the transformation temperature of the weld metal is higher than in the past, and performs the peening process with a bead shape. By reducing the amount of expensive alloying elements required for low-temperature transformation, and narrowing the peening range. It is an object of the present invention to provide a high fatigue fillet welded joint of a thin steel sheet and a method of improving the fatigue strength of a fillet welded joint, which is excellent in the toughness of a weld metal.
[0013]
[Means for Solving the Problems]
The present invention solves the above technical problem, that is, the gist thereof is as follows.
[0014]
(1) In a fillet welded joint of a thin steel plate having a weld toe, a steel plate having a plate thickness of 1.0 to 4.0 mm and a tensile strength of 590 MPa or more, and a plate having a penetration depth of the steel plate A thickness of not more than 1/3 of the thickness, a temperature at which transformation from austenite to martensite or bainite starts at 475-600 ° C, and a tensile strength of 590 MPa or more. A high fatigue strength corner characterized in that the weld toe is recessed from the surface of the steel material by 0.03 mm or more and 1/4 or less of the plate thickness over a range of at least 10 mm or more from the ends of the start part and the crater part of the weld bead. Meat welded joint.
[0015]
(2) The content of the weld metal in mass% is C: 0.2 to 0.4%, Si: 0.1 to 0.8%, Mn: 0.4 to 2.0%, P: 0.03. %, S: 0.02% or less, with the balance being iron and inevitable impurities, the high fatigue strength fillet welded joint according to (1) above.
[0016]
(3) The weld metal further contains, by mass%, one or more of Ni, Cr, Mo, Cu, V, Nb, Ti, Ca, B and Mg in a total amount of 0.001 to 0.001. The high fatigue strength fillet welded joint according to the above (2), which contains 1.0%.
[0017]
(4) The content of the weld metal is, by mass%, C: 0.03 to less than 0.2%, Si: 0.1 to 0.8%, Mn: 1.0 to 2.0%, P: 0. The high fatigue strength according to the above (1), wherein the high fatigue strength contains not more than 03%, not more than 0.02% of S, and not more than 2.0 to less than 4.0% of Ni, with the balance being iron and unavoidable impurities. Fillet weld joint.
[0018]
(5) The weld metal further contains, in mass%, one or more of Cr, Mo, Cu, V, Nb, Ti, Ca, B and Mg in a total amount of 0.001 to 1. The high-fatigue-strength fillet welded joint according to the above (4), which contains 0%.
[0019]
(6) In a fillet welded joint of a thin steel plate having a weld toe, a steel plate having a thickness of 1.0 to 4.0 mm and a tensile strength of 590 MPa or more, and a plate having a penetration depth of the steel plate 1/3 or less of the thickness, a temperature at which transformation from austenite to martensite or bainite is less than 400 to 475 ° C, and a weld metal characterized by having a tensile strength of 590 MPa or more, and A high fatigue strength corner characterized in that the weld toe is recessed from the surface of the steel material by 0.03 mm or more and 1/4 or less of the plate thickness over a range of at least 10 mm or more from the ends of the start part and the crater part of the weld bead. Meat welded joint.
[0020]
(7) The content of the weld metal in mass% is as follows: C: 0.03 to less than 0.2%, Si: 0.1 to 0.8%, Mn: 1.0 to 2.0%, P: 0. The high fatigue strength corner according to the above (6), wherein the high fatigue strength corner contains 0.3% or less, S: 0.02% or less, Ni: 4.0 to 7.5%, and the balance consists of iron and unavoidable impurities. Meat welded joint.
[0021]
(8) The weld metal further contains, in mass%, one or more of Cr, Mo, Cu, V, Nb, Ti, Ca, B and Mg in a total amount of 0.001 to 1. The high fatigue strength fillet welded joint according to the above (7), which contains 0%.
[0022]
(9) In the method of fillet welding of a steel sheet, a steel sheet having a thickness of 1.0 to 4.0 mm and a tensile strength of 590 MPa or more is used, and the degree of constraint of a welded portion of the steel sheet is 4000 N / mm · mm. Below, and the penetration depth of the weld metal in the welded portion is 1/3 or less of the thickness of the steel sheet, and the transformation start temperature of the weld metal in the welded portion is 475 to 600 ° C, and the tensile strength is 590 MPa. Fatigue strength of a fillet weld characterized by forming the above weld metal and peening the weld toe over a range of at least 10 mm or more from the ends of the start portion and the crater portion of the weld bead of the weld. How to improve.
[0023]
(10) The content of the weld metal in mass% is C: 0.2 to 0.4%, Si: 0.1 to 0.8%, Mn: 0.4 to 2.0%, P: 0.03. % Or less, S: 0.02% or less, the balance being iron and unavoidable impurities, the method for improving the fatigue strength of the fillet weld according to the above (9), wherein
[0024]
(11) The weld metal further contains, by mass%, one or more of Ni, Cr, Mo, Cu, V, Nb, Ti, Ca, B and Mg in a total amount of 0.001 to 0.001. The method for improving fatigue strength of a fillet weld according to the above (10), wherein the content is 1.0%.
[0025]
(12) The content of the weld metal is, by mass%, C: 0.03 to less than 0.2%, Si: 0.1 to 0.8%, Mn: 1.0 to 2.0%, P: 0. The fillet weld according to the above (11), which contains not more than 03%, not more than 0.02% of S, and not more than 2.0 to less than 4.0% of Ni, with the balance being iron and unavoidable impurities. Method of improving fatigue strength.
[0026]
(13) The weld metal further contains, by mass%, one or more of Cr, Mo, Cu, V, Nb, Ti, Ca, B and Mg in a total amount of 0.001 to 1. The method for improving fatigue strength of a fillet weld according to the above (12), wherein the content is 0%.
[0027]
(14) In the method of fillet welding of a steel sheet, a steel sheet having a thickness of 1.0 to 4.0 mm and a tensile strength of 590 MPa or more is used, and the degree of constraint of a welded portion of the steel sheet is 8000 N / mm · mm. Below, and the penetration depth of the weld metal in the weld portion is 1/3 or less of the thickness of the steel plate, and the transformation start temperature of the weld metal in the weld portion is less than 400 to 475 ° C, and the tensile strength is Fatigue of a fillet weld, wherein a weld metal of 590 MPa or more is formed and a weld toe is peened at least 10 mm or more from ends of a start portion and a crater portion of a weld bead of the weld portion. Strength improvement method.
[0028]
(15) The content of the weld metal is, by mass%, C: 0.03 to less than 0.2%, Si: 0.1 to 0.8%, Mn: 1.0 to 2.0%, P: 0. The fillet weld according to the above (14), which contains not more than 03%, not more than 0.02% of S, and not more than 4.0 to 7.5% of Ni, with the balance being iron and unavoidable impurities. Method of improving fatigue strength.
[0029]
(16) {1 or more of Cr, Mo, Cu, V, Nb, Ti, Ca, B and Mg in a total amount of 0.001 to 1. The method for improving fatigue strength of a fillet weld according to the above (15), wherein the content is 0%.
[0030]
(17) The corner according to any of (9) to (15) or (16), wherein a method using ultrasonic waves having a frequency in a range of 20 kHz to 60 kHz is used as the peening method. A method for improving the fatigue strength of meat welds.
[0031]
(18) At the time of peening, one or a plurality of pins having a diameter in the range of 1.5 mm to 7.0 mm are used at a tip portion for applying an impact to the welded portion, and the hardness of the pin tip is The method for improving the fatigue strength of a fillet weld according to the above (17), wherein a pin having a Vickers hardness of 450 or more and 900 or less is used.
[0032]
(19) The high fatigue strength corner according to (1) to (7) or (8), which is produced by using the method for improving fatigue strength of a fillet weld according to (9) to (17) or (18). Meat welded joint.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0034]
First, the technical concept of the present invention will be described. There are two major technical ideas of the present invention. The first technical idea relates to a technology for reducing the residual welding stress by utilizing the transformation expansion of a weld metal, and the second technical idea relates to a peening process. is there. First, the first technical concept will be described.
[0035]
The present invention provides a conventional welding method using a low-temperature transformation material, that is, a compression stress is generated at a weld toe by utilizing transformation expansion of a weld metal in a low-temperature region during welding, and the compression stress is maintained at room temperature. In comparison with the method of reducing the tensile residual stress at the weld toe by making the weld toe generate compression stress at the weld toe using the transformation expansion of the weld metal, the transformation start temperature is the same. The point that is higher than before is greatly different.
[0036]
Considering the process of generating residual stress in the weld during welding, when the weld metal solidifies and cools after welding and reaches its transformation start temperature, the weld metal expands in volume due to the transformation, and the surrounding base metal heat affected zone Compressive stress is generated at the weld toe due to the reaction force.
[0037]
At this time, if the transformation start temperature of the weld metal is high, the volume expansion due to the transformation of the weld metal occurs at a high temperature, so that tensile stress is applied to the weld toe due to thermal contraction in the cooling process after the transformation expansion. The generated residual stress at the weld toe at the time when it is generated and cooled to room temperature is in a tensile stress state. Therefore, the welding technique using the conventional low-temperature transformation welding material reduces the temperature difference from the end of the transformation expansion of the weld metal to room temperature by setting the transformation start temperature of the weld metal as low as possible (250 ° C. or less). The technical idea is to reduce the amount of cooling and heat shrinkage during this period and to shift the residual stress at the weld toe to the compressive stress side at room temperature.
