JP2004134699A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2004134699A
JP2004134699A JP2002300126A JP2002300126A JP2004134699A JP 2004134699 A JP2004134699 A JP 2004134699A JP 2002300126 A JP2002300126 A JP 2002300126A JP 2002300126 A JP2002300126 A JP 2002300126A JP 2004134699 A JP2004134699 A JP 2004134699A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
cup
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002300126A
Other languages
Japanese (ja)
Inventor
Shota Shimonishi
下西 正太
Takemasa Yasukawa
安川 武正
Satoshi Honda
本多 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Toyoda Gosei Co Ltd
Original Assignee
Sanken Electric Co Ltd
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd, Toyoda Gosei Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2002300126A priority Critical patent/JP2004134699A/en
Publication of JP2004134699A publication Critical patent/JP2004134699A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device of high light emitting efficiency which efficiently uses light emitted from a light emitting element to a side. <P>SOLUTION: The light emitting device is provided with the light emitting element, a cabinet having a cup-like part where the light emitting element is placed at a base and a reflection layer formed of metal or an alloy is formed on the inner peripheral face of the cup-like part, and a sealing member which covers the light emitting element and with which the cup-like part is filled. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は発光装置に関する。詳しくは、比較的短波長領域の光を発光する発光素子を利用した発光装置に関する。本発明の発光装置は、例えば蛍光体励起用光源や各種センサー用の光源として利用される。
【0002】
【従来の技術】
発光素子を利用した発光装置として図7に示す構成のものが知られている。図はSMD(surface mounted device)タイプのLED100の構成を模式的に表したものである。LED100ではマウント基板120とリフレクタ130により形成されるカップ状部150に発光素子110が配置され、カップ状部150には封止部材140(光透過性の樹脂)が充填されている。リフレクタ130は、例えば酸化チタンなどの白色系の充填材を含有したポリマー樹脂により形成される。このリフレクタ130は発光素子110から側方に放射された光をその表面で拡散反射して軸方向に分配し、これによって軸上強度を高めることを目的として使用される。
【0003】
【発明が解決しようとする課題】
ところで、紫外領域などに発光ピーク波長を有する短波長の発光素子の開発が行われ、かかる発光素子についてもSMDタイプのLEDへの適用が期待されている。本発明者らが短波長の発光素子を用いてSMDタイプのLEDを構成することを試みたところ、一般に使用されているリフレクタ材料では発光波長が短波長領域になると急激にその反射率が低下し、良好な光の取り出し効率が得られなかった。この反射率の低下は、リフレクタ材料に含まれる酸化チタンなどによる光の吸収に起因するものと考えられた。
本発明者らが更に検討したところでは、一般に利用されているリフレクタ材料の一部では紫外線などによる劣化が原因となって可視領域の光に対しても反射率の低下が生ずることが認められた。
本発明は以上の検討結果に鑑み、発光素子から側方へ放出される光を効率的に利用した、発光効率の高い発光装置を提供することを目的とする。特に、高い発光効率で短波長領域の光を放出する発光装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は以上の目的を達成すべく、次の構成からなる。即ち、発光素子と、
その底部に前記発光素子が載置されるカップ状部を有し、該カップ状部の内周面上に金属又は合金からなる反射層が形成されてなる筐体と、及び
前記発光素子を被覆して前記カップ状部に充填される封止部材と、を備える発光装置である。
【0005】
かかる構成によれば、発光素子から側方に放出された光が筐体のカップ状部の内周面上に形成された反射層によって効率的に反射される。即ち、カップ状部の内周面が反射率の高いリフレクタとなる。これにより、発光素子から側方に放出された光のより多くを光軸方向(主たる光の取り出し方向)の光へと変換することができ、もって発光効率の高い発光装置となる。
また、反射層を金属又は合金製としたことで発光素子の駆動に伴って発生する熱の拡散、放出をこの反射層が促すこととなる。即ち、放熱効率の向上も期待される。さらには、反射層が発光素子の側方を包囲して外部からの水分の浸入に対する障壁として作用し、これによって発光装置の耐久性及び信頼性の向上も期待できる。
一方、反射層の表面において良好な光の反射が得られることは、反射層の裏面側に位置する筐体(リフレクタ)を構成する材料に直接照射する光の量が可及的に少なくなることを意味する。したがって、短波長の光を放出する発光素子を使用した場合にその光の照射によって経時的にリフレクタが劣化、変色して発光特性の変化が引き起こされるといった、従来問題視されていた現象を防止することができる。これにより、リフレクタ材料の選択の自由度も増すこととなる。
【0006】
【発明の実施の形態】
以下、本発明の発光装置を構成する各要素について説明する。
(発光素子)
主発光ピーク波長を500nm以下の波長領域に有する発光素子(例えば主発光ピーク波長が370nm〜500nmの範囲にある発光素子)を好適に用いることができる。さらに好ましくは、主発光ピーク波長を400nm以下の波長領域に有する発光素子(例えば主発光ピーク波長が370nm〜400nmの範囲にある発光素子)が用いられる。さらにさらに好ましくは主発光ピーク波長を390nm以下の波長領域に有する発光素子(例えば主発光ピーク波長が370nm〜390nmの範囲にある発光素子)が用いられる。
【0007】
本発明者らの検討結果によれば、発光素子から側方に放出された光を反射する目的で現在使用されているリフレクタ材料の反射率は一般に照射光の波長が短波長領域になると急激に低下する。具体的には、リフレクタ材料として頻用されるポリフタルアミド等の反射率はおよそ400〜430nmを境界として照射光の波長が短くなるに従って指数関数的な低下を示す。したがって、このようなリフレクタ材料の反射率の低下が著しい波長領域の光を放出する発光素子(例えば、主発光ピーク波長が400nm以下にある発光素子)との組合わせにおいて後述の反射層を用いた場合に当該反射層の効果がより一層顕著なものとなる。
単一の発光ピークを有する発光素子に限らず、複数の発光ピークを有する発光素子を用いることもできる。尚、複数の発光ピークを有する場合には500nmより長波長の領域に一又は二以上の発光ピークを有していてもよい。
【0008】
発光素子の構成は上記の波長特性を備えるものであれば特に限定されない。例えば、本発明の発光素子としてIII族窒化物系化合物半導体からなる発光層を備える半導体発光素子を採用することができる。ここで、一般に、III族窒化物系化合物半導体とは、一般式としてAlGaIn1−X−YN(0≦X≦1、0≦Y≦1、0≦X+Y≦1)の四元系で表され、AlN、GaN及びInNのいわゆる2元系、AlGa1−xN、AlIn1−xN及びGaIn1−xN(以上において0<x<1)のいわゆる3元系を包含する。III族元素の一部をボロン(B)、タリウム(Tl)等で置換しても良く、また、窒素(N)の一部も リン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)等で置換できる。また、発光層は任意のドーパントを含有するものであってもよい。
【0009】
(筐体)
筐体はカップ状部を有し、当該カップ状部の底部に発光素子がマウントされる。カップ状部とは底部と側面部とを有し、光軸に垂直方向の断面の面積が当該底部から発光装置の光の取り出し方向に向かって連続的又は段階的に増加する形状を有する空間からなる部分をいう。かかる条件を満たす範囲において、底部及び側面部の形状は特に限定されるものではない。
【0010】
本明細書での筐体にはカップ状部を有する単一の部材からなるものの他に、複数の部材を組み合わせることによりカップ状部を構成する場合の当該複数の部材が含まれる。筐体の具体例としては、略平板状の基板又はリードフレーム上にカップ状部が形成されるように他の部材(以下、「リフレクタ」ともいう)を配置して構成されるもの(この場合には、基板又はリードフレームの表面の一部がカップ状部の底部を形成し、他の部材の表面の一部がカップ状部の側面部を形成する)を挙げられる。
