JP2004136194A - Waste water treatment method - Google Patents

Waste water treatment method Download PDF

Info

Publication number
JP2004136194A
JP2004136194A JP2002302917A JP2002302917A JP2004136194A JP 2004136194 A JP2004136194 A JP 2004136194A JP 2002302917 A JP2002302917 A JP 2002302917A JP 2002302917 A JP2002302917 A JP 2002302917A JP 2004136194 A JP2004136194 A JP 2004136194A
Authority
JP
Japan
Prior art keywords
stage
electrolytic reaction
electrodes
reaction tank
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002302917A
Other languages
Japanese (ja)
Other versions
JP3991838B2 (en
Inventor
Isao Joko
上甲 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002302917A priority Critical patent/JP3991838B2/en
Publication of JP2004136194A publication Critical patent/JP2004136194A/en
Application granted granted Critical
Publication of JP3991838B2 publication Critical patent/JP3991838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method for reducing COD (chemical oxygen demand), TOC (total organic carbon), a total nitrogen concentration of waste water containing oxidizable substances such as various organic substances, ammonia, hydrazine, and organic suspended substances. <P>SOLUTION: The waste water is electrolytically treated under conditions that electrolytic reactors 1-3 to use conductive diamond electrodes 111-113 are installed in series at plural stages and current densities of the electrolytic reactors of respective stages are set to different conditions. The areas of the electrodes 111-113 of the respective electrolytic reactors 1-3 may be determined to be larger at a preceding stage than at a subsequent stage, and the distances between the electrodes may be determined to be larger at the preceding stage than at the subsequent stage. The electrodes 111-113 of the respective electrolytic reactors 1-3 may be energized through connection in series. Oxidizable substances may include organic suspended substances and organic substances to cause gas accompanied by electrolytic reaction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、各種有機物、アンモニア、ヒドラジン、有機懸濁物質等の被酸化性物質を含む排水の処理方法に関し、特に、当該排水の化学的酸素要求量(COD)、あるいは全有機炭素(TOC)や全窒素濃度を低減することができる処理方法に関する。
【0002】
【従来の技術】
従来、各種有機物、アンモニア、ヒドラジン等の被酸化性物質を含む排水を処理する方法として、酸化イリジウムを表面に担持させた白金系電極を用いて電解処理し、続いて過酸化ニッケル系触媒あるいは過酸化コバルト系触媒と接触させて処理する方法が実用化されている(「火力原子力発電」51(12),1711(2000)、特開平10−174976号公報、特開平11−216473号公報等参照)。
また、上記の白金系電極に代えて導電性ダイヤモンド電極を用いて被酸化性物質を含む排水を電解処理する方法も、提案されている(特願2002−24529号参照)。
【特許文献1】特開平10−174976号公報
【特許文献2】特開平11−216473号公報
【非特許文献1】「火力原子力発電」51(12),1711(2000
【0003】
【発明が解決しようとする課題】
しかし、排水中に懸濁物質が共存すると、懸濁物質が電解反応槽内に蓄積し、両極の短絡を生じさせてトラブルの原因となったり、電極間の抵抗を増大させて電流効率の低下を招く等の原因となることがあった。
従って、これらの原因となる懸濁物質は、電解反応槽に排水を導入するのに先立って、分離除去する必要があり、分離除去用の装置や時間が別途必要となり、懸濁物質共存排水の処理に要するコストは膨大なものとなっていた。
【0004】
そこで、本発明は、懸濁物質が共存する排水であっても、懸濁物質の分離除去用の装置や時間を別途要することなく、しかも前記した従来の処理方法よりも被酸化性物質の除去効率に優れ、CODやTOC濃度の低減効率の高い被酸化性物質と懸濁物質を含有する排水の処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明の排水方法は、被酸化性物質と電解質物質を含む排水を導電性ダイヤモンド電極を用いて電解処理する方法であって、電解反応槽を直列に複数段設置し、各段の電解反応槽の電極の電流密度を異なる条件に設定して電解処理することを特徴とする。
上記各電解反応槽における導電性ダイヤモンド電極の面積は、前段>後段となるようにしてもよいし、当該電極の極間距離は、前段>後段となるように設置してもよい。
また、各電解反応槽の導電性ダイヤモンド電極への通電は直列に接続して行うことが好ましい。
【0006】
本発明の処理対象水である排水は、被酸化性物質と電解質物質を含み、各種の工場から排出される産業排水はもとより、生活排水、その他の排水であってよい。
排水中の被酸化性物質は、各種の有機物、あるいはアンモニアやヒドラジン等が挙げられ、本発明では、これら有機物、アンモニア、ヒドラジンのうちの少なくとも1つを含む排水に適用して好ましい効果を得ることができる。排水中のこれら被酸化性物質の濃度は、特に制限されず、被酸化性物質を種々の濃度で含む排水に好ましく適用することができる。
【0007】
また、上記被酸化性物質としては、難溶性あるいは不溶性のポリカルボン酸樹脂、ポリアミノ酸樹脂、界面活性剤のような有機懸濁物質を含んでいてもよいし、メタノール、エタノール、アセトン、酢酸、モノエタノールアミン、ジエタノールアミン、ジイソプロパノールアミン、モノエチルアミン、トリエチルアミンのような電解反応に伴ってガスを発生させる有機物を含んでいてもよい。
なお、この電解反応に伴ってガスを発生させる有機物を含んでいる場合には、電解反応で発生したガスを除去した後に、後段の電解反応槽に導入するようにすることが好ましい。
上述したような被酸化性物質を含む排水のCODおよびTOCは、特に制限されないが、本発明の方法は、電流効率の点において、COD500mg/L以上、TOC200mg/L以上の排水、より好ましくはCOD1000mg/L以上、TOC400mg/L以上の排水、さらに好ましくはCOD3000mg/L以上、TOC1100mg/L以上の排水に適用して好適であり、COD、TOCの上限も特に制限されないが、一般にはCOD300,000mg/L程度、TOC1,000,000mg/L程度とする。
【0008】
一方、電解質物質は、どのようなものであってもよいが、一般には無機化合物であって、例えば、NaCl、HSO、NaSO等が好ましく、これらは単独であってもよいし、適宜の組み合わせによる2種以上であってもよい。