[0038]
On the other hand, in the present invention, it is not necessary to set the transformation start temperature of the weld metal to a low temperature range (250 ° C. or lower) as in the prior art, that is, in a very high temperature range of 400 ° C. to 600 ° C. Even if the metal undergoes transformation expansion, it suppresses the tensile stress itself generated at the weld toe due to cooling and thermal contraction from the end of the transformation expansion to room temperature. The purpose of the present invention is to maintain the compressive stress and to transfer the residual stress at the weld toe at room temperature to the compressive stress side.
[0039]
More specifically, the present invention (1) generates a compressive stress at the weld toe using the volume expansion accompanying the transformation between the start of the transformation expansion and the end of the transformation expansion of the weld metal in a high temperature range. In order to ensure that the tensile strength of the weld metal and the base metal is equal to or higher than a predetermined value, and that the penetration depth of the weld metal is limited to a predetermined value or less, the volume expansion accompanying the transformation expansion of the weld metal is reduced below the weld metal. And the base material including the heat-affected zone around it, which is generated due to the restraining force of the transformation expansion of the weld metal and at the weld toe due to the restraining force of the transformation expansion of the weld metal. (2) The compressive stress is introduced by the above-mentioned mechanism (1) to complete the transformation expansion of the weld metal, and thereafter, during the cooling and heat shrinking process to room temperature, the heat shrinkage occurs. Constrain parts And without by free shrink, suppressing the occurrence of tensile stress in the weld toe due to heat shrinkage. If this is possible, the compressive stress introduced by the above (1) is maintained even when cooled to room temperature. For this purpose, first, it is necessary to reduce the thickness of the plate to a predetermined value or less to complete the heat conduction of the welding heat to the base material including the heat affected zone at the lower portion by the end of the transformation expansion of the weld metal. This means that the temperature difference in the thickness direction is eliminated and the weld toe on the surface where the compressive stress is generated is not restrained from the back surface of the plate. If the temperature of the front and back surfaces of the plate is the same, the heat shrinkage of the front and back surfaces is also the same, so that the front surface is not restrained from the back surface. Next, it is necessary to reduce the degree of restraint of the welded portion to a predetermined value or less, and to generate heat contraction to room temperature, which occurs after the transformation expansion of the weld metal, as freely as possible. This realizes a state in which the weld toe where the compressive stress is generated is not restricted not only from the back surface of the plate but also from the surroundings. Through such a process, the compressive stress generated when the weld metal undergoes the transformation expansion is maintained until it is cooled to room temperature without being changed into a tensile stress due to the subsequent thermal contraction.
[0040]
The first technical idea of the present invention is to maintain the compressive stress accompanying the transformation expansion of the weld metal generated at a relatively high temperature to room temperature by reducing the temperature difference in the thickness direction and reducing the degree of constraint. Let's make it happen.
[0041]
A second technical idea of the present invention is to perform a peening process on a start portion and a crater portion of a weld bead to secure the fatigue strength of that portion. The start portion and the crater portion are portions where the bead shape is likely to be disordered and also where stress is easily concentrated structurally. Therefore, in the present invention, the fatigue strength is secured for the weld toe portion other than the start portion and the crater portion by using the first technical concept, and the fatigue strength is secured for the start portion and the crater portion by using the peening process. This realizes high fatigue strength of the entire welded joint. Thus, by limiting the peening process to the vicinity of the start portion and the crater portion, it is possible to reduce the load of the peening work as much as possible.
[0042]
The present invention is characterized in that peening using particularly ultrasonic waves is used as the peening process. When ultrasonic peening is used, the time for peening is shortened accordingly, and the merit is correspondingly great. Since the purpose of the present invention is to provide a technique for improving fatigue strength by a method as simple as possible, the use of ultrasonic peening is significant.
[0043]
Hereinafter, the fillet welding method of the present invention, the configuration of a welded joint using the same, and the reasons for limiting the structure will be described.
[0044]
(Limited to base material thickness of 1.0 to 4.0 mm)
The reason for limiting the thickness of the base material will be described.
[0045]
In the present invention, the thickness of the steel material is reduced so that the welding heat is immediately transmitted to the back surface of the material to be joined during welding. This is because, after the welding heat reaches the back surface, the weld metal is not restrained from the back surface of the steel material, and the heat shrinkage of the weld metal and the heat shrinkage of the plate back surface occur simultaneously. The greater the thickness of the steel material, the longer it takes to transfer the welding heat, and even if the transformation of the weld metal is completed, the welding heat will not be transmitted to the back surface. Is restrained by the steel material underneath, and tensile stress is generated at the weld toe.
[0046]
In the present invention, a welding material having a transformation start temperature near 200 ° C. higher than the transformation temperature of the conventional low-temperature transformation molten material is used, the transformation start temperature of the weld metal is as high as 600 ° C. to 400 ° C., and the transformation expansion ends. Since the temperature is high, thermal contraction of the weld metal caused by cooling from such a high temperature range to room temperature is suppressed, and the compressive residual stress at the weld toe generated by the transformation expansion of the weld metal is kept at room temperature. Therefore, heat must be transmitted to the back surface at least at the time when the transformation expansion of the weld metal ends.
[0047]
Also, in order to control the transformation start temperature at low cost, when welding is performed using a component-type welding material in which expensive alloying elements are reduced and C is added to be higher, the amount of C in the weld metal increases. In particular, solidification cracking is likely to occur during butt solidification when the thickness of the steel material is large.
[0048]
Butt solidification, which causes this solidification cracking, occurs when the thickness of the steel material increases, the heat capacity of the steel material itself increases, and the welding heat is easily transmitted in the width direction of the weld bead. When welding is performed using the above welding material, it is necessary to reduce the thickness of the steel sheet also from the viewpoint of preventing solidification cracking of the weld metal.
[0049]
Further, it is more advantageous that the thickness of the steel material is thinner from the viewpoint of lowering the degree of constraint described later. The constraint on the thermal contraction of the weld metal is not only from the back of the steel but also from the entire structure of the welded joint.To reduce this constraint, it is meaningful to reduce the thickness of the steel plate. is there.
[0050]
When the thickness of the steel material exceeds 4.0 mm, the transfer of the welding heat to the back surface is delayed, and the welding heat is not transferred to the back surface at the end of the transformation of the weld metal. The weld metal is restrained from below the steel material and tensile stress is generated at the weld toe, so that the fatigue strength of the welded joint is reduced. In addition, when welding is performed using a high-C component-based welding material, the risk of solidification cracking of the weld metal increases. Further, the degree of constraint determined by the relationship with the structure of the welded joint increases, and a sufficiently low degree of constraint cannot be obtained.
[0051]
On the other hand, when the thickness of the steel material is reduced to less than 1.0 mm, not only is it difficult to limit the penetration value of the weld metal described later relative to the thickness, but also acts as a reaction force during transformation expansion of the weld metal. The base material immediately below the weld metal is reduced, making it difficult to introduce compressive stress to the weld toe. Therefore, in the present invention, the upper limit of the thickness of the steel material is 4.0 mm, and the lower limit is 1.0 mm.
[0052]
(Regulation of 4000 N / mm-mm or less or 8000 N / mm-mm or less)
The reason for limiting the degree of constraint of the welded joint will be described.
[0053]
Conventionally, the degree of constraint of a welded joint is a parameter generally used to evaluate cracks generated in a weld during welding. It was employed as an index that quantitatively represents how strongly the weld metal was constrained from its surroundings.
[0054]
In general, the degree of constraint (RF) Is defined as the load per unit length in the welding line direction required to reduce the weld groove by the unit length, and both fixed ends when the both ends of the test piece with the groove formed in the center are fixed From the relationship between the length (L), the plate thickness (H), and the Young's modulus (E), if the groove width is sufficiently smaller than the distance (L) between the fixed ends, the following ( It is given by the expression 1).
RF(N / mm · mm) = E (N / mm2) ・ H (mm) / L (mm) ・ ・ ・ (1)
Note that the constraint degree (RFThe unit of () is conventionally expressed as N / mm · mm.
[0055]
From the relationship of equation (1), the constraint degree (RF) Can be reduced by reducing the thickness (H) of the steel material at the time of welding or increasing the distance (L) between the fixed ends determined by the welded joint structure. The degree of constraint (RFAs a method of adjusting the thickness of the steel plate, a method of changing the distance of the fixed end by devising the restraining jig or a method of changing the thickness H of the steel plate by devising the design of the welding member can be considered.
[0056]
In the present invention, in the process of cooling and heat shrinking from the end of transformation expansion of the weld metal to room temperature, to make the heat shrinkage of the weld metal close to free shrinkage, and to suppress the occurrence of tensile stress at the weld toe, As described above, the upper limit of the thickness of the steel material is restricted to 4 mm or less, and the degree of constraint (RF) Is regulated as follows.
[0057]
As described above, in order to improve the fatigue strength of the welded joint and to maintain the residual stress of the weld toe at room temperature on the compression side, (1) transformation from the start of transformation expansion of the weld metal At the time of volume expansion up to the end of expansion, the stress generated by restraining the expansion and the reaction force generated in the surrounding heat affected zone of the base metal are secured, and a compressive stress is generated at the weld toe, and ▲ 2) At the time of thermal contraction from the end of transformation expansion of the weld metal to room temperature, it is necessary to reduce the restraint from the periphery of the weld metal and allow it to shrink freely to suppress the generation of tensile stress at the weld toe. . Among these, the upper limit regulation of the degree of constraint has the effect of suppressing the occurrence of tensile stress at the weld toe in the heat shrinkage of the weld metal in the above (2), and under the same condition where the transformation start temperature of the weld metal is the same, By lowering the upper limit of the degree of constraint, the residual stress at the weld toe at room temperature shifts to the compression side, and the fatigue strength of the welded joint is improved.