【0011】
筐体を構成する材料は特に限定されない。例えば基板とリフレクタとを組合わせて筐体とする場合には、基板の材料としてはポリイミド、ビスマレイミドトリアジン樹脂、ガラスエポキシ等の樹脂やセラミックス等を採用することができ、他方リフレクタの材料としてはポリアミド系樹脂(芳香族ポリアミド系樹脂を含む)、液晶ポリマー、ポリフタルアミド、ナイロン6T等を採用することができる。リフレクタ材料には種々の配合剤が含有されていてもよい。配合剤としては酸化チタン、チタン酸カリウム、及びガラス繊維を例示することができる。
【0012】
筐体のカップ状部の側面部表面(内周面上)には金属又は合金からなる反射層が形成される。反射層は必ずしもカップ状部の側面部表面の全体に形成されなくてもよいが、反射層による発光効率の改善効果が最大限発揮されるように発光素子から側方に放出された光が照射する領域についてはその全体に反射層を設けることが好ましい。
尚、反射面をカップ状部の側面部表面以外の部分にも形成してもよいが、基板(又はリードフレーム)の上にリフレクタを設置して筐体とする場合には、リフレクタを設置した際にリフレクタと基板表面の配線パターン(又はリードフレーム)とが直接接触すれば短絡するため、少なくともリフレクタの基板との接触面には反射面を設けないことが好ましい。但し、基板(又はリードフレーム)表面に保護膜を設けてかかる短絡を防止できる場合にはこの限りでない。
【0013】
発光素子の光に対する反射層の反射率が高いことが好ましく、例えばAl、Ag、Cr、Pd等から選択される一以上の金属又はその合金を反射層の材料として採用することができる。その他、窒化チタン、窒化ハフニウム、窒化ジルコニウム、窒化タンタルなどの金属窒化物を反射層の材料として用いることもできる。特に、Al又はその合金によって反射層を構成することが好ましい。
反射層の厚さは発光素子からの光を反射するのに十分な厚さであれば特に限定されず、例えば約0.1〜約2.0μmの範囲とする。好ましくは約0.5〜約1.0μmの範囲とする。
【0014】
その表面ができるだけ平滑な反射層を形成することが好ましい。平滑なほど反射層における鏡面反射が起こりやすくなり、反射効率の向上ひいては発光効率の向上が図られるからである。
反射層が形成されるカップ状部の側面部の角度は光軸方向への反射効率を考慮して設計することができ、発光素子の光軸に対して20°〜60°の範囲にすることが好ましい。さらに好ましくは40°〜50°の範囲とする。
反射層の形成には蒸着、塗付、印刷等の方法を採用できる。特に、蒸着法によれば厚さが均一で、かつ表面が平滑な反射層を容易に形成することができる。
反射層の表面を光透過率の高い樹脂(例えばシリコーン樹脂)等でコーティングしてもよい。このようなコーティングを施すことにより反射膜を物理的又は化学的侵食から保護することができる。
【0015】
(封止部材)
封止部材は発光素子を被覆するように形成される部材であり、主として外部環境から発光素子を保護する目的で備えられる。封止部材の材料としては発光素子の光に対して透明であり、且つ耐久性、耐候性などに優れたものを採用することが好ましい。例えばシリコーン(シリコーン樹脂、シリコーンゴム、及びシリコーンエラストマーを含む)、エポキシ樹脂、ユリア樹脂、ガラス等の中から、発光素子の発光波長との関係で適当なものを選択することができる。発光素子の光が短波長領域の光を含む場合には特に紫外線劣化が問題となるため、シリコーン等の紫外線劣化に対する耐性の高い材料を採用することが好ましい。
封止部材の材料は、発光素子の光に対する透過性、硬化した状態の硬度、取り扱いの容易さ等を考慮して適当なものが採用される。
【0016】
異なる材料からなる複数の層が発光素子上に積層して形成されるように封止部材を設けることができる。
【0017】
封止部材に蛍光体を含有させることもできる。蛍光体を用いることにより発光素子からの光の一部を異なる波長の光に変換することができ、発光装置の発光色を変化させ又は補正することができる。発光素子からの光により励起可能なものであれば任意の蛍光体を用いることができ、その選択においては発光装置の発光色、耐久性等が考慮される。蛍光体を封止部材に一様に分散させても、また一部の領域に局在させてもよい。例えば蛍光体を発光素子の近傍に局在させることにより、発光素子から放出された光を効率的に蛍光体に照射できる。
【0018】
複数種類の蛍光体を組み合わせて封止部材に含有させることもできる。この場合には発光素子からの光により励起されて発光する蛍光体と当該蛍光体からの光により励起されて発光する蛍光体とを組み合わせて用いることもできる。
封止部材に光拡散材を含有させて封止部材内での光の拡散を促進させ、発光ムラの減少を図ることもできる。特に上記のように蛍光体を用いる構成においては、発光素子からの光と蛍光体からの光との混色を促進させて発光色のムラを少なくするためにこのような光拡散材を用いることが好ましい。
【0019】
【実施例】
以下、本発明の一の実施例であるSMDタイプのLEDを用いて本発明の構成をより詳細に説明する。
図1は実施例のLED1の断面を模式的に表した図である。LED1は発光素子10、基板20、リフレクタ30、及び封止部材40から概略構成される。ここでの基板20及びリフレクタ30が上記の説明における筐体に相当する。尚、静電耐圧のためにLED1は図示しないツェナーダイオードを内蔵する。
【0020】
発光素子10はIII族窒化物系化合物半導体発光素子である。その構成を図2に模式的に示した。図2に示されるように、発光素子10はサファイア基板11上に複数の半導体層が積層された構成からなり、主発光ピーク波長を380nm付近に有する。発光素子10の各層のスペックは次の通りである。

Figure 2004134699
【0021】
基板11の上にはバッファ層12を介してn型不純物としてSiをドープしたGaNからなるn型層13を形成する。ここで、基板11にはサファイアを用いたがこれに限定されることはなく、サファイア、スピネル、炭化シリコン、酸化亜鉛、酸化マグネシウム、酸化マンガン、ジルコニウムボライド、III族窒化物系化合物半導体単結晶等を用いることができる。さらにバッファ層はAlNを用いてMOCVD法で形成されるがこれに限定されることはなく、材料としてはGaN、InN、AlGaN、InGaN及びAlInGaN等を用いることができ、製法としては分子線結晶成長法(MBE法)、ハライド系気相成長法(HVPE法)、スパッタ法、イオンプレーティング法、電子シャワー法等を用いることができる。III族窒化物系化合物半導体を基板として用いた場合は、当該バッファ層を省略することができる。
さらに基板とバッファ層は半導体素子形成後に、必要に応じて、除去することもできる。
ここでn型層13はGaNで形成したが、AlGaN、InGaN若しくはAlInGaNを用いることができる。
また、n型層13はn型不純物してSiをドープしたが、このほかにn型不純物として、Ge、Se、Te、C等を用いることもできる。
発光する層を含む層14は量子井戸構造(多重量子井戸構造、若しくは単一量子井戸構造)を含んでいてもよく、また発光素子の構造としてはシングルへテロ型、ダブルへテロ型及びホモ接合型のものなどでもよい。
【0022】
発光する層を含む層14はp型層15の側にMg等をドープしたバンドギャップの広いIII族窒化物系化合物半導体層を含むこともできる。これは発光する層を含む層14中に注入された電子がp型層15に拡散するのを効果的に防止するためである。
発光する層を含む層14の上にp型不純物としてMgをドープしたGaNからなるp型層15を形成する。このp型層15はAlGaN、InGaN又はInAlGaNとすることもできる、また、p型不純物としてはZn、Be、Ca、Sr、Baを用いることもできる。p型不純物の導入後に、電子線照射、炉による加熱、プラズマ照射等の周知の方法によ低抵抗化することも可能である。
上記構成の発光素子において、各III族窒化物系化合物半導体層は一般的な条件でMOCVDを実行して形成するか、分子線結晶成長法(MBE法)、ハライド系気相成長法(HVPE法)、スパッタ法、イオンプレーティング法、電子シャワー法等の方法で形成することもできる。
【0023】
n電極18はAlとVの2層で構成され、p型層15を形成した後にp型層15、発光する層を含む層14、及びn型層13の一部をエッチングにより除去することにより表出したn型層13上に蒸着で形成される。
透光性電極16は金を含む薄膜であって、p型層15の上に積層される。p電極17も金を含む材料で構成されており、蒸着により透光性電極16の上に形成される。以上の工程により各層及び各電極を形成した後、各チップの分離工程を行う。
尚、基板11の裏面(半導体層が形成されない側の表面)にAl、Ag、窒化チタン、窒化ハフニウム、窒化ジルコニウム、窒化タンタルなどからなる反射層を形成してもよい。反射層を設けることにより、基板11側に向かった光を取り出し方向へと効率的に反射、変換することができ、光の取り出し効率の向上が図られる。このような反射層は形成材料の蒸着などの公知の方法で形成することができる。
【0024】
マウント基板20は絶縁性の基板であって、図3に示されるようにその表面には所望の配線パターン22、23がプリントされている。尚、図3は発光素子10をマウントする前のマウント基板20の表面状態を模式的に表した図である。
図3において斜線部分で表した表面は酸化シリコンからなるレジストで被覆されている。
【0025】
リフレクタ30は酸化チタンを一様に分散させたポリアミド系樹脂からなり、カップ状部50を形成する内周面が光軸に対して所望の角度となるように成型されている。本実施例では当該面の角度を発光素子10の光軸に対して約45°とした。カップ状部50を構成するリフレクタ30の内周面上には厚さ約0.5μmの反射層31が形成されている。本実施例ではかかる反射層をAlの蒸着によって形成した。
封止部材40は発光素子10を被覆するようにカップ状部50に充填される。
