JP2004136281A - Method of producing gas barrier laminate - Google Patents

Method of producing gas barrier laminate Download PDF

Info

Publication number
JP2004136281A
JP2004136281A JP2003334707A JP2003334707A JP2004136281A JP 2004136281 A JP2004136281 A JP 2004136281A JP 2003334707 A JP2003334707 A JP 2003334707A JP 2003334707 A JP2003334707 A JP 2003334707A JP 2004136281 A JP2004136281 A JP 2004136281A
Authority
JP
Japan
Prior art keywords
gas barrier
barrier laminate
layer
film
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003334707A
Other languages
Japanese (ja)
Other versions
JP4114585B2 (en
Inventor
Miyuki Kamoshita
鴨下 深雪
Mitsuo Yoshida
吉田 光男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2003334707A priority Critical patent/JP4114585B2/en
Publication of JP2004136281A publication Critical patent/JP2004136281A/en
Application granted granted Critical
Publication of JP4114585B2 publication Critical patent/JP4114585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a film and its laminate excellent in oxygen gas barrier property under a high humidity and free from chlorine in the structure under a more moderate condition than that of the conventional method. <P>SOLUTION: The method of producing a gas barrier laminate is such that a plastic substrate directly or through an under coat layer is coated with a coating (C) for forming the gas barrier layer containing polyvinyl alcohol (A) and an ethylene maleic acid copolymer (B) and that after heat treatment the above coated substrate is heated in the presence of water. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、高湿度下においても優れたガスバリア性を有するガスバリア性積層体の製造方法に関するものである。 The present invention relates to a method for producing a gas barrier laminate having excellent gas barrier properties even under high humidity.

 ポリアミドフィルム、ポリエステルフィルム等の熱可塑性樹脂フィルムは、強度、透明性、成形性に優れていることから、包装材料として幅広い用途に使用されている。しかし、これらの熱可塑性樹脂フィルムは酸素等のガス透過性が大きいので、一般食品、レトルト処理食品、化粧品、医療用品、農薬等の包装に使用した場合、長期間保存する内にフィルムを透過した酸素等のガスにより内容物の変質が生じることがある。 Thermoplastic resin films such as polyamide films and polyester films are used in a wide range of applications as packaging materials because of their excellent strength, transparency and moldability. However, since these thermoplastic resin films have high gas permeability such as oxygen, when used for packaging of general foods, retorted foods, cosmetics, medical supplies, pesticides, etc., the films permeated the films during long-term storage. The contents such as oxygen may be altered by the gas.

 そこで、熱可塑性樹脂の表面にポリ塩化ビニリデン(以下PVDCと略記する)のエマルジョン等をコーティングし、ガスバリア性の高いPVDC層を形成せしめた積層フィルムが食品包装等に幅広く使用されてきた。しかし、PVDCは焼却時に酸性ガス等の有機物質を発生するため、近年環境への関心が高まるとともに他材料への移行が強く望まれている。 Therefore, a laminated film in which an emulsion of polyvinylidene chloride (hereinafter abbreviated as PVDC) or the like is coated on the surface of a thermoplastic resin to form a PVDC layer having a high gas barrier property has been widely used for food packaging and the like. However, since PVDC generates organic substances such as acid gas at the time of incineration, interest in the environment has increased in recent years, and there has been a strong demand for transfer to other materials.

 PVDCに代わる材料としてポリビニルアルコール(以下PVAと略記する)は有毒ガスの発生もなく、低湿度雰囲気下でのガスバリア性も高いが、湿度が高くなるにつれて急激にガスバリア性が低下するので、水分を含む食品等の包装には用いることが出来ない場合が多い。 Polyvinyl alcohol (hereinafter abbreviated as PVA) as a material that substitutes for PVDC does not generate toxic gas and has high gas barrier properties in a low-humidity atmosphere. In many cases, it cannot be used for packaging of foods and the like.

 PVAの高湿度下でのガスバリア性の低下を改善したポリマーとして、ビニルアルコールとエチレンの共重合体(EVOH)が知られている。しかし、高湿度でのガスバリア性を実用レベルに維持するためにはエチレンの共重合比をある程度高くする必要があり、このようなポリマーは水に難溶となる。
 そこで、エチレンの共重合比の高いEVOHを用いてコーティング剤を得るには、有機溶媒または水と有機溶媒の混合溶媒を用いる必要があり、環境問題の観点からも望ましくなく、また有機溶媒の回収工程などを必要とするため、コスト高になるという問題がある。
A copolymer of vinyl alcohol and ethylene (EVOH) is known as a polymer that has improved the gas barrier property of PVA under high humidity. However, in order to maintain the gas barrier property at a high humidity at a practical level, it is necessary to increase the copolymerization ratio of ethylene to some extent, and such a polymer becomes sparingly soluble in water.
Therefore, in order to obtain a coating agent using EVOH having a high ethylene copolymerization ratio, it is necessary to use an organic solvent or a mixed solvent of water and an organic solvent. Since a process is required, there is a problem that the cost is increased.

 水溶性のポリマーからなる液状組成物をフィルムにコートし、高湿度下でも高いガスバリア性を発現させる方法として、PVAとポリアクリル酸またはポリメタクリル酸の部分中和物とからなる水溶液をフィルムにコートし熱処理することにより、両ポリマーをエステル結合により架橋する方法が提案されている(特許文献1:特開平06−220221号公報、特許文献2:同07−102083号公報、特許文献3:同07−205379号公報、特許文献4:同07−266441号公報、特許文献5:同08−041218号公報、特許文献6:同10−237180号公報、特許文献7:同特開2000−000931号公報等参照)。
 しかし、上記公報に提案される方法では、高度なガスバリア性を発現させるためには高温での加熱処理もしくは長時間の加熱処理が必要であり、製造時に多量のエネルギーを要するため環境への負荷が少なくない。
 また、高温で熱処理すると、バリア層を構成するPVA等の変色や分解の恐れが生じる他、バリア層を積層しているプラスチックフィルム等の基材に皺が生じるなどの変形が生じ、包装用材料として使用できなくなる。プラスチック基材の劣化を防ぐためには、高温加熱に十分耐え得るような特殊な耐熱性フィルムを基材とする必要があり、汎用性、経済性の点で難がある。
 一方、熱処理温度が低いと、非常に長時間処理する必要があり、生産性が低下するという問題点が生じる。
As a method of coating a liquid composition composed of a water-soluble polymer on a film and expressing high gas barrier properties even under high humidity, an aqueous solution composed of PVA and a partially neutralized product of polyacrylic acid or polymethacrylic acid is coated on the film. Then, a method of crosslinking both polymers by an ester bond by heat treatment is proposed (Patent Document 1: JP-A-06-220221, Patent Document 2: JP-A-07-102083, Patent Document 3: JP-A-07-2007). -205379, Patent Document 4: 07-266441, Patent Document 5: 08-041218, Patent Document 6: 10-237180, Patent Document 7: JP-A-2000-000931 Etc.).
However, in the method proposed in the above publication, a high-temperature heat treatment or a long-time heat treatment is required in order to exhibit a high gas barrier property, and a large amount of energy is required during production, so that the load on the environment is reduced. Not a few.
In addition, when heat treatment is performed at a high temperature, there is a risk of discoloration or decomposition of the PVA or the like forming the barrier layer, and deformation of the base material such as a plastic film on which the barrier layer is laminated, such as wrinkles, is generated. Can no longer be used. In order to prevent the deterioration of the plastic base material, it is necessary to use a special heat-resistant film capable of sufficiently withstanding high-temperature heating as a base material, which is difficult in terms of versatility and economy.
On the other hand, when the heat treatment temperature is low, it is necessary to perform the treatment for a very long time, and there is a problem that productivity is reduced.

 また、PVAに架橋構造を導入することで、上記PVAフィルムの問題点を解決するための検討がなされている。しかし、一般的に架橋密度の増加と共にPVAフィルムの酸素ガスバリア性の湿度依存性は小さくなるが、その反面PVAフィルムが本来有している乾燥条件下での酸素ガスバリア性が低下してしまい、結果として高湿度下での良好な酸素ガスバリア性を得ることは非常に困難である。
 尚、一般にポリマー分子を架橋することにより耐水性は向上するが、ガスバリア性は酸素等の比較的小さな分子の侵入や拡散を防ぐ性質であり、単にポリマーを架橋してもガスバリア性が得られるとは限らず、たとえば、エポキシ樹脂やフェノール樹脂などの三次元架橋性ポリマーはガスバリア性を有していない。
Also, studies have been made to solve the problems of the PVA film by introducing a crosslinked structure into PVA. However, in general, the humidity dependency of the oxygen gas barrier property of the PVA film becomes smaller as the crosslink density increases, but the oxygen gas barrier property under the drying conditions that the PVA film originally has decreases, and as a result, It is very difficult to obtain good oxygen gas barrier properties under high humidity.
In general, cross-linking of polymer molecules improves water resistance, but gas barrier property is a property of preventing intrusion and diffusion of relatively small molecules such as oxygen. However, three-dimensionally crosslinkable polymers such as epoxy resins and phenolic resins do not have gas barrier properties.

 PVAのような水溶性のポリマーを用いながらも高湿度下でも高いガスバリア性を有するガスバリア性積層体を、従来よりも低温もしくは短時間の加熱処理で提る方法が提案されている(特許文献8:特開2001−323204号公報、特許文献9:同2002−020677号公報、特許文献10:同2002−241671号公報参照)。 A method has been proposed in which a gas barrier laminate having a high gas barrier property even under high humidity using a water-soluble polymer such as PVA is provided by heat treatment at a lower temperature or for a shorter time than before (Patent Document 8). JP-A-2001-323204, Patent Document 9: JP-A-2002-020677, and Patent Document 10: JP-A-2002-241671).

 特許文献8〜10に記載されるコート剤は、水溶性のポリマーを用いながらも特許文献1〜7に記載されるコート剤よりも低温もしくは短時間の加熱で高湿度下で従来よりも高いガスバリア性を有するガスバリア性積層体を形成し得る。
 しかし、特許文献1〜10に記載される、加熱によって、PVA中の水酸基とポリアクリル酸中もしくはエチレン−マレイン酸共重合体中のCOOHとをエステル化反応させたり、金属架橋構造を導入するという方法では、高湿度下におけるガスバリア性の向上には限界があった。即ち、加熱条件をより高温長時間にしてもある一定の値以上酸素透過度は小さくはならず、むしろ大きくなってしまうと逆転現象が生じた。過酷な加熱条件によって、プラスチック基材や形成されつつあるバリア層が熱劣化したためと考えられる。また、高温長時間という加熱条件は、プラスチック基材や形成されつつあるバリア層の着色やカールをも生起し、この点でも好ましくない。
 以上の結果、高湿度下におけるガスバリア性のさらなる向上が益々要求されつつある今日、特許文献1〜10に記載されるコート剤を加熱、硬化するだけでは、より厳しい要求には応えられなかった。
特開平06−220221号公報 特開平07−102083号公報 特開平07−205379号公報 特開平07−266441号公報 特開平08−041218号公報 特開平10−237180号公報 特開2000−000931号公報 特開2001−323204号公報 特開2002−020677号公報 特開2002−241671号公報
The coating agents described in Patent Literatures 8 to 10 have a higher gas barrier than conventional coating materials at a lower temperature or a shorter heating time and higher humidity than the coating agents described in Patent Literatures 1 to 7, even though a water-soluble polymer is used. A gas barrier laminate having properties can be formed.
However, according to Patent Documents 1 to 10, by heating, the hydroxyl group in PVA is subjected to an esterification reaction with COOH in polyacrylic acid or in ethylene-maleic acid copolymer, or a metal crosslinked structure is introduced. According to the method, there is a limit in improving the gas barrier property under high humidity. That is, even when the heating conditions are higher and longer, the oxygen permeability does not decrease beyond a certain value, but rather increases, the reverse phenomenon occurs. This is probably because the plastic substrate and the barrier layer being formed were thermally deteriorated by the severe heating conditions. Heating conditions of high temperature and long time also cause coloring and curling of the plastic substrate and the barrier layer being formed, which is not preferable in this respect.
As a result of the above, today, where further improvement in gas barrier properties under high humidity is increasingly demanded, merely heating and curing the coating agents described in Patent Documents 1 to 10 did not meet the more stringent requirements.
JP-A-06-220221 JP-A-07-102083 JP 07-205379 A JP-A-07-266441 JP 08-041218 A JP-A-10-237180 JP 2000-000931 A JP 2001-323204 A JP-A-2002-020677 JP-A-2002-241671

 本発明の課題は、水溶性のポリマーを用いながらも高湿度下で従来よりも高いガスバリア性を有するガスバリア性積層体を、従来よりも温和な条件で提ることにある。 課題 The object of the present invention is to provide a gas barrier laminate having a higher gas barrier property under high humidity than before using a water-soluble polymer under milder conditions than before.

 本発明者らは、鋭意研究の結果、これまではバリア性低下の大きな原因になると考えられていた水分を逆に利用することによって、驚くべきことにバリア性を飛躍的に向上し得ることを見出し本発明に到達した。
 すなわち、第1の発明は、プラスチック基材上に直に、又はアンダーコート層を介してプラスチック基材上に、ポリビニルアルコール(A)とエチレン−マレイン酸共重合体(B)とを含有するガスバリア層形成用塗料(C)を塗布し、熱処理した後、水の存在下に加熱処理してなることを特徴とするガスバリア性積層体の製造方法に関する。
The present inventors have assiduously studied and as a result, surprisingly, it is possible to dramatically improve the barrier property by using water, which has been considered to be a major cause of the lowering of the barrier property. Heading reached the present invention.
That is, the first invention provides a gas barrier containing polyvinyl alcohol (A) and an ethylene-maleic acid copolymer (B) directly on a plastic substrate or on a plastic substrate via an undercoat layer. The present invention relates to a method for producing a gas-barrier laminate, which comprises applying a layer-forming coating material (C), performing a heat treatment, and then performing a heat treatment in the presence of water.