[0058]
However, as the transformation start temperature of the weld metal increases, the stress generated in the weld metal during the transformation expansion of the weld metal in (1) above and the reaction force generated in the heat affected zone around the base metal decrease. Since the compressive stress generated at the weld toe decreases, and the temperature at which the transformation ends increases, and the temperature difference from room temperature increases, the tension at the weld toe due to the thermal shrinkage of the weld metal in (2) above. Stress also increases. As a result, in order to reduce the residual stress at room temperature to the compression side by the effect of (2), it is necessary to further reduce the degree of constraint as the transformation start temperature of the weld metal increases.
[0059]
In the present invention, as will be described later, in practice, by using two types of component-type welding materials, welding is performed, so that the transformation start temperature of the weld metal is 475 to 600 ° C and two different types of 400 to 475 ° C. In order to perform welding under the transformation start temperature condition, the upper limit value of the degree of constraint is defined as follows according to these transformation start temperatures.
[0060]
That is, in the present invention, when the transformation start temperature of the weld metal, which is the higher of the two transformation start temperatures, is 475 to 600 ° C., the upper limit of the degree of constraint is set to 4000 N / mm · mm. When the other transformation start temperature is 400 ° C. to 475 ° C., the upper limit of the degree of constraint is set to 8000 N / mm · mm. When the upper limit of any transformation start temperature is exceeded, the effect of reducing the tensile stress generated at the weld toe due to the thermal contraction after the transformation expansion of the weld metal becomes insufficient and compresses the residual stress at room temperature. Side, it is difficult to improve the fatigue strength of the welded joint.
[0061]
(Provision of tensile strength of weld metal and steel material of 590MPa or more)
The reason for limiting the tensile strength of the weld metal and steel will be described.
In the present invention, since welding is performed under conditions where the transformation start temperature of the weld metal is considerably higher than before, the heat of the weld metal and its surrounding base metal during the volume expansion process from the transformation expansion start temperature to the transformation expansion end temperature of the weld metal is increased. It is considered that the tensile strength of the affected part is considerably lower than before. Also, in the conventional welding using low-temperature transformation welding material, since the weld metal is a component system having a lot of alloy components and high quenchability and utilizing volume expansion due to martensitic transformation, during transformation expansion of the weld metal, Due to the hard structure of martensite, the strength of the weld metal during transformation expansion can be sufficiently ensured. However, in the welding using the high-temperature transformation welding material of the present invention, compared with the case of the low-temperature transformation welding material, the weld metal is a component system having a small alloying component and low quenchability. The strength of the weld metal at the time of transformation expansion is lower than that in the case where it is present.
[0062]
In the present invention, as described above, the tensile stress at the weld toe generated at the time of thermal contraction from the end of the transformation expansion of the weld metal to room temperature by limiting the conditions of the plate thickness and the degree of constraint is reduced. However, in order to reduce the residual stress at the weld toe at room temperature to the compressive stress side, in addition to this, the weld metal is utilized by utilizing the volume expansion from the start of transformation expansion to the end of transformation expansion. In order to generate sufficient compressive stress at the end, it is necessary to secure the stress generated by restraining the expansion of the weld metal and the reaction force generated in the surrounding heat-affected zone of the base metal. The tensile strength of the weld metal and steel material corresponding to the above must be ensured. For example, if the tensile strength of the weld metal in the temperature range during the transformation expansion of the weld metal becomes 0, the weld metal undergoes plastic deformation during the transformation expansion of the weld metal, and the transformation expansion simply changes to plastic strain. Therefore, the compressive stress at the weld toe remains zero, and if the weld toe is thereafter cooled to room temperature, the thermal shrinkage of the weld metal is suppressed. It cannot be a compressive residual stress.
[0063]
Based on the above, in the present invention, the minimum stress generated in the weld metal to generate a sufficient compressive stress at the weld toe using the volume expansion due to the transformation of the weld metal and the heat of the surrounding base metal are generated. In order to secure the reaction force of the affected part, the tensile strength of the weld metal and the steel was set to 590 MPa or more.
[0064]
In the present invention, it is not necessary to particularly define the upper limit of the tensile strength of the steel material and the weld metal, and particularly, the tensile strength of the weld metal is restricted by the lower limit of the transformation start temperature. However, when the tensile strength of the steel material and the weld metal is increased, it is necessary to add a considerable amount of alloying elements to the steel material and the weld metal. It is desirable that the upper limit of the tensile strength of the steel material and the weld metal be 980 MPa.
[0065]
(The penetration depth of the weld metal shall be less than 1/3 of the thickness of the steel sheet)
The reason why the penetration depth of the weld metal is limited will be described.
[0066]
If the penetration depth of the weld metal is excessively large, the reaction force of the steel material, including the heat affected zone below it, cannot be obtained sufficiently during the transformation expansion of the weld metal, and the compressive residual stress at the weld toe becomes small. Fatigue strength does not improve sufficiently. For example, when the penetration depth of the weld metal W is large as shown in FIG. 1, the unmelted portion indicated by A decreases during the transformation expansion of the weld metal, so that the expansion of the weld metal can hardly be restrained. Due to plastic deformation, the weld metal expands almost freely, and no compressive residual stress is generated at the weld toe. On the other hand, if the welding method is used while maintaining the degree of restraint high by restraining the structure of the welded joint or restraint without relying on the restraint of the unmelted portion of A, the weld metal is deformed during transformation expansion of the weld metal. Although the toe is in a compressive stress state, tensile stress occurs at the weld toe due to thermal contraction due to cooling to room temperature after the transformation of the weld metal is completed, which results in offsetting the compressive stress during the transformation expansion. It is not an effective method.
[0067]
In the welding under the condition that the steel plate thickness is relatively thick, the problem of the lowering of the base metal restraint at the lower portion of the weld metal due to the penetration depth of the weld metal disappears. In order to secure the thermal conductivity of the base metal, the steel plate thickness is limited to 4 mm or less. In such a thin plate, if the penetration depth of the weld metal is not limited, the heat affected zone under the weld metal must be As a result, the compressive residual stress at the weld toe cannot be sufficiently generated, and as a result, the fatigue strength of the welded joint cannot be improved.
[0068]
In the present invention, the penetration depth of the weld metal is set to 1/3 of the steel plate thickness in order to sufficiently secure the lower unmelted portion during the transformation expansion of the weld metal as described above. Here, the penetration depth indicates the maximum penetration depth of the weld metal having the largest penetration depth, and the steel sheet thickness is the thickness before welding.
[0069]
(Specification of transformation start temperature of weld metal of 475 to 600 ° C or 400 to less than 475 ° C)
The reason for limiting the range of the transformation start temperature of the weld metal will be described.
The transformation start temperature of the weld metal in the present invention is significantly different from the conventional technique for improving the fatigue strength of a welded joint using volume expansion accompanying transformation of the weld metal, and the transformation start temperature of the weld metal is lower than in the past. It utilizes the transformation expansion of the weld metal under conditions higher than 200 ° C. In the present invention, since the transformation start temperature of the weld metal is very high, instead of the transformation under the condition that the transformation start temperature is low as in the past, a method utilizing volume expansion due to bainite transformation or ferrite pearlite transformation besides martensite The weld metal of the welded joint has a bainite transformation or a ferrite-pearlite-based structure having a lower hardness than a conventional hard structure mainly composed of martensite, and a weld metal having high toughness can be obtained. In addition, in the present invention, since the transformation start temperature of the weld metal is much higher than the conventional low-temperature transformation welding using the welding material, the high cost required to lower the transformation start temperature of the weld metal in the welding material. Since the addition amount of the alloy component can be reduced, the manufacturing cost of the welding material can be reduced as compared with the related art.
[0070]
However, in general, the strength of the weld metal or the base metal decreases as the temperature increases, so when welding is performed under the condition that the transformation start temperature of the weld metal is high as in the present invention, the strength decreases accordingly. Therefore, the compressive stress generated at the weld toe during the transformation expansion is reduced because the stress generated by the transformation expansion of the weld metal due to its restraint and the reaction force generated in the base metal including the heat affected zone around it are reduced. As the temperature difference between the transformation end temperature and room temperature increases, the tensile stress at the weld toe caused by the heat shrinkage of the weld metal due to cooling between the temperatures increases, and as a result, at room temperature It is difficult to reduce the residual stress at the weld toe to the compression side and to improve the fatigue strength of the welded joint. Accordingly, in the present invention, as described above, by defining the transformation start temperature of the weld metal in accordance with the level of the degree of constraint in welding, the weld metal can be freely shrunk at the time of thermal contraction after the transformation of the weld metal is completed, and the welding stop is performed. It suppresses an increase in tensile stress at the end.
[0071]
In the present invention, the transformation start temperature conditions of the weld metal in welding are classified into two different transformation start temperature levels of 475 to 600 ° C. having a high transformation start temperature and 400 ° C. to less than 475 ° C. which are lower than the above. .
[0072]
When welding is performed under the condition that the transformation start temperature of the weld metal is 475 ° C. to 600 ° C., the transformation of the weld metal starts at a higher temperature. Thus, a welded joint having low toughness and excellent toughness can be obtained, the amount of expensive alloy component added to lower the transformation start temperature in the welding material can be further reduced, and the production cost of the welded joint can be further reduced. In addition, the fatigue strength of the welded joint is sufficiently ensured by introducing a compressive stress to the weld toe under the condition that the transformation start temperature of the weld metal is 475 ° C. to 600 ° C. to make the residual stress at room temperature and the compressive stress side. For this purpose, as described above, it is necessary to regulate the degree of constraint to 4000 N / mm · mm or less. However, even when welding is performed under such low constraint conditions, when the transformation start temperature of the weld metal exceeds 600 ° C., it is difficult to reduce the residual stress at the weld toe to the compressive stress side, and the fatigue strength of the welded joint is reduced. Therefore, the upper limit of the transformation start temperature of the weld metal was set to 600 ° C. On the other hand, when the transformation start temperature of the weld metal is lower than 475 ° C., the effect of improving the fatigue strength of the welded joint can be obtained. Therefore, the lower limit value of the transformation start temperature of the weld metal was set to 475 ° C. from the viewpoints of economy and production cost because the production cost and the toughness of the welded portion decreased.