排水中のこれら電解質物質の濃度は、特に制限されず、従来の電解処理に必要な50〜50,000mg/リットル(以下、リットルをL、ミリリットルをmLと記す)程度であってもよいし、従来の電解処理では効率が極めて悪くなる6,000mg/L未満であっても効率よく処理することができる。
すなわち、電気分解処理の際に電流効率を高める作用をなす電解質物質は、酸化イリジウム表面担持の白金系電極を用いる従来の方法では、6,000mg/L以上の電解質物質(NaCl)濃度を必要としていたのに対し、電流効率の改善効果を得ることができる導電性ダイヤモンド電極を用いる本発明では、6,000mg/L未満の低濃度領域でも、十分な処理効果を得ることができる。
但し、導電性ダイヤモンド電極を使用する本発明においても、電解質物質の濃度があまり低すぎると、排水中の被酸化性物質を電気分解処理するのに十分な電流効率を得ることができない場合もあるため、本発明における好ましい電解質物質の濃度は、対象排水中の被酸化性物質濃度によって異なるが、上記排水に対しては500〜6,000mg/L程度である。
【0009】
上記の電解質物質は、上記の排水中に含まれている場合もあり、この含有電解質物質のみで上記の電解質物質濃度を確保できる場合は、別途電解質物質を投入する必要はない。
含有電解質物質のみで上記の電解質物質濃度を確保できない場合は、本発明の処理に先立って、上記の電解質物質を確保できる量の電解質物質を投入する。
【0010】
本発明で使用する導電性ダイヤモンド電極は、Ni,Ta,Ti,Mo,W,Zr等の導電性金属材料を基板とし、これら基板の表面に導電性ダイヤモンド薄膜を析出させたものや、シリコンウエハ等の半導体材料を基板とし、このウエハ表面に導電性ダイヤモンド薄膜を合成させたもの、あるいは基板を用いない条件で板状に析出合成した導電性多結晶ダイヤモンド素材を挙げることができる。
なお、導電性(多結晶)ダイヤモンド薄膜は、ダイヤモンド薄膜の調製の際にボロン又は窒素の所定量をドープして導電性を付与したものであり、ボロンをドープしたものが一般的である。
これらのドープ量は、少なすぎればドープする技術的意義が発現せず、多すぎてもドープ効果は飽和するため、ダイヤモンド薄膜素材の炭素量に対し50〜20,000ppmの範囲内のものが適している。
【0011】
本発明において、導電性ダイヤモンド電極は、一般には板状のものを使用するが、網目構造体を板状にしたもの等をも使用することができる。
【0012】
また、炭素粉末、その他の粉末状の材料の表面を、導電性ダイヤモンド薄膜で覆ったものを電極として使用することもできる。この粉末状のダイヤモンド電極を使用する場合は、例えば、粉末状ダイヤモンド電極を電解液に分散させ、これを流動させて流動床を構成し、この流動床の一対を陰・陽両極として作用させればよい。
この流動床を電極とする場合の電極面積は、理論的には排水と接触する全面積であるが、本発明では、これに限定せず、対極に対面する面一の表面の面積で十分である。
【0013】
さらに、上記の基板を多孔質体としたもの、あるいは合成樹脂等からなる多孔質体に、導電性ダイヤモンド粉末を担持させて、高表面積を有する電極としたものを使用することもでき、この高表面積を有する電極で固定床を構成し、この固定床の一対を陰・陽両極として作用させればよい。
この固定床を電極とする場合の電極面積も、理論的には排水と接触する全面積であるが、本発明では、これに限定せず、対極に対面する面一の表面の面積で十分である。
【0014】
本発明は、上記のような導電性ダイヤモンドを陰・陽両極に使用した電解反応槽を直列に複数段設置して、各段の電解反応槽の電流密度を異なる条件に設定して電解処理する。
この電流密度の異なる条件とは、例えば、第1段目から第n段目に至る電解反応槽の電流密度を次第に大きくなるようにするか、この逆の次第に小さくなるようにするか、ランダムにするか、あるいは各電解反応槽の出口水の水質をモニターし次段の電解反応槽に最適な電流密度にする等がある。
本発明では、第1段目では、排水中に電気分解の対象となる被酸化性物質が大量に含まれているため、面積の大きい電極を使用することが好ましく、後段に行くに従って被酸化性物質は少量となるため、面積の小さい電極を使用しても支障ないことに加え、通電は第1段目から最終段まで直列接続で行うことが好ましいため、後段に行くに従って次第に大きな電流密度になるように設定することが好ましいこととなる。
【0015】
このときの電流密度は、導電性ダイヤモンド電極表面の電流密度で10〜100,000A/mの範囲内において各段毎に上記のような態様で異なる条件を設定すればよい。
【0016】
また、本発明においては、各電解反応槽における導電性ダイヤモンド電極の面積は、前段>後段となるようにしてもよい。
例えば、第1段目から第n段目に至る電解反応槽の電極面積を、第1段目>第2段目>第3段目>・・・・・>第n段目と、次第に小さくなるようにする。
導電性ダイヤモンド電極を用いる場合、従来の白金電極や酸化イリジウム表面担持白金系電極を用いる場合に比べて、電極面での電流密度を高くして排水の電解処理を行うことができるため、必要電極面積が少なく済み、装置をコンパクト化できるものの、被酸化性物質が大量に含まれる排水が導入される前段の電解反応槽で大量の被酸化性物質を高効率で電解処理するためには、導電性ダイヤモンド電極といえども、ある程度の電極面積を要する。そして、かなりの量の被酸化性物質が除去された排水を処理する後段の電解反応槽では、電極面積を小さくてしても、十分な処理効率を得ることができる。
【0017】
このような電解処理効果を確実に得るために、電極面積の縮小程度は、電解反応槽の設置数(処理段数)によって異なるが、例えば3つの槽(3段)で処理する場合は、第1段目より第2段目は10〜60%程度、好ましくは10〜35%程度小さくし、第2段目より第3段目は同じく10〜60%程度、好ましくは10〜50%程度小さくすると言うように、後段は前段の10〜60%程度小さくすることが好ましい。
なお、具体的な電極面積は、排水中の被酸化性物質の量や、排水の処理量(処理能力)等により異なるため一概には決められない。
【0018】
更に、本発明においては、各電解反応槽における導電性ダイヤモンド電極の極間距離は、前段>後段となるようにしてもよい。
例えば、第1段目から第n段目に至る電解反応槽の電極間距離を、第1段目>第2段目>第3段目・・・・・・第n段目と、次第に小さくなるようにする。
【0019】
上記したように、導電性ダイヤモンド電極を用いる場合、従来の白金電極や酸化イリジウム表面担持白金系電極を用いる場合に比べて、電極面での電流密度を高くして排水の電解処理を行うことができるため、必要電極面積が少なく済み、装置をコンパクト化できるものの、過電圧が高いため、極間電圧が高くなってしまう。
エネルギー効率を高めるためには、極間距離を極力小さくするのが一般的であるが、極間距離を小さくした電解反応槽では、処理対象排水中に有機懸濁物質が存在する場合、詰まりを生じ、極間短絡の要因となる。
そこで、本発明では、有機懸濁物質が大量に存在する排水が導入される前段の電解反応槽において、極間距離を大きくして有機懸濁物質による極間短絡を防止しつつ有機懸濁物質を電解除去し、有機懸濁物質の減少した排水が導入される後段の電解反応槽において、極間距離を小さくして、エネルギー効率の改善を図っている。
【0020】
このような極間短絡防止効果やエネルギー効率の改善効果等を確実に得るために、極間距離の縮小程度は、電解反応槽の設置数(処理段数)によって異なるが、例えば3つの槽(3段)で処理する場合は、第1段目より第2段目は10〜50%程度小さくし、第2段目より第3段目は同じく10〜50%程度小さくすると言うように、後段は前段の10〜50%程度小さくすることが好ましい。
なお、具体的な極間距離は、処理対象排水中の有機懸濁物質の量や、排水の処理量(処理能力)等により異なるため一概には決められないが、一般には、第1段目で0.5〜2.0cm程度とし、第2段目、第3段目と次第に小さくして、第n段目(最終段目)では0.2〜0.5cm程度とすることが好ましい。
【0021】
そして、本発明においては、各電解反応槽における導電性ダイヤモンド電極への通電は直列に接続して行うことで、各電解反応槽における電流密度が、各反応槽の電極の設定面積によって必然的に異なってくるため、各反応槽(処理段)毎の投入電気量の制御が不要となり、装置構成がシンプルとなる。
各電解反応槽毎に通電する(すなわち、並列通電にする)と、各反応槽(各処理段)毎に投入電気量の制御を行なう必要があり、装置構成が煩雑となる。
【0022】
また、前段の電解反応槽程、被酸化性物質の存在量が多く、電解処理に伴って生成するガス量も多い。生成ガス量が多いと、電極間流路内のガス気泡系も大きくなり、排水と電極表面との接触効率を低減させることとなる。この気泡による接触効率の低減は、電極間距離が小さいほど顕著となる。
この生成ガスに対しては、電極間距離の調整に加え、各電解反応槽毎にガス分離除去を行うことが望ましい。