本実施例では封止部材40をシリコーン樹脂製とした。
【0026】
以上の構成のLED1は次のように作製される。まず、マウント基板20上に所定の配線パターン及びレジスト(図3を参照)を形成した後、発光素子10をその基板11面を接着面として図3の矢印21で示す位置に銀フレークを含む接着材(マウントペースト)で接着・固定する。
続いて発光素子10の各電極とマウント基板20上の配線パターン22、23とをリードで接続する。リードはAu製、Al製、Ag製のものなどを使用することができる。特に後二者ではリードによる光の吸収を効果的に抑えることができ、一層の発光効率向上が図られる。
次に、その内周面が発光素子10を取り囲むようにリフレクタ30をマウント基板20にエポキシ系接着材で接着・固定する。これによって、マウント基板20の表面の一部とリフレクタ20の内周面とによってカップ状部50が形成される。
その後、液状に調製したシリコーンゴムをカップ状部50にポッティングする。この状態でシリコーンゴムの硬化温度まで加熱してシリコーンゴムを熱硬化させる。これによりシリコーンゴムは反射層31の表面になじみ、当該表面に接着した状態で硬化する。最後に空気中で放熱させる。
【0027】
以上の方法で作製したLED1の発光特性を積分球出力によって評価した。積分球出力の測定にはインストルメントシステムズ社製、CAS−140Bを使用し、20mAの通電における出力(mW)を評価に用いた。尚、リフレクタ30の表面に反射層31を設けず、それ以外は実施例のLED1の構成と同様に作製したLED(従来品)を比較対照として使用した。
【0028】
従来品及び実施例を各15サンプル測定し、その結果を図4にまとめた。図4において左欄が従来品の測定結果、右欄が実施例の測定結果である。各表の最下段にはそれぞれの平均出力が示される。この表からわかるように、実施例では従来品に比較して平均約1.6倍の出力が得られている。このように、実施例の構成を採用することにより50%以上もの大幅な出力の増加が実現された。
【0029】
次に、他の実施例であるLED2について説明する。図5はLED2の模式断面図である。図5においてLED1と同一の要素には同一の符号を付してその説明を省略する。LED2ではLED1におけるマウント基板20及びリフレクタ30の代わりにリードフレーム80を一体的に内包した基体33が用いられる。
基体33の上部はカップ状部50を形成するように成形されており、当該部分の発光素子10に対向する面上には反射層31が形成されている。発光素子10はリードフレーム80上にマウントされる。その他の構成はLED1と同様である。
【0030】
さらに他の実施例であるフリップチップタイプのLED3の模式断面図を図6に示す。図6においてLED1と同一の要素には同一の符号を付してその説明を省略する。LED3で使用される発光素子90の構成は、透光性電極を有しないこと以外は上記の発光素子10と同様である。このような発光素子90はそのp型層15を形成した後、p型層15、発光する層を含む層14、n型層13のそれぞれ一部をエッチングにより除去し、n型層13の一部を表出させ、続いてp型層15上にRhからなるp電極17aを蒸着により形成し、AlとVの2層で構成されたn電極18aを蒸着によりn型層13上に形成し、その後に周知の方法でアロイ化して作製される。発光素子90は各電極17a、18aがマウント基板20に形成された所定の配線パターンとそれぞれ電気的に接続されるように、電極側を下に(フェースダウン)してマウントされる。
このようなLED3では発光素子90の発光する層を含む層14で生じた光の一部は直接又は電極17a、18aで反射された後、図示上方に向かって発光素子90の基板11表面から取り出される。一方、一部の光は発光素子90の側方に放出され、リフレクタ30表面の反射層31に反射された後、光軸方向の光に変換されることとなる。
【0031】
以上、本発明が適用される実施例としてSMDタイプのLEDについて説明したが、リードフレーム上に発光素子がマウントされ、発光素子及びリードフレームの一部を封止部材で被覆してなる、いわゆる砲弾型LEDにも本発明を適用できる。
【0032】
本発明は、上記発明の実施の形態の説明に何ら限定されるものではなく、特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
【0033】
【発明の効果】
発光素子の周囲に配置されるリフレクタの表面に反射層を設けることにより、発光素子から側方に放射される光を効率的に反射して光軸方向の光として利用できる。その結果、発光効率の高い発光装置となる。また、反射層による放熱作用、発光素子部への防水作用が得られ、耐久性及び信頼性に優れた発光装置となる。
【図面の簡単な説明】
【図1】図1は本発明の一実施例であるLED1の構成を模式的に示した断面図である。
【図2】図2はLED1を構成する発光素子10の構成を模式的に示した断面図である。
【図3】図3はLED1に使用されるマウント基板20の平面図である。
【図4】図4はLED1の発光特性を試験した結果をまとめた表である。左欄が従来品の出力を測定した結果を示す表であり、右欄がLED1の出力を測定した結果を示す表である。
【図5】図5は本発明の他の実施例であるLED2の構成を模式的に示した断面図である。
【図6】図6は本発明のさらに他の実施例であるLED3の構成を模式的に示した断面図である。
【図7】図7は従来の構成のLED100を示す断面図である。
【符号の説明】
1 2 3 100 LED
10 90 110 発光素子
20 120 マウント基板
30 130 リフレクタ
31 反射層
40 140 封止部材
50 150 カップ状部[0001]
[Industrial applications]
The present invention relates to a light emitting device. More specifically, the present invention relates to a light emitting device using a light emitting element that emits light in a relatively short wavelength region. The light emitting device of the present invention is used, for example, as a light source for exciting a phosphor or a light source for various sensors.
[0002]
[Prior art]
As a light emitting device using a light emitting element, a light emitting device having a configuration shown in FIG. 7 is known. The figure schematically shows the configuration of an SMD (surface mounted device) type LED 100. In the LED 100, the light emitting element 110 is disposed in a cup-shaped portion 150 formed by the mount substrate 120 and the reflector 130, and the cup-shaped portion 150 is filled with a sealing member 140 (light-transmitting resin). The reflector 130 is formed of a polymer resin containing a white filler such as titanium oxide. This reflector 130 is used for the purpose of diffusing and reflecting the light radiated laterally from the light emitting element 110 on its surface and distributing it in the axial direction, thereby increasing the axial intensity.
[0003]
[Problems to be solved by the invention]
By the way, a light emitting element having a short wavelength having an emission peak wavelength in an ultraviolet region or the like has been developed, and application of such a light emitting element to an SMD type LED is expected. The present inventors have attempted to construct an SMD type LED using a short wavelength light emitting element. With a commonly used reflector material, when the emission wavelength is in a short wavelength region, the reflectance is rapidly reduced. And good light extraction efficiency could not be obtained. This decrease in reflectance was considered to be due to light absorption by titanium oxide and the like contained in the reflector material.