[0073]
When welding is performed under the condition that the transformation start temperature of the weld metal is 400 ° C. to less than 475 ° C., the weld metal of the welded joint has a bainite transformation or a ferrite-pearlite-based structure as compared with the welding conditions in which the transformation start temperature of the weld metal is high. However, the hardness increases slightly, the toughness of the weld decreases slightly, and the amount of expensive alloy components added to lower the transformation start temperature of the weld metal in the welding material also increases, resulting in the manufacturing cost of welded joints. However, even when welding is performed under a high constraint of 8000 N / mm · mm or less, the residual stress at the weld toe can be reduced to the compressive stress side, and the fatigue strength of the welded joint can be sufficiently increased. It is possible to secure. Therefore, the present invention is particularly effective in welding where it is difficult to perform welding under a condition in which the degree of constraint is sufficiently reduced due to the structure of the welded joint, and the degree of freedom in the welding condition can be improved.
[0074]
Under these welding conditions, the degree of restraint is relatively high, and the effect of heat shrinkage after the transformation expansion of the weld metal tends to be relatively large. Therefore, unless the upper limit of the transformation start temperature of the weld metal is regulated to be lower than 475 ° C., Since the contracted portion is constrained during the heat shrinkage process after the transformation expansion of the weld metal, the residual stress at the weld toe shifts to the tensile stress side, and sufficient fatigue strength cannot be obtained. The upper limit of the transformation start temperature of the metal is set to less than 475 ° C. On the other hand, the lower limit of the transformation start temperature of the weld metal is such that even when the transformation start temperature is lower than 400 ° C., the effect of improving the fatigue strength of the welded joint can be obtained, Since the toughness of the part is reduced, the lower limit of the transformation start temperature of the weld metal is set to 400 ° C. from the viewpoint of economy and production cost.
[0075]
Next, the reason why the dent amount of the weld toe from the steel material surface is limited will be described.
[0076]
In the present invention, the improvement of the fatigue strength of the welded joint is achieved by using both transformation expansion of the weld metal and peening treatment. The method of improving the fatigue strength by using the transformation expansion of the weld metal can secure the effect of improving the fatigue strength by limiting the transformation start temperature of the weld metal or limiting the components of the weld metal. , It is not always clear whether or not a fatigue strength improving effect is obtained by the treatment. Therefore, the present inventors focused on the amount of dent at the weld toe after the peening treatment, and investigated the amount of dent at which the effect of improving fatigue strength was obtained. The lower limit of the dent amount of 0.03 mm is set to a value of the dent amount smaller than the lower limit because the effect of the peening treatment is small and the fatigue strength is not improved. The value of ピ ー of the upper limit of the plate thickness is set because the peening treatment in which the dent amount is larger than this causes an increase in local stress due to a decrease in the plate thickness, which is not preferable from the viewpoint of improving the fatigue strength of the joint. Next, the reason why the range of the area where the peening process is performed on the toe or the area where the dent of the toe is present will be described.
[0077]
In the present invention, the purpose of performing the peening treatment is to ensure the fatigue strength of the start portion and the crater portion of the weld bead where the bead shape is defective. Therefore, it is necessary to perform the peening process or to cover the area where the bead shape is defective in the area where the dent of the toe exists. In particular, portions that are problematic in terms of fatigue characteristics are both end portions of the bead. Therefore, the peening process or the dent to the toe must cover at least both ends. Then, in the case where the bead shape is poor and the range of 10 mm from both ends is peened, dents must be ensured by performing peening treatment surely. In the present invention, the reason why the area where the toe is subjected to the peening process or the dent to the toe is limited to at least 10 mm or more from the ends of the start part and the crater part is as described above. Further, in the present invention, no particular upper limit is set for the peening region or the dent region. This is because the effect of further improving the fatigue strength is not necessarily obtained by setting the upper limit. However, the peening treatment itself causes an increase in manufacturing cost, and in the present invention, the fatigue strength is improved by the low-temperature transformation weld metal. Therefore, it is preferable that the upper limit is set to 100 mm.
[0078]
(Provisions for the components of the weld metal)
The reason for limiting the components of the weld metal will be described.
[0079]
As an embodiment of the component system of the weld metal of the present invention, the above-mentioned transformation onset temperature is relatively high at 475 to 600 ° C, and lower than 400 ° C to less than 475 ° C according to two different transformation onset temperature levels, The following two types of component systems are used.
[0080]
As the component system of the weld metal having a relatively high transformation start temperature of 475 to 600 ° C., a component system that lowers the transformation start temperature of the weld metal mainly by adding a relatively large amount of C (hereinafter referred to as C system). A component system (hereinafter, referred to as Ni system) that mainly lowers the transformation start temperature by adding Ni was used. Further, as a component system of a weld metal having a relatively low transformation start temperature of 400 ° C. to less than 475 ° C., a component system that lowers the transformation start temperature by adding Ni mainly (hereinafter, referred to as a Ni-based component) is used. Was.
[0081]
Among these, the C-based weld metal has a small amount of expensive alloying elements, so that the manufacturing cost of the welding material for obtaining the weld metal can be reduced and the toughness of the weld metal is slightly inferior but excellent in fatigue properties. This is advantageous from the viewpoint of economy when manufacturing a welded joint. On the other hand, a Ni-based weld metal is disadvantageous from the viewpoint of the economics of a welded joint because a relatively large amount of expensive Ni alloy element is added. Can be used to improve toughness, which is effective when manufacturing welded joints that require a high toughness level as well as fatigue properties. The selection of the constituent systems of these weld metals and the welding materials for realizing them are selected based on their respective characteristics.
[0082]
(Specification of components of C-based weld metal)
The components of the C-based weld metal and the reasons for limiting the content will be described.
C is a quenching element and is an effective element from the viewpoints of both improving the strength of the weld metal and reducing the transformation temperature. If the lower limit of 0.2% of the C content is less than this, not only the transformation start temperature of the C-based weld metal cannot be adjusted within the range of 475 to 600 ° C, but also the strength of the weld metal is secured. This value is set because there is a problem in performing the operation. On the other hand, when the content of C increases, the risk of solidification cracking in the weld metal during butt solidification increases, especially when the steel plate thickness is large. Therefore, the upper limit of the amount of C added is set to 0.4%.
[0083]
Si is mainly added as a deoxidizing element, and has an effect of lowering the oxygen level even when the oxygen concentration of the weld metal increases due to mixing of air during welding. If the lower limit of the Si content is less than 0.1%, the deoxidizing effect is insufficient and oxygen in the weld metal cannot be sufficiently reduced, and the mechanical properties of the weld metal, particularly toughness, are deteriorated. The lower limit of the amount was 0.1%. On the other hand, even when Si is added in an amount exceeding 0.8%, the toughness is deteriorated, so the upper limit of the content is set to 0.8%.
[0084]
Mn is a quenching element and has the effect of improving the strength of the weld metal and lowering its transformation temperature. Ensuring the strength of the weld metal is important because it secures the yield strength during the transformation expansion of the weld metal, which is the mechanism for reducing the residual tensile stress at the weld toe in the present invention, and generates sufficient compressive stress at the weld toe. It becomes.
[0085]
The lower limit of the Mn content was set to 0.4% as the minimum addition amount in view of securing the strength of the weld metal. From the viewpoint of lowering the transformation temperature of the weld metal, the addition amount of Mn is adjusted as a complementary component of C. However, if the addition amount is excessively large, the production cost of the welding material increases, which is not preferable from the viewpoint of economy. Therefore, the upper limit of the added amount of Mn is set to 2.0%.
[0086]
P and S are unavoidable impurity elements. In the present invention, if these elements are present in a large amount in the weld metal, the toughness is deteriorated. Therefore, the upper limits of the contents of P and S are set to 0.03% and 0.1%, respectively. 02%.
[0087]
The above are the basic components of the C-based weld metal in the present invention, and the fatigue strength of the weld metal can be sufficiently obtained by specifying these components. However, in order to further improve the strength and toughness of the weld metal, the required Depending on the properties, one or more of Ni, Cr, Mo, Cu, V, Nb, Ti, Ca, B and Mg may be contained in a total amount of 0.001 to 1.0%. . The lower limit of the total value of this content is the minimum necessary content to improve the strength and toughness of the weld metal, and the upper limit is the production of welded joints by excessively increasing the content of alloying elements. Since the cost is increased, the upper limit is set to 1.0%.
[0088]
(Specification of components of Ni-based weld metal)
The components of the Ni-based weld metal and the reasons for limiting the content will be described.
[0089]
C is a quenching element, which is an effective element from the viewpoint of improving the strength of the weld metal and reducing the transformation temperature. In the case of Ni-based components, the transformation start temperature of the weld metal is realized mainly by adding Ni. In order to complement the effect of lowering the transformation temperature of the weld metal of Ni and obtain sufficient strength, the lower limit is specified as 0.03% as the minimum content. On the other hand, excessive addition of C causes deterioration of the toughness of the weld metal, so the upper limit of the content is set to less than 0.2%.