この各電解反応槽毎に行うガス分離除去は、例えば、各電解反応槽間に通常の気液分離装置や、上方に気相部(空間部)を備え頂部にガス抜き部(ガス抜き管、ガス抜き口等)を備えた受液槽を設置したり、あるいは電解反応槽自体の上方に気相部を備え頂部にガス抜き部を備えたものを使用する等の手法で行われる。
【0023】
気液分離でのガス成分の除去の程度は、特に制限しないが、後段の電解反応槽での電気分解処理が所望の電解効率を得ることができる程度、一般には、前段の電解反応槽での処理済水に同伴し存在するガス成分の50〜95%程度、好ましくは70〜95%程度であればよい。
すなわち、導電性ダイヤモンド電極を使用する場合、電解反応槽内の排水中のガス成分濃度は0〜10%程度であれば、ガス成分による電極表面と排水との接触阻害、ひいては電極間抵抗の増大を抑えることができ、所望の電解効率に近い電解効率を得ることができる。
このガス成分濃度を確保するために、上記程度のガス成分の除去率とすることが望ましい。
【0024】
このようにして各電解反応槽毎に生成ガスの分離除去を行うことにより、後段への生成ガスの持ち込みがなくなるため、後段の電解反応槽における極間距離を小さくすることができ、エネルギー効率を高めることができる。
【0025】
上記のような態様で構成される各電解反応槽において、前記の被酸化性物質と電解質物質を含む排水を、導電性ダイヤモンド電極面と平行に、通液線速度(LV)10〜1,000m/hrで、通液し、電極面と接触させることで行うことが好ましい。
【0026】
排水の通液方向を電極面と平行にするのは、排水と電極表面との接触効率を高めるためであり、この方向であれば生成ガスが存在していても、ガスによる排水と電極面との接触阻害をある程度緩和することができるからである。
このときの排水の通液速度を、線速度(LV)で10〜1,000m/hrとするのは、これより遅すぎると、排水の通液方向を電極面と平行にしても、またガスの生成量が大きい第1段目の電解反応槽において極間距離を大きくしても、ガス成分による排水と電極表面との接触阻害を緩和する効果が得られず、これより速すぎると、排水と電極表面との接触時間を十分に取ることができず、被酸化性物質の電気分解を十分に進行させることができなくなるからである。
【0027】
なお、各電解反応槽内の温度は、特に限定しないが、低温すぎると、排水の電気分解が良好に進行せず、逆に高温すぎると、気化が加わってガス成分の生成が多くなり、排水と電極表面との接触阻害が増大するのみならず、上記のような低濃度領域であっても、電解質物質による装置構成材料の腐食の懸念があるため、本発明では、10〜95℃程度とすることが望ましい。
【0028】
図1は、本発明に係る排水処理方法の一実施態様例を説明するためのフロー図であって、同図では、3つの電解反応槽1,2,3を直列に配置し、これら各電解反応槽1,2,3は、相対する両側壁面に導電性ダイヤモンド電極111,111,112,112,113,113を備え、下部に排水導入管121,122,123、上部に処理済水導出管131,132,133を備えており、また第1段目と段2段目の電解反応槽1,2は上方に空間S1,S2を設け、この空間の頂部にガス抜き管141,142を開口させている。
【0029】
これらの電極は、面積が111,111>112,112>113,113となっており、極間距離は、111,111間距離>112,112間距離>113,113間距離となっている。
また、導電性ダイヤモンド電極111,111,112,112,113,113は、図中、点線で示すように、直列に接続されて通電されている。
【0030】
上記の実施態様例において、処理対象排水は、第1段目の電解反応槽1に、排水導入管121から導入され、該槽1を下部から上部に移送され、この間に導電性ダイヤモンド電極111,111の表面と平行に接触して電気分解処理される。
この電気分解途上で発生したガス成分は、該槽1内を上昇して空間S1に移行し、ガス抜き管141から系外に抜き出される。
一方、このようにして気液分離された排水は、管131から抜き出される。
【0031】
この抜き出し水は、導入管122から第2段目の電解反応槽2に導入され、第1段目の電解反応槽1と同様にして電気分解処理される。
第2段目の電解反応槽2において、導入管122から導入される排水中には、有機懸濁物質やガス成分が殆ど含まれていないため、電極112,112間距離を小さくしても電極112と112とが有機懸濁物質により短絡することはないし、また排水と電極112,112表面との接触を妨害する気泡の生成も少なく排水は良好に電極112,112表面に接触し、高効率での電気分解処理が行われる。
【0032】
このようにして、第2段目の電解反応槽2で電気分解処理された処理済水は、この第2段目の電解処理で生成し空間S2に移行するガス成分と分離されて、管132から抜き出され、第3段目の電解反応槽3に導入管123から導入され、最終段の電気分解処理がなされる。
【0033】
【実施例】
実施例1
図1に示すフロー態様となるように、次の要領で第1〜第3段目の電解反応槽を構成した。
第1段目の電解反応槽1は、ボロンドープ法を用いて気相析出合成した積層状多結晶ダイヤモンド電極板(4cm×12cm×0.05cm)2枚111,111を、極間距離1cmとなるように設定して構成した。
第2段目の電解反応槽2は、第1段目の電解反応槽に使用した積層状多結晶ダイヤモンド電極板であって、寸法が4cm×8cm×0.05cmのもの2枚112,112を、極間距離0.5cmとなるように設定して構成した。
第3段目の電解反応槽3は、第1,第2段目の電解反応槽に使用した積層状多結晶ダイヤモンド電極板であって、寸法が4cm×4cm×0.05cmのもの2枚113,113を、極間距離0.3cmとなるように設定して構成した。
第1〜第3段目の電解反応槽1〜3の電極111,111,112,112,113,113への通電は、直列接続で行った。
【0034】
上記のように構成される処理フローに、フェノール600mg/LとNaSO14g/Lを含む合成排水(CODMn:720mg/L)を、8L/hrの通液速度で、第1段目の電解反応槽1→第2段目の電解反応槽2→第3段目の電解反応槽3の順に通液した。
【0035】
なお、第1段目の電解反応槽1への供給電気量は10Aとした(第2段目の電解反応槽2も、第3段目の電解反応槽3も10Aの電気が流れることとなる)。
この電気量では、各電解反応槽1〜3の電流密度は、大略次の通りとなる。
第1段目の電解反応槽1:20.8A/dm(2080A/cm
第2段目の電解反応槽2:31.3A/dm(3130A/cm
第3段目の電解反応槽3:62.5A/dm(6250A/cm
【0036】
通液開始後、3時間経過した時点での各電解反応槽1〜3からの流出水のCODMn濃度は、次の通りであった。
第1段目の電解反応槽1:382mg/L
第2段目の電解反応槽2:64.9mg/L
第3段目の電解反応槽3:3.2mg/L
このフローでの電流効率は、53.1%であった。
【0037】
また、上記と同じ条件で2週間連続処理した結果、安定した処理効果が持続できることが確認された。
【0038】
比較例1
実施例1と同様にボロンドープ法を用いて気相析出合成した積層状多結晶ダイヤモンド電極板(4cm×24cm×0.05cm)2枚を、極間距離5mmとなるように設置して電解反応槽とした。
この1つの電解反応槽の電極面積は、実施例1の第1〜第3段目の電解反応槽1〜3の合計全電極面積と同じとなる。
この電解反応槽への投入電気量は、30Aとした。電流密度は、約31.3A/dm(約3130A/cm)となる。
【0039】
この電解反応槽に実施例1と同じ合成排水(CODMn:720mg/L)を、実施例1と同じ通液速度で通液して処理した。
通液開始後、3時間経過した時点の電解反応槽からの流出水は、CODMnが57.2mg/Lであった。
この電流効率は、48.9%であった。
【0040】
【発明の効果】
以上のように、本発明によれば、処理対象排水中に、有機懸濁物質や電解反応によりガスを生成する有機化合物を被酸化性物質として含んでいても、該有機懸濁物質による電極間の短絡が発生することはないし、また生成ガスにより被酸化性物質と電極表面との接触が阻害されることを効果的に防ぐことができる。
このため、排水中のCOD、TOC、全窒素濃度を低減するために要する処理コストを、低廉にすることができるかりでなく、安定した連続運転を長期に渡って行うことができる。
【図面の簡単な説明】
【図1】本発明の処理方法の一施態様例を説明するための図である。
【符号の説明】
1 第1段目の電解反応槽
2 第2段目の電解反応槽
3 第3段目の電解反応槽
111,111 第1段目の電解反応槽1の電極
112,112 第2段目の電解反応槽2の電極
113,113 第3段目の電解反応槽3の電極
121,122,123 排水導入管
131,132,133 処理水排出管
141,142 ガス抜き管
S1,S2 空間