The present inventors have further studied and found that a part of the reflector material that is generally used causes a decrease in the reflectance even in the visible region due to deterioration due to ultraviolet rays or the like. .
The present invention has been made in view of the above-described study results, and has as its object to provide a light-emitting device with high luminous efficiency that efficiently uses light emitted from a light-emitting element to the side. In particular, an object of the present invention is to provide a light emitting device that emits light in a short wavelength region with high luminous efficiency.
[0004]
[Means for Solving the Problems]
The present invention has the following configuration to achieve the above object. That is, a light emitting element,
A housing having a cup-shaped portion on the bottom thereof on which the light-emitting element is mounted, and a reflective layer made of a metal or an alloy formed on an inner peripheral surface of the cup-shaped portion, and covering the light-emitting element. And a sealing member filled in the cup-shaped portion.
[0005]
According to this configuration, light emitted to the side from the light emitting element is efficiently reflected by the reflective layer formed on the inner peripheral surface of the cup-shaped portion of the housing. That is, the inner peripheral surface of the cup-shaped portion becomes a reflector having a high reflectance. Thereby, more of the light emitted laterally from the light emitting element can be converted into light in the optical axis direction (main light extraction direction), so that a light emitting device with high luminous efficiency can be obtained.
In addition, since the reflective layer is made of a metal or an alloy, the reflective layer promotes diffusion and emission of heat generated when the light emitting element is driven. That is, improvement in heat radiation efficiency is also expected. Furthermore, the reflective layer surrounds the side of the light emitting element and acts as a barrier against intrusion of moisture from the outside, whereby the durability and reliability of the light emitting device can be expected to be improved.
On the other hand, good reflection of light on the surface of the reflective layer means that the amount of light directly applied to the material constituting the housing (reflector) located on the back side of the reflective layer is reduced as much as possible. Means Therefore, when a light emitting element that emits light of a short wavelength is used, a phenomenon that has been regarded as a problem in the related art, such as deterioration of the reflector over time due to irradiation of the light, discoloration and change in light emission characteristics, and the like, is prevented. be able to. This also increases the degree of freedom in selecting the reflector material.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, each element constituting the light emitting device of the present invention will be described.
(Light emitting element)
A light-emitting element having a main emission peak wavelength in a wavelength region of 500 nm or less (for example, a light-emitting element having a main emission peak wavelength in a range of 370 nm to 500 nm) can be preferably used. More preferably, a light emitting element having a main emission peak wavelength in a wavelength region of 400 nm or less (for example, a light emitting element having a main emission peak wavelength in a range of 370 nm to 400 nm) is used. Still more preferably, a light-emitting element having a main emission peak wavelength in a wavelength region of 390 nm or less (for example, a light-emitting element having a main emission peak wavelength in a range of 370 nm to 390 nm) is used.
[0007]
According to the study results of the present inventors, the reflectivity of a reflector material currently used for reflecting light emitted laterally from a light emitting element generally sharply increases when the wavelength of irradiation light is in a short wavelength region. descend. Specifically, the reflectivity of polyphthalamide or the like frequently used as a reflector material exhibits an exponential decrease as the wavelength of the irradiation light becomes shorter at a boundary of about 400 to 430 nm. Therefore, a reflective layer described below was used in combination with a light-emitting element that emits light in a wavelength region where the reflectance of the reflector material significantly decreases (for example, a light-emitting element having a main emission peak wavelength of 400 nm or less). In such a case, the effect of the reflective layer becomes more remarkable.
Not only a light-emitting element having a single light emission peak but also a light-emitting element having a plurality of light emission peaks can be used. When a plurality of emission peaks are present, one or two or more emission peaks may be provided in a region having a wavelength longer than 500 nm.
[0008]
The configuration of the light emitting element is not particularly limited as long as it has the above-mentioned wavelength characteristics. For example, a semiconductor light emitting device having a light emitting layer made of a group III nitride compound semiconductor can be adopted as the light emitting device of the present invention. Here, generally, the Group III nitride compound semiconductor, fourth as general formula Al X Ga Y In 1-X -Y N (0 ≦ X ≦ 1,0 ≦ Y ≦ 1,0 ≦ X + Y ≦ 1) represented in the original system, AlN, GaN and so-called binary system of InN, Al x Ga 1-x N, Al x in 1-x N and Ga x in 1-x N ( 0 in the above <x <1) of Includes so-called ternary systems. Part of group III elements may be replaced by boron (B), thallium (Tl), etc. Part of nitrogen (N) may also be replaced by phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi) and the like. Further, the light emitting layer may contain any dopant.
[0009]
(Housing)
The housing has a cup-shaped portion, and a light emitting element is mounted on the bottom of the cup-shaped portion. The cup-shaped portion has a bottom portion and a side portion, from a space having a shape in which the area of a cross section perpendicular to the optical axis increases continuously or stepwise from the bottom portion in the light extraction direction of the light emitting device. Part. The shape of the bottom part and the side part is not particularly limited as long as such a condition is satisfied.
[0010]
The housing in this specification includes, besides a single member having a cup-shaped portion, a plurality of members when a cup-shaped portion is formed by combining a plurality of members. As a specific example of the housing, another member (hereinafter, also referred to as “reflector”) is arranged so that a cup-shaped portion is formed on a substantially flat substrate or a lead frame (in this case, A part of the surface of the substrate or the lead frame forms the bottom of the cup-shaped part, and part of the surface of another member forms the side part of the cup-shaped part).
[0011]
The material forming the housing is not particularly limited. For example, when a housing is formed by combining a substrate and a reflector, the material of the substrate can be polyimide, bismaleimide triazine resin, a resin such as glass epoxy, ceramics, or the like, while the material of the reflector is A polyamide resin (including an aromatic polyamide resin), a liquid crystal polymer, polyphthalamide, nylon 6T, or the like can be used. Various compounding agents may be contained in the reflector material. Examples of the compounding agent include titanium oxide, potassium titanate, and glass fiber.
[0012]
A reflection layer made of a metal or an alloy is formed on the side surface (on the inner peripheral surface) of the cup-shaped portion of the housing. The reflective layer does not necessarily need to be formed on the entire side surface of the cup-shaped portion, but is irradiated with light emitted laterally from the light emitting element so that the effect of improving the luminous efficiency by the reflective layer is maximized. It is preferable to provide a reflective layer on the entire region.
The reflecting surface may be formed on a portion other than the side surface of the cup-shaped portion. However, when a reflector is provided on a substrate (or a lead frame) to form a housing, the reflector is provided. In this case, if the reflector directly contacts the wiring pattern (or the lead frame) on the substrate surface, a short circuit occurs. Therefore, it is preferable not to provide a reflection surface at least on the contact surface of the reflector with the substrate. However, this does not apply when such a short circuit can be prevented by providing a protective film on the substrate (or lead frame) surface.
[0013]
It is preferable that the reflectivity of the reflective layer to light of the light emitting element is high. For example, one or more metals or alloys thereof selected from Al, Ag, Cr, Pd, and the like can be used as the material of the reflective layer. In addition, a metal nitride such as titanium nitride, hafnium nitride, zirconium nitride, or tantalum nitride can be used as the material of the reflective layer. In particular, it is preferable that the reflective layer is made of Al or an alloy thereof.
The thickness of the reflective layer is not particularly limited as long as it is sufficient to reflect light from the light emitting element, and is, for example, in a range of about 0.1 to about 2.0 μm. Preferably, it is in the range of about 0.5 to about 1.0 μm.
[0014]
It is preferable to form a reflective layer whose surface is as smooth as possible. This is because the smoother the mirror surface, the more easily the specular reflection occurs in the reflective layer, and the higher the reflection efficiency, and thus the higher the luminous efficiency.
The angle of the side surface of the cup-shaped portion on which the reflective layer is formed can be designed in consideration of the reflection efficiency in the optical axis direction, and should be in the range of 20 ° to 60 ° with respect to the optical axis of the light emitting element. Is preferred. More preferably, it is in the range of 40 ° to 50 °.