[0090]
Si is mainly added as a deoxidizing element, and has an effect of lowering the oxygen level even when the oxygen concentration of the weld metal increases due to mixing of air during welding. The lower limit of the Si content is that when the Si content is less than 0.1%, the deoxidizing effect is reduced, the oxygen level in the weld metal becomes too high, and the mechanical properties of the weld metal, particularly, the toughness may deteriorate. Therefore, the lower limit of the content is set to 0.1%. On the other hand, excessive addition of Si also causes toughness degradation, so the upper limit of the content was set to 0.8%.
[0091]
Mn is a quenching element and has the effect of improving the strength of the weld metal and lowering its transformation temperature. Ensuring the strength of the weld metal is important because it secures the yield strength during the transformation expansion of the weld metal, which is the mechanism for reducing the residual tensile stress at the weld toe in the present invention, and generates sufficient compressive stress at the weld toe. It becomes.
[0092]
The lower limit of the Mn content was set to 1.0% as a minimum addition amount from the viewpoint of securing the strength of the weld metal. From the viewpoint of lowering the transformation temperature of the weld metal, the addition amount of Mn is adjusted as a complementary component of Ni. However, if the addition amount is excessively large, the toughness of the weld metal is deteriorated. And
[0093]
P and S are unavoidable impurity elements. In the present invention, if these elements are present in a large amount in the weld metal, the toughness of the weld metal deteriorates. Therefore, the upper limits of the contents of P and S are set to 0.03% and 0.02%, respectively. %.
[0094]
Ni is a metal element having an austenitic structure (face-centered structure), which further stabilizes the austenitic state of the weld metal in a high-temperature region and delays the transformation to ferrite (body-centered structure) in a low-temperature region. It is an element that lowers the temperature. Further, Ni does not increase the risk of solidification cracking of the weld metal as compared with C even if the same content is added, and thus is an effective element for further lowering the transformation temperature while maintaining the toughness of the weld metal. It is.
[0095]
In the present invention, when the transformation start temperature of the Ni-based weld metal is adjusted to a range of 475 to 600 ° C., the fatigue strength of the welded joint can be improved similarly to the C-based weld metal even if the amount of C added is reduced. In addition, the toughness can be further improved as compared with the C-based weld metal. The lower limit of the Ni content is set to 2.0% for improving the fatigue strength of the welded joint. On the other hand, the upper limit of the Ni content is set to less than 4.0% in order to sufficiently maintain the economy, toughness and weldability of the welded joint.
[0096]
In the present invention, in the case where the transformation start temperature of the Ni-based weld metal is adjusted to a range of 400 to less than 475 ° C., in the C-based weld metal, a problem of solidification cracking of the weld metal due to an increase in the C content is likely to occur. However, by setting the Ni content to 4.0 to 7.5%, the transformation start temperature of the weld metal can be lowered and the temperature can be adjusted to 400 to less than 475 ° C. while suppressing solidification cracking. Also, unlike Ni, the toughness does not necessarily occur even if the addition amount is slightly increased, so that even in this case, the toughness equal to or higher than that of the C-based weld metal can be secured. The lower limit of the Ni content was set to 4.0% in order to improve the fatigue strength of the welded joint. On the other hand, if the upper limit of the Ni content exceeds 7.5%, there is a possibility that the weldability such as toughness and weld solidification cracking may deteriorate as well as the economical efficiency of the welded joint. Was defined as 7.5%.
[0097]
The above are the basic components of the Ni-based weld metal according to the present invention, and the fatigue strength of the weld metal can be sufficiently obtained by defining these components, but in order to further improve the strength and toughness of the weld metal, it is necessary to use those components. Depending on required characteristics, one or more of Cr, Mo, Cu, V, Nb, Ti, Ca, B and Mg may be contained in a total amount of 0.001 to 1.0%. The lower limit of the total value of this content is the minimum necessary content to improve the strength and toughness of the weld metal, and the upper limit is the production of welded joints by excessively increasing the content of alloying elements. Since the cost is increased, the upper limit is set to 1.0%.
[0098]
As described above, the components of the C-based and Ni-based weld metals and the reasons for limiting the content thereof have been described. Adjustment of the component content of the weld metal is performed by welding, a welding wire, a combination of a welding wire and a filling flux, Alternatively, it can be realized by designing the components of the respective welding materials in consideration of the component yield in the weld metal when welding is performed using any one of the core wire of the welding rod and the coating flux.
[0099]
Next, the reason why the peening process is limited to the peening process using ultrasonic waves will be described.
[0100]
Here, the ultrasonic peening has a frequency within a range of 20 kHz to 60 kHz. The greatest advantage of using ultrasonic waves is that a sufficiently large impact force can be applied even if the weight of the pin at the tip of the peening is small, and as a result, a sufficient peening effect can be obtained in a short working time. The principle of improving the fatigue strength by performing peening treatment is to improve the shape of that portion and to apply compressive residual stress. For that purpose, plastic strain must be introduced into the peened portion. This is because no stress remains within the range of elastic strain. In order to introduce plastic strain, it is necessary to apply an impact stress greater than the yield strength of the material, but if this is to be achieved with static stress, apply a stress greater than the yield stress to the weld. This necessitates an increase in the size of the device, which increases the work load. On the other hand, when using ultrasonic waves, it can be seen that the stress applied to the peened portion is sufficiently large even if the pin mass is, for example, about 10 g.
[0101]
This principle will be briefly described.
[0102]
It is assumed that the frequency is 33 kHz, the mass of the pin is 10 g, the range in which the pin vibrates is 0.03 mm, and the diameter of the tip of the pin is 3 mm. At this time, the speed of the pin, V,
V = 0.03 × 33000 = 1000 mm / s = 1 m / s
It is. Assuming that the pin changes the speed from +1 m / s to -1 m / s once every 1/33000 seconds, the change occurs at the moment when the pin hits the peened portion. Assuming that this speed change occurs within 1/10 time within one frequency, that is, 1/330000 seconds, the time change of speed, that is, acceleration, A is
A = dV / dt = 2 × 330000 = 660000 m / s2
Becomes The impact force F is obtained by applying a pin weight of 10 g = 1/100 kg to the acceleration,
F = 660000 × 1/100 = 6600N
Becomes The stress S is calculated as follows: the cross-sectional area of the pin, 1.5 × 1.5 × 3.14 = 7.1 mm2Can be calculated by dividing by
S = 6600 / 7.1 = 930 N / mm2 = 930 MPa
Becomes It should be noted that this stress is the value when the weight of the pin is only 10 g. In the case of actual ultrasonic peening, the time interval at which the speed reversal occurs is considered to be shorter than the setting in the above calculation, and thus it is considered that a larger impact stress is generated.
[0103]
As described above, among the peening processes, the method using ultrasonic waves in particular has the advantage that the mass of the pin is small and the weight of the device can be reduced accordingly.
[0104]
Next, the reason why the frequency of the ultrasonic peening is limited will be described.
[0105]
If the lower limit of 20 kHz is a frequency lower than this, it falls within the range of human audible frequencies, that is, the range of audible frequencies, which is not preferable from the viewpoint of peening work. Since the intent of the present invention is to provide a simple method for improving fatigue strength, a method that degrades the working environment deviates from the intent of the present invention. Further, as can be seen from the above-described calculation of the impact stress, the higher the frequency of the ultrasonic wave, the higher the impact stress and the more advantageous it becomes. The lower limit of 20 kHz is set as a frequency at which a sufficient peening effect can be obtained with a simple device, and as a value that does not deteriorate the working environment. The lower limit of 20 kHz is preferably set to 23 kHz or more from the viewpoint of obtaining a higher impact stress. If the upper limit of 60 kHz is a frequency higher than this, it is difficult to obtain an ultrasonic wave with a simple device using current technology, and a problem in health management occurs although it cannot be heard by human ears. It was set.
[0106]
Next, the reason why the hardness of the pin is limited will be described.
[0107]
In the present invention, the strength of the steel material and the weld metal is limited. This aims at effectively changing the transformation expansion of the weld metal into compressive elastic strain. However, it is necessary to secure the fatigue strength of the start portion and crater portion of the weld bead by peening or the like due to deterioration of the bead shape. On the other hand, regarding the strength, the start portion and the crater portion also have a predetermined strength. For example, when the tensile strength is 780 MPa, the hardness is about 280 Hv. At 980 MPa, the hardness is close to 350 Hv. In order to improve the shape of the portion and reduce the residual stress by peening, it is necessary to introduce a plastic strain into the peened portion. For that purpose, the hardness of the pin needs to be harder than steel and weld metal. Therefore, in the present invention, the lower limit of the hardness of the pin is set to 450 Hv. The upper limit of 900 Hv is set because the cost of the pin itself is increased and the peening effect is not significantly increased although there is a harder material than this.
[0108]
Next, the reason why the diameter of the pin is limited will be described.
[0109]
As can be seen from the above-described calculation example of impact stress, the final impact stress can be obtained by dividing the impact force by the pin cross-sectional area, and the impact stress tends to increase as the cross-sectional area decreases. In order to obtain a higher impact stress, the pin may be made thinner, for example, like a needle. In this case, however, there is a risk that the pin may break or buckle, and the unnecessary thin shape is rather negative. The lower limit of 1.5 mm is set as a value that can sufficiently withstand the peening process without causing the pin to buckle or break. Conversely, if the diameter of the pin is too large, the upper limit of 7 mm is too large. If the diameter is larger than this, the cross-sectional area of the pin is too large, and although the impact force is sufficient, the impact stress may not reach a predetermined value. It was set.
[0110]
【Example】
Hereinafter, examples of the present invention will be described.