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for treating wastewater containing oxidizable substances such as various organic substances, ammonia, hydrazine, and organic suspended substances, and particularly to a chemical oxygen demand (COD) or total organic carbon (TOC) of the wastewater. And a treatment method capable of reducing the total nitrogen concentration.
[0002]
[Prior art]
Conventionally, as a method of treating wastewater containing oxidizable substances such as various organic substances, ammonia, and hydrazine, electrolytic treatment is performed using a platinum-based electrode having iridium oxide supported on its surface, followed by a nickel peroxide-based catalyst or a peroxide catalyst. A method of treating by bringing it into contact with a cobalt oxide-based catalyst has been put to practical use (see “Thermal Nuclear Power Generation” 51 (12), 1711 (2000), JP-A-10-174976, JP-A-11-216473, etc. ).
A method of electrolytically treating wastewater containing an oxidizable substance using a conductive diamond electrode instead of the platinum-based electrode has also been proposed (see Japanese Patent Application No. 2002-24529).
[Patent Document 1] Japanese Patent Application Laid-Open No. Hei 10-174976 [Patent Document 2] Japanese Patent Application Laid-Open No. Hei 11-216473 [Non-Patent Document 1] “Thermal Nuclear Power Generation” 51 (12), 1711 (2000)
[0003]
[Problems to be solved by the invention]
However, if suspended matter coexists in the wastewater, the suspended matter accumulates in the electrolytic reaction tank, causing a short circuit between the two electrodes, causing troubles, or increasing the resistance between the electrodes and lowering the current efficiency. In some cases.
Therefore, these suspended substances must be separated and removed before introducing the wastewater into the electrolytic reaction tank, and a separate device and time are required for separation and removal. The cost required for processing was enormous.
[0004]
Therefore, the present invention eliminates the need for an apparatus and time for separating and removing suspended substances even in wastewater in which suspended substances coexist, and removes oxidizable substances more than the conventional treatment method described above. It is an object of the present invention to provide a method for treating wastewater containing an oxidizable substance and a suspended substance, which has high efficiency and high reduction efficiency of COD and TOC concentrations.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a drainage method of the present invention is a method of electrolytically treating wastewater containing an oxidizable substance and an electrolyte substance by using a conductive diamond electrode, wherein a plurality of electrolytic reaction tanks are connected in series. It is characterized in that the electrolytic treatment is performed by setting the current density of the electrode of each stage of the electrolytic reaction tank under different conditions.
The area of the conductive diamond electrode in each of the electrolytic reaction tanks may be set so that the former is greater than the latter, or the distance between the electrodes may be set so that the former is greater than the latter.
In addition, it is preferable that the conduction to the conductive diamond electrode in each electrolytic reaction tank is performed by connecting them in series.
[0006]
The wastewater to be treated according to the present invention contains oxidizable substances and electrolyte substances, and may be industrial wastewater discharged from various factories, domestic wastewater, or other wastewater.
Examples of the oxidizable substance in the wastewater include various organic substances, ammonia, hydrazine, and the like. In the present invention, a preferable effect is obtained by applying to the wastewater containing at least one of these organic substances, ammonia, and hydrazine. Can be. The concentration of these oxidizable substances in the wastewater is not particularly limited, and can be preferably applied to wastewater containing various concentrations of the oxidizable substances.