For forming the reflective layer, methods such as vapor deposition, coating, and printing can be adopted. In particular, according to the vapor deposition method, a reflective layer having a uniform thickness and a smooth surface can be easily formed.
The surface of the reflective layer may be coated with a resin having a high light transmittance (for example, a silicone resin) or the like. By applying such a coating, the reflective film can be protected from physical or chemical attack.
[0015]
(Sealing member)
The sealing member is a member formed to cover the light emitting element, and is provided mainly for the purpose of protecting the light emitting element from an external environment. As the material of the sealing member, it is preferable to employ a material that is transparent to light from the light emitting element and has excellent durability, weather resistance, and the like. For example, an appropriate material can be selected from silicone (including silicone resin, silicone rubber, and silicone elastomer), epoxy resin, urea resin, glass, and the like in relation to the emission wavelength of the light emitting element. When light from the light-emitting element includes light in a short wavelength region, ultraviolet light degradation is particularly problematic. Therefore, it is preferable to use a material having high resistance to ultraviolet light degradation such as silicone.
As the material of the sealing member, an appropriate material is adopted in consideration of the light transmittance of the light emitting element, the hardness in a cured state, the ease of handling, and the like.
[0016]
The sealing member can be provided so that a plurality of layers made of different materials are stacked over the light-emitting element.
[0017]
The sealing member may contain a phosphor. By using the phosphor, a part of the light from the light emitting element can be converted to light of a different wavelength, and the emission color of the light emitting device can be changed or corrected. Any phosphor can be used as long as it can be excited by light from the light emitting element, and the selection of the phosphor takes into consideration the emission color, durability, and the like of the light emitting device. The phosphor may be uniformly dispersed in the sealing member, or may be localized in a part of the region. For example, by localizing the phosphor near the light emitting element, the light emitted from the light emitting element can be efficiently irradiated on the phosphor.
[0018]
A plurality of types of phosphors can be combined and contained in the sealing member. In this case, a phosphor that emits light when excited by light from the light emitting element and a phosphor that emits light when excited by light from the phosphor can be used in combination.
A light diffusing material may be contained in the sealing member to promote diffusion of light in the sealing member, thereby reducing light emission unevenness. In particular, in a configuration using a phosphor as described above, it is preferable to use such a light diffusing material in order to promote color mixing of light from the light emitting element and light from the phosphor to reduce unevenness in emission color. preferable.
[0019]
【Example】
Hereinafter, the configuration of the present invention will be described in more detail using an SMD type LED which is one embodiment of the present invention.
FIG. 1 is a diagram schematically illustrating a cross section of the LED 1 of the embodiment. The LED 1 is schematically composed of a light emitting element 10, a substrate 20, a reflector 30, and a sealing member 40. Here, the substrate 20 and the reflector 30 correspond to the housing in the above description. The LED 1 has a built-in Zener diode (not shown) for electrostatic withstand voltage.
[0020]
The light emitting device 10 is a group III nitride compound semiconductor light emitting device. FIG. 2 schematically shows the configuration. As shown in FIG. 2, the light emitting element 10 has a configuration in which a plurality of semiconductor layers are stacked on a sapphire substrate 11, and has a main emission peak wavelength near 380 nm. The specifications of each layer of the light emitting element 10 are as follows.
Figure 2004134699
[0021]
An n-type layer 13 made of GaN doped with Si as an n-type impurity is formed on a substrate 11 via a buffer layer 12. Here, sapphire was used for the substrate 11, but it is not limited to this, and sapphire, spinel, silicon carbide, zinc oxide, magnesium oxide, manganese oxide, zirconium boride, group III nitride-based compound semiconductor single crystal Etc. can be used. Further, the buffer layer is formed by MOCVD using AlN, but is not limited thereto, and the material may be GaN, InN, AlGaN, InGaN, AlInGaN, or the like. Method (MBE method), a halide vapor deposition method (HVPE method), a sputtering method, an ion plating method, an electron shower method, or the like can be used. When a group III nitride compound semiconductor is used as the substrate, the buffer layer can be omitted.
Further, the substrate and the buffer layer can be removed if necessary after the formation of the semiconductor element.
Here, the n-type layer 13 is formed of GaN, but AlGaN, InGaN or AlInGaN can be used.
Further, the n-type layer 13 is doped with Si as an n-type impurity, but Ge, Se, Te, C, or the like may be used as the n-type impurity.
The layer 14 including a layer that emits light may include a quantum well structure (a multiple quantum well structure or a single quantum well structure), and the light emitting element has a single hetero-type, double hetero-type, or homojunction structure. It may be of a type.
[0022]
The layer 14 including the layer that emits light may include a group III nitride compound semiconductor layer with a wide band gap doped with Mg or the like on the p-type layer 15 side. This is to effectively prevent electrons injected into the layer 14 including the light emitting layer from diffusing into the p-type layer 15.
A p-type layer 15 made of GaN doped with Mg as a p-type impurity is formed on the layer 14 including the light emitting layer. The p-type layer 15 can be made of AlGaN, InGaN or InAlGaN, and Zn, Be, Ca, Sr, or Ba can be used as the p-type impurity. After the introduction of the p-type impurity, the resistance can be reduced by a known method such as electron beam irradiation, heating in a furnace, or plasma irradiation.
In the light emitting device having the above structure, each group III nitride compound semiconductor layer is formed by performing MOCVD under general conditions, or a molecular beam crystal growth method (MBE method), a halide gas phase growth method (HVPE method). ), A sputtering method, an ion plating method, an electron shower method, or the like.
[0023]
The n-electrode 18 is composed of two layers of Al and V. After the p-type layer 15 is formed, the p-type layer 15, the layer 14 including the light emitting layer, and a part of the n-type layer 13 are removed by etching. It is formed on the exposed n-type layer 13 by vapor deposition.
The translucent electrode 16 is a thin film containing gold, and is laminated on the p-type layer 15. The p-electrode 17 is also made of a material containing gold, and is formed on the translucent electrode 16 by vapor deposition. After forming each layer and each electrode by the above steps, a separation step of each chip is performed.
Note that a reflective layer made of Al, Ag, titanium nitride, hafnium nitride, zirconium nitride, tantalum nitride, or the like may be formed on the back surface (the surface on which the semiconductor layer is not formed) of the substrate 11. By providing the reflective layer, light directed toward the substrate 11 can be efficiently reflected and converted in the light extraction direction, and the light extraction efficiency can be improved. Such a reflective layer can be formed by a known method such as vapor deposition of a forming material.
[0024]
The mount substrate 20 is an insulating substrate, and desired wiring patterns 22 and 23 are printed on its surface as shown in FIG. FIG. 3 is a diagram schematically illustrating a surface state of the mounting substrate 20 before the light emitting element 10 is mounted.
In FIG. 3, the surface indicated by the hatched portion is covered with a resist made of silicon oxide.
[0025]
The reflector 30 is made of a polyamide resin in which titanium oxide is uniformly dispersed, and is molded such that the inner peripheral surface forming the cup-shaped portion 50 has a desired angle with respect to the optical axis. In this embodiment, the angle of the surface is set to about 45 ° with respect to the optical axis of the light emitting element 10. A reflective layer 31 having a thickness of about 0.5 μm is formed on the inner peripheral surface of the reflector 30 constituting the cup-shaped portion 50. In this embodiment, such a reflective layer is formed by vapor deposition of Al.
The sealing member 40 is filled in the cup-shaped portion 50 so as to cover the light emitting element 10.
In this embodiment, the sealing member 40 is made of silicone resin.
[0026]
The LED 1 having the above configuration is manufactured as follows. First, after a predetermined wiring pattern and a resist (see FIG. 3) are formed on the mount substrate 20, the light emitting element 10 is bonded to the substrate 11 surface with silver flakes at a position indicated by an arrow 21 in FIG. Adhere and fix with material (mount paste).