 第2の発明は、塗料(C)が、2価以上の金属化合物を含有することを特徴とする第1の発明に記載のガスバリア性積層体の製造方法に関し、
 第3の発明は、2価以上の金属化合物が、水酸基もしくはカルボキシル基と反応し得ることを特徴とする第2の発明に記載のガスバリア性積層体の製造方法に関し、
 第4の発明は、2価以上の金属が、Mgであることを特徴とする第2又は第3の発明に記載のガスバリア性積層体の製造方法に関し、
 第5の発明は、エチレン−マレイン酸共重合体(B)中のカルボキシル基に対して、Mg化合物を当量で0.05〜12.5%含有することを特徴とする第4の発明に記載のガスバリア性積層体の製造方法に関する。
The second invention relates to the method for producing a gas barrier laminate according to the first invention, wherein the paint (C) contains a divalent or higher valent metal compound.
A third invention relates to the method for producing a gas barrier laminate according to the second invention, wherein the divalent or higher valent metal compound can react with a hydroxyl group or a carboxyl group,
A fourth invention relates to the method for producing a gas barrier laminate according to the second or third invention, wherein the divalent or higher-valent metal is Mg.
A fifth invention is described in the fourth invention, wherein the Mg compound is contained in an equivalent amount of 0.05 to 12.5% with respect to the carboxyl group in the ethylene-maleic acid copolymer (B). The present invention also relates to a method for producing a gas barrier laminate of the present invention.

 第6の発明は、ポリビニルアルコール(A)とエチレン−マレイン酸共重合体(B)との重量比が90/10〜10/90であることを特徴とする第1ないし第5の発明のいずれか記載のガスバリア性積層体の製造方法に関する。 A sixth invention is directed to any one of the first to fifth inventions, wherein the weight ratio between the polyvinyl alcohol (A) and the ethylene-maleic acid copolymer (B) is 90/10 to 10/90. The present invention also relates to a method for producing a gas barrier laminate according to the above.

 第7の発明は、アンダーコート層が、ガラス転移温度が0℃以上のポリエステルポリオールとポリイソシアネートとから形成されることを特徴とする第1ないし第6の発明のいずれか記載のガスバリア性積層体の製造方法に関する。 A seventh invention is the gas barrier laminate according to any one of the first to sixth inventions, wherein the undercoat layer is formed from a polyester polyol having a glass transition temperature of 0 ° C. or higher and a polyisocyanate. And a method for producing the same.

 第8の発明は、水の存在下に90℃以上で加熱処理してなることを特徴とする第1ないし第7の発明のいずれか記載のガスバリア性積層体の製造方法に関する。 8 An eighth invention relates to the method for producing a gas barrier laminate according to any one of the first to seventh inventions, wherein the method is heat-treated at 90 ° C. or higher in the presence of water.

 本発明により、構造中に塩素を含有せず、高湿度下での酸素ガスバリア性の点で優れ、さらに従来よりも著しく高いガスバリア性を有するガスバリア性積層体の製造方法を提供することが出来た。 According to the present invention, it is possible to provide a method for producing a gas barrier laminate having no chlorine in the structure, excellent in oxygen gas barrier properties under high humidity, and having a significantly higher gas barrier property than conventional ones. .

 以下、本発明について詳細に説明する。
[ガスバリア層形成用塗料(C)]
 ガスバリア層形成用塗料(C)は、後述するプラスチック基材等に塗布し、ガスバリア性を付与するためのものであり、PVA(A)とエチレン−マレイン酸共重合体(以下、EMAという)(B)とを含有するものである。
Hereinafter, the present invention will be described in detail.
[Paint for forming gas barrier layer (C)]
The coating material (C) for forming a gas barrier layer is applied to a plastic substrate or the like described below to impart gas barrier properties, and is composed of PVA (A) and an ethylene-maleic acid copolymer (hereinafter, referred to as EMA) ( B).

<PVA(A)>
 本発明において用いられるPVAは、ビニルエステルの重合体を完全または部分ケン化するなどの公知の方法を用いて得ることができる。
 ビニルエステルとしては、ぎ酸ビニル、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル等が挙げられ、中でも酢酸ビニルが工業的に最も好ましい。
<PVA (A)>
The PVA used in the present invention can be obtained by a known method such as complete or partial saponification of a vinyl ester polymer.
Examples of the vinyl ester include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate, vinyl versatate, and the like. Of these, vinyl acetate is the most industrially preferred.

 本発明の効果を損ねない範囲で、ビニルエステルに対し他のビニル化合物を共重合することも可能である。他のビニル系モノマーとしては、クロトン酸、アクリル酸、メタクリル酸等の不飽和モノカルボン酸およびそのエステル、塩、無水物、アミド、ニトリル類や、マレイン酸、イタコン酸、フマル酸などの不飽和ジカルボン酸およびその塩、炭素数2〜30のα−オレフィン類、アルキルビニルエーテル類、ビニルピロリドン類などが挙げられる。 で Other vinyl compounds can be copolymerized with the vinyl ester as long as the effects of the present invention are not impaired. Other vinyl monomers include unsaturated monocarboxylic acids such as crotonic acid, acrylic acid, and methacrylic acid, and esters, salts, anhydrides, amides, and nitriles thereof, and unsaturated acids such as maleic acid, itaconic acid, and fumaric acid. Examples thereof include dicarboxylic acids and salts thereof, α-olefins having 2 to 30 carbon atoms, alkyl vinyl ethers, and vinylpyrrolidones.

 本発明において、フィルム表面にガスバリア性を付与するために積層されるポリマーは水溶性とすることが生産上好ましく、疎水性の共重合成分を多量に含有させると水溶性が損なわれるので好ましくない。 In the present invention, the polymer laminated to impart gas barrier properties to the film surface is preferably water-soluble for production, and if a large amount of a hydrophobic copolymer component is contained, the water-solubility is impaired, which is not preferable.

 なお、ケン化方法としては公知のアルカリケン化法や酸ケン化法を用いることができ、中でもメタノール中で水酸化アルカリを使用して加アルコール分解する方法が好ましい。ケン化度は100%に近いほどガスバリア性の観点から好ましく、ケン化度が低すぎるとバリア性能が低下する。ケン化度は通常約95%以上が好ましく、98%以上であることがより好ましい。平均重合度は50〜4000が好ましく、200〜3000のものがより好ましい。 As the saponification method, a known alkali saponification method or acid saponification method can be used, and among these, a method of alcoholysis using methanol in an alkali hydroxide is preferable. The degree of saponification is preferably as close to 100% from the viewpoint of gas barrier properties. If the degree of saponification is too low, the barrier performance decreases. Usually, the degree of saponification is preferably about 95% or more, and more preferably 98% or more. The average degree of polymerization is preferably from 50 to 4,000, more preferably from 200 to 3,000.

<EMA(B)>
 本発明において用いられるエチレン−マレイン酸共重合体(B)は、無水マレイン酸とエチレンとを溶液ラジカル重合などの公知の方法で重合することにより得られるものである。また、本発明の目的を損なわない範囲で他のビニル化合物を少量共重合することも可能である。ビニル化合物としては例えば、アクリル酸メチル、メタアクリル酸メチル、アクリル酸エチル、メタアクリル酸エチル、アクリル酸ブチル、メタアクリル酸ブチル等のアクリル酸エステル類、ギ酸ビニル、酢酸ビニルなどのビニルエステル類、スチレン、p−スチレンスルホン酸、プロピレン、イソブチレンなどの炭素数3〜30のオレフィン類や、PVAの水酸基などと反応する反応性基を有する化合物を挙げることができる。
<EMA (B)>
The ethylene-maleic acid copolymer (B) used in the present invention is obtained by polymerizing maleic anhydride and ethylene by a known method such as solution radical polymerization. It is also possible to copolymerize a small amount of another vinyl compound within a range that does not impair the object of the present invention. Examples of the vinyl compound include acrylates such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, and butyl methacrylate; vinyl formate; vinyl esters such as vinyl acetate; Examples thereof include olefins having 3 to 30 carbon atoms such as styrene, p-styrenesulfonic acid, propylene, and isobutylene, and compounds having a reactive group that reacts with a hydroxyl group of PVA.

 本発明におけるEMA(B)中のマレイン酸単位は、10モル%以上含有することが好ましく、マレイン酸単位がほぼ等モルのエチレンと無水マレイン酸との交互共重合体が好ましい。マレイン酸単位が10モル%より少ないと、PVA単位との反応による架橋構造の形成が不十分でありガスバリア性が低下する。
 また、本発明で用いられるEMA(B)は重量平均分子量が3000〜1000000であることが好ましく、5000〜900000であることがより好ましく、10000〜800000であることが更に好ましい。
The maleic acid unit in the EMA (B) in the present invention preferably contains at least 10 mol%, and an alternating copolymer of ethylene and maleic anhydride having approximately equimolar maleic acid units is preferable. When the amount of the maleic acid unit is less than 10 mol%, the formation of a crosslinked structure by the reaction with the PVA unit is insufficient, and the gas barrier property is reduced.
The EMA (B) used in the present invention preferably has a weight average molecular weight of 3,000 to 1,000,000, more preferably 5,000 to 900,000, and still more preferably 10,000 to 800,000.

 なお、本発明で用いられるEMA(B)中のマレイン酸単位は、乾燥状態では隣接カルボキシル基が脱水環化した無水マレイン酸構造となりやすく、一方、湿潤時や水溶液中では開環してマレイン酸構造となる。 In the EMA (B) used in the present invention, the maleic acid unit easily becomes a maleic anhydride structure in which adjacent carboxyl groups are dehydrated and cyclized in a dry state. Structure.

 本発明において用いられるガスバリア層形成用塗料(C)は、PVA(A)とEMA(B)の重量比が(A)/(B)=90/10〜10/90であることが好ましく、70/30〜15/85であることがより好ましく、60/40/〜20/80であることがさらに好ましく、50/50〜25/75であることが特に好ましい。相対的にPVA(A)もしくはEMA(B)のいずれかが極端に多いと、水の存在下に加熱処理しても、バリア性向上の効果が小さい。 In the coating material (C) for forming a gas barrier layer used in the present invention, the weight ratio of PVA (A) to EMA (B) is preferably (A) / (B) = 90/10 to 10/90, and 70 / 30 to 15/85, more preferably 60/40 / to 20/80, and particularly preferably 50/50 to 25/75. If either PVA (A) or EMA (B) is relatively large, the effect of improving the barrier properties is small even if heat treatment is performed in the presence of water.

 本発明において用いられるガスバリア層形成用塗料(C)は、PVA(A)とEMA(B)の他に、2価以上の金属化合物(D)を含有することが好ましい。2価以上の金属化合物(D)を含有することによって、バリア層中に架橋構造を形成し得る。2価以上の金属化合物(D)は、水酸基もしくはカルボキシル基と反応し得るものであることが好ましい。水酸基もしくはカルボキシル基と反応することによって、好適に架橋構造を形成する。ここで生じる架橋構造は、イオン結合、共有結合はもちろん配位的な結合であってもよい。 ガ ス The gas barrier layer forming paint (C) used in the present invention preferably contains a divalent or higher valent metal compound (D) in addition to PVA (A) and EMA (B). By containing the divalent or higher valent metal compound (D), a crosslinked structure can be formed in the barrier layer. It is preferable that the divalent or higher valent metal compound (D) can react with a hydroxyl group or a carboxyl group. A crosslinked structure is suitably formed by reacting with a hydroxyl group or a carboxyl group. The cross-linking structure generated here may be a coordination bond as well as an ionic bond or a covalent bond.

 水酸基もしくはカルボキシル基と反応し得る金属化合物(D)としては、
 2価以上の金属のハロゲン化物、水酸化物、酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硫酸塩もしくは亜硫酸塩(D1)、
 ジルコニウム錯塩、ハロゲン化ジルコニウム、無機酸のジルコニウム塩もしくは有機酸のジルコニウム塩(D2)等が挙げられ、金属化合物(D1)が好ましい。2価以上の金属化合物(D)としては、各群から選ばれる1種を単独で使用することもできるし、各郡内の2種以上を併用することもできるし、各群から選ばれる1種以上を併用することもできる。
Examples of the metal compound (D) capable of reacting with a hydroxyl group or a carboxyl group include:
Halides, hydroxides, oxides, carbonates, phosphates, phosphites, hypophosphites, sulfates or sulfites (D1) of divalent or higher valent metals,
Zirconium complex salts, zirconium halides, zirconium salts of inorganic acids or zirconium salts of organic acids (D2) and the like are preferred, and the metal compound (D1) is preferred. As the divalent or higher valent metal compound (D), one kind selected from each group may be used alone, two or more kinds in each group may be used in combination, or one selected from each group may be used. More than one species can be used in combination.