[0007]
Further, the oxidizable substance may include a hardly soluble or insoluble polycarboxylic acid resin, a polyamino acid resin, and an organic suspending substance such as a surfactant, or may include methanol, ethanol, acetone, acetic acid, It may contain an organic substance such as monoethanolamine, diethanolamine, diisopropanolamine, monoethylamine, and triethylamine, which generates a gas with an electrolytic reaction.
In the case where an organic substance that generates a gas in association with the electrolytic reaction is contained, it is preferable that the gas generated in the electrolytic reaction be removed and then introduced into a subsequent electrolytic reaction tank.
The COD and TOC of the wastewater containing the oxidizable substance as described above are not particularly limited. However, the method of the present invention has a COD of 500 mg / L or more, a TOC of 200 mg / L or more, and more preferably a COD of 1000 mg, in terms of current efficiency. / L or more, TOC 400 mg / L or more, more preferably COD 3000 mg / L or more, and TOC 1100 mg / L or more. The COD and TOC upper limits are not particularly limited, but generally 300,000 mg / L. L and TOC of about 1,000,000 mg / L.
[0008]
On the other hand, the electrolyte substance may be any substance, but is generally an inorganic compound, for example, NaCl, H 2 SO 4 , Na 2 SO 4 or the like is preferable, and these may be used alone. However, two or more types may be used in an appropriate combination.
The concentration of these electrolyte substances in the wastewater is not particularly limited, and may be about 50 to 50,000 mg / liter (hereinafter, liter is described as L and milliliter is described as mL) necessary for conventional electrolytic treatment, Even if it is less than 6,000 mg / L, which is extremely poor in the conventional electrolytic treatment, it can be treated efficiently.
That is, in the conventional method using a platinum-based electrode carrying an iridium oxide surface, the electrolyte substance that functions to increase the current efficiency during the electrolysis treatment requires an electrolyte substance (NaCl) concentration of 6,000 mg / L or more. On the other hand, in the present invention using a conductive diamond electrode capable of improving current efficiency, a sufficient processing effect can be obtained even in a low concentration region of less than 6,000 mg / L.
However, even in the present invention using a conductive diamond electrode, if the concentration of the electrolyte substance is too low, sufficient current efficiency may not be obtained for electrolyzing the oxidizable substance in the wastewater in some cases. Therefore, the preferred concentration of the electrolyte substance in the present invention varies depending on the concentration of the oxidizable substance in the target wastewater, but is about 500 to 6,000 mg / L for the above wastewater.
[0009]
The above-mentioned electrolyte substance may be contained in the above-mentioned wastewater, and if the above-mentioned electrolyte substance concentration alone can secure the above-mentioned electrolyte substance concentration, it is not necessary to separately add an electrolyte substance.
When the above-mentioned electrolyte substance concentration cannot be secured only by the contained electrolyte substance, an amount of the electrolyte substance capable of securing the above-mentioned electrolyte substance is introduced prior to the treatment of the present invention.
[0010]
The conductive diamond electrode used in the present invention is formed by using a conductive metal material such as Ni, Ta, Ti, Mo, W, or Zr as a substrate and depositing a conductive diamond thin film on the surface of the substrate, or a silicon wafer. And the like, and a conductive polycrystalline diamond material prepared by forming a conductive diamond thin film on the surface of a wafer using a semiconductor material such as a substrate, or a plate-like synthetic material without using a substrate.
The conductive (polycrystalline) diamond thin film is obtained by doping a predetermined amount of boron or nitrogen during the preparation of the diamond thin film to impart conductivity, and is generally doped with boron.
If the doping amount is too small, the technical significance of the doping is not exhibited, and if it is too large, the doping effect is saturated. Therefore, the doping amount in the range of 50 to 20,000 ppm with respect to the carbon amount of the diamond thin film material is suitable. ing.
[0011]
In the present invention, a plate-shaped conductive diamond electrode is generally used, but a plate-shaped network structure can also be used.
[0012]
In addition, a material obtained by covering the surface of carbon powder or another powdery material with a conductive diamond thin film can be used as an electrode. When this powdery diamond electrode is used, for example, a powdery diamond electrode is dispersed in an electrolytic solution and fluidized to form a fluidized bed, and a pair of this fluidized bed is made to act as a cathode and an anode. Just fine.
The electrode area in the case where the fluidized bed is used as an electrode is theoretically the entire area in contact with the wastewater, but the present invention is not limited to this, and the area of the flush surface facing the counter electrode is sufficient. is there.
[0013]
Further, a substrate having a porous body, or a porous body made of a synthetic resin or the like and having conductive diamond powder supported thereon to form an electrode having a high surface area can also be used. A fixed bed may be constituted by electrodes having a surface area, and a pair of the fixed beds may be used as a cathode and an anode.
The electrode area when this fixed bed is used as an electrode is also theoretically the entire area that comes into contact with the drainage. However, the present invention is not limited to this, and the area of the same surface facing the counter electrode is sufficient. is there.
[0014]
In the present invention, an electrolytic reaction tank using the conductive diamond as described above for both the negative and positive electrodes is installed in a plurality of stages in series, and the electrolytic treatment is performed by setting the current density of each stage of the electrolytic reaction tank to different conditions. .
The conditions having different current densities are, for example, such that the current density of the electrolytic reaction tank from the first stage to the n-th stage is gradually increased, vice versa, or randomly. Alternatively, the quality of the outlet water of each electrolytic reaction tank is monitored to make the current density optimal for the next electrolytic reaction tank.
In the present invention, in the first stage, the wastewater contains a large amount of the oxidizable substance to be electrolyzed, so that it is preferable to use an electrode having a large area. Since the amount of the substance is small, there is no problem even if an electrode having a small area is used. In addition, since it is preferable that the current is supplied in series from the first stage to the last stage, the current density gradually increases toward the later stage. It is preferable that the setting is made as follows.
[0015]
The current density at this time may be set differently in the above-described manner for each stage within the range of 10 to 100,000 A / m 2 in terms of the current density on the surface of the conductive diamond electrode.
[0016]
Further, in the present invention, the area of the conductive diamond electrode in each electrolytic reaction tank may be such that the former is greater than the latter.
For example, the electrode area of the electrolytic reaction tank from the first stage to the n-th stage is gradually reduced from the first stage> the second stage> the third stage> to the n-th stage. To be.
When a conductive diamond electrode is used, the current density on the electrode surface can be increased to perform the electrolytic treatment of the wastewater as compared with the case of using a conventional platinum electrode or a iridium oxide surface-supported platinum-based electrode. Although the area is small and the equipment can be made compact, a large amount of oxidizable substances can be electrolyzed in the previous stage of the electrolytic reaction tank, where wastewater containing a large amount of oxidizable substances is introduced, in order to conduct electrolytic treatment with high efficiency. Even a conductive diamond electrode requires a certain electrode area. In a subsequent electrolytic reaction tank for treating wastewater from which a considerable amount of oxidizable substances has been removed, sufficient treatment efficiency can be obtained even with a small electrode area.