Subsequently, the electrodes of the light emitting element 10 and the wiring patterns 22 and 23 on the mounting substrate 20 are connected by leads. The lead can be made of Au, Al, Ag or the like. In the latter two cases, in particular, light absorption by the lead can be effectively suppressed, and the luminous efficiency can be further improved.
Next, the reflector 30 is bonded and fixed to the mount substrate 20 with an epoxy adhesive so that the inner peripheral surface of the reflector 30 surrounds the light emitting element 10. As a result, a cup-shaped portion 50 is formed by a part of the surface of the mount substrate 20 and the inner peripheral surface of the reflector 20.
Thereafter, the silicone rubber prepared in a liquid state is potted on the cup-shaped portion 50. In this state, the silicone rubber is heated to the curing temperature of the silicone rubber to thermally cure the silicone rubber. As a result, the silicone rubber adapts to the surface of the reflective layer 31 and cures while being adhered to the surface. Finally, heat is released in the air.
[0027]
The light emission characteristics of the LED 1 manufactured by the above method were evaluated by the output of the integrating sphere. For the measurement of the integrating sphere output, CAS-140B manufactured by Instrument Systems, Inc. was used, and the output (mW) at a current of 20 mA was used for evaluation. In addition, an LED (conventional product) manufactured in the same manner as the configuration of the LED 1 of the example without using the reflective layer 31 on the surface of the reflector 30 was used as a comparative control.
[0028]
Fifteen samples were measured for the conventional product and the example, and the results are summarized in FIG. In FIG. 4, the left column shows the measurement results of the conventional product, and the right column shows the measurement results of the example. At the bottom of each table, the average output is shown. As can be seen from this table, the output of the embodiment is about 1.6 times higher than the conventional product on average. As described above, by adopting the configuration of the embodiment, a large increase in output of 50% or more was realized.
[0029]
Next, an LED 2 according to another embodiment will be described. FIG. 5 is a schematic sectional view of the LED 2. 5, the same elements as those of the LED 1 are denoted by the same reference numerals, and the description thereof will be omitted. In the LED2, a base 33 integrally including a lead frame 80 is used instead of the mount substrate 20 and the reflector 30 in the LED1.
The upper portion of the base 33 is formed so as to form the cup-shaped portion 50, and the reflection layer 31 is formed on the surface of the portion facing the light emitting element 10. The light emitting element 10 is mounted on a lead frame 80. Other configurations are the same as those of the LED 1.
[0030]
FIG. 6 is a schematic cross-sectional view of a flip-chip type LED 3 according to still another embodiment. 6, the same elements as those of the LED 1 are denoted by the same reference numerals, and the description thereof will be omitted. The configuration of the light emitting element 90 used in the LED 3 is the same as that of the above light emitting element 10 except that the light emitting element 90 does not have a translucent electrode. In such a light emitting element 90, after the p-type layer 15 is formed, a part of each of the p-type layer 15, the layer 14 including the light emitting layer, and the n-type layer 13 is removed by etching, and the n-type layer 13 is removed. Then, a p-electrode 17a made of Rh is formed on the p-type layer 15 by vapor deposition, and an n-electrode 18a composed of two layers of Al and V is formed on the n-type layer 13 by vapor deposition. , And then alloyed by a known method. The light emitting element 90 is mounted with its electrode side down (face down) so that each of the electrodes 17a and 18a is electrically connected to a predetermined wiring pattern formed on the mount substrate 20, respectively.
In such an LED 3, a part of the light generated in the layer 14 including the light emitting layer of the light emitting element 90 is directly or after being reflected by the electrodes 17a and 18a, extracted upward from the surface of the substrate 11 of the light emitting element 90. It is. On the other hand, part of the light is emitted to the side of the light emitting element 90, reflected by the reflective layer 31 on the surface of the reflector 30, and then converted into light in the optical axis direction.
[0031]
As described above, the SMD type LED has been described as an embodiment to which the present invention is applied. However, a so-called cannonball in which a light emitting element is mounted on a lead frame and a part of the light emitting element and the lead frame is covered with a sealing member. The present invention can be applied to a type LED.
[0032]
The present invention is not limited to the description of the embodiment of the present invention at all, and does not depart from the scope of the claims, and includes various modifications within a range that can be easily conceived by those skilled in the art. It is.
[0033]
【The invention's effect】
By providing the reflective layer on the surface of the reflector disposed around the light emitting element, light emitted from the light emitting element to the side can be efficiently reflected and used as light in the optical axis direction. As a result, a light emitting device with high luminous efficiency is obtained. In addition, a heat dissipation effect and a waterproof effect on the light emitting element portion are obtained by the reflection layer, and the light emitting device has excellent durability and reliability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a configuration of an LED 1 according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view schematically showing a configuration of a light emitting element 10 constituting the LED 1.
FIG. 3 is a plan view of a mount substrate 20 used for the LED 1;
FIG. 4 is a table summarizing the results of testing the emission characteristics of LED1. The left column is a table showing the result of measuring the output of the conventional product, and the right column is a table showing the result of measuring the output of LED1.
FIG. 5 is a sectional view schematically showing a configuration of an LED 2 according to another embodiment of the present invention.
FIG. 6 is a cross-sectional view schematically showing a configuration of an LED 3 according to still another embodiment of the present invention.
FIG. 7 is a sectional view showing an LED 100 having a conventional configuration.
[Explanation of symbols]
1 2 3 100 LED
10 90 110 Light emitting element 20 120 Mount substrate 30 130 Reflector 31 Reflective layer 40 140 Sealing member 50 150 Cup-shaped part

Claims (7)

発光素子と、
その底部に前記発光素子が載置されるカップ状部を有し、該カップ状部の内周面上に金属又は合金からなる反射層が形成されてなる筐体と、及び
前記発光素子を被覆して前記カップ状部に充填される封止部材と、を備える発光装置。
A light emitting element,
A housing having a cup-shaped portion on the bottom thereof on which the light-emitting element is mounted, and a reflective layer made of a metal or an alloy formed on an inner peripheral surface of the cup-shaped portion, and covering the light-emitting element. And a sealing member filled in the cup-shaped portion.
前記筐体が、前記発光素子が載置される基板と、及び該基板上に設置されて該基板の一部とともに前記カップ状部を形成する樹脂製のリフレクタとからなる、請求項1に記載の発光装置。The said housing | casing consists of a board | substrate in which the said light emitting element is mounted, and a resin-made reflector installed on this board | substrate and forming the said cup-shaped part with a part of this board | substrate, The Claim 1 characterized by the above-mentioned. Light emitting device. 前記発光素子が500nm以下の波長領域に主発光ピークを有する、請求項1又は2に記載の発光装置。The light emitting device according to claim 1, wherein the light emitting element has a main light emission peak in a wavelength region of 500 nm or less. 前記発光素子が400nm以下の波長領域に主発光ピークを有する、請求項1又は2に記載の発光装置。The light emitting device according to claim 1, wherein the light emitting element has a main light emission peak in a wavelength region of 400 nm or less. 前記発光素子がIII族窒化物系化合物半導体層を備える、請求項3又は4に記載の発光装置。The light emitting device according to claim 3, wherein the light emitting element includes a group III nitride compound semiconductor layer. 前記反射層がアルミ(Al)又はその合金からなる、請求項1〜5のいずれかに記載の発光装置。The light emitting device according to claim 1, wherein the reflection layer is made of aluminum (Al) or an alloy thereof. 前記封止部材がシリコーンからなる、請求項1〜6のいずれかに記載の発光装置。The light emitting device according to claim 1, wherein the sealing member is made of silicone.