 金属化合物(D1)としては、2価以上の金属の水酸化物、酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硫酸塩が好ましい。
 2価以上の金属としては、Mg、Ca、Zn、Cu、Co、Fe、Ni、AlもしくはZrが好ましく、Mg、Caがより好ましく、Mgがさらに好ましい。
 Mg化合物としては、MgO、Mg(OH)2、MgSO4、MgCl2、MgCO3等が挙げられ、MgO、Mg(OH)2、MgSO4が好ましい。これらMg化合物は、EMA(B)中のカルボキシル基に対し、当量で0.05〜12.5%含有することが好ましく、0.1〜10%含有することがより好ましく、0.15〜7.5%であることがさらに好ましく、0.5〜7.5%であることが特に好ましい。
As the metal compound (D1), hydroxides, oxides, carbonates, phosphates, phosphites, hypophosphites, and sulfates of divalent or higher-valent metals are preferable.
As the divalent or higher valent metal, Mg, Ca, Zn, Cu, Co, Fe, Ni, Al or Zr are preferable, Mg and Ca are more preferable, and Mg is further preferable.
Examples of the Mg compound include MgO, Mg (OH) 2 , MgSO 4 , MgCl 2 , and MgCO 3 , and MgO, Mg (OH) 2 and MgSO 4 are preferable. These Mg compounds are preferably contained in an equivalent amount of 0.05 to 12.5%, more preferably 0.1 to 10%, and more preferably 0.15 to 7%, based on the carboxyl group in EMA (B). Is more preferably 0.5%, particularly preferably 0.5 to 7.5%.

 金属化合物(D2)としては、例えば、オキシ塩化ジルコニウム、ヒドロキシ塩化ジルコニウム、4塩化ジルコニウム、臭化ジルコニウム等のハロゲン化ジルコニウム、硫酸ジルコニウム、塩基性硫酸ジルコニウム、硝酸ジルコニウムなどの鉱酸のジルコニウム塩、蟻酸ジルコニウム、酢酸ジルコニウム、プロピオン酸ジルコニウム、カプリル酸ジルコニウム、ステアリン酸ジルコニウムなどの有機酸のジルコニウム塩、炭酸ジルコニウムアンモニウム、硫酸ジルコニウムナトリウム、酢酸ジルコニウムアンモニウム、蓚酸ジルコニウムナトリウム、クエン酸ジルコニウムナトリウム、クエン酸ジルコニウムアンモニウムなどのジルコニウム錯塩、などがあげられ、炭酸ジルコニウムアンモニウムが好ましい。炭酸ジルコニウムアンモニウムとしては、ニューテックス(株)製の「ジルコゾールAC−7」が挙げられる。 Examples of the metal compound (D2) include zirconium halides such as zirconium oxychloride, zirconium hydroxychloride, zirconium tetrachloride, and zirconium bromide; zirconium salts of mineral acids such as zirconium sulfate, basic zirconium sulfate, and zirconium nitrate; Organic acids such as zirconium, zirconium acetate, zirconium propionate, zirconium caprylate, zirconium stearate, zirconium ammonium carbonate, sodium zirconium sulfate, zirconium ammonium acetate, zirconium sodium oxalate, sodium zirconium citrate, zirconium ammonium citrate, etc. And zirconium complex salts thereof, and ammonium zirconium carbonate is preferred. Examples of zirconium ammonium carbonate include "Zircosol AC-7" manufactured by Nutex Co., Ltd.

 本発明において用いられる塗料(C)は、さらに無機層状化合物を含有することもできる。無機層状化合物を含有することにより、バリア層やガスバリア性積層体のガスバリア性をさらに向上させることができる。
 ガスバリア性という観点からは、無機層状化合物の含有量は多い方が好ましい。しかし、無機層状化合物は、水親和性が強く吸湿しやすい。また無機層状化合物を含有する塗料は、高粘度化しやすいので塗装性を損ないやすい。さらに無機層状化合物の含有量が多いと、形成されるガスバリア層やガスバリア性積層体の透明性が低下する。
 そこで、これらの観点から無機層状化合物は、PVA(A)とEMA(B)との合計100重量部に対して、1〜300重量部であることが好ましく、2〜200重量部であることがより好ましく、多くとも100重量部であることがさらに好ましい。
The coating material (C) used in the present invention may further contain an inorganic layer compound. By containing the inorganic layered compound, the gas barrier properties of the barrier layer and the gas barrier laminate can be further improved.
From the viewpoint of gas barrier properties, the content of the inorganic layered compound is preferably higher. However, the inorganic layered compound has a strong affinity for water and tends to absorb moisture. In addition, paint containing an inorganic layered compound tends to have a high viscosity, so that paintability is easily impaired. Further, when the content of the inorganic layered compound is large, the transparency of the formed gas barrier layer or the gas barrier laminate decreases.
Therefore, from these viewpoints, the amount of the inorganic layered compound is preferably 1 to 300 parts by weight, and more preferably 2 to 200 parts by weight based on 100 parts by weight of the total of PVA (A) and EMA (B). More preferably, it is even more preferably at most 100 parts by weight.

 ここでいう無機層状化合物とは、単位結晶層が重なって層状構造を形成する無機化合物であり、特に溶媒中で膨潤、劈開するものが好ましい。
 無機層状化合物の好ましい例としては、モンモリロナイト、バイデライト、サポナイト、ヘクトライト、ソーコナイト、バーミキュライト、フッ素
雲母、白雲母、パラゴナイト、金雲母、黒雲母、レピドライト、マーガライト、クリントナイト、アナンダイト、緑泥石、ドンバサイト、スドーアイト、クッケアイト、クリノクロア、シャモサイト、ニマイト、テトラシリリックマイカ、タルク、パイロフィライト、ナクライト、カオリナイト、ハロイサイト、クリソタイル、ナトリウムテニオライト、ザンソフィライト、アンチゴライト、ディッカイト、ハイドロタルサイトなどがあり、膨潤性フッ素雲母又はモンモリロナイトが特に好ましい。
The term “inorganic layered compound” as used herein refers to an inorganic compound in which unit crystal layers overlap to form a layered structure, and in particular, a compound that swells and cleaves in a solvent is preferable.
Preferred examples of the inorganic layered compound include montmorillonite, beidellite, saponite, hectorite, sauconite, vermiculite, fluoromica, muscovite, paragonite, phlogopite, biotite, lepidrite, margarite, clintnite, anandite, chlorite, donba Site, Sdoite, Kukueite, Clinochlore, Shamosite, Nimite, Tetrasilylmica, Talc, Pyrophyllite, Nacrite, Kaolinite, Halloysite, Chrysotile, Sodium Teniolite, Zansophyllite, Antigorite, Diccite, Hydrotalcite And swellable fluoromica or montmorillonite is particularly preferred.

 これらの無機層状化合物は、天然に産するものであっても、人工的に合成あるいは変性されたものであってもよく、またそれらをオニウム塩などの有機物で処理したものであってもよい。 These inorganic layered compounds may be naturally occurring, artificially synthesized or modified, or may be those treated with an organic substance such as an onium salt.

 膨潤性フッ素雲母系鉱物は白色度の点で最も好ましく、次式で示されるものである。
α(MF)・β(aMgF2・bMgO)・γSiO2(式中、Mはナトリウム又はリチウムを表し、α、β、γ、a及びbは各々係数を表し、0.1 ≦α≦2、2≦β≦3.5 、3≦γ≦4、0≦a≦1、0≦b≦1、a+b=1である。)
The swellable fluoromica-based mineral is most preferable in terms of whiteness, and is represented by the following formula.
α (MF) · β (aMgF 2 · bMgO) · γSiO 2 (where M represents sodium or lithium, α, β, γ, a and b each represent a coefficient, and 0.1 ≦ α ≦ 2, 2 ≦ β ≦ 3.5, 3 ≦ γ ≦ 4, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, a + b = 1.)

 このような膨潤性フッ素雲母系鉱物の製造法としては、例えば、酸化珪素と酸化マグネシウムと各種フッ化物とを混合し、その混合物を電気炉あるいはガス炉中で1400〜1500℃の温度範囲で完全に溶融し、その冷却過程で反応容器内にフッ素雲母系鉱物を結晶成長させる、いわゆる溶融法がある。 As a method for producing such a swellable fluoromica-based mineral, for example, silicon oxide, magnesium oxide and various fluorides are mixed, and the mixture is completely cooled in an electric furnace or a gas furnace at a temperature range of 1400 to 1500 ° C. There is a so-called melting method in which the fluorinated mica-based mineral crystal grows in the reaction vessel during the cooling process.

 また、タルクを出発物質として用い、これにアルカリ金属イオンをインターカレーションして膨潤性フッ素雲母系鉱物を得る方法がある(特開平2-149415号公報)。この方法では、タルクに珪フッ化アルカリあるいはフッ化アルカリを混合し、磁性ルツボ内で約 700〜1200℃で短時間加熱処理することによって膨潤性フッ素雲母系鉱物を得ることができる。 方法 Further, there is a method of using talc as a starting material and intercalating an alkali metal ion with the talc to obtain a swellable fluoromica-based mineral (Japanese Patent Laid-Open No. 2-149415). In this method, swellable fluoromica-based mineral can be obtained by mixing talc with alkali silicofluoride or alkali fluoride and subjecting it to a short heat treatment at about 700 to 1200 ° C. in a magnetic crucible.

 この際、タルクと混合する珪フッ化アルカリあるいはフッ化アルカリの量は、混合物全体の10〜35重量%の範囲とすることが好ましく、この範囲を外れる場合には膨潤性フッ素雲母系鉱物の生成収率が低下するので好ましくない。 At this time, the amount of alkali silicate or alkali fluoride mixed with talc is preferably in the range of 10 to 35% by weight of the whole mixture. It is not preferable because the yield decreases.

 珪フッ化アルカリ又はフッ化アルカリのアルカリ金属は、ナトリウムあるいはリチウムとすることが好ましい。これらのアルカリ金属は単独で用いてもよいし併用してもよい。また、アルカリ金属のうち、カリウムの場合には膨潤性フッ素雲母系鉱物が得られないが、ナトリウムあるいはリチウムと併用し、かつ限定された量であれば膨潤性を調節する目的で用いることも可能である。 ア ル カ リ The alkali metal of the alkali silicofluoride or alkali fluoride is preferably sodium or lithium. These alkali metals may be used alone or in combination. In addition, in the case of potassium among alkali metals, a swellable fluoromica-based mineral cannot be obtained, but it can be used in combination with sodium or lithium, and in a limited amount, for the purpose of adjusting the swellability. It is.

 さらに、膨潤性フッ素雲母系鉱物を製造する工程において、アルミナを少量配合し、生成する膨潤性フッ素雲母系鉱物の膨潤性を調整することも可能である。 Further, in the step of producing the swellable fluoromica-based mineral, it is also possible to mix a small amount of alumina to adjust the swellability of the generated swellable fluoromica-based mineral.

 モンモリロナイトは、次式で示されるもので、天然に産出するものを精製することにより得ることができる。
MaSi4(Al2-aMga)O10(OH)2・nH2O(式中、Mはナトリウムのカチオンを表し、aは0.25〜0.60である。また、層間のイオン交換性カチオンと結合している水分子の数は、カチオン種や湿度等の条件に応じて変わりうるので、式中ではnH2Oで表す。)
 またモンモリロナイトには次式群で表される、マグネシアンモンモリロナイト、鉄モンモリロナイト、鉄マグネシアンモンモリロナイトの同型イオン置換体も存在し、これらを用いてもよい。
MaSi4(Al1.67-aMg0.5+a)O10(OH)2・nH2
MaSi4(Fe2-a 3+Mga)O10(OH)2・nH2
MaSi4(Fe1.67-a 3+Mg0.5+a)O10(OH)2・nH2
(式中、Mはナトリウムのカチオンを表し、aは0.25〜0.60である。)
Montmorillonite is represented by the following formula and can be obtained by purifying naturally occurring products.
MaSi 4 (Al 2 -a Mg a ) O 10 (OH) 2 · nH 2 O (wherein M represents a cation of sodium, a is 0.25 to 0.60, and bonds with an ion exchangeable cation between layers) The number of water molecules used can vary depending on conditions such as cation species and humidity, and is represented by nH 2 O in the formula.)
Montmorillonite also includes the same type ion substitutes of magnesia montmorillonite, iron montmorillonite, and iron magnesia montmorillonite represented by the following formula group, and these may be used.
MaSi 4 (Al 1.67-a Mg 0.5 + a ) O 10 (OH) 2 .nH 2 O
MaSi 4 (Fe 2 -a 3+ Mg a ) O 10 (OH) 2 .nH 2 O
MaSi 4 (Fe 1.67 -a 3+ Mg 0.5 + a ) O 10 (OH) 2 .nH 2 O
(In the formula, M represents a sodium cation, and a is 0.25 to 0.60.)

 通常、モンモリロナイトはその層間にナトリウムやカルシウム等のイオン交換性カチオンを有するが、その含有比率は産地によって異なる。本発明においては、イオン交換処理等によって層間のイオン交換性カチオンがナトリウムに置換されていることが好ましい。また、水処理により精製したモンモリロナイトを用いることが好ましい。 Normally, montmorillonite has ion-exchangeable cations such as sodium and calcium between its layers, but the content ratio varies depending on the production area. In the present invention, it is preferable that the ion-exchangeable cation between the layers is replaced with sodium by an ion-exchange treatment or the like. Further, it is preferable to use montmorillonite purified by water treatment.