[0017]
In order to reliably obtain such an electrolytic treatment effect, the degree of reduction in the electrode area varies depending on the number of electrolytic reaction tanks (the number of treatment stages). The second stage is smaller than the second stage by about 10 to 60%, preferably about 10 to 35%, and the third stage is smaller than the second stage by about 10 to 60%, preferably about 10 to 50%. As described above, it is preferable that the size of the subsequent stage is smaller by about 10 to 60% than that of the preceding stage.
The specific electrode area varies depending on the amount of the oxidizable substance in the wastewater, the treatment amount (treatment capacity) of the wastewater, and the like, and thus cannot be unconditionally determined.
[0018]
Further, in the present invention, the distance between the electrodes of the conductive diamond electrode in each electrolytic reaction tank may be such that the former stage> the latter stage.
For example, the distance between the electrodes of the electrolytic reaction tank from the first stage to the n-th stage is gradually reduced from the first stage> the second stage> the third stage to the n-th stage. To be.
[0019]
As described above, when the conductive diamond electrode is used, the current density on the electrode surface can be increased to perform the electrolytic treatment of the wastewater, as compared with the case of using the conventional platinum electrode or the iridium oxide surface-supported platinum-based electrode. Although the required electrode area can be reduced and the device can be made compact, the overvoltage is high and the voltage between the electrodes is high.
In order to increase energy efficiency, it is common to minimize the distance between electrodes.However, in an electrolytic reaction tank with a reduced distance between electrodes, if there is an organic suspended substance in the wastewater to be treated, clogging may occur. This causes a short circuit between the electrodes.
Therefore, in the present invention, in the electrolytic reaction tank at the stage before the wastewater in which a large amount of the organic suspended substance is present is introduced, the distance between the electrodes is increased to prevent the short-circuit between the electrodes due to the organic suspended substance while the organic suspended Is electrolytically removed, and the distance between the electrodes is reduced in the latter stage of the electrolytic reaction tank into which the wastewater with reduced organic suspended matter is introduced, thereby improving energy efficiency.
[0020]
In order to reliably obtain such an effect of preventing a short circuit between electrodes and an improvement effect of energy efficiency, the degree of reduction of the distance between the electrodes depends on the number of installed electrolytic reaction tanks (the number of processing stages). In the case of processing in the second stage, the second stage is smaller by about 10 to 50% than the first stage, and the third stage is also smaller by about 10 to 50% than the second stage. It is preferable to make it smaller by about 10 to 50% of the former stage.
Note that the specific distance between the electrodes cannot be unconditionally determined because it differs depending on the amount of the organic suspended solids in the wastewater to be treated, the amount of treated wastewater (treatment capacity), and the like. It is preferable that the thickness is gradually reduced to about 0.5 to 2.0 cm in the second step and the third step, and about 0.2 to 0.5 cm in the n-th step (final step).
[0021]
And, in the present invention, the current density in each electrolytic reaction tank is inevitably changed depending on the set area of the electrode in each reaction tank by energizing the conductive diamond electrode in each electrolytic reaction tank in series connection. Since they differ, it is not necessary to control the amount of electricity supplied to each reaction tank (processing stage), and the apparatus configuration is simplified.
When power is supplied to each electrolytic reaction tank (that is, parallel power supply is performed), it is necessary to control the amount of electricity supplied to each reaction tank (each processing stage), which complicates the apparatus configuration.
[0022]
In addition, the more the oxidizable substance is present in the preceding electrolytic reaction tank, the more the amount of gas generated by the electrolytic treatment. When the amount of generated gas is large, the gas bubble system in the inter-electrode flow channel also becomes large, and the contact efficiency between the drainage and the electrode surface is reduced. The reduction of the contact efficiency due to the bubbles becomes more remarkable as the distance between the electrodes becomes smaller.
For this generated gas, it is desirable to perform gas separation and removal for each electrolytic reaction tank in addition to adjusting the distance between the electrodes.
The gas separation and removal performed for each electrolytic reaction tank can be performed, for example, by using a normal gas-liquid separation device between the electrolytic reaction tanks or a gas venting section (space section) provided above and a gas venting section (gas venting pipe, This is performed by a method such as installing a liquid receiving tank provided with a gas vent or the like, or using a gas vent provided above the electrolytic reaction tank itself and provided with a gas vent at the top.
[0023]
The degree of removal of gas components in the gas-liquid separation is not particularly limited, but the degree to which the electrolytic treatment in the subsequent electrolytic reaction tank can obtain a desired electrolysis efficiency, and generally, the degree of removal in the former electrolytic reaction tank. It may be about 50-95%, preferably about 70-95%, of the gas component accompanying the treated water.
That is, when a conductive diamond electrode is used, if the concentration of the gas component in the wastewater in the electrolytic reaction tank is about 0 to 10%, contact inhibition between the electrode surface and the wastewater due to the gas component and, consequently, an increase in interelectrode resistance are caused. Can be suppressed, and an electrolysis efficiency close to a desired electrolysis efficiency can be obtained.
In order to secure this gas component concentration, it is desirable to set the gas component removal rate to the above-described level.
[0024]
By performing the separation and removal of the generated gas for each electrolytic reaction tank in this manner, since the generated gas is not brought into the subsequent stage, the distance between the electrodes in the subsequent electrolytic reaction tank can be reduced, and the energy efficiency can be reduced. Can be enhanced.
[0025]
In each of the electrolytic reaction tanks configured in the above-described manner, the wastewater containing the oxidizable substance and the electrolyte substance is drained in parallel with the conductive diamond electrode surface at a liquid flow velocity (LV) of 10 to 1,000 m. It is preferable that the liquid be passed at a rate of / hr to make contact with the electrode surface.
[0026]
The reason why the direction of flow of the wastewater is parallel to the electrode surface is to increase the contact efficiency between the wastewater and the electrode surface. This is because it is possible to alleviate contact inhibition to some extent.
If the flow rate of the drainage at this time is 10 to 1,000 m / hr in linear velocity (LV), if it is too slow, the flow direction of the drainage may be parallel to the electrode surface, or the gas may not flow. Even if the interelectrode distance is increased in the first-stage electrolytic reaction tank in which the amount of generated methane is large, the effect of alleviating the inhibition of contact between the wastewater and the electrode surface by the gas component cannot be obtained. This is because a sufficient contact time between the electrode and the electrode surface cannot be obtained, and the electrolysis of the oxidizable substance cannot be sufficiently advanced.