JP2002300126A 2002-10-15 2002-10-15 Light emitting device Pending JP2004134699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300126A JP2004134699A (en) 2002-10-15 2002-10-15 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300126A JP2004134699A (en) 2002-10-15 2002-10-15 Light emitting device

Publications (1)

Publication Number Publication Date
JP2004134699A true JP2004134699A (en) 2004-04-30

Family

ID=32289064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300126A Pending JP2004134699A (en) 2002-10-15 2002-10-15 Light emitting device

Country Status (1)

Country Link
JP (1) JP2004134699A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084319A1 (en) * 2003-03-18 2004-09-30 Sumitomo Electric Industries Ltd. Light emitting element mounting member, and semiconductor device using the same
JP2006019313A (en) * 2004-06-30 2006-01-19 Sanyo Electric Co Ltd Case for led display, led display and its connecting member
JP2006324283A (en) * 2005-05-17 2006-11-30 Sumitomo Metal Electronics Devices Inc Package for storing light-emitting element
JP2007005801A (en) * 2005-06-20 2007-01-11 Samsung Electro-Mechanics Co Ltd Led package forming metal reflective layer and method of manufacturing the same
JP2007129053A (en) * 2005-11-02 2007-05-24 Citizen Electronics Co Ltd Led luminescent device
JP2007536729A (en) * 2004-05-06 2007-12-13 ソウル オプト デバイス カンパニー リミテッド Light emitting device
JP2008078500A (en) * 2006-09-22 2008-04-03 Toshiba Corp Optical semiconductor device and method for manufacturing the same device
JP2008103688A (en) * 2006-09-01 2008-05-01 Cree Inc Position of phosphor in light emitting diode
JPWO2006070457A1 (en) * 2004-12-28 2008-06-12 松下電工株式会社 Method for manufacturing high thermal conductivity circuit module and high thermal conductivity circuit module
JP2008147511A (en) * 2006-12-12 2008-06-26 Stanley Electric Co Ltd Semiconductor light emitting device and its manufacturing method
JP2008252135A (en) * 2004-11-30 2008-10-16 Nichia Corp Resin forming body and surface mount type light-emitting device, and manufacturing method thereof
JP2009167359A (en) * 2008-01-18 2009-07-30 Techno Polymer Co Ltd Heat-dissipating resin composition
US8066909B2 (en) 2004-06-10 2011-11-29 Seoul Semiconductor Co., Ltd. Light emitting device
US8070983B2 (en) 2004-06-10 2011-12-06 Seoul Semiconductor Co., Ltd. Luminescent material
US8134165B2 (en) 2007-08-28 2012-03-13 Seoul Semiconductor Co., Ltd. Light emitting device employing non-stoichiometric tetragonal alkaline earth silicate phosphors
US8137589B2 (en) 2007-08-22 2012-03-20 Seoul Semiconductor Co., Ltd. Non stoichiometric tetragonal copper alkaline earth silicate phosphors and method of preparing the same
US8188492B2 (en) 2006-08-29 2012-05-29 Seoul Semiconductor Co., Ltd. Light emitting device having plural light emitting diodes and at least one phosphor for emitting different wavelengths of light
JP2012134531A (en) * 2006-02-14 2012-07-12 Lg Innotek Co Ltd Light emitting device
US8273266B2 (en) 2005-11-11 2012-09-25 Seoul Semiconductor Co., Ltd. Copper-alkaline-earth-silicate mixed crystal phosphors
US8308980B2 (en) 2004-06-10 2012-11-13 Seoul Semiconductor Co., Ltd. Light emitting device
US8535564B2 (en) 2009-06-24 2013-09-17 Seoul Semiconductor, Co., Ltd. Light emitting device employing luminescent substances with oxyorthosilicate luminophores
US8703014B2 (en) 2009-06-24 2014-04-22 Seoul Semiconductor Co., Ltd. Luminescent substances having Eu2+-doped silicate luminophores
US8847254B2 (en) 2005-12-15 2014-09-30 Seoul Semiconductor Co., Ltd. Light emitting device
WO2014166309A1 (en) * 2013-04-08 2014-10-16 厦门市三安光电科技有限公司 Encapsulating structure for improving vertical led chip luminance
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US9093616B2 (en) 2003-09-18 2015-07-28 Cree, Inc. Molded chip fabrication method and apparatus
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US9312246B2 (en) 2006-03-31 2016-04-12 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same
US9502624B2 (en) 2006-05-18 2016-11-22 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
KR101790052B1 (en) * 2011-04-15 2017-10-25 엘지이노텍 주식회사 Light emitting device package
US9865779B2 (en) 2015-09-30 2018-01-09 Nichia Corporation Methods of manufacturing the package and light-emitting device
JP2018186306A (en) * 2018-08-28 2018-11-22 日亜化学工業株式会社 Resin mold and surface-mounting type light-emitting device, and manufacturing methods thereof
US10186642B2 (en) 2004-05-13 2019-01-22 Seoul Semiconductor Co., Ltd. Light emitting device including RGB light emitting diodes and phosphor
WO2019065633A1 (en) 2017-09-26 2019-04-04 京セラ株式会社 Wiring board and light emitting device
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources
JP2020115588A (en) * 2020-04-27 2020-07-30 日亜化学工業株式会社 Resin mold and surface-mounting type light-emitting device, and manufacturing methods thereof
US11056622B2 (en) 2013-05-09 2021-07-06 Seoul Semiconductor Co., Ltd. Light source module and backlight unit having the same
US12009348B2 (en) 2006-03-31 2024-06-11 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7518155B2 (en) 2003-03-18 2009-04-14 Sumitomo Electric Industries, Ltd. Light emitting element mounting member, and semiconductor device using the same
WO2004084319A1 (en) * 2003-03-18 2004-09-30 Sumitomo Electric Industries Ltd. Light emitting element mounting member, and semiconductor device using the same
US10546978B2 (en) 2003-09-18 2020-01-28 Cree, Inc. Molded chip fabrication method and apparatus
US10164158B2 (en) 2003-09-18 2018-12-25 Cree, Inc. Molded chip fabrication method and apparatus
US9105817B2 (en) 2003-09-18 2015-08-11 Cree, Inc. Molded chip fabrication method and apparatus
US9093616B2 (en) 2003-09-18 2015-07-28 Cree, Inc. Molded chip fabrication method and apparatus
JP2007536729A (en) * 2004-05-06 2007-12-13 ソウル オプト デバイス カンパニー リミテッド Light emitting device
US8071988B2 (en) 2004-05-06 2011-12-06 Seoul Semiconductor Co., Ltd. White light emitting device comprising a plurality of light emitting diodes with different peak emission wavelengths and a wavelength converter
US11605762B2 (en) 2004-05-13 2023-03-14 Seoul Semiconductor Co., Ltd. Light emitting device including RGB light emitting diodes and phosphor
US10916684B2 (en) 2004-05-13 2021-02-09 Seoul Semiconductor Co., Ltd. Light emitting device including RGB light emitting diodes and phosphor
US10672956B2 (en) 2004-05-13 2020-06-02 Seoul Semiconductor Co., Ltd. Light emitting device including RGB light emitting diodes and phosphor
US10186642B2 (en) 2004-05-13 2019-01-22 Seoul Semiconductor Co., Ltd. Light emitting device including RGB light emitting diodes and phosphor
US8070984B2 (en) 2004-06-10 2011-12-06 Seoul Semiconductor Co., Ltd. Luminescent material
US8089084B2 (en) 2004-06-10 2012-01-03 Seoul Semiconductor Co., Ltd. Light emitting device
US8883040B2 (en) 2004-06-10 2014-11-11 Seoul Semiconductor Co., Ltd. Luminescent material
US8158028B2 (en) 2004-06-10 2012-04-17 Seoul Semiconductor Co., Ltd. Luminescent material
US8308980B2 (en) 2004-06-10 2012-11-13 Seoul Semiconductor Co., Ltd. Light emitting device
US8066909B2 (en) 2004-06-10 2011-11-29 Seoul Semiconductor Co., Ltd. Light emitting device
US8900482B2 (en) 2004-06-10 2014-12-02 Seoul Semiconductor Co., Ltd. Light emitting device
US8070983B2 (en) 2004-06-10 2011-12-06 Seoul Semiconductor Co., Ltd. Luminescent material
US8318044B2 (en) 2004-06-10 2012-11-27 Seoul Semiconductor Co., Ltd. Light emitting device
US8075802B2 (en) 2004-06-10 2011-12-13 Seoul Semiconductor Co., Ltd. Luminescent material
US8252203B2 (en) 2004-06-10 2012-08-28 Seoul Semiconductor Co., Ltd. Luminescent material
JP2006019313A (en) * 2004-06-30 2006-01-19 Sanyo Electric Co Ltd Case for led display, led display and its connecting member
US7994532B2 (en) 2004-06-30 2011-08-09 Sanyo Electric Co., Ltd. LED indicator casing, LED indicator, and LED indicator joint member comprising hanger members
JP2008252136A (en) * 2004-11-30 2008-10-16 Nichia Corp Resin forming body and surface mount type light-emitting device, and manufacturing method thereof
JP2011097094A (en) * 2004-11-30 2011-05-12 Nichia Corp Resin molding and surface-mount light-emitting device
JP2008252135A (en) * 2004-11-30 2008-10-16 Nichia Corp Resin forming body and surface mount type light-emitting device, and manufacturing method thereof
JPWO2006070457A1 (en) * 2004-12-28 2008-06-12 松下電工株式会社 Method for manufacturing high thermal conductivity circuit module and high thermal conductivity circuit module
JP2006324283A (en) * 2005-05-17 2006-11-30 Sumitomo Metal Electronics Devices Inc Package for storing light-emitting element
JP2007005801A (en) * 2005-06-20 2007-01-11 Samsung Electro-Mechanics Co Ltd Led package forming metal reflective layer and method of manufacturing the same
US7687292B2 (en) 2005-06-20 2010-03-30 Samsung Electro-Mechanics Co., Ltd. Light emitting diode package with metal reflective layer and method of manufacturing the same
JP2007129053A (en) * 2005-11-02 2007-05-24 Citizen Electronics Co Ltd Led luminescent device
US8273266B2 (en) 2005-11-11 2012-09-25 Seoul Semiconductor Co., Ltd. Copper-alkaline-earth-silicate mixed crystal phosphors
US8847254B2 (en) 2005-12-15 2014-09-30 Seoul Semiconductor Co., Ltd. Light emitting device
JP2012134531A (en) * 2006-02-14 2012-07-12 Lg Innotek Co Ltd Light emitting device
US9455385B2 (en) 2006-02-14 2016-09-27 Lg Innotek Co., Ltd. Light emitting device and method for manufacturing the same
US9312246B2 (en) 2006-03-31 2016-04-12 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same
US12009348B2 (en) 2006-03-31 2024-06-11 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same
US11322484B2 (en) 2006-03-31 2022-05-03 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same
US9576939B2 (en) 2006-03-31 2017-02-21 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same
US9929318B2 (en) 2006-05-18 2018-03-27 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US10686102B2 (en) 2006-05-18 2020-06-16 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US10971656B2 (en) 2006-05-18 2021-04-06 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US9502624B2 (en) 2006-05-18 2016-11-22 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US10263161B2 (en) 2006-05-18 2019-04-16 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US11631790B2 (en) 2006-05-18 2023-04-18 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US9634204B2 (en) 2006-05-18 2017-04-25 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US8674380B2 (en) 2006-08-29 2014-03-18 Seoul Semiconductor Co., Ltd. Light emitting device having plural light emitting diodes and plural phosphors for emitting different wavelengths of light
US8188492B2 (en) 2006-08-29 2012-05-29 Seoul Semiconductor Co., Ltd. Light emitting device having plural light emitting diodes and at least one phosphor for emitting different wavelengths of light
JP2012009905A (en) * 2006-09-01 2012-01-12 Cree Inc Position of phosphor in light emitting diode
JP2008103688A (en) * 2006-09-01 2008-05-01 Cree Inc Position of phosphor in light emitting diode
US8425271B2 (en) 2006-09-01 2013-04-23 Cree, Inc. Phosphor position in light emitting diodes
JP2008078500A (en) * 2006-09-22 2008-04-03 Toshiba Corp Optical semiconductor device and method for manufacturing the same device
JP2008147511A (en) * 2006-12-12 2008-06-26 Stanley Electric Co Ltd Semiconductor light emitting device and its manufacturing method
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US8137589B2 (en) 2007-08-22 2012-03-20 Seoul Semiconductor Co., Ltd. Non stoichiometric tetragonal copper alkaline earth silicate phosphors and method of preparing the same
US8501040B2 (en) 2007-08-22 2013-08-06 Seoul Semiconductor Co., Ltd. Non-stoichiometric tetragonal copper alkaline earth silicate phosphors and method of preparing the same
US8134165B2 (en) 2007-08-28 2012-03-13 Seoul Semiconductor Co., Ltd. Light emitting device employing non-stoichiometric tetragonal alkaline earth silicate phosphors
US8431954B2 (en) 2007-08-28 2013-04-30 Seoul Semiconductor Co., Ltd. Light emitting device employing non-stoichiometric tetragonal alkaline earth silicate phosphors
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
JP2009167359A (en) * 2008-01-18 2009-07-30 Techno Polymer Co Ltd Heat-dissipating resin composition
US8703014B2 (en) 2009-06-24 2014-04-22 Seoul Semiconductor Co., Ltd. Luminescent substances having Eu2+-doped silicate luminophores
US8535564B2 (en) 2009-06-24 2013-09-17 Seoul Semiconductor, Co., Ltd. Light emitting device employing luminescent substances with oxyorthosilicate luminophores
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
KR101790052B1 (en) * 2011-04-15 2017-10-25 엘지이노텍 주식회사 Light emitting device package
WO2014166309A1 (en) * 2013-04-08 2014-10-16 厦门市三安光电科技有限公司 Encapsulating structure for improving vertical led chip luminance
US11056622B2 (en) 2013-05-09 2021-07-06 Seoul Semiconductor Co., Ltd. Light source module and backlight unit having the same
US9865779B2 (en) 2015-09-30 2018-01-09 Nichia Corporation Methods of manufacturing the package and light-emitting device
US10367121B2 (en) 2015-09-30 2019-07-30 Nichia Corporation Package and light-emitting device
JPWO2019065633A1 (en) * 2017-09-26 2020-11-19 京セラ株式会社 Wiring board and light emitting device
US11245059B2 (en) 2017-09-26 2022-02-08 Kyocera Corporation Wiring board and light emitting device
JP7054704B2 (en) 2017-09-26 2022-04-14 京セラ株式会社 Wiring board and light emitting device
WO2019065633A1 (en) 2017-09-26 2019-04-04 京セラ株式会社 Wiring board and light emitting device
JP2018186306A (en) * 2018-08-28 2018-11-22 日亜化学工業株式会社 Resin mold and surface-mounting type light-emitting device, and manufacturing methods thereof
JP2020115588A (en) * 2020-04-27 2020-07-30 日亜化学工業株式会社 Resin mold and surface-mounting type light-emitting device, and manufacturing methods thereof
JP7054019B2 (en) 2020-04-27 2022-04-13 日亜化学工業株式会社 Resin molded body and surface mount type light emitting device and their manufacturing method

Similar Documents

Publication Publication Date Title
JP2004134699A (en) Light emitting device
US20210288226A1 (en) Reflective layers for light-emitting diodes
EP1267423B1 (en) Light-emitting diode sealing
US7038246B2 (en) Light emitting apparatus
KR101278885B1 (en) Lighting module and method for the production thereof
US8686429B2 (en) LED structure with enhanced mirror reflectivity
US8373188B2 (en) Light emitting diode having distributed Bragg reflector
JP7315665B2 (en) light emitting diode package
JP4050482B2 (en) Semiconductor light emitting device
US8569782B2 (en) Optoelectronic semiconductor component
US7138662B2 (en) Light-emitting device
JP2007012993A (en) Chip semiconductor light emitting device
US11387389B2 (en) Reflective layers for light-emitting diodes
JP2007012727A (en) Light emitting device
KR100699578B1 (en) Reflective element for light emitting device and light emitting diode package using it
KR102133904B1 (en) Light emitting diode dielectric mirror
US10249804B2 (en) Semiconductor device, base, and method for manufacturing same
US11923481B2 (en) Reflective layers for light-emitting diodes
US20240194832A1 (en) Reflective layers for light-emitting diodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708