 無機層状化合物は、PVA(A)及びEMA(B)に直接混合することもできるが、混合する前に予め液状媒体に膨潤、分散しておくことが好ましい。膨潤、分散用の液状媒体としては、特に限定されないが、例えば天然の膨潤性粘土鉱物の場合、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、ジエチレングリコール、等のアルコール類、ジメチルホルムアミド、ジメチルスルホキシド、アセトン等が挙げられ、水やメタノール等のアルコール類がより好ましい。 The inorganic layered compound can be directly mixed with PVA (A) and EMA (B), but it is preferable to swell and disperse in a liquid medium in advance before mixing. The liquid medium for swelling and dispersion is not particularly limited.For example, in the case of a natural swelling clay mineral, water, methanol, ethanol, propanol, isopropanol, ethylene glycol, diethylene glycol, etc., alcohols, dimethylformamide, dimethyl sulfoxide , Acetone and the like, and alcohols such as water and methanol are more preferable.

 本発明において用いられる塗料(C)には、その特性を大きく損わない限りにおいて、熱安定剤、酸化防止剤、強化材、顔料、劣化防止剤、耐候剤、難燃剤、可塑剤、離型剤、滑剤などを添加してもよい。 The paint (C) used in the present invention contains a heat stabilizer, an antioxidant, a reinforcing material, a pigment, a deterioration inhibitor, a weathering agent, a flame retardant, a plasticizer, a mold release, as long as its properties are not significantly impaired. Agents, lubricants and the like may be added.

 熱安定剤、酸化防止剤及び劣化防止剤としては、例えばヒンダードフェノール類、リン化合物、ヒンダードアミン類、イオウ化合物、銅化合物、アルカリ金属のハロゲン化物あるいはこれらの混合物が挙げられる。 (4) Examples of the heat stabilizer, antioxidant and deterioration inhibitor include hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, halides of alkali metals, and mixtures thereof.

 次に本発明において用いられる塗料(C)の製造方法について説明する。
 たとえば、PVA(A)とEMA(B)を別々に水溶液とし、使用前に混合して用いる方法が好ましい。
 2価以上の金属化合物(D)を用いる場合には、種々の方法で塗料(C)を得ることができる。例えば、
(1)PVA(A)の水溶液とEMA(B)の水溶液とを混合する際に2価以上の金属化合物(D)もしくは2価以上の金属化合物(D)の水溶液を混合する、
(2)EMA(B)の水溶液に2価以上の金属化合物(D)を予め溶解しておき、これとPVA(A)の水溶液とを混合する、
(3)PVA(A)の水溶液に2価以上の金属化合物(D)を予め溶解しておき、これとEMA(B)の水溶液とを混合する、
 等の方法が挙げられ、(2)の方法が好ましい。
Next, a method for producing the paint (C) used in the present invention will be described.
For example, a method in which PVA (A) and EMA (B) are separately prepared as aqueous solutions and mixed before use is preferable.
When the divalent or higher valent metal compound (D) is used, the coating (C) can be obtained by various methods. For example,
(1) When an aqueous solution of PVA (A) and an aqueous solution of EMA (B) are mixed, an aqueous solution of a divalent or higher-valent metal compound (D) or an aqueous solution of a divalent or higher-valent metal compound (D) is mixed;
(2) A metal compound (D) having a valency of 2 or more is dissolved in an aqueous solution of EMA (B) in advance, and this is mixed with an aqueous solution of PVA (A).
(3) A metal compound (D) having a valence of 2 or more is dissolved in an aqueous solution of PVA (A) in advance, and this is mixed with an aqueous solution of EMA (B).
And the like, and the method (2) is preferable.

 塗料(C)の濃度(=固形分)は、塗装装置や乾燥・加熱装置の仕様によって適宜変更され得るものであるが、あまりに希薄な溶液ではガスバリア性を発現するのに充分な厚みの層をコートすることが困難となり、また、その後の乾燥工程において長時間を要するという問題を生じやすい。他方、塗料(C)の濃度が高すぎると、均一な塗料を得にくく、塗装性に問題を生じ易い。この様な観点から、塗料(C)の濃度(=固形分)は、5〜50重量%の範囲にすることが好ましい。 The concentration (= solid content) of the paint (C) can be appropriately changed depending on the specifications of the coating apparatus and the drying / heating apparatus. However, if the solution is too dilute, a layer having a thickness sufficient to exhibit gas barrier properties is required. Coating becomes difficult, and a problem that a long time is required in a subsequent drying step is likely to occur. On the other hand, if the concentration of the coating material (C) is too high, it is difficult to obtain a uniform coating material, which tends to cause problems in coatability. From such a viewpoint, it is preferable that the concentration (= solid content) of the coating material (C) be in the range of 5 to 50% by weight.

 プラスチック基材 ]
 本発明のガスバリア性積層体は、上述のガスバリア層形成用塗料(C)をプラスチック基材上に直に、又はアンダーコート層(以下、UC層ともいう)を介してプラスチック基材上に塗布し、加熱処理した後、さらに水の存在下に加熱処理して形成されたものである。
 ここで用いられるプラスチック基材は、熱成形可能な熱可塑性樹脂から押出成形、射出成形、ブロー成形、延伸ブロー成形或いは絞り成形等の手段で製造された、フィルム状基材の他、ボトル、カップ、トレイ等の各種容器形状を呈する基材であってもよく、フィルム状であることが好ましい。
 また、プラスチック基材は、単一の層から構成されるものであってもよいし、あるいは例えば同時溶融押出しや、その他のラミネーションによって複数の層から構成されるものであってもよい。
[ Plastic substrate]
The gas barrier laminate of the present invention is obtained by applying the above-mentioned coating material (C) for forming a gas barrier layer directly on a plastic substrate or on a plastic substrate via an undercoat layer (hereinafter, also referred to as a UC layer). , Formed by heat treatment and then heat treatment in the presence of water.
The plastic substrate used here is a film-shaped substrate, a bottle, a cup, etc., manufactured from a thermoformable thermoplastic resin by means such as extrusion molding, injection molding, blow molding, stretch blow molding or draw molding. And a substrate having various container shapes such as a tray, and a film shape is preferable.
The plastic substrate may be composed of a single layer, or may be composed of a plurality of layers by, for example, co-extrusion or other lamination.

 プラスチック基材を構成する熱可塑性樹脂としては、オレフィン系共重合体、ポリエステル、ポリアミド、スチレン系共重合体、塩化ビニル系共重合体、アクリル系共重合体、ポリカーボネート等が挙げられ、オレフィン系共重合体、ポリエステル、ポリアミドが好ましい。 Examples of the thermoplastic resin constituting the plastic substrate include olefin-based copolymers, polyesters, polyamides, styrene-based copolymers, vinyl chloride-based copolymers, acrylic copolymers, and polycarbonates. Polymers, polyesters and polyamides are preferred.

 オレフィン系共重合体としては、低−、中−或いは高−密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−ブテン−共重合体、アイオノマー、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体等が、
 ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート、ポリエチレンナフタレート等が、
 ポリアミドとしては、ナイロン6、ナイロン6,6、ナイロン6,10、メタキシリレンアジパミド等のポリアミド;
 スチレン系共重合体としては、ポリスチレン、スチレン−ブタジエンブロック共重合体、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン−アクリロニトリル共重合体(ABS樹脂)等が、
 塩化ビニル系共重合体としては、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体等が、
 アクリル系共重合体としては、ポリメチルメタクリレート、メチルメタクリレート・エチルアクリレート共重合体等がそれぞれ挙げられる。
 これらの熱可塑性樹脂は、単独で使用してもよいし、2種以上を混合し使用しても良い。
Examples of the olefin copolymer include low-, medium- or high-density polyethylene, linear low-density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene-copolymer, ionomer, and ethylene-vinyl acetate copolymer. Coalescence, ethylene-vinyl alcohol copolymer, etc.
As polyester, polyethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate / isophthalate, polyethylene naphthalate, etc.,
Examples of the polyamide include polyamides such as nylon 6, nylon 6,6, nylon 6,10, and meta-xylylene adipamide;
Examples of the styrene copolymer include polystyrene, styrene-butadiene block copolymer, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer (ABS resin), and the like.
As the vinyl chloride copolymer, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer and the like,
Examples of the acrylic copolymer include polymethyl methacrylate and methyl methacrylate / ethyl acrylate copolymer.
These thermoplastic resins may be used alone or in combination of two or more.

 前記の溶融成形可能な熱可塑性樹脂には、所望に応じて顔料、酸化防止剤、帯電防止剤、紫外線吸収剤、滑剤などの添加剤の1種或いは2種類以上を樹脂100重量部当りに合計量として0.001部乃至5.0部の範囲内で添加することもできる。
 また、本発明のガスバリア性積層体を用いて後述するように包装材を形成する場合、包装材としての強度を確保するために、ガスバリア性積層体を構成するプラスチック基材として、各種補強材入りのものを使用することができる。即ち、ガラス繊維、芳香族ポリアミド繊維、カーボン繊維、パルプ、コットン・リンター等の繊維補強材、或いはカーボンブラック、ホワイトカーボン等の粉末補強材、或いはガラスフレーク、アルミフレーク等のフレーク状補強材の1種類或いは2種類以上を、前記熱可塑性樹脂100重量部当り合計量として2乃至150重量部の量で配合でき、更に増量の目的で、重質乃至軟質の炭酸カルシウム、雲母、滑石、カオリン、石膏、クレイ、硫酸バリウム、アルミナ粉、シリカ粉、炭酸マグネシウム等の1種類或いは2種類以上を前記熱可塑性樹脂100重量部当り合計量として5乃至100重量部の量でそれ自体公知の処方に従って配合しても何ら差支えない。
 さらに、ガスバリア性の向上を目指して、鱗片状の無機微粉末、例えば水膨潤性雲母、クレイ等を前記熱可塑性樹脂100重量部当り合計量として5乃至100重量部の量でそれ自体公知の処方に従って配合しても何ら差支えない。
The melt-moldable thermoplastic resin may contain, if desired, one or more additives such as pigments, antioxidants, antistatic agents, ultraviolet absorbers, lubricants, etc. per 100 parts by weight of the resin. It can be added in an amount of 0.001 part to 5.0 parts.
When a packaging material is formed using the gas barrier laminate of the present invention as described later, in order to ensure the strength of the packaging material, various reinforcing materials are used as a plastic base material constituting the gas barrier laminate. Can be used. That is, one of fiber reinforcing materials such as glass fiber, aromatic polyamide fiber, carbon fiber, pulp, and cotton linter, powder reinforcing material such as carbon black and white carbon, or flake-like reinforcing material such as glass flake and aluminum flake. One or two or more kinds can be blended in an amount of 2 to 150 parts by weight as a total amount per 100 parts by weight of the thermoplastic resin. For the purpose of further increasing the weight, heavy to soft calcium carbonate, mica, talc, kaolin, gypsum , One or more of clay, barium sulfate, alumina powder, silica powder, magnesium carbonate, etc., in a total amount of 5 to 100 parts by weight per 100 parts by weight of the thermoplastic resin according to a formulation known per se. No problem.
Furthermore, in order to improve the gas barrier properties, scaly inorganic fine powders such as water-swellable mica, clay and the like are formulated in a known amount in a total amount of 5 to 100 parts by weight per 100 parts by weight of the thermoplastic resin. There is no problem even if it is blended according to the formula.

[ アンダーコート層 ]
 本発明のガスバリア性積層体は、上述のガスバリア層形成用塗料(C)をプラスチック基材上に直に、又はUC層を介してプラスチック基材上に塗布し、加熱処理した後、さらに水の存在下に加熱処理して形成されたものである。そこで本発明において用いられるUC層について説明する。UC層は、ガスバリア層とプラスチック基材との間に位置し、ガスバリア層の密着性向上の役割を主として担う。
 UC層は、ウレタン系、ポリエステル系、アクリル系、エポキシ系等種々のポリマーから形成され得、ウレタン系のUC層が好ましい。
[Undercoat layer]
The gas barrier laminate of the present invention is obtained by applying the above-mentioned coating material (C) for forming a gas barrier layer directly on a plastic substrate or via a UC layer onto a plastic substrate, and after heat-treating, further adding water. It is formed by heat treatment in the presence. Therefore, the UC layer used in the present invention will be described. The UC layer is located between the gas barrier layer and the plastic substrate, and mainly plays a role of improving the adhesion of the gas barrier layer.
The UC layer can be formed from various polymers such as urethane, polyester, acrylic, and epoxy, and a urethane UC layer is preferable.