[0027]
The temperature in each electrolytic reaction tank is not particularly limited. However, if the temperature is too low, the electrolysis of the wastewater does not proceed favorably, and if the temperature is too high, vaporization is added to increase the generation of gas components and the wastewater is discharged. Not only does contact inhibition with the electrode surface increase, but also in the low-concentration region as described above, there is a concern about corrosion of device constituent materials by the electrolyte substance. It is desirable to do.
[0028]
FIG. 1 is a flow chart for explaining one embodiment of a wastewater treatment method according to the present invention. In FIG. 1, three electrolytic reaction tanks 1, 2, and 3 are arranged in series, and The reaction tanks 1, 2, 3 are provided with conductive diamond electrodes 111, 111, 112, 112, 113, 113 on opposite side walls, drainage introduction pipes 121, 122, 123 at the lower part, and treated water discharge pipe at the upper part. 131, 132, and 133, and the first and second electrolytic reaction tanks 1 and 2 are provided with spaces S1 and S2 above, and gas vent pipes 141 and 142 are opened at the tops of the spaces. Let me.
[0029]
These electrodes have the area of 111, 111> 112, 112> 113, 113, and the distance between the poles is 111, 111 distance> 112, 112 distance> 113, 113 distance.
The conductive diamond electrodes 111, 111, 112, 112, 113, 113 are connected in series and energized as shown by the dotted lines in the figure.
[0030]
In the above embodiment, the wastewater to be treated is introduced into the first-stage electrolytic reaction tank 1 from the drainage introduction pipe 121 and is transferred from the lower part to the upper part, during which the conductive diamond electrodes 111, Electrolytic treatment is performed in parallel with the surface of the substrate 111.
The gas component generated in the course of the electrolysis rises in the tank 1 and moves to the space S1, and is extracted out of the system from the gas exhaust pipe 141.
On the other hand, the wastewater thus gas-liquid separated is extracted from the pipe 131.
[0031]
The extracted water is introduced from the introduction pipe 122 into the second-stage electrolysis reaction tank 2 and electrolyzed in the same manner as in the first-stage electrolysis reaction tank 1.
In the second-stage electrolytic reaction tank 2, the wastewater introduced from the introduction pipe 122 contains almost no organic suspended substances or gas components. The 112 and 112 are not short-circuited by the organic suspended substance, and the generation of air bubbles that hinders the contact between the wastewater and the surface of the electrodes 112 and 112 is small, and the wastewater contacts the surfaces of the electrodes 112 and 112 with high efficiency. Electrolysis treatment is performed.
[0032]
In this way, the treated water that has been electrolyzed in the second-stage electrolytic reaction tank 2 is separated from the gas component generated in the second-stage electrolytic treatment and transferred to the space S2, and , And introduced into the third-stage electrolytic reaction tank 3 through the introduction pipe 123, and subjected to a final-stage electrolysis treatment.
[0033]
【Example】
Example 1
The first to third stage electrolytic reaction tanks were configured as follows so as to have the flow mode shown in FIG.
The first-stage electrolytic reaction tank 1 is composed of two laminated polycrystalline diamond electrode plates (4 cm × 12 cm × 0.05 cm) 111, 111 that have been vapor-phase deposited and synthesized by using a boron doping method, and the interelectrode distance is 1 cm. It was configured as follows.
The second-stage electrolytic reaction tank 2 is a laminated polycrystalline diamond electrode plate used for the first-stage electrolytic reaction tank, and has two sheets 112, 112 each having a size of 4 cm × 8 cm × 0.05 cm. The distance between the electrodes was set to 0.5 cm.
The third-stage electrolysis reaction tank 3 is a laminated polycrystalline diamond electrode plate used for the first and second-stage electrolysis reaction tanks, and has two pieces each having a size of 4 cm × 4 cm × 0.05 cm. , 113 were set so that the distance between the electrodes was 0.3 cm.
The electrodes 111, 111, 112, 112, 113 and 113 of the first to third stages of the electrolytic reaction tanks 1 to 3 were energized in series.
[0034]
The synthetic wastewater containing 600 mg / L of phenol and 14 g / L of Na 2 SO 4 (CODMn: 720 mg / L) was passed through the treatment flow configured as described above at a flow rate of 8 L / hr to the first stage. The solution was passed in the order of electrolysis reaction tank 1 → second-stage electrolysis reaction tank 2 → third-stage electrolysis reaction tank 3.
[0035]
The amount of electricity supplied to the first-stage electrolytic reaction tank 1 was set to 10 A (10 A of electricity flows through the second-stage electrolytic reaction tank 2 and the third-stage electrolytic reaction tank 3). ).
With this quantity of electricity, the current density of each of the electrolytic reaction tanks 1 to 3 is approximately as follows.
First stage electrolytic reaction tank 1: 20.8 A / dm 2 (2080 A / cm 2 )
Second stage electrolytic reaction tank 2: 31.3 A / dm 2 (3130 A / cm 2 )
Third stage electrolytic reaction tank 3: 62.5 A / dm 2 (6250 A / cm 2 )
[0036]
The CODMn concentration of the effluent from each of the electrolytic reaction tanks 1 to 3 at the time when 3 hours had passed after the start of the passage was as follows.
First-stage electrolytic reaction tank 1: 382 mg / L
Second stage electrolytic reaction tank 2: 64.9 mg / L
Third stage electrolytic reaction tank 3: 3.2 mg / L
The current efficiency in this flow was 53.1%.
[0037]
Further, as a result of continuous treatment under the same conditions as above for two weeks, it was confirmed that a stable treatment effect could be maintained.
[0038]
Comparative Example 1
Two laminated polycrystalline diamond electrode plates (4 cm × 24 cm × 0.05 cm) synthesized by vapor deposition using the boron doping method in the same manner as in Example 1 were installed so that the distance between the electrodes was 5 mm. And
The electrode area of this one electrolytic reaction tank is the same as the total total electrode area of the first to third-stage electrolytic reaction tanks 1 to 3 of Example 1.
The amount of electricity input to this electrolytic reaction tank was 30 A. The current density is about 31.3 A / dm 2 (about 3130 A / cm 2 ).
[0039]
The same synthetic wastewater (CODMn: 720 mg / L) as in Example 1 was passed through this electrolytic reaction tank at the same flow rate as in Example 1 for treatment.
The effluent from the electrolytic reaction tank 3 hours after the start of the liquid passage had a CODMn of 57.2 mg / L.
This current efficiency was 48.9%.
[0040]
【The invention's effect】
As described above, according to the present invention, even if the wastewater to be treated contains an organic suspended substance or an organic compound that generates a gas by an electrolytic reaction as an oxidizable substance, even if the wastewater to be treated contains Does not occur, and the generated gas can effectively prevent the contact between the oxidizable substance and the electrode surface.
Therefore, not only can the processing cost required for reducing the COD, TOC, and total nitrogen concentrations in the wastewater be reduced, but also stable continuous operation can be performed for a long period of time.