[0111]
2 and 3 are schematic diagrams of the fatigue test method used in this example. The degree of constraint of the members during actual welding may be determined by numerical calculation such as the finite element method or by applying a load to the groove before welding and measuring the change in the groove width at that time. . However, with such a method, the degree of constraint cannot always be arbitrarily controlled, and there is also a problem that the test cost is enormous. In view of the problems of these test methods, in the present embodiment, as shown in FIGS. 2 and 3, when a fatigue test piece is produced by welding, a fatigue test method designed to arbitrarily determine the degree of constraint is set. It is. Here, two types of joints shown in FIGS. 2 and 3 were prepared as the shape of the fillet weld joint. In each of the joints, a fatigue test piece was fixed in advance with jigs 4 and 5 before welding. This is to keep the degree of constraint of the weld joint constant. Next, fillet welding was performed in this state to produce a fatigue test piece. The fillet welding of the fatigue test piece was performed using a wire and CO2The welding was performed under the conditions of a constant current of 125 A and a voltage of 17 V, and the heat input during welding was adjusted by changing the welding speed. Usually, the welded joint used for the fatigue test piece is machined so that the start portion and the crater portion of the weld bead do not remain on the test piece. However, depending on the actual structure, there are cases where it is impossible or technically and economically difficult to delete the start portion and the crater portion. Therefore, the joint shape shown in FIGS. 2 and 3 is such that the fatigue behavior of such a structure can be reproduced. The joint in FIG. 2 (hereinafter referred to as joint A) has a U-shaped weld bead, and the joint in FIG. 3 (hereinafter referred to as joint B) has a V-shape. It is clear that the start portion 1 and the crater portion 2 of both the joints A and B are structural stress concentration portions in addition to the condition that the beads are easily disturbed. In addition to the start part 1 and the crater part 2, the corner part 3 is a structural stress concentration.
[0112]
In addition, the degree of constraint (RF) Changes the distance (L in FIGS. 2 and 3) while the test piece is fixed by the jigs 4 and 5 to arbitrarily set the degree of constraint calculated using the following equation (1). did.
RF(N / mm · mm) = E (N / mm2) · H (mm) / L (mm) · · · (1)
Where RF: Constraint degree, E: Young's modulus, H: Test material thickness, L: Distance between fixed ends (L)
[0113]
For the fatigue test specimens prepared by welding, those with and without the peening treatment at the start and crater parts were prepared, and the fatigue test was performed by applying a fatigue load in the direction of the arrows shown in FIGS. went. Fatigue strength indicates a load that does not break even when a load of 5 million times is applied. For example, a fatigue strength of 1000 N means that a stress ratio of 0.1 and a load of 111 to 1111 N are 5 million. It does not break even if it is repeatedly loaded, and it means that it breaks with less than 5 million repetitions in a stress range exceeding it. The fatigue rupture was determined by attaching strain gauges to the start, crater, and corner of the test piece. It is considered to have been done. In addition, since the strain gauge was attached to the test piece after welding, the influence of welding residual stress was not included. The penetration depth of the weld metal in the fatigue test piece was measured by measuring a penetration depth 6 shown in FIG. 4 by taking a cross-sectional macro test piece from the test piece after finishing the fatigue test. Similarly, for the amount of dent when peening was performed, a macro test piece was sampled after the end of the fatigue test, and the amount of dent 7 shown in FIG. 5 was actually measured.
[0114]
Table 1 shows the composition of the weld metal, the transformation starting temperature, the tensile strength, and the Charpy absorbed energy at 0 ° C., which were measured by collecting test specimens from the weld metal parts of a plurality of fatigue test specimens prepared under the same welding conditions. The transformation start temperature of the weld metal was measured using a Formaster test, and the Charpy absorbed energy at 0 ° C. was determined by performing an all-depot test under welding conditions of 270A-30V-25 cm / min according to JIS Z3111. However, the weld metal No. shown in Table 1 corresponding to the C-based weld metal specified by the present invention. Regarding 1 and 2, since the C content is high and the possibility of high-temperature cracking is high, an all-deposit test was conducted under the welding conditions at the time of producing the fatigue test piece, that is, 125A-17V-40cm / min, in order to prevent this. Was.
[0115]
In Table 1, the weld metal symbols A, B, E and F satisfy the transformation start temperature of the weld metal defined in the present invention: 475 to 600 ° C. C: 0.2 to 0.4% of C-based weld metal specified in the present invention, and the weld metals E and F are Ni: 2.0 to less than 4.0% specified in the present invention (C: 0 to less than 4.0%). (Less than 0.3% to less than 0.2%). The weld metals H and I satisfy the transformation start temperature of the weld metal specified in the present invention: 400 to less than 475 ° C., and the Ni specified in the present invention is 4.0 to 7.5% (C : 0.03 to less than 0.2%). Further, the weld metals C, D, and G fall outside the transformation start temperature range of the weld metal specified in the present invention. When the respective mechanical properties of the weld metals A, B, E, F, H and I are compared, they all have the same level of tensile strength, but the Ni-based welds of the weld metals E, F, H and I according to the present invention are specified. The Charpy absorbed energy at 0 ° C. of the metal was higher than 100 J, which was higher than that of the C-type weld metal of the present invention A and B (vE0: 70 to 75 J).
[0116]
Table 2 shows the weld metal symbols shown in Table 1 and the conditions for producing the fatigue test pieces. Joint shapes A and B are joints A and B shown in FIGS. 2 and 3, and the penetration depth is a result of measuring a cross-sectional macro taken from a test piece. The constraint is a value calculated by the equation (1) using the plate thickness and L. In addition, with respect to the conditions outside the range of the present invention, the items outside the range are also listed in Table 2.
[0117]
Peening treatment was performed on the test pieces in Table 2 under various conditions, and fatigue test pieces were prepared and subjected to a fatigue test. Tables 3 and 4 show the results of the fatigue test of the joint A whose joint shape is shown in FIG. 2, and Tables 5 and 6 show the results of the joint B of FIG. Since different plate thicknesses were included in each joint, the results of the fatigue test were shown for cases where the plate thickness was 2 mm or more and cases where the plate thickness was less than 2 mm. Tables 3 and 5 show cases where the plate thickness is 2 mm or more, and Tables 4 and 6 show cases where the plate thickness is less than 2 mm. In addition, the range of the peening in each table shows the range where the peening was performed from both ends of the start portion and the crater portion of the weld bead.
[0118]
Test No. shown in Table 3 No. 2, although conditions other than the peening treatment were within the scope of the present invention, since the peening treatment was not performed, fatigue occurred from the start part and the crater part, and the fatigue limit of 5 million times was 11.5 kN. Is the case. Test No. No. 3 is a case where the peening range was too narrow, and the occurrence of fatigue in the start portion and the crater portion was not sufficiently prevented. Test No. Nos. 4 and 8 show that the transformation start temperature and strength of the weld metal were out of the range of the present invention, and the peening was performed and the fatigue strength of the start part and the crater part was improved, but the generation of fatigue from the corner part could not be prevented. It is. Test No. 5 is the test No. 5. 4 shows the case where the peening treatment was omitted, and the case where the fatigue strength was the lowest in Table 3. Test No. No. 6 is peening condition, steel material and weld metal are within the range of the present invention, but the degree of restraint under welding condition is high (Because weld metal E of test No. 6 has a transformation start temperature of 530 ° C. from Table 2) In order to fall within the scope of the present invention, the degree of constraint needs to be 4000 N / mm · mm or less), where the residual stress is insufficiently reduced and the fatigue strength at the corners is insufficient. Test No. No. 7 is a case where the pin diameter was too thin as 1 mm, the pin was broken during the peening, and the peening treatment was insufficient. On the other hand, the test Nos. No. 1 has a fatigue strength of 20.3 kN, which is about twice that of other joints.
[0119]
Table 4 is an example in which the joint shape is the same as Table 3, but the plate thickness is less than 2 mm. Test No. No. 12, the steel material strength was out of the range of the present invention example, and although the transformation start temperature of the weld metal was within the range of the present invention example, the reaction force from the steel material was insufficient, so that the welding residual stress could not be sufficiently reduced. Is the case. Test No. No. 13 shows a case where the peening treatment was performed excessively, and the dent amount was reduced to 1/3 of the plate thickness, the plate thickness was reduced, the local stress was increased, and the fatigue strength was not improved. Is the case. On the other hand, even with the same steel material and weld metal, Test No. In No. 11, the fatigue strength of Test No. 11 was determined because the peening condition was within the range of the present invention. It is about twice as high as 12 and 13.
[0120]
Table 5 shows the fatigue test results when the joint shape is B in FIG. 3 and the plate thickness is 2 mm. Test No. 21 is a case where the weld metal is G in Table 2 and the transformation start temperature was out of the range of the present invention example. A fatigue crack was generated from the corner portion in FIG. 3 and the fatigue strength was insufficient. Is the case. Test No. Test No. 22 is Test No. In the case where the peening process was not performed at 21, the fatigue strength of the start portion and the crater portion was lower than that of the corner portion, and corresponds to the case where the fatigue strength is lowest in Table 5. Test No. In No. 23, the peening range was as narrow as 5 mm, and the fatigue strength of the start portion and the crater portion was insufficient. Test No. 24 is the test No. 24. 23 is a case where the peening range is within the range of the present invention, and a case where the fatigue strength exceeds 20 kN. Test No. In the case of No. 25, the joint restraint degree was 8400 N / mm · mm, which is the highest among the conditions in Table 2, and the transformation start temperature of the weld metal was 430 ° C., which was in the range of the present invention, but the residual stress reduction was insufficient. Therefore, this is the case where a fatigue crack occurs from the corner. In order to reduce the residual stress at such a high degree of constraint, it is necessary to use a low-temperature transformation welding material according to the related art as disclosed in Patent Document 4. Test No. No. 26 is the case where the steel material strength was as low as 240 MPa and the steel material reaction force was small, so that the residual stress could not be sufficiently reduced. Test No. No. 27 is a case where the hardness of the pin is too low to perform the peening process sufficiently, resulting in an insufficient dent amount. Test No. In Test No. 28, the diameter of the pin was 10 mm, which is out of the range of the present invention. Similarly to the case 27, the peening effect is insufficient. Test No. No. 29 is the condition No. in Table 2. As shown in FIG. 13, the plate thickness was as thick as 5 mm, and a temperature difference still remained in the plate thickness direction even in the temperature region where the weld metal was transformed, so that the constraint from the back surface of the plate could not be removed, and the residual stress reduction effect was poor. It is enough. For these tests, Test No. 24 is within the range of the present invention, and in Table 6, only the case where the fatigue strength exceeds 20 kN, the effect of improving the fatigue strength is apparent.
[0121]
Table 6 is an example when the joint shape is B in FIG. 3 and the plate thickness is less than 2 mm. Test No. No. 31 is a case where the plate thickness is 0.6 mm, which is out of the range of the present invention, and as a result, the penetration depth exceeds 1/3 of the plate thickness, and the residual stress reduction is insufficient. Test No. No. 33 is a case where the plate thickness was within the range of the present invention example, but the welding conditions for the plate thickness were not appropriate, and the penetration was reduced to half of the plate thickness, resulting in insufficient reduction of residual stress. Test No. For Test No. 33, No. 32 shows the case where the welding conditions were properly selected and the penetration depth was 1/3 or less of the plate thickness even with the same plate thickness, and the fatigue strength was 9.5 kN, which was about twice that of the other two comparative examples. Shows the strength.
[0122]
[Table 1]
Figure 2004136312
[0123]
[Table 2]
Figure 2004136312
[0124]
[Table 3]
Figure 2004136312
[0125]
[Table 4]
Figure 2004136312
[0126]
[Table 5]
Figure 2004136312
[0127]
[Table 6]
Figure 2004136312
[0128]
【The invention's effect】
As described above, according to the present invention, the fatigue strength of a welded joint can be significantly improved as compared with a conventional joint. Therefore, the present invention is an invention having extremely large industrial value.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a lap joint portion.
FIG. 2 is a diagram illustrating a test piece shape and a fatigue load application direction of a joint A.
FIG. 3 is a diagram illustrating the shape of a test piece of a joint B and a direction in which a fatigue load is applied.
FIG. 4 is a conceptual diagram illustrating a penetration depth.
FIG. 5 is a diagram illustrating the amount of dent at the weld toe.
[Explanation of symbols]
1 Start section
2 Crater section
3 corner
4 Jig
5 jig
6 penetration depth
7 dent amount

Claims (19)

溶接止端部を有する薄鋼板の隅肉溶接継手において、板厚が1.0〜4.0mmで、かつ、引っ張り強度が590MPa以上である鋼板と、溶け込み深さが前記鋼板の板厚の1/3以下であり、オーステナイトからマルテンサイトまたはベイナイトに変態開始する温度が475〜600℃であり、かつ、引っ張り強度が590MPa以上である溶接金属を有する溶接部からなり、溶接部の溶接ビードのスタート部とクレーター部の端部から少なくとも10mm以上の範囲にわたって溶接止端部が鋼材表面より0.03mm以上かつ板厚の1/4以下へこんでいることを特徴とする高疲労強度隅肉溶接継手。In a fillet welded joint of a thin steel sheet having a weld toe, a steel sheet having a thickness of 1.0 to 4.0 mm and a tensile strength of 590 MPa or more, and a penetration depth of 1 mm of the thickness of the steel sheet / 3 or less, the temperature at which transformation from austenite to martensite or bainite starts is 475-600 ° C., and the tensile strength is 590 MPa or more. A high fatigue strength fillet weld joint characterized in that the weld toe is recessed from the surface of the steel material by 0.03 mm or more and 1/4 or less of the plate thickness over a range of at least 10 mm or more from the ends of the crater portion and the crater portion. 前記溶接金属が、質量%で、C:0.2〜0.4%、Si:0.1〜0.8%、Mn:0.4〜2.0%、P:0.03%以下、S:0.02%以下を含有し、残部が鉄および不可避不純物からなることを特徴とする請求項1の高疲労強度隅肉溶接継手。The weld metal is, in mass%, C: 0.2 to 0.4%, Si: 0.1 to 0.8%, Mn: 0.4 to 2.0%, P: 0.03% or less, The high-fatigue-strength fillet welded joint according to claim 1, wherein S contains 0.02% or less, and the balance consists of iron and inevitable impurities. 前記溶接金属が、さらに、質量%で、Ni、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする請求項2記載の高疲労強度隅肉溶接継手。The weld metal further contains, by mass%, one or more of Ni, Cr, Mo, Cu, V, Nb, Ti, Ca, B, and Mg in a total amount of 0.001 to 1.0. The high fatigue strength fillet welded joint according to claim 2, wherein 前記溶接金属が、質量%で、C:0.03〜0.2%未満、Si:0.1〜0.8%、Mn:1.0〜2.0%、P:0.03%以下、S:0.02%以下、Ni:2.0〜4.0%未満を含有し、残部が鉄および不可避不純物からなることを特徴とする請求項1に記載の高疲労強度隅肉溶接継手。C: 0.03 to less than 0.2%, Si: 0.1 to 0.8%, Mn: 1.0 to 2.0%, P: 0.03% or less by mass% of the weld metal. , S: 0.02% or less, Ni: 2.0 to less than 4.0%, the balance being iron and unavoidable impurities, the high fatigue strength fillet welded joint according to claim 1, characterized in that: . 前記溶接金属が、さらに、質量%で、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする請求項4記載の高疲労強度隅肉溶接継手。The weld metal further contains, by mass%, one or more of Cr, Mo, Cu, V, Nb, Ti, Ca, B, and Mg in a total amount of 0.001 to 1.0%. The high-fatigue-strength fillet welded joint according to claim 4, characterized in that: 溶接止端部を有する薄鋼板の隅肉溶接継手において、板厚が1.0〜4.0mmで、かつ、引っ張り強度が590MPa以上である鋼板と、溶け込み深さが前記鋼板の板厚の1/3以下であり、オーステナイトからマルテンサイトまたはベイナイトに変態開始する温度が400〜475℃未満であり、かつ、引っ張り強度が590MPa以上である溶接金属を有する溶接部からなり、該溶接部の溶接ビードのスタート部とクレーター部の端部から少なくとも10mm以上の範囲にわたって溶接止端部が鋼材表面より0.03mm以上かつ板厚の1/4以下へこんでいることを特徴とする高疲労強度隅肉溶接継手。In a fillet welded joint of a thin steel sheet having a weld toe, a steel sheet having a thickness of 1.0 to 4.0 mm and a tensile strength of 590 MPa or more, and a penetration depth of 1 mm of the thickness of the steel sheet / 3 or less, a temperature at which transformation from austenite to martensite or bainite is started is 400 to less than 475 ° C., and a tensile strength is 590 MPa or more. High fatigue strength fillet welding characterized in that the weld toe is recessed from the surface of the steel material by 0.03 mm or more and 1/4 or less of the sheet thickness over a range of at least 10 mm or more from the ends of the start part and the crater part. Fittings. 前記溶接金属が、質量%で、C:0.03〜0.2%未満、Si:0.1〜0.8%、Mn:1.0〜2.0%、P:0.03%以下、S:0.02%以下、Ni:4.0〜7.5%を含有し、残部が鉄および不可避不純物からなることを特徴とする請求項6に記載の高疲労強度隅肉溶接継手。C: 0.03 to less than 0.2%, Si: 0.1 to 0.8%, Mn: 1.0 to 2.0%, P: 0.03% or less by mass% of the weld metal. The high-fatigue-strength fillet welded joint according to claim 6, characterized in that it contains 0.02% or less of S and Ni and 4.0 to 7.5% of Ni and the balance consists of iron and unavoidable impurities. 前記溶接金属が、さらに、質量%で、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする請求項7記載の高疲労強度隅肉溶接継手。The weld metal further contains, by mass%, one or more of Cr, Mo, Cu, V, Nb, Ti, Ca, B, and Mg in a total amount of 0.001 to 1.0%. The high fatigue strength fillet welded joint according to claim 7, wherein 鋼板の隅肉溶接する方法において、板厚が1.0〜4.0mmで、かつ、引っ張り強度が590MPa以上の鋼板を用い、該鋼板の溶接部の拘束度が4000N/mm・mm以下、かつ、該溶接部における溶接金属の溶け込み深さが前記鋼板の板厚の1/3以下、かつ、該溶接部に溶接金属の変態開始温度が475〜600℃、かつ、引っ張り強度が590MPa以上の溶接金属を形成し、該溶接部の溶接ビードのスタート部分およびクレーター部分の端部から少なくとも10mm以上の範囲にわたって溶接止端部をピーニング処理することを特徴とする隅肉溶接部の疲労強度向上方法。In the method of fillet welding of a steel sheet, a steel sheet having a thickness of 1.0 to 4.0 mm and a tensile strength of 590 MPa or more is used, and a degree of constraint of a welded portion of the steel sheet is 4000 N / mm · mm or less, and Welding in which the penetration depth of the weld metal in the welded portion is 1/3 or less of the thickness of the steel sheet, the transformation start temperature of the weld metal is 475 to 600 ° C, and the tensile strength is 590 MPa or more in the welded portion. A method for improving the fatigue strength of a fillet weld, comprising forming a metal and peening a weld toe over at least 10 mm or more from an end of a start portion and a crater portion of a weld bead of the weld. 前記溶接金属が、質量%で、C:0.2〜0.4%、Si:0.1〜0.8%、Mn:0.4〜2.0%、P:0.03%以下、S:0.02%以下を含有し、残部が鉄および不可避不純物からなることを特徴とする請求項9記載の隅肉溶接部の疲労強度向上方法。The weld metal is, in mass%, C: 0.2 to 0.4%, Si: 0.1 to 0.8%, Mn: 0.4 to 2.0%, P: 0.03% or less, 10. The method for improving fatigue strength of a fillet weld according to claim 9, wherein the content of S is 0.02% or less, and the balance consists of iron and inevitable impurities. 前記溶接金属が、さらに、質量%で、Ni、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする請求項10記載の隅肉溶接部の疲労強度向上方法。The weld metal further contains, by mass%, one or more of Ni, Cr, Mo, Cu, V, Nb, Ti, Ca, B, and Mg in a total amount of 0.001 to 1.0. The method for improving the fatigue strength of a fillet weld according to claim 10, wherein 前記溶接金属が、質量%で、C:0.03〜0.2%未満、Si:0.1〜0.8%、Mn:1.0〜2.0%、P:0.03%以下、S:0.02%以下、Ni:2.0〜4.0%未満を含有し、残部が鉄および不可避不純物からなることを特徴とする請求項11記載の隅肉溶接部の疲労強度向上方法。C: 0.03 to less than 0.2%, Si: 0.1 to 0.8%, Mn: 1.0 to 2.0%, P: 0.03% or less by mass% of the weld metal. , S: 0.02% or less, Ni: 2.0 to less than 4.0%, the balance being iron and unavoidable impurities, the improvement of the fatigue strength of the fillet weld according to claim 11, Method. 前記溶接金属が、さらに、質量%で、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする請求項12記載の隅肉溶接部の疲労強度向上方法。The weld metal further contains, by mass%, one or more of Cr, Mo, Cu, V, Nb, Ti, Ca, B, and Mg in a total amount of 0.001 to 1.0%. The method for improving the fatigue strength of a fillet weld according to claim 12, wherein 鋼板の隅肉溶接する方法において、板厚が1.0〜4.0mmで、かつ、引っ張り強度が590MPa以上の鋼板を用い、該鋼板の溶接部の拘束度が8000N/mm・mm以下、かつ、該溶接部における溶接金属の溶け込み深さが前記鋼板の板厚の1/3以下、かつ、該溶接部に溶接金属の変態開始温度が400〜475℃未満、かつ、引っ張り強度が590MPa以上の溶接金属を形成し、該溶接部の溶接ビードのスタート部分およびクレーター部分の端部から少なくとも10mm以上の範囲にわたって溶接止端部をピーニング処理することを特徴とする隅肉溶接部の疲労強度向上方法。In the method for fillet welding of a steel sheet, a steel sheet having a thickness of 1.0 to 4.0 mm and a tensile strength of 590 MPa or more is used, and a degree of constraint of a welded portion of the steel sheet is 8000 N / mm · mm or less, and The depth of penetration of the weld metal in the weld portion is 1/3 or less of the thickness of the steel sheet, and the transformation start temperature of the weld metal in the weld portion is less than 400 to 475 ° C, and the tensile strength is 590 MPa or more. A method for improving fatigue strength of a fillet weld, comprising forming a weld metal and peening a weld toe over at least 10 mm or more from the ends of a start portion and a crater portion of a weld bead of the weld. . 前記溶接金属が、質量%で、C:0.03〜0.2%未満、Si:0.1〜0.8%、Mn:1.0〜2.0%、P:0.03%以下、S:0.02%以下、Ni:4.0〜7.5%を含有し、残部が鉄および不可避不純物からなることを特徴とする請求項14に記載の隅肉溶接部の疲労強度向上方法。C: 0.03 to less than 0.2%, Si: 0.1 to 0.8%, Mn: 1.0 to 2.0%, P: 0.03% or less by mass% of the weld metal. 15. The improvement of the fatigue strength of the fillet weld according to claim 14, wherein the content of S is 0.02% or less and the content of Ni is 4.0 to 7.5%, with the balance being iron and unavoidable impurities. Method. 前記溶接金属が、さらに、質量%で、Cr、Mo、Cu、V、Nb、Ti、Ca、BおよびMgのうちの1種又は2種以上を合計量で0.001〜1.0%含有することを特徴とする請求項15記載の隅肉溶接部の疲労強度向上方法。The weld metal further contains, by mass%, one or more of Cr, Mo, Cu, V, Nb, Ti, Ca, B, and Mg in a total amount of 0.001 to 1.0%. The method for improving the fatigue strength of a fillet weld according to claim 15, wherein: ピーニング方法として、周波数が20kHz〜60kHzの範囲内にある超音波を用いた方法を用いることを特徴とする、請求項9〜15または16のいずれかに記載の隅肉溶接部の疲労強度向上方法。The method for improving the fatigue strength of a fillet weld according to any one of claims 9 to 15 or 16, wherein a method using ultrasonic waves having a frequency in the range of 20 kHz to 60 kHz is used as the peening method. . ピーニングを行なう際の、溶接部に衝撃を加える先端部分に、直径が1.5mm〜7.0mmの範囲内にあるピンを1本または複数本用い、かつ、ピン先端の硬度が、ビッカース硬さで450以上900以下であるピンを用いることを特徴とする請求項17記載の隅肉溶接部の疲労強度向上方法。At the time of peening, one or a plurality of pins having a diameter in the range of 1.5 mm to 7.0 mm are used at the tip portion that applies an impact to the welded portion, and the hardness of the pin tip is Vickers hardness. The method for improving the fatigue strength of a fillet weld according to claim 17, wherein a pin having a value of 450 or more and 900 or less is used. 請求項9〜17または18記載の隅肉溶接部の疲労強度向上方法を用いて作製された請求項1〜7または8記載の高疲労強度隅肉溶接継手。The high-fatigue-strength fillet welded joint according to any one of claims 1 to 7 or 8, which is produced using the method for improving the fatigue strength of a fillet weld according to claim 9 to 17.
JP2002302274A 2002-10-16 2002-10-16 Manufacturing method of high fatigue strength fillet welded joint of high strength thin steel sheet Expired - Lifetime JP4523755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302274A JP4523755B2 (en) 2002-10-16 2002-10-16 Manufacturing method of high fatigue strength fillet welded joint of high strength thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302274A JP4523755B2 (en) 2002-10-16 2002-10-16 Manufacturing method of high fatigue strength fillet welded joint of high strength thin steel sheet

Publications (2)

Publication Number Publication Date
JP2004136312A true JP2004136312A (en) 2004-05-13
JP4523755B2 JP4523755B2 (en) 2010-08-11

Family

ID=32450399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302274A Expired - Lifetime JP4523755B2 (en) 2002-10-16 2002-10-16 Manufacturing method of high fatigue strength fillet welded joint of high strength thin steel sheet

Country Status (1)

Country Link
JP (1) JP4523755B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2402103A1 (en) 2010-07-01 2012-01-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Fillet weld joint and method for gas shielded arc welding
JP2014180607A (en) * 2013-03-19 2014-09-29 Nippon Steel & Sumitomo Metal Vibrating grizzly for slag processing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2402103A1 (en) 2010-07-01 2012-01-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Fillet weld joint and method for gas shielded arc welding
US9457416B2 (en) 2010-07-01 2016-10-04 Kobe Steel, Ltd. Fillet weld joint and method for gas shielded arc welding
JP2014180607A (en) * 2013-03-19 2014-09-29 Nippon Steel & Sumitomo Metal Vibrating grizzly for slag processing

Also Published As

Publication number Publication date
JP4523755B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP4719297B2 (en) Welded joint with excellent fatigue resistance and method for producing the same
CN101548026A (en) Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
Jebaraj et al. Investigations on anisotropy behavior of duplex stainless steel AISI 2205 for optimum weld properties
JP2005298877A (en) Steel plate with excellent fatigue crack propagation characteristic, and its manufacturing method
JP4325503B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP3924235B2 (en) High fatigue strength fillet welding method for thin steel sheet
JP4394860B2 (en) Welding method using ultra low temperature transformation melt, high fatigue strength joint and ultra low temperature transformation melt
JP4523755B2 (en) Manufacturing method of high fatigue strength fillet welded joint of high strength thin steel sheet
JP4173999B2 (en) Fillet welding method and fillet welded joint of steel plate with excellent fatigue strength of welded part
JP5360185B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP4754175B2 (en) Fillet welded joint of thin steel plate using transformation expansion of weld metal
JP4173957B2 (en) Lamination fillet welding method for steel sheets with excellent fatigue strength of welds
JP2004136311A (en) Welded joint having high fatigue strength, and method for improving fatigue strength of welded joint
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP2008121092A (en) Steel material with excellent fatigue crack propagation resistance, and its manufacturing method
JP3875878B2 (en) Spot-welding method for high-strength steel sheets with excellent fatigue strength characteristics of welds
JP4857855B2 (en) Fatigue-resistant cracked steel plate for welding with excellent joint fatigue strength
JP4002389B2 (en) Rotating welded joint of mild steel or 490 MPa class steel excellent in fatigue strength and method for producing the same
JP4327932B2 (en) Low hydrogen coated arc welding rod
JP3462943B2 (en) Steel sheet having high fatigue strength at welded portion and method for producing the same
JP5439898B2 (en) High tensile steel plate with excellent resistance spot weldability
JP3881944B2 (en) Welding material, welding method and welded joint
JP3336877B2 (en) Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability
JP5044928B2 (en) Fatigue-resistant cracked steel plate for welding with excellent joint fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081015

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100528

R151 Written notification of patent or utility model registration

Ref document number: 4523755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term