 例えば、ウレタン系のUC層の場合、
(1) ポリエステルポリオールやポリエーテルポリオール等のポリオール成分とポリイソシアネート成分とを含有するUC用組成物をプラスチック基材上に塗工、加熱し、ポリオール成分とポリイソシアネート成分とを反応させ、ウレタン系のUC層を形成することができる。該UC層上に、前記塗料(C)の溶液を塗工し、これを加熱すれば基材/UC層/ガスバリア層からなる積層体を得ることができる。
(2) UC用組成物をプラスチック基材上に塗工、乾燥し、ポリオール成分とポリイソシアネート成分との反応が完了していない、UC層の前駆体を得、該前駆体上に前記塗料(C)の溶液を塗工し、加熱することによってUC層の形成とガスバリア層の形成とを一度に行って、基材/UC層/ガスバリア層を得ることもできる。
(3) あるいは、UC用組成物をプラスチック基材上に塗工後、加熱せずに、前記ガスバリア層形成用塗料を塗工し、加熱することによってUC層の形成とガスバリア層の形成とを一度に行って、基材/UC層/バリア層からなる積層体を得ることもできる。
 UC用組成物に含まれるポリイソシアネートが,ガスバリア層との界面領域において,PVA(A)中の水酸基とも反応し、密着性向上に寄与する他、ガスバリア層の架橋を補助し、耐水性の向上にも効果があると考えられるので、(2)、(3)の方法が好ましい。
For example, in the case of a urethane-based UC layer,
(1) A UC composition containing a polyol component such as a polyester polyol or a polyether polyol and a polyisocyanate component is coated on a plastic substrate, heated, and the polyol component and the polyisocyanate component are allowed to react with each other. Can be formed. By applying a solution of the coating material (C) on the UC layer and heating the solution, a laminate composed of the base material / UC layer / gas barrier layer can be obtained.
(2) The composition for UC is coated on a plastic substrate and dried to obtain a precursor of the UC layer in which the reaction between the polyol component and the polyisocyanate component is not completed, and the paint ( By applying and heating the solution of C), the formation of the UC layer and the formation of the gas barrier layer can be performed at one time to obtain the substrate / UC layer / gas barrier layer.
(3) Alternatively, after coating the composition for UC on a plastic substrate, the coating for forming a gas barrier layer is applied without heating, and the formation of the UC layer and the formation of the gas barrier layer are performed by heating. It is also possible to obtain a laminate composed of the base material / UC layer / barrier layer by performing the above at once.
The polyisocyanate contained in the composition for UC also reacts with the hydroxyl group in PVA (A) in the interface region with the gas barrier layer, thereby contributing to the improvement of adhesion and assisting the crosslinking of the gas barrier layer to improve the water resistance. Therefore, the methods (2) and (3) are preferable.

 UC層の形成に供されるポリオール成分としては、ポリエステルポリオールが好ましく、ポリエステルポリオールとしては、多価カルボン酸もしくはそれらのジアルキルエステルまたはそれらの混合物と、グリコール類もしくはそれらの混合物とを反応させて得られるポリエステルポリオールが挙げられる。
 多価カルボン酸としては、例えばイソフタル酸、テレフタル酸、ナフタレンジカルボン酸等の芳香族多価カルボン酸、アジピン酸、アゼライン酸、セバシン酸,シクロヘキサンジカルボン酸の脂肪族多価カルボン酸が挙げられる。
 グリコールとしては、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、ブチレングリコール、ネオペンチルグリコール、1,6ーヘキサンジオールなどが挙げられる。
As the polyol component used for forming the UC layer, a polyester polyol is preferable, and the polyester polyol is obtained by reacting a polycarboxylic acid or a dialkyl ester thereof or a mixture thereof with a glycol or a mixture thereof. Polyester polyol to be used.
Examples of the polycarboxylic acid include aromatic polycarboxylic acids such as isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid, and aliphatic polycarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and cyclohexanedicarboxylic acid.
Examples of the glycol include ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, neopentyl glycol, 1,6-hexanediol, and the like.

 これらのポリエステルポリオールは,ガラス転移温度(以下、Tgという)−50℃〜120℃のものが好ましく,−20℃〜100℃のものがより好ましく,0℃〜90℃のものがさらに好ましい。ポリエステルポリオールの好適なTgは、塗料(C)を塗布後加熱硬化する際の加熱硬化条件とも関係する。比較的低温で加熱硬化する場合には、比較的高Tgのポリエステルポリオールが好ましく、比較的高温で加熱硬化する場合には、低温から高温まで比較的幅広いTgのポリエステルポリオールが好適に使用できる。例えば、180℃で塗料(C)を加熱硬化する場合には、70〜90℃程度のTgのポリエステルポリオールが好ましい。一方、200℃で塗料(C)を加熱硬化する場合には、0〜90℃程度のTgのポリエステルポリオールを使用することができる。
 また,これらのポリエステルポリオールの数平均分子量は1000〜10万のものが好ましく,3000〜5万のものがより好ましく,1万〜4万のものがさらに好ましい。
These polyester polyols preferably have a glass transition temperature (hereinafter, referred to as Tg) of -50 ° C to 120 ° C, more preferably -20 ° C to 100 ° C, and still more preferably 0 ° C to 90 ° C. The preferred Tg of the polyester polyol is also related to the heat-curing conditions when the coating (C) is heat-cured after application. In the case of heat curing at a relatively low temperature, a polyester polyol having a relatively high Tg is preferable, and in the case of heat curing at a relatively high temperature, a polyester polyol having a relatively wide Tg from a low temperature to a high temperature can be suitably used. For example, when the paint (C) is cured by heating at 180 ° C, a polyester polyol having a Tg of about 70 to 90 ° C is preferable. On the other hand, when the coating material (C) is cured by heating at 200 ° C., a polyester polyol having a Tg of about 0 to 90 ° C. can be used.
The number average molecular weight of these polyester polyols is preferably from 1,000 to 100,000, more preferably from 3,000 to 50,000, and even more preferably from 10,000 to 40,000.

 UC層の形成に供されるポリイソシアネートとしては、
例えば、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、m−フェニレンジイソシアネート、p−フエニレンジイソシアネート、4,4'−ジフェニルメタンジイソシアネート、2,4'−ジフェニルメタンジイソシアネート、2,2'−ジフェニルメタンジイソシアネート、3,3'−ジメチル−4,4'−ビフェニレンジイソシアネート、3,3'−ジメトキシ−4,4'−ビフエニレンジイソシアネート、3,3'−ジクロロ−4,4'−ビフェニレンジイソシアネート、1,5−ナフタレンジイソシアネート、1,5−テトラヒドロナフタレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネートなどの芳香族ポリイソシアネート、
テトラメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、ドデカメチレンジ イソシアネート、トリメチルヘキサメチレンジイソシアネート、1,3−シクロヘキシレンジイソシアネート、1,4−シクロヘキシレンジイソシアネート、水素添加キシリレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、4,4'−ジシクロヘキシルメタンジイソシアネート、3,3'−ジメチル−4,4'−ジシクロヘキシルメタンジイソシアネート等の脂肪族ポリイソシアネート、
 上記ポリイソシアネート単量体から誘導されたイソシアヌレート、ビューレット、アロファネート等の多官能ポリイソシアネート化合物、あるいはトリメチロールプロパン、グリセリン等の3官能以上のポリオール化合物との反応により得られる末端イソシアネート基含有の多官能ポリイソシアネート化合物等を挙げることができる。ヘキサメチレンジイソシアネート(以下、HMDIともいう)の三量体である3官能イソシアヌレート体が好ましい。
As the polyisocyanate used for forming the UC layer,
For example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'- Diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 3,3'-dimethoxy-4,4'-biphenylene diisocyanate, 3,3'-dichloro-4,4'-biphenylene diisocyanate, Aromatic polyisocyanates such as 1,5-naphthalene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate,
Tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, hydrogenated xylylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, Aliphatic polyisocyanates such as 4,4'-dicyclohexylmethane diisocyanate and 3,3'-dimethyl-4,4'-dicyclohexylmethane diisocyanate;
Isocyanurate derived from the above polyisocyanate monomer, polyfunctional polyisocyanate compound such as buret and allophanate, or trimethylolpropane, terminal isocyanate group-containing compound obtained by reaction with a trifunctional or higher functional compound such as glycerin. Examples thereof include polyfunctional polyisocyanate compounds. Trifunctional isocyanurate, which is a trimer of hexamethylene diisocyanate (hereinafter also referred to as HMDI), is preferable.

 ポリエステルポリオールとポリイソシアネートの重量比は10:90〜99:1のものが好ましく,30:70〜90:10のものがより好ましく,50:50〜85:15のものがさらに好ましい。 The weight ratio between the polyester polyol and the polyisocyanate is preferably from 10:90 to 99: 1, more preferably from 30:70 to 90:10, and even more preferably from 50:50 to 85:15.

 UC層の膜厚は使用する用途に応じて適宜決めることが出来るが、0.1μm〜10μmの厚みであることが好ましく、0.1μm〜5μmの厚みであるとより好ましく、0.1μm〜1μmの厚みであることが特に好ましい。0.1μm未満の厚みでは接着性を発現する事が困難となり、一方10μmを越える厚みになると塗工等の生産工程において困難を生じやすくなる。 The thickness of the UC layer can be appropriately determined according to the intended use, but is preferably 0.1 μm to 10 μm, more preferably 0.1 μm to 5 μm, and more preferably 0.1 μm to 1 μm. Is particularly preferred. When the thickness is less than 0.1 μm, it is difficult to exhibit adhesiveness. On the other hand, when the thickness exceeds 10 μm, difficulty tends to occur in a production process such as coating.

 UC用組成物中のポリエステルオールとポリイソシアネートとの濃度は適切な溶剤を用いて調節することができ,その濃度は両者を足して0.5〜80重量%の範囲であることが好ましく、1〜70重量%の範囲であることがより好ましい。溶液の濃度が低すぎると,必要な膜厚の塗膜を形成することが困難となり,また,乾燥時に余分な熱量を必要としてしまうので好ましくない.溶液の濃度が高すぎると溶液粘度が高くなりすぎて,混合、塗工時などにおける操作性の悪化を招く問題が生じる。 The concentration of the polyesterol and the polyisocyanate in the composition for UC can be adjusted using an appropriate solvent, and the concentration is preferably in the range of 0.5 to 80% by weight of the total, preferably 1 to 80% by weight. More preferably, it is in the range of 70 to 70% by weight. If the concentration of the solution is too low, it is difficult to form a coating film having a required film thickness, and an excessive amount of heat is required during drying, which is not preferable. If the concentration of the solution is too high, the viscosity of the solution becomes too high, causing a problem that the operability is deteriorated at the time of mixing and coating.

 UC用組成物に使用できる溶剤としては、例えば,トルエン,MEK,シクロヘキサノン,ソルベッソ,イソホロン,キシレン,MIBK,酢酸エチル,酢酸ブチルがあげられるが,これらに限定されるものではない.
 UC層には上記成分の他に、公知である硬化促進触媒,充填剤、軟化剤、老化防止剤、安定剤、接着促進剤、レベリング剤、消泡剤、可塑剤、無機フィラー、粘着付与性樹脂、繊維類、顔料等の着色剤、可使用時間延長剤等を使用することもできる。
Examples of the solvent that can be used in the composition for UC include, but are not limited to, toluene, MEK, cyclohexanone, solvesso, isophorone, xylene, MIBK, ethyl acetate, and butyl acetate.
In the UC layer, in addition to the above components, a well-known curing promoting catalyst, filler, softener, antioxidant, stabilizer, adhesion promoter, leveling agent, defoamer, plasticizer, inorganic filler, tackifier Coloring agents such as resins, fibers, pigments, and the like, and usable time extenders can also be used.

 UC層、バリア層を形成するには,各層を形成するための組成物を,ロールコーター方式,グラビア方式,グラビアオフセット方式,スプレー塗装方式,あるいはそれらを組み合わせた方式などにより,それぞれプラスチック基材上、UC層上に、所望の厚さに塗布することができるが,これらの方式に限定されるものではない。
 また、未延伸フィルムに塗布して乾燥した後、延伸処理することもできる。例えば、乾燥後、テンター式延伸機に供給してフィルムを走行方向と幅方向に同時に延伸(同時2軸延伸)、熱処理することもできる。あるいは、多段熱ロール等を用いてフィルムの走行方向に延伸を行った後に塗料等を塗布し、乾燥後、テンター式延伸機によって幅方向に延伸(逐次2軸延伸)してもよい。また、走行方向の延伸とテンターでの同時2軸延伸を組み合わせることも可能である。
 本発明におけるガスバリア層の厚みは、積層体のガスバリア性を十分高めるためには少なくとも0.1μmより厚くすることが望ましい。
In order to form the UC layer and the barrier layer, the composition for forming each layer is coated on a plastic substrate by a roll coater method, a gravure method, a gravure offset method, a spray coating method, or a combination thereof. , UC layer to a desired thickness, but is not limited to these methods.
Moreover, after applying to an unstretched film and drying, it can also be stretched. For example, after drying, the film may be supplied to a tenter-type stretching machine to simultaneously stretch the film in the running direction and the width direction (simultaneous biaxial stretching) and heat-treat. Alternatively, the film may be stretched in the running direction of the film using a multi-stage heat roll or the like, and then a paint or the like may be applied, dried, and then stretched in the width direction (sequential biaxial stretching) by a tenter-type stretching machine. It is also possible to combine stretching in the running direction with simultaneous biaxial stretching in a tenter.
The thickness of the gas barrier layer in the present invention is desirably at least 0.1 μm in order to sufficiently enhance the gas barrier properties of the laminate.

[ ガスバリア性積層体 ]
 本発明のガスバリア性積層体は、上述のガスバリア層形成用塗料(C)をプラスチック基材上に直に、又はUC層を介してプラスチック基材上に塗布し、加熱処理した後、さらに水の存在下に加熱処理して形成されたものである。
 即ち、塗料(C)を塗布した後、一端加熱処理することによって、PVA(A)とEMA(B)とのエステル化反応、及び塗料(C)が2価以上の金属化合物(D)を含有する場合には該金属化合物(D)とPVA(A)、もしくは該金属化合物(D)とEMA(B)との反応が生起し、最終のガスバリア性積層体の前駆体ともいうべきガスバリア性積層体(以下、この前駆体を「ガスバリア性積層体(1)」ということもある)が生成される。該前駆体を水の存在下に加熱処理することによって、飛躍的にガスバリア性の向上したガスバリア性積層体を得ることができる(以下、水の存在下に加熱処理したガスバリア性積層体を「ガスバリア性積層体(2)」ということもある)。
 従来の技術の欄で述べたように、塗料を塗布した後、加熱することによって、PVA中の水酸基とポリアクリル酸中もしくはEMA中のCOOHとを十分にエステル化反応させたり、上記官能基と金属とを架橋反応させたりするためには、これまではより高温もしくは長時間加熱する必要があると考えられていた。しかし、熱による各種架橋構造の導入で高湿度下におけるガスバリア性を向上させるには、プラスチック基材自体及び形成されつつあるバリア層の耐熱性等の観点からも現実的には限界があった。
 これに対し、何故バリア性が向上するのかその詳細な機構はまだ不明ではあるが、上述したように、塗料(C)を塗布、加熱処理した後、水の存在下に加熱処理することによって、プラスチック基材自体及びバリア層の熱劣化を伴うことなく、従来よりもはるかにガスバリア性に優れたガスバリア性積層体(2)を得ることができる。
[Gas barrier laminate]
The gas barrier laminate of the present invention is obtained by applying the above-mentioned coating material (C) for forming a gas barrier layer directly on a plastic substrate or via a UC layer onto a plastic substrate, and after heat-treating, further adding water. It is formed by heat treatment in the presence.
That is, after the coating material (C) is applied, an esterification reaction between PVA (A) and EMA (B) and the coating material (C) contain a divalent or higher valent metal compound (D) by heating once. In this case, a reaction between the metal compound (D) and PVA (A) or between the metal compound (D) and EMA (B) occurs, and the gas barrier laminate which is also referred to as a precursor of the final gas barrier laminate is produced. A body (hereinafter, this precursor may be referred to as “gas barrier laminate (1)”) is produced. By heat-treating the precursor in the presence of water, a gas-barrier laminate having significantly improved gas barrier properties can be obtained (hereinafter, the gas-barrier laminate heat-treated in the presence of water is referred to as a gas barrier laminate). Laminate (2) ").
As described in the section of the prior art, after applying the coating material, by heating, the hydroxyl group in PVA is sufficiently esterified with COOH in polyacrylic acid or EMA, or the functional group is reacted with the above functional group. In the past, it was thought that it was necessary to heat at a higher temperature or for a longer time in order to cause a crosslinking reaction with a metal. However, in order to improve the gas barrier properties under high humidity by introducing various cross-linking structures by heat, there is a practical limit from the viewpoint of the heat resistance of the plastic substrate itself and the barrier layer being formed.
On the other hand, the detailed mechanism of why the barrier property is improved is still unknown, but as described above, the coating (C) is applied, heated, and then heat-treated in the presence of water. A gas barrier laminate (2) having much better gas barrier properties than before can be obtained without thermal degradation of the plastic substrate itself and the barrier layer.

 PVA(A)とEMA(B)との比や、2価以上の金属化合物(D)の含有の有無、そして2価以上の金属化合物(D)を含有する場合にはその含有量等によっても影響を受け得るので、塗料(C)の好ましい加熱処理条件は一概には言えないが、100℃以上300℃以下の温度で行うことが好ましく、120℃以上250℃以下がより好ましく、140℃以上240℃以下がさらに好ましく、160℃以上220℃以下が特に好ましい。
 詳しくは、100℃以上140℃未満の温度範囲で90秒以上、または140℃以上180℃未満の温度範囲で1分以上、または180℃以上250℃未満の温度範囲で30秒以上の熱処理を行うことが好ましく、
 100℃以上140℃未満の温度範囲で2分以上、または140℃以上180℃未満の温度範囲で90秒以上、または180℃以上240℃以上の温度範囲で1分以上の熱処理を行うことがより好ましく、
 100℃以上140℃未満の温度範囲で4分以上、または140℃以上180℃未満の温度範囲で3分以上、または180℃以上220℃未満の温度範囲で2分程度の熱処理を行うことが特に好ましい。
Depending on the ratio of PVA (A) to EMA (B), the presence or absence of a divalent or higher valent metal compound (D), and the content of a divalent or higher valent metal compound (D), etc. Since it can be affected, the preferable heat treatment conditions for the paint (C) cannot be unconditionally determined, but it is preferably performed at a temperature of 100 ° C or more and 300 ° C or less, more preferably 120 ° C or more and 250 ° C or less, and 140 ° C or more. 240 ° C or lower is more preferable, and 160 ° C or higher and 220 ° C or lower is particularly preferable.
Specifically, heat treatment is performed for 90 seconds or more in a temperature range of 100 ° C. to less than 140 ° C., for 1 minute or more in a temperature range of 140 ° C. to less than 180 ° C., or for 30 seconds or more in a temperature range of 180 ° C. to less than 250 ° C. Preferably,
It is more preferable to perform heat treatment for 2 minutes or more in a temperature range of 100 ° C or more and less than 140 ° C, or 90 seconds or more in a temperature range of 140 ° C or more and less than 180 ° C, or 1 minute or more in a temperature range of 180 ° C or more and 240 ° C or more. Preferably,
It is particularly preferable to perform heat treatment for 4 minutes or more in a temperature range of 100 ° C or more and less than 140 ° C, or 3 minutes or more in a temperature range of 140 ° C or more and less than 180 ° C, or about 2 minutes in a temperature range of 180 ° C or more and less than 220 ° C. preferable.

 加熱処理の温度が低すぎるあるいは時間が短すぎると、架橋反応が不十分となり、ガスバリア性積層体(1)の耐水性が不十分となる。また、加熱処理を300℃を超える温度で行うと、形成されるバリア層及びプラスチック基材に変形、皺熱分解等が生じ、その結果ガスバリア性等の物性低下が引き起こされ易い。
 また、加熱処理時間が長いほど、高湿度下でのガスバリア性は向上する傾向にあるが、生産性および基材フィルムの熱による変形、劣化等を考慮すると加熱処理時間は1時間以内であることが好ましく、30分以内であるとより好ましく、20分以内であることが特に好ましい。
 例えば、PVA(A)/EMA(B)=30/70(重量比)、Mg(OH)2をEMA(B)中のCOOHに対して1〜5%となるように含有した場合には、160〜200℃で15秒〜10分程度加熱処理することが好ましい。
If the temperature of the heat treatment is too low or the time is too short, the crosslinking reaction becomes insufficient, and the water resistance of the gas barrier laminate (1) becomes insufficient. Further, when the heat treatment is performed at a temperature exceeding 300 ° C., the formed barrier layer and the plastic base material are deformed, wrinkled and thermally decomposed, and as a result, physical properties such as gas barrier properties are easily reduced.
In addition, the longer the heat treatment time, the better the gas barrier properties under high humidity tend to be. However, the heat treatment time must be within one hour in consideration of productivity and deformation and deterioration of the base film due to heat. Is preferably within 30 minutes, and particularly preferably within 20 minutes.
For example, when PVA (A) / EMA (B) = 30/70 (weight ratio) and Mg (OH) 2 is contained at 1 to 5% with respect to COOH in EMA (B), It is preferable to carry out heat treatment at 160 to 200 ° C. for about 15 seconds to 10 minutes.

 次いで得られたガスバリア性積層体(1)を水の存在下に加熱処理すればよい。
 ガスバリア性積層体(1)を水の存在下に加熱処理する方法としては、以下に示すような種々の方法が挙げられる。
(1) ガスバリア性積層体(1)を水(湯)に浸漬する。
(2) ガスバリア性積層体(1)に水(湯)を霧状、シャワー状にして吹き付ける。
(3) ガスバリア性積層体(1)を高湿度下におく。
(4) ガスバリア性積層体(1)を水蒸気にさらす。水蒸気を吹き付けつつ、熱ロールで加熱してもよい。
 これら複数の方法を組み合わせることもできる。
 処理に使用する水の温度や環境温度は、90℃以上であることが好ましく、95℃以上であることがより好ましく、100〜140℃であることがさらに好ましく、110〜130℃であることが最も好ましい。また、処理時間は、1分以上であることが好ましく、10分以上であるとさらに好ましく、20分以上であることが最も好ましい。水の温度や環境温度はより高く、処理時間はより長い方が好ましいが、生産性、経済性、省エネルギー等の観点から、温度は高くても140℃程度、時間は長くても1時間程度が現実的である。
Next, the obtained gas barrier laminate (1) may be heat-treated in the presence of water.
As a method of heat-treating the gas barrier laminate (1) in the presence of water, there are various methods as described below.
(1) Immerse the gas barrier laminate (1) in water (hot water).
(2) Water (hot water) is sprayed on the gas barrier laminate (1) in the form of a mist or shower.
(3) Put the gas barrier laminate (1) under high humidity.
(4) The gas barrier laminate (1) is exposed to water vapor. You may heat with a hot roll, blowing a steam.
These multiple methods can be combined.
The temperature of water used for the treatment and the environmental temperature are preferably 90 ° C or higher, more preferably 95 ° C or higher, further preferably 100 to 140 ° C, and more preferably 110 to 130 ° C. Most preferred. The processing time is preferably 1 minute or more, more preferably 10 minutes or more, and most preferably 20 minutes or more. It is preferable that the water temperature and the environmental temperature are higher and the treatment time is longer. However, from the viewpoints of productivity, economy, energy saving, etc., the temperature should be as high as about 140 ° C. and the time as long as about 1 hour. Realistic.

 処理条件によっても異なるので一概には言えないが、水の存在下に加熱処理することによって、高湿度下における酸素透過度を処理前のレベルの1/1.5〜1/70程度にまで小さくし、酸素ガスバリア性を向上することができる。
 例えば、25℃、80%相対湿度の条件下で測定した酸素透過度が、処理前は13cc・μm/m2・24h・atm以下、良くても3.1cc・μm/m2・24h・atm程度だった透過度が、水の存在下に加熱処理することによって、1.5cc・μm/m2・24h・atm以下に、そして良い場合には0.05cc・μm/m2・24h・atm程度にまで酸素透過度を低下することができる。
Although it cannot be said unconditionally because it differs depending on the processing conditions, the heat treatment in the presence of water reduces the oxygen permeability under high humidity to about 1 / 1.5 to 1/70 of the level before the processing. In addition, oxygen gas barrier properties can be improved.
For example, the oxygen permeability measured under conditions of 25 ° C. and 80% relative humidity is 13 cc · μm / m 2 · 24 h · atm or less before treatment, and at best 3.1 cc · μm / m 2 · 24 h · atm. The degree of permeability was reduced to 1.5 cc · μm / m 2 · 24 h · atm or less, and in a good case, 0.05 cc · μm / m 2 · 24 h · atm by heat treatment in the presence of water. Oxygen permeability can be reduced to a degree.

 また、食品を収容する容器(包装材)のうち、食品を容器(=包装材)に収容した後、加圧下に水蒸気でレトルト処理(殺菌処理)する必要がある場合には、このレトルト処理を利用して包装材を構成するガスバリア層の性能を向上することもできる。
 即ち、ガスバリア性積層体(1)を得、これを用いて食品包装容器を得、食品を収容した後、加圧下に水蒸気で120℃、30分程度レトルト処理(殺菌処理)することによって、食品包装容器を構成していたガスバリア性積層体(1)のガスバリア性を向上させ、ガスバリア性積層体(2)とすることができる。
If it is necessary to retort (sterilize) with steam under pressure after storing the food in the container (= packaging material) among the containers (packaging material) for storing the food, this retort treatment is performed. The performance of the gas barrier layer constituting the packaging material can also be improved by utilizing it.
That is, a gas-barrier laminate (1) is obtained, a food packaging container is obtained using the same, and the food is accommodated, and then subjected to retort treatment (sterilization treatment) at 120 ° C. for 30 minutes with steam under pressure to obtain the food. It is possible to improve the gas barrier properties of the gas barrier laminate (1) constituting the packaging container and to provide the gas barrier laminate (2).

以下に実施例及び比較例を挙げて、本発明について具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples.

<酸素透過度>
熱処理のみを行ったフィルムは25℃、80%RHの雰囲気下に放置した後Modern Control社製、酸素透過試験器OX−TRAN TWINを用い、25℃、80%RHにおける酸素透過度を求めた。また同様にして、熱処理後、水の存在下に加熱処理したフィルムは、処理後25℃、80%RHにおける酸素透過度を求めた。具体的には、25℃、80%RHに加湿した酸素ガス及び窒素ガス(キャリアーガス)を用いた。
<Oxygen permeability>
The film subjected to only the heat treatment was left in an atmosphere of 25 ° C. and 80% RH, and then the oxygen permeability at 25 ° C. and 80% RH was obtained using an oxygen permeation tester OX-TRAN TWIN manufactured by Modern Control. Similarly, after the heat treatment, the film subjected to the heat treatment in the presence of water was measured for oxygen permeability at 25 ° C. and 80% RH after the treatment. Specifically, oxygen gas and nitrogen gas (carrier gas) humidified at 25 ° C. and 80% RH were used.

PVA(A)とEMA(B)とを含有するガスバリア層形成用塗料(C)から形成されたフィルム(=バリア層)の酸素透過度は以下の計算式により求めた。
1/Ptotal=1/Pfilm+1/PPET
但し、
total:PVA(A)とEMA(B)とを含有するガスバリア層形成用塗料(C)から形成されたフィルム(=バリア層)、及び基材フィルム(ポリエチレンテレフタレートフィルム)層とからなる積層フィルムの酸素透過度。UC層を有する場合には、フィルム(=バリア層)、UC層及び基材フィルムの酸素透過度。
film:PVA(A)とEMA(B)とを含有するガスバリア層形成用塗料(C)から形成されたフィルム層の酸素透過度。
PET:基材フィルム(ポリエチレンテレフタレートフィルム)層の酸素透過度。UC層を有する場合には、UC層及び基材フィルムの酸素透過度。
The oxygen permeability of the film (= barrier layer) formed from the gas barrier layer forming paint (C) containing PVA (A) and EMA (B) was determined by the following formula.
1 / P total = 1 / P film + 1 / P PET
However,
P total : a laminated film composed of a film (= barrier layer) formed from a coating material (C) for forming a gas barrier layer containing PVA (A) and EMA (B), and a base film (polyethylene terephthalate film) layer Oxygen permeability. When having a UC layer, the oxygen permeability of the film (= barrier layer), the UC layer and the base film.
P film : Oxygen permeability of the film layer formed from the gas barrier layer forming paint (C) containing PVA (A) and EMA (B).
P PET : oxygen permeability of the substrate film (polyethylene terephthalate film) layer. When having a UC layer, the oxygen permeability of the UC layer and the base film.

[比較例1][実施例1]
 ポリエステル(東洋紡(株)製、バイロン200(Tg67℃)、Mn=17000)をトルエン/MEK混合溶媒に溶解したものと、ポリイソシアネート(住友化学(株)製、スミジュール3300)を、ポリエステルとポリイソシアネートの重量比が60/40になるように調整し、混合溶液を得た。この混合溶液にジブチルすずラウリレート1%MEK溶液、MEKおよび酢酸エチルを混合し、固形分約14%のプライマー組成物(=UC層形成用組成物)を得た。
Comparative Example 1 Example 1
Polyester (manufactured by Toyobo Co., Ltd., Byron 200 (Tg67 ° C., Mn = 17000) dissolved in a mixed solvent of toluene / MEK) and polyisocyanate (Sumitomo Chemical Co., Ltd., Sumidur 3300) were mixed with polyester and poly The weight ratio of the isocyanate was adjusted to 60/40 to obtain a mixed solution. To this mixed solution, a 1% MEK solution of dibutyltin laurylate, MEK and ethyl acetate were mixed to obtain a primer composition (= composition for forming a UC layer) having a solid content of about 14%.

 PVA(クラレ(株)製、ポバール124(ポリビニルケン化度98〜99%、平均重合度約2400))を熱水に溶解後、室温に冷却することにより、PVA水溶液を得た。別途、対COOH当量が4.4%になるようMg(OH)2を溶解したEMA(重量平均分子量100000)水溶液を調整した。
 PVAとEMAの重量比が表1に示すようになるように、上記PVA水溶液と上記EMA水溶液とを混合し、固形分10重量%の混合液(=バリア層形成用塗料)を得た。
PVA (Poval 124 (polyvinyl saponification degree: 98 to 99%, average degree of polymerization: about 2400), manufactured by Kuraray Co., Ltd.) was dissolved in hot water, and then cooled to room temperature to obtain a PVA aqueous solution. Separately, an EMA (weight average molecular weight: 100,000) aqueous solution in which Mg (OH) 2 was dissolved was adjusted so that the COOH equivalent was 4.4%.
The PVA aqueous solution and the EMA aqueous solution were mixed so that the weight ratio of PVA and EMA was as shown in Table 1, to obtain a mixed solution having a solid content of 10% by weight (= a coating material for forming a barrier layer).

 2軸延伸ポリエステルフィルム(厚み12μm)上に、上記プライマー組成物をバーコーターNo.4を用いて塗工し、電気オーブンで80℃30秒の条件で乾燥し、厚さ0.5μmの皮膜を形成し、積層フィルムを得た。この積層フィルム上に上記PVA、EMA混合液をバーコーターNo.6を用いて塗工し、電気オーブンで80℃2分乾燥した後、電気オーブンで200℃2分乾燥及び熱処理を行い、厚さ2μmの皮膜を形成し、積層フィルム1を得た(比較例1)。
 比較例1で得た積層フィルム1を、オートクレーブを用いて熱水中(120℃、1.2kgf/cm2)で30分間処理し、積層フィルム2を得た(実施例1)。
 比較例1及び実施例1で得た積層フィルム及びフィルム層(=ガスバリア層)の酸素透過度を測定した結果を表1に示す。
The above primer composition was coated on a biaxially stretched polyester film (thickness: 12 μm) with a bar coater No. 4 and dried in an electric oven at 80 ° C. for 30 seconds to form a film having a thickness of 0.5 μm, thereby obtaining a laminated film. The above-mentioned PVA / EMA mixed solution was coated on this laminated film with a bar coater No. 6 and dried at 80 ° C. for 2 minutes in an electric oven, followed by drying at 200 ° C. for 2 minutes and heat treatment in an electric oven to form a film having a thickness of 2 μm, thereby obtaining a laminated film 1 (Comparative Example). 1).
The laminated film 1 obtained in Comparative Example 1 was treated in hot water (120 ° C., 1.2 kgf / cm 2 ) for 30 minutes using an autoclave to obtain a laminated film 2 (Example 1).
Table 1 shows the results of measuring the oxygen permeability of the laminated film and the film layer (= gas barrier layer) obtained in Comparative Example 1 and Example 1.

[比較例2][実施例2]
 熱水処理条件を105℃、0.3kgf/cm2にしたこと以外は、比較例1及び実施例1と同様にして、積層フィルムを得た。得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
Comparative Example 2 Example 2
A laminated film was obtained in the same manner as in Comparative Example 1 and Example 1, except that the hot water treatment conditions were 105 ° C. and 0.3 kgf / cm 2 . Table 1 shows the results of measuring the oxygen permeability of the obtained laminated film and film layer.

[比較例3][実施例3]
 対COOH当量が2.5%になるようCa(OH)2を溶解したEMA水溶液を調整した。得られた水溶液を用いた以外は、比較例1及び実施例1と同様にして、積層フィルムを得た。得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
[Comparative Example 3] [Example 3]
An EMA aqueous solution in which Ca (OH) 2 was dissolved was adjusted so that the COOH equivalent was 2.5%. A laminated film was obtained in the same manner as in Comparative Example 1 and Example 1, except that the obtained aqueous solution was used. Table 1 shows the results of measuring the oxygen permeability of the obtained laminated film and film layer.

[比較例4][実施例4]
 金属化合物を溶解していないEMA水溶液を調整した。得られた水溶液を用いた以外は、比較例1及び実施例1と同様にして、積層フィルムを得た。得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
[Comparative Example 4] [Example 4]
An EMA aqueous solution in which the metal compound was not dissolved was prepared. A laminated film was obtained in the same manner as in Comparative Example 1 and Example 1, except that the obtained aqueous solution was used. Table 1 shows the results of measuring the oxygen permeability of the obtained laminated film and film layer.

[比較例5][実施例5]
 プライマー層を用いないこと以外は、比較例1及び実施例1と同様にして、積層フィルムを得た。得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
[Comparative Example 5] [Example 5]
A laminated film was obtained in the same manner as in Comparative Example 1 and Example 1, except that the primer layer was not used. Table 1 shows the results of measuring the oxygen permeability of the obtained laminated film and film layer.

[比較例6][実施例6]
 ポリエステル(東洋紡(株)製、バイロンGK-880(Tg84℃)、Mn=23000)をトルエン/MEK混合溶媒に溶解したものと、ポリイソシアネート(住友化学(株)製、スミジュール3300)を、ポリエステルとポリイソシアネートの重量比が60/40になるように調整し、混合溶液を得た。この混合溶液にジブチルすずラウリレート1%MEK溶液、MEKおよび酢酸エチルを混合し、固形分約14%のプライマー組成物を得た。
[Comparative Example 6] [Example 6]
Polyester (manufactured by Toyobo Co., Ltd., Byron GK-880 (Tg 84 ° C., Mn = 23000)) dissolved in a mixed solvent of toluene / MEK, and polyisocyanate (Sumitomo Chemical Co., Ltd., Sumidur 3300) were mixed with polyester. And the polyisocyanate were adjusted to have a weight ratio of 60/40 to obtain a mixed solution. This mixed solution was mixed with a 1% MEK solution of dibutyltin laurylate, MEK and ethyl acetate to obtain a primer composition having a solid content of about 14%.

 PVA(クラレ(株)製、ポバール124(ポリビニルケン化度98〜99%、平均重合度約2400))を熱水に溶解後、室温に冷却することにより、PVA水溶液を得た。別途、対COOH当量を4.4%になるようMg(OH)2を溶解したEMA(重量平均分子量100000)水溶液を調整した。
 PVAとEMAの重量比が表1に示すようになるように、上記PVA水溶液と上記EMA水溶液とを混合し、固形分10重量%の混合液を得た。
PVA (Poval 124 (polyvinyl saponification degree: 98 to 99%, average degree of polymerization: about 2400), manufactured by Kuraray Co., Ltd.) was dissolved in hot water, and then cooled to room temperature to obtain a PVA aqueous solution. Separately, an EMA (weight average molecular weight: 100,000) aqueous solution in which Mg (OH) 2 was dissolved was adjusted so that the COOH equivalent was 4.4%.
The PVA aqueous solution and the EMA aqueous solution were mixed so that the weight ratio of PVA and EMA was as shown in Table 1, to obtain a mixed solution having a solid content of 10% by weight.

 2軸延伸ポリエステルフィルム(厚み12μm)上に、上記プライマー組成物をバーコーターNo.4を用いて塗工し、電気オーブンで80℃30秒の条件で乾燥し、厚さ0.5μmの皮膜を形成し、積層フィルムを得た。この積層フィルム上に上記PVA、EMA混合液をバーコーターNo.6を用いて塗工し、電気オーブンで80℃2分乾燥した後、電気オーブンで200℃2分乾燥及び熱処理を行い、厚さ2μmの皮膜を形成し、積層フィルム1を得た(比較例6)。
 比較例6で得た積層フィルム1を、オートクレーブを用いて熱水中(120℃、1.2kgf/cm2)で30分間処理し、積層フィルム2を得た(実施例6)。
 比較例6及び実施例6で得た積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
The above primer composition was coated on a biaxially stretched polyester film (thickness: 12 μm) with a bar coater No. 4 and dried in an electric oven at 80 ° C. for 30 seconds to form a film having a thickness of 0.5 μm, thereby obtaining a laminated film. The above-mentioned PVA / EMA mixed solution was coated on this laminated film with a bar coater No. 6 and dried at 80 ° C. for 2 minutes in an electric oven, followed by drying at 200 ° C. for 2 minutes and heat treatment in an electric oven to form a film having a thickness of 2 μm, thereby obtaining a laminated film 1 (Comparative Example). 6).
The laminated film 1 obtained in Comparative Example 6 was treated in hot water (120 ° C., 1.2 kgf / cm 2 ) for 30 minutes using an autoclave to obtain a laminated film 2 (Example 6).
Table 1 shows the results of measuring the oxygen permeability of the laminated film and the film layer obtained in Comparative Example 6 and Example 6.

[比較例7〜9][実施例7〜9]
 乾燥及び熱処理条件を表1に示すように180℃2分、160℃2分、もしくは140℃2分にしたこと以外は、比較例6及び実施例6と同様にして、積層フィルムを得た。
 得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
[Comparative Examples 7 to 9] [Examples 7 to 9]
A laminated film was obtained in the same manner as in Comparative Example 6 and Example 6, except that the drying and heat treatment conditions were set to 180 ° C. for 2 minutes, 160 ° C. for 2 minutes, or 140 ° C. for 2 minutes as shown in Table 1.
Table 1 shows the results of measuring the oxygen permeability of the obtained laminated film and film layer.

[比較例10〜12][実施例10〜12]
 PVAとEMAの重量比が表1に示すようになるように、実施例1で用いたPVA水溶液と実施例1で用いたEMA水溶液とを混合し、固形分10重量%の混合液を得た。得られた水溶液を用いた以外は、比較例1及び実施例1と同様にして、積層フィルムを得た。
 得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
[Comparative Examples 10 to 12] [Examples 10 to 12]
The aqueous PVA solution used in Example 1 and the aqueous EMA solution used in Example 1 were mixed so that the weight ratio of PVA and EMA became as shown in Table 1, to obtain a mixed solution having a solid content of 10% by weight. . A laminated film was obtained in the same manner as in Comparative Example 1 and Example 1, except that the obtained aqueous solution was used.
Table 1 shows the results of measuring the oxygen permeability of the obtained laminated film and film layer.

[比較例13〜14][実施例13〜14]
 対COOH当量を表1に示すように1.1%または8.8%になるようMg(OH)2を溶解したEMA水溶液を調整した。得られた水溶液を用いた以外は、比較例1及び実施例1と同様にして、積層フィルムを得た。
 得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
[Comparative Examples 13 to 14] [Examples 13 to 14]
As shown in Table 1, an EMA aqueous solution in which Mg (OH) 2 was dissolved was adjusted so that the COOH equivalent became 1.1% or 8.8%. A laminated film was obtained in the same manner as in Comparative Example 1 and Example 1, except that the obtained aqueous solution was used.
Table 1 shows the results of measuring the oxygen permeability of the obtained laminated film and film layer.

[比較例15][実施例15]
 乾燥及び熱処理条件を240℃2分にしたこと以外は比較例1及び実施例1と同様にして、積層フィルムを得た。得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
[Comparative Example 15] [Example 15]
A laminated film was obtained in the same manner as in Comparative Example 1 and Example 1, except that the drying and heat treatment conditions were changed to 240 ° C. for 2 minutes. Table 1 shows the results of measuring the oxygen permeability of the obtained laminated film and film layer.

[比較例16][実施例16]
 乾燥及び熱処理条件を240℃2分にしたこと以外は比較例6及び実施例6と同様にして、積層フィルムを得た。得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
[Comparative Example 16] [Example 16]
A laminated film was obtained in the same manner as in Comparative Example 6 and Example 6, except that the drying and heat treatment conditions were changed to 240 ° C. for 2 minutes. Table 1 shows the results of measuring the oxygen permeability of the obtained laminated film and film layer.

[比較例17]
 比較例1で得た積層フィルム1を、オートクレーブを用いて加熱したイオン交換水中(120℃、1.2kgf/cm2)で30分間処理し、積層フィルム2を得た(比較例17)。
 比較例17で得た積層フィルム及びフィルム層(=ガスバリア層)の酸素透過度を測定した結果を表1に示す
[Comparative Example 17]
The laminated film 1 obtained in Comparative Example 1 was treated for 30 minutes in heated ion-exchanged water (120 ° C., 1.2 kgf / cm 2 ) using an autoclave to obtain a laminated film 2 (Comparative Example 17).
Table 1 shows the results of measuring the oxygen permeability of the laminated film and the film layer (= gas barrier layer) obtained in Comparative Example 17.

[比較例18]
 比較例1で得た積層フィルム1を、オートクレーブを用いて加熱した蒸留水中(120℃、1.2kgf/cm2)で30分間処理し、積層フィルム2を得た(比較例18)。
 比較例18で得た積層フィルム及びフィルム層(=ガスバリア層)の酸素透過度を測定した結果を表1に示す
[Comparative Example 18]
The laminated film 1 obtained in Comparative Example 1 was treated with distilled water (120 ° C., 1.2 kgf / cm 2 ) heated in an autoclave for 30 minutes to obtain a laminated film 2 (Comparative Example 18).
Table 1 shows the results of measuring the oxygen permeability of the laminated film and the film layer (= gas barrier layer) obtained in Comparative Example 18.

Figure 2004136281
Figure 2004136281

 比較例15〜16、比較例6〜9に示されるように加熱処理するだけでは、到達し得る酸素透過には限界があり、240℃で加熱してももはや200℃で加熱した場合よりも酸素透過度を小さくすることはできなかった。
 これに対し、実施例15〜16、実施例6〜9に示されるようにより低温で加熱処理しても、その後水の存在下に熱処理することによって、加熱処理のみによる限界値を大きく下回る程、酸素透過度を小さくできる。
 また、比較例4対実施例4、比較例1〜3対実施例1〜3とから示されるように、塗料が2価以上の金属化合物を含有する場合に、水の存在下に熱処理することの効果が、より顕著になる。

As shown in Comparative Examples 15 to 16 and Comparative Examples 6 to 9, only the heat treatment has a limit on the achievable oxygen permeation, and heating at 240 ° C. is no longer more effective than heating at 200 ° C. The transmittance could not be reduced.
On the other hand, even if the heat treatment is performed at a lower temperature as shown in Examples 15 to 16 and Examples 6 to 9, the heat treatment is performed in the presence of water, so that the heat treatment is substantially below the limit value due to the heat treatment alone. Oxygen permeability can be reduced.
Further, as shown from Comparative Example 4 vs. Example 4 and Comparative Examples 1 to 3 vs. Examples 1 to 3, when the paint contains a divalent or higher valent metal compound, heat treatment is performed in the presence of water. Effect becomes more remarkable.

Claims (8)

プラスチック基材上に直に、又はアンダーコート層を介してプラスチック基材上に、ポリビニルアルコール(A)とエチレン−マレイン酸共重合体(B)とを含有するガスバリア層形成用塗料(C)を塗布し、熱処理した後、水の存在下に加熱処理してなることを特徴とするガスバリア性積層体の製造方法。 A gas barrier layer-forming coating material (C) containing polyvinyl alcohol (A) and an ethylene-maleic acid copolymer (B) on a plastic substrate directly or on a plastic substrate via an undercoat layer. A method for producing a gas-barrier laminate, comprising applying, heat-treating, and heat-treating in the presence of water. 塗料(C)が、2価以上の金属化合物を含有することを特徴とする請求項1記載のガスバリア性積層体の製造方法。 The method for producing a gas barrier laminate according to claim 1, wherein the paint (C) contains a divalent or higher valent metal compound. 2価以上の金属化合物が、水酸基もしくはカルボキシル基と反応し得ることを特徴とする請求項2記載のガスバリア性積層体の製造方法。 The method for producing a gas barrier laminate according to claim 2, wherein the divalent or higher valent metal compound can react with a hydroxyl group or a carboxyl group. 2価以上の金属が、Mgであることを特徴とする請求項2又は3記載のガスバリア性積層体の製造方法。 The method for producing a gas barrier laminate according to claim 2, wherein the divalent or higher metal is Mg. エチレン−マレイン酸共重合体(B)中のカルボキシル基に対して、Mg化合物を当量で0.05〜12.5%含有することを特徴とする請求項4記載のガスバリア性積層体の製造方法。 The method for producing a gas-barrier laminate according to claim 4, wherein the Mg compound is contained in an equivalent amount of 0.05 to 12.5% with respect to the carboxyl group in the ethylene-maleic acid copolymer (B). . ポリビニルアルコール(A)とエチレン−マレイン酸共重合体(B)との重量比が90/10〜10/90であることを特徴とする請求項1ないし5いずれか記載のガスバリア性積層体の製造方法。 The gas barrier laminate according to any one of claims 1 to 5, wherein the weight ratio of the polyvinyl alcohol (A) to the ethylene-maleic acid copolymer (B) is 90/10 to 10/90. Method. アンダーコート層が、ガラス転移温度が0℃以上のポリエステルポリオールとポリイソシアネートとから形成されることを特徴とする請求項1ないし6いずれか記載のガスバリア性積層体の製造方法。 The method for producing a gas barrier laminate according to any one of claims 1 to 6, wherein the undercoat layer is formed from a polyester polyol having a glass transition temperature of 0 ° C or higher and a polyisocyanate. 水の存在下に90℃以上で加熱処理してなることを特徴とする請求項1ないし7いずれか記載のガスバリア性積層体の製造方法。

The method for producing a gas barrier laminate according to any one of claims 1 to 7, wherein the heat treatment is performed at 90 ° C or higher in the presence of water.

JP2003334707A 2002-09-27 2003-09-26 Method for producing gas barrier laminate Expired - Lifetime JP4114585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334707A JP4114585B2 (en) 2002-09-27 2003-09-26 Method for producing gas barrier laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002282284 2002-09-27
JP2003334707A JP4114585B2 (en) 2002-09-27 2003-09-26 Method for producing gas barrier laminate

Publications (2)

Publication Number Publication Date
JP2004136281A true JP2004136281A (en) 2004-05-13
JP4114585B2 JP4114585B2 (en) 2008-07-09

Family

ID=32473171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334707A Expired - Lifetime JP4114585B2 (en) 2002-09-27 2003-09-26 Method for producing gas barrier laminate

Country Status (1)

Country Link
JP (1) JP4114585B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004089625A1 (en) 2003-04-09 2004-10-21 Toyo Ink Mfg. Co., Ltd. Method for producing gas barrier multilayer body
JP2005272757A (en) * 2004-03-26 2005-10-06 Toyo Ink Mfg Co Ltd Gas barrier coating and gas barrier laminate prepared by using the same
WO2007034940A1 (en) 2005-09-26 2007-03-29 Unitika Ltd. Gas barrier multilayer body
WO2007034943A1 (en) 2005-09-26 2007-03-29 Unitika Ltd. Gas barrier multilayer body and laminate
WO2007034941A1 (en) 2005-09-26 2007-03-29 Unitika Ltd. Gas barrier multilayer body
US7435446B2 (en) 2003-04-09 2008-10-14 Toyo Ink Mfg. Co., Ltd. Method of producing gas barrier multilayer body
KR101369954B1 (en) * 2009-10-02 2014-03-06 도요세이칸 그룹 홀딩스 가부시키가이샤 Gas barrier laminate and method for producing same
JP2014169352A (en) * 2013-03-01 2014-09-18 Sakuranomiya Kagaku Kk Gas barrier coating composition
WO2018164146A1 (en) * 2017-03-06 2018-09-13 日本合成化学工業株式会社 Resin composition, and molding material and multilayer structure comprising same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8238423B2 (en) * 2007-09-12 2012-08-07 Sony Corporation Image processing apparatus and method
JP4569840B2 (en) 2007-09-12 2010-10-27 ソニー株式会社 Image coding apparatus and image coding method
EP2187648A4 (en) 2007-09-12 2012-07-11 Sony Corp Image processing device and image processing method
JPWO2009157581A1 (en) 2008-06-27 2011-12-15 ソニー株式会社 Image processing apparatus and image processing method
JP5472105B2 (en) 2008-06-27 2014-04-16 ソニー株式会社 Image processing apparatus and image processing method
WO2009157580A1 (en) 2008-06-27 2009-12-30 ソニー株式会社 Image processing device and image processing method
RU2471306C2 (en) 2008-06-27 2012-12-27 Сони Корпорейшн Device of image processing and method of image processing

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004089625A1 (en) 2003-04-09 2004-10-21 Toyo Ink Mfg. Co., Ltd. Method for producing gas barrier multilayer body
US7435446B2 (en) 2003-04-09 2008-10-14 Toyo Ink Mfg. Co., Ltd. Method of producing gas barrier multilayer body
JP2005272757A (en) * 2004-03-26 2005-10-06 Toyo Ink Mfg Co Ltd Gas barrier coating and gas barrier laminate prepared by using the same
JP4621435B2 (en) * 2004-03-26 2011-01-26 東洋インキ製造株式会社 Gas barrier paint and gas barrier laminate using the paint
WO2007034941A1 (en) 2005-09-26 2007-03-29 Unitika Ltd. Gas barrier multilayer body
JP2007112116A (en) * 2005-09-26 2007-05-10 Unitika Ltd Gas barrier laminate and laminated article
JP2007112115A (en) * 2005-09-26 2007-05-10 Unitika Ltd Gas barrier laminate
JP2007112114A (en) * 2005-09-26 2007-05-10 Unitika Ltd Gas-barrier laminate
WO2007034943A1 (en) 2005-09-26 2007-03-29 Unitika Ltd. Gas barrier multilayer body and laminate
WO2007034940A1 (en) 2005-09-26 2007-03-29 Unitika Ltd. Gas barrier multilayer body
US8114521B2 (en) 2005-09-26 2012-02-14 Unitika Ltd. Gas barrier laminate
KR101369954B1 (en) * 2009-10-02 2014-03-06 도요세이칸 그룹 홀딩스 가부시키가이샤 Gas barrier laminate and method for producing same
JP2014169352A (en) * 2013-03-01 2014-09-18 Sakuranomiya Kagaku Kk Gas barrier coating composition
WO2018164146A1 (en) * 2017-03-06 2018-09-13 日本合成化学工業株式会社 Resin composition, and molding material and multilayer structure comprising same
CN110382616A (en) * 2017-03-06 2019-10-25 三菱化学株式会社 Resin combination and the moulding material and multilayer structure making being made of it
JPWO2018164146A1 (en) * 2017-03-06 2020-01-16 三菱ケミカル株式会社 Resin composition, molding material comprising the same, and multilayer structure
US11091603B2 (en) 2017-03-06 2021-08-17 Mitsubishi Chemical Corporation Resin composition, and molding material and multilayer structure comprising same
JP7139945B2 (en) 2017-03-06 2022-09-21 三菱ケミカル株式会社 Resin composition, molding material and multilayer structure comprising the same

Also Published As

Publication number Publication date
JP4114585B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP4225158B2 (en) Method for producing gas barrier laminate
JP5081415B2 (en) Gas barrier laminate
JP4114585B2 (en) Method for producing gas barrier laminate
JP5155535B2 (en) Gas barrier coating agent and film
JP2006219518A (en) Gas barrier coating and gas barrier laminate using the same coating
US20060009561A1 (en) Gas barrier coating material and gas barrier laminates made by using the same
US7435446B2 (en) Method of producing gas barrier multilayer body
JP2004315586A (en) Manufacturing method of gas-barrier laminate
JP2004115776A (en) Gas barrier coating
JP4254453B2 (en) Gas barrier paint and gas barrier laminate using the paint
JP2004322625A (en) Manufacturing method for gas barrier laminate
JP2004323592A (en) Gas barrier laminate (1) and method for manufacturing gas barrier laminate (2) by using the gas barrier laminate (1)
JP2004238605A (en) Coating for forming gas barrier layer and gas barrier laminated material formed by using the coating
JP2004323817A (en) Gas barrier layer-forming coating and gas barrier laminate obtained by using the coating
JP2005144761A (en) Gas barrier laminate and its manufacturing method
JP2004238604A (en) Coating for forming gas barrier layer and gas barrier laminated material formed by using the coating
JP2004307731A (en) Gas barrier coating
JP4388840B2 (en) Method for producing gas barrier laminate
JP2004315585A (en) Manufacturing method of gas-barrier laminate
JP4351099B2 (en) Method for producing gas barrier laminate
JP4621435B2 (en) Gas barrier paint and gas barrier laminate using the paint
JP2005270907A (en) Production method of gas-barrier laminate
JP2004306534A (en) Manufacturing method of gas-barrier laminate
JP4349033B2 (en) Method for producing gas barrier laminate
JP2005139325A (en) Gas-barrier coating and gas-barrier laminate obtained using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4114585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term