[Brief description of the drawings]
FIG. 1 is a diagram for describing an embodiment of a processing method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st-stage electrolysis reaction tank 2 2nd-stage electrolysis reaction tank 3 3rd-stage electrolysis reaction tank 111,111 Electrode 112,112 of 1st-stage electrolysis reaction tank 1 2nd-stage electrolysis Electrodes 113, 113 of reaction tank 2 Electrodes 121, 122, 123 of third-stage electrolytic reaction tank 3 Drainage introduction pipes 131, 132, 133 Treated water discharge pipes 141, 142 Gas release pipes S1, S2 Space

Claims (6)

被酸化性物質と電解質物質を含む排水を導電性ダイヤモンド電極を用いて電解処理する方法であって、
電解反応槽を直列に複数段設置し、各段の電解反応槽の電極の電流密度を異なる条件に設定して電解処理することを特徴とする排水の処理方法。
A method for electrolytically treating wastewater containing an oxidizable substance and an electrolyte substance using a conductive diamond electrode,
A method for treating wastewater, comprising: installing a plurality of electrolytic reaction tanks in series, and performing electrolytic treatment while setting current densities of electrodes of the electrolytic reaction tanks at different stages to different conditions.
各電解反応槽における導電性ダイヤモンド電極の面積が前段>後段となるようにすることを特徴とする請求項1記載の排水の処理方法。2. The method for treating wastewater according to claim 1, wherein the area of the conductive diamond electrode in each of the electrolytic reaction tanks is set so as to be greater than the former stage. 各電解反応槽における導電性ダイヤモンド電極の極間距離が前段>後段となるようにすることを特徴とする請求項1または2の何れかに記載の排水の処理方法。3. The method for treating wastewater according to claim 1, wherein the distance between the conductive diamond electrodes in each of the electrolytic reaction tanks is set to be greater than the former stage. 各電解反応槽における導電性ダイヤモンド電極への通電は直列に接続して行うことを特徴とする請求項1〜3の何れかに記載の排水の処理方法。The method for treating wastewater according to any one of claims 1 to 3, wherein energization of the conductive diamond electrode in each of the electrolytic reaction tanks is performed in series. 被酸化性物質が、有機懸濁物質を含むことを特徴とする請求項1〜4の何れかに記載の排水の処理方法。The wastewater treatment method according to any one of claims 1 to 4, wherein the oxidizable substance includes an organic suspended substance. 被酸化性物質が、電解反応に伴ってガスを発生させる有機物を含むことを特徴とする請求項1〜4の何れかに記載の排水の処理方法。The wastewater treatment method according to any one of claims 1 to 4, wherein the oxidizable substance includes an organic substance that generates a gas with an electrolytic reaction.
JP2002302917A 2002-10-17 2002-10-17 Wastewater treatment method Expired - Fee Related JP3991838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302917A JP3991838B2 (en) 2002-10-17 2002-10-17 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302917A JP3991838B2 (en) 2002-10-17 2002-10-17 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2004136194A true JP2004136194A (en) 2004-05-13
JP3991838B2 JP3991838B2 (en) 2007-10-17

Family

ID=32450852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302917A Expired - Fee Related JP3991838B2 (en) 2002-10-17 2002-10-17 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3991838B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516762A (en) * 2004-10-18 2008-05-22 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Improved COD removal method for electrochemical oxidation
JP2008543542A (en) * 2005-06-14 2008-12-04 韓国電力技術株式会社 Reverse electrodialysis of nitrogen compounds-electrochemical wastewater treatment process
CN105174388A (en) * 2015-07-17 2015-12-23 湖北沙隆达股份有限公司 Herbicide 2,4-D production wastewater treatment apparatus and treatment method thereof
JP2016506288A (en) * 2012-12-03 2016-03-03 アクシン ウォーター テクノロジーズ インコーポレイテッドAxine Water Technologies Inc. Efficient treatment of wastewater using electrochemical cells

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516762A (en) * 2004-10-18 2008-05-22 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Improved COD removal method for electrochemical oxidation
JP4782793B2 (en) * 2004-10-18 2011-09-28 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Improved COD removal method for electrochemical oxidation
JP2008543542A (en) * 2005-06-14 2008-12-04 韓国電力技術株式会社 Reverse electrodialysis of nitrogen compounds-electrochemical wastewater treatment process
JP4663012B2 (en) * 2005-06-14 2011-03-30 韓国電力技術株式会社 Reverse electrodialysis of nitrogen compounds-electrochemical wastewater treatment process
JP2016506288A (en) * 2012-12-03 2016-03-03 アクシン ウォーター テクノロジーズ インコーポレイテッドAxine Water Technologies Inc. Efficient treatment of wastewater using electrochemical cells
CN105174388A (en) * 2015-07-17 2015-12-23 湖北沙隆达股份有限公司 Herbicide 2,4-D production wastewater treatment apparatus and treatment method thereof

Also Published As

Publication number Publication date
JP3991838B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
AU2009304585A1 (en) Treatment of solutions or wastewater
JP6841831B2 (en) Electrochemical cell for wastewater treatment with increased pollutant removal rate
JP2005193202A (en) Water treatment method and water treatment system
JP2007229565A (en) Treatment apparatus and treatment method of hardly biodegradable substance content organic wastewater
JP4782793B2 (en) Improved COD removal method for electrochemical oxidation
JP2004202283A (en) Method and apparatus for treating organic compound-containing water
JP2004136194A (en) Waste water treatment method
JP2020508849A (en) Stack of electrochemical cells with isolated electrodes for wastewater treatment
JP2006346540A (en) Method and apparatus for treating waste water
KR20130029530A (en) Energy self-sufficient advanced wastewater treatment system by combination of microbial fuel cells and microbial electrolysis cells
JP3228885B2 (en) Hydrogen and oxygen gas added water production equipment
JP2011058010A (en) Method for electrolyzing sulfuric acid
WO2003091166A1 (en) Method of disposing of waste water containing organic compound and apparatus
JP4616594B2 (en) Water treatment method and water treatment apparatus
JP3988477B2 (en) Waste water treatment method and apparatus
JP2004237165A (en) Method and apparatus for treating organic compound-containing water
CN208182793U (en) A kind of horizontal three phase fluidized bed of electric pole type
CN111302549A (en) Electrochemical pretreatment system and method for circulating water sewage
JP3988480B2 (en) Waste water treatment apparatus and method
JP2006035158A5 (en)
JP2008264659A (en) Waste water treatment device
JPH10174975A (en) Fixed bed type porous electrode-containing electrolytic bath and method and apparatus for treating water using the same
JP2005118695A (en) Method and apparatus for reducing biosludge
JP7268448B2 (en) BIOLOGICAL TREATMENT SYSTEM AND METHOD OF ORGANIC WASTEWATER
JP2004081950A (en) Wastewater treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140803

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees