JP2004134536A - Method for connecting flexible multilayer wiring board - Google Patents

Method for connecting flexible multilayer wiring board Download PDF

Info

Publication number
JP2004134536A
JP2004134536A JP2002296723A JP2002296723A JP2004134536A JP 2004134536 A JP2004134536 A JP 2004134536A JP 2002296723 A JP2002296723 A JP 2002296723A JP 2002296723 A JP2002296723 A JP 2002296723A JP 2004134536 A JP2004134536 A JP 2004134536A
Authority
JP
Japan
Prior art keywords
wiring board
layer
metal
alloy
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002296723A
Other languages
Japanese (ja)
Inventor
Satoru Nakao
中尾 悟
Masaaki Kato
加藤 正明
Toshiaki Chuma
中馬 敏秋
Masayoshi Kondo
近藤 正芳
Kentaro Fujiura
藤浦 健太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002296723A priority Critical patent/JP2004134536A/en
Publication of JP2004134536A publication Critical patent/JP2004134536A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for connecting a flexible multilayer wiring board wherein interlayer connections are steadily made with high reliability. <P>SOLUTION: The flexible multilayer wiring board to be connected by this method including a flux function has a one-side outer layer wiring board wherein a supporting substrate has a wiring pattern on one of its surfaces, and has conductive two-layer posts made of copper and a metal or of copper and an alloy, protruding out of the other surface, and an inner layer wiring board wherein pads are provided on at least one of the insulating material-based one-side supporting substrate for connecting to the conductive two-layer posts, and wherein a surface covering material is provided having openings above the pads. Further, the openings are coated with a ≥5 μm-thick metal or alloy layer, and the inner layer wiring board is fixed by an adhesive layer having a flux function, which is placed between the conductive two-layer posts and the pads and is activated at a temperature not lower than the melting temperature point of the metal or the alloy for fulfilling its flux function. Still further, pressure is applied for the conductive two-layer posts to infiltrate into the metal or the alloy for the formation of a metallic bond. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器の部品として用いられる多層フレキシブル配線板の接続方法に関するものである。
【0002】
【従来の技術】
近年の電子機器の高密度化に伴い、これに用いられるプリント配線板の多層化が進んでおり、フレキシブル配線板も多層構造のものが多用されている。このプリント配線板はフレキシブル配線板とリジッド配線板との複合基板であるリジッドフレックス配線板の場合もあり、用途が拡大している。
【0003】
従来の多層フレキシブル配線板やリジッドフレックス配線板の製造方法は、多層リジッド配線板の製造方法と類似している。即ち、パターニングされた銅箔と絶縁層を交互に複数積み重ねた積層板に、層間接続用の貫通孔をあけ、該貫通孔に層間接続用メッキを施した後、最外層の回路等の加工を行う方法が主流であった。しかし、更なる搭載部品の小型化・高密度化が進み、全層を通して同一の個所に各層の接続ランド及び貫通穴をあける従来の方法では、高密度配線が難しく、部品の搭載に問題が生じるようになってきている。
【0004】
このような背景により、近年多層リジッド配線板では、新しい積層技術としてビルドアップ法が採用されている。ビルドアップ法とは、樹脂のみで構成される絶縁層と導体とを積み重ねながら、単層間で層間接続をする方法である。層間接続方法としては、従来のドリル加工に代わって、レーザー法、プラズマ法やフォト法など、多岐にわたり、小径のビアホールを自由に配置することで高密度化を達成するものである。
【0005】
従来、層間接続を形成する場合は、貫通孔又はビアホールに銅メッキを施す。しかし、層間接続を樹脂のみで形成する絶縁層の素材は、熱により厚みが変化し銅メッキでは耐えられなくなり、接続が断裂して、信頼性が低下する場合がある。又貫通孔或いはビアホールを形成する際に発生する、ビア壁面に付着したスミアが障害となり、層間接続のメッキが不十分となり、信頼性が低下する。
【0006】
そこで、ビルドアップ法は、絶縁層にビアを形成してから層間接続する方法と、層間接続部を形成してから絶縁層を積層する方法とに大別される。又層間接続部は、ビアホールをメッキで形成する場合と、導電性ペーストなどで形成する場合とに分けられ、使用される絶縁材料やビア形成方法により、更に細分化される。
【0007】
その中でも、絶縁層に層間接続用の微細ビアをレーザーで形成し、ビアホールを銅ペースト等の導電性接着剤で穴埋めし、この導電性接着剤により電気的接続を得る方法では、ビアの上にビアを形成するスタックドビアが可能なため、高密度化ができ、かつ配線設計の制限を少なくすることができる(例えば、特開平8−316598号公報参照)。しかし、この方法では、導電性物質(金属)と絶縁性物質(接着剤)の混合物で層間の電気的接続を行っているため、信頼性が十分ではない。又、微細なビアに導電性接着剤を埋め込む際の微細なビアへの接着剤の充填や導電性接着剤内の脱泡など高度な技術も必要となり、更なる微細化に対応することが困難である。又、配線パターン上に金属からなる突起物を形成し、積層により絶縁層をこの突起物が貫通し、厚み方向に隣り合った層の配線パターンと接触させ、層間接続する方法もある(例えば、特開平8−125344号公報参照)。しかし、この方法では、層間接続が物理的接触のみであり、その接触を維持する手段がなく、信頼性が低い。そこで、信頼性の改善策として、金属突起物上に絶縁樹脂の硬化温度より高い熔融温度を有する半田層を形成し、積層により未硬化の絶縁層を貫通し、更に半田層を熔融・冷却することで半田接合を形成する方法もある(例えば、特開平8−195560号公報
参照)。しかし、突起先端の半田層と導電体回路層の表面が十分に清浄化、即ち表面酸化物の除去や還元がされていないと、半田が濡れ広がることができないため、半田接合が不十分となり、この方法でも信頼性が低い。また、多層フレキシブル配線板は層間接着するために熱硬化型接着剤を使用しているが、これまでの技術では単純にポスト部分が接着剤を物理的に排除し接続パッド上まで達し接続する等の方法もある(例えば、特開平11−54934号公報参照)が、これでも完全に接続ポストとパッド間の接着剤を除去することは難しく、信頼性が低い。さらに、接続ポストを形成するための方法としてメッキを用いた場合、このポストは片面配線板の基材厚みに接続させるパッドを有するフレキシブル配線板の表面被覆材の厚みにさらに、層間の接着剤厚を加えたメッキをつけなくてはならず、このポスト形成のメッキ工程は長時間にわたる効率の悪い工程となる。
【0008】
【特許文献1】
特開平8−316598号公報
【特許文献2】
特開平8−125344号公報
【特許文献3】
特開平8−195560号公報
【特許文献4】
特開平11−54934号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記の問題を解決させるため、確実に、かつ信頼性が高い層間接続ができる多層フレキシブル配線板の接続方法を提供するものである。
【0010】
【課題を解決させるための手段】
本発明は、
〔1〕 絶縁材としてポリイミドフィルムまたは基材入り樹脂からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅と金属又は銅と合金からなる導体2層ポストを有する片面外層配線板と、絶縁材としてポリイミドフィルムまたは基材入り樹脂を支持基材とする片面配線板の少なくとも片面に該導体2層ポストと接続するためのパッドを有する配線パターンで構成された内層配線板で、該パッド上に開口部を有する表面被覆材で構成され、かつ開口部に金属または合金の被覆をその厚みが5μm以上になるように施した内層配線板とを、該導体2層ポストと該パッドの間にフラックス機能付き接着剤層を介在させ、該金属または該合金の融点以上で該フラックス機能付き接着剤層のフラックス機能を活性化させ、且つ、加圧して該導体2層ポストを該パッド上の金属または合金内に進入させて、金属結合を形成することを特徴とする多層フレキシブル配線板の接続方法、
〔2〕金属が金、銀、ニッケル、錫、鉛、銀、亜鉛、ビスマス、アンチモン、銅の少なくとも1種類からなる第〔1〕項記載の多層フレキシブルプリント配線板の接続方法、
〔3〕合金が、錫、鉛、銀、亜鉛、ビスマス、アンチモン、銅の少なくとも2種類からなる第〔1〕又は〔2〕項記載の多層フレキシブルプリント配線板の接続方法、
〔4〕前記内層配線板上に、前記片面外層配線板を位置あわせした後、前記フラックス機能付き接着剤により仮接着する工程を繰り返した後、接合プレスをすることを特徴とする第〔1〕〜〔3〕項いずれかに記載の多層フレキシブル配線板の接続方法、
〔5〕前記内層配線板上に前記片面外層配線板を、各層間で位置あわせ後接合プレスを行う工程を繰り返すことを特徴とする第〔1〕〜〔3〕項いずれかに記載の多層フレキシブル配線板の接続方法、
〔6〕前記内層配線板上に、前記片面外層配線板を全層位置あわせのみを行った後、接合プレスを行うことを特徴とする第〔1〕〜〔3〕項いずれかに記載の多層フレキシブル配線板の接続方法、
である。
【0011】
【発明の実施の形態】
以下は、図面に基づき本発明の実施形態について説明するが、本発明はこれに何ら限定されるものではない。
【0012】
図1〜図3は、本発明の実施形態である多層フレキシブル配線板の接続方法の例を説明する図であり、図3(b)は、多層部320とフレキシブル部330を併せ持つ、本発明で得られる多層フレキシブル配線板310の接続構造を示す断面図である。
本発明の多層フレキシブル配線板の接続方法として、先ず、ステップA(図1)として、導体2層ポスト107を有する片面外層配線板を120形成する。続いて、ステップB(図2)としてパッド205を有する内層配線板220を形成する。最後に、ステップC(図3)として、内層配線板220のパッド208と片面外層配線板120の導体2層ポスト107をフラックス機能付き接着剤層111の機能により金属結合を形成し、電気的接続を形成する。以上、3ステップに分けることができる。
【0013】
ステップAの導体2層バンプ107を有する片面外層配線板120を形成する方法として、ポリイミド樹脂、エポキシ樹脂などの樹脂を硬化させた絶縁材からなる支持基材102の片面に銅箔101が付いた片面積層板110を準備する (図1(a))。この際、支持基材と銅箔との間には、導体接続の妨げとなるスミアの発生を防ぐため、銅箔と支持基材を貼り合わせるための接着剤層は存在しない方が好ましいが、接着剤を使い貼りあわせたものでもよい。この支持基材110の片面にある銅箔101をエッチングにより配線パターン103を形成し(図1(b))、配線パターンに表面被覆104を施す(図1(c))。この表面被覆104は絶縁樹脂に接着剤を塗布したオーバーレイフィルムを貼付または、インクを直接支持基材に印刷する方法などがある。この表面被覆104にはメッキなどの表面処理用に表面被覆開口部105を設けてもよい。次いで、支持基材102側の面から、配線パターン103が露出するまで、支持基材開口部106を形成する (図1(d))。
【0014】
この際、レーザー法を用いると開口部を容易に形成することができ、かつ小径もあけることができる。更に、過マンガン酸カリウム水溶液によるウェットデスミア又はプラズマによるドライデスミアなどの方法により、支持基材開口部106内に残存している樹脂を除去すると層間接続の信頼性が向上し好ましい。この支持基材開口部106内に導体2層ポスト107が支持基材102の面から突出するまで形成する(図1(f))。導体2層ポスト107の形成方法としては、ペースト又はメッキ法などで、銅ポスト108を形成後(図1(e))、金属又は合金にて被覆する。金属としては、金、銀、ニッケル、錫、鉛、銀、亜鉛、ビスマス、アンチモン、銅の少なくとも1種類からなり、単層又は2層以上であってもよい。合金としては錫、鉛、銀、亜鉛、ビスマス、アンチモン、銅から選ばれた少なくとも2種類以上の金属で構成される半田である。例えば錫−鉛系、錫−銀系、錫−亜鉛系、錫−ビスマス系、錫−アンチモン、錫−銀−ビスマス系、錫−銅系等があるが、半田の金属組合せや組成に限定されず、最適なものを選択すればよい。厚みは0.05μm以上、好ましくは0.5μm以上である。この時同時に表面被覆開口部105の表面にも前記同様の半田又は金属や合金により表面処理109してもよい。次に、支持基材102の導体2層ポスト107が突出した面にフラックス機能付き接着剤層111を形成する(図1(g))。このフラックス機能付き接着剤層はポストと接続するためのパッドを有する内層配線板220に形成しても差し支えはない。このフラックス機能付き接着剤層は印刷法により支持基材102にフラックス機能付き接着剤を塗布する方法などがあるが、シート状になった接着剤を支持基材102にラミネートする方法が簡便である。そして、必要に応じて、多層部のサイズに応じて切断し、個片にしてもよい。
また、この導体2層バンプ107の製法としては片面積層板110に先に支持基材開口部106を形成し、導体2層ポスト107を形成後、配線パターン103を形成し、配線パターンに表面被覆104を施してもよい。
【0015】
本発明に用いるフラックス機能付き接着剤は、金属表面の清浄化機能、例えば、金属表面に存在する酸化膜の除去機能や、酸化膜の還元機能を有した接着剤であり、第1の好ましい接着剤の構成としては、フェノール性水酸基を有するフェノールノボラック樹脂、クレゾールノボラック樹脂、アルキルフェノールノボラック樹脂、レゾール樹脂、ポリビニルフェノール樹脂などの樹脂と、前記樹脂の硬化剤を含むものである。硬化剤としては、ビスフェノール系、フェノールノボラック系、アルキルフェノールノボラック系、ビフェノール系、ナフトール系、レゾルシノール系などのフェノールベースや、脂肪族、環状脂肪族や不飽和脂肪族などの骨格をベースとしてエポキシ化されたエポキシ樹脂やイソシアネート化合物が挙げられる。
【0016】
ステップBのパッド205を有する内層配線板220を形成する方法としては、ポリイミド樹脂、エポキシ樹脂などの樹脂を硬化させた絶縁材からなる支持基材202と少なくとも片面に銅箔201がついた積層板210を準備する(図2(a))。積層板210は、ステップBの加工を行うことができるよう、接着剤層は存在しない方が好ましいが存在しても構わない。この積層板210をエッチングにより、配線パターン204及び導体2層ポスト107を受けることができるパッド203を形成する(図2(b))。その後、パッド205上に表面被覆開口部207を形成した表面被覆206(図2(c))を施す。さらに、開口部分には半田メッキ又は半田ペースト、半田ボールにより表面処理208を実施する(図2(d))。このメッキの厚みは5μm以上、好ましくは表面被覆208高さと比べ同じもしくは2μmほど低くつけることが好ましい。表面処理は、金属又は合金で行なう。金属としては、特に限定しないが、錫が融点が低いため好ましい。表面処理の合金としては、錫、鉛、銀、亜鉛、ビスマス、アンチモン、銅から選ばれた少なくとも2種類以上の金属で構成される半田である。例えば錫−鉛系、錫−銀系、錫−亜鉛系、錫−ビスマス系、錫−アンチモン、錫−銀−ビスマス系、錫−銅系等があるが、半田の金属組合せや組成に限定されず、最適なものを選択すればよい。この表面処理を厚くすることで2層ポストの高さを低くすることができ、かつ接続時に熔融した表面処理部208に2層ポスト107が進入、浸漬され接続することができるため、2層ポストを作製する工程を短縮することができ、かつ2層ポストの高さにばらつきがあっても、この表面処理208の厚みにより緩衝させることができ、接続信頼性が向上する。以上のステップによりコアとなる内層フレキシブル配線板230は、両面にパッドを有する構造をもつことができる(図2(e))。また、先ほどあげたステップA(2層バンプ形成)を併用した片面配線板240を形成してもよい((図2(f))。
【0017】
ステップCの多層フレキシブル配線板310を形成する方法としては、個片の片面外層配線板120を内層フレキシブル配線板230にレイアップする(図3(a))。その際の位置合わせは、各層の配線パターンに予め形成されている位置決めマークを画像認識装置により読み取り位置合わせする方法、位置合わせ用のピンで位置合わせする方法を用いることができる。その後、半田接合が可能な温度に加熱して、フラックス機能付き接着剤層111を活性化させ、加圧することで、導体2層ポスト107が、フラックス機能付き接着剤層を排除し、導体2層ポスト107が内層フレキシブル配線板230のパッド部分205の半田208内に進入し、パッド部の半田が熔融接合させ、金属結合を形成する(図3(b))。また、片面外層配線板120と内層フレキシブル配線板230の間に片面配線版240を挿入してもよい(図4(b))。
【0018】
実施例1
[片面外層配線板の作成]
厚み60μmのエポキシ樹脂を硬化させた絶縁材からなる支持基材102(住友ベークライト製 スミライトAPL−4001)上に厚み12μmの銅箔101が付いた片面積層板110をエッチングし、配線パターン103を形成し、液状レジスト(日立化成製 SR9000W)を印刷し、表面被膜104を施す。次いで、支持基材102側の面から、COレーザーにより100μm径の支持基材開口部106を形成し、過マンガン酸カリウム水溶液によるデスミアを施す。この支持基材開口部106内に電解銅メッキを施し高さ100μmとした後、半田メッキ厚み10μmを施し、導体ポスト107を形成する。次に、支持基材102の導体ポスト107が突出した面に厚み20μmの熱硬化性のフラックス機能付き接着剤シート(住友ベークライト製 層間接着シート RCF)をラミネートし、フラックス機能付き接着剤層111を形成する。最後に、積層部のサイズに外形加工し、導体2層ポストを有する片面外層配線板120を得た。
【0019】
[内層配線板の作成]
銅箔201が18μm、支持基材202がポリイミドフィルム厚み25μmの2層両面板210(新日鐵化学製 エスパネックス SB−18−25−18FR)を、ドリルによる穴明け後、ダイレクトメッキし、電解銅メッキによりスルーホール203を形成し表裏の電気的導通を形成した後、エッチングにより、配線パターン204及び導体ポスト107を受けることができるパッド205を形成する。その後、配線パターン203に、厚み25μmのポリイミド(鐘淵化学工業製 アピカルNPI)に厚み25μmの熱硬化性接着剤(自社開発材料)により表面被覆206を形成する。次にパッド205を開口するためCOレーザーにて孔明けし、デスミアを行い、表面被覆開口部207を作製する。次いでこの開口部に表面処理208として厚み45μmの半田メッキを形成し、パッド部205を有する内層フレキシブル配線板230を形成する。
【0020】
[多層フレキシブル配線板の接続方法による接続部の作成]
片面外層配線板120を内層フレキシブル配線板230に、位置合わせ用のピンガイド付き治具を用いてレイアップした。その後、真空式加圧ラミネーターで130℃、0.1MPa、10秒で仮接着した後、油圧式プレスで260℃、1.0MPaで75秒間プレスし、フラックス機能付き接着剤層111を活性化させ、導体ポスト107が、内層フレキシブル配線板230のパッド205部の表面処理208の半田内に進入し、熔融接合し金属接合を形成し、多層フレキシブル配線板の接続部を形成した。
【0021】
実施例2
片面外層配線板作製の際、支持基材開口部106の径を最小50μmまで変化させて、導体2層ポスト107を形成した以外は、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0022】
実施例3
片面外層配線板作製の際、銅ポスト108を形成する工程で無電解銅メッキを施した後、電解銅メッキを行い、更に半田メッキにより導体2層ポストを形成した以外は、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0023】
実施例4
内層配線板作製の際、パッド205上に表面被覆開口部207が一致するようにあらかじめ金型にて打抜き加工し穴あけをしたカバーレイにより、全面に表面被覆206を形成した以外、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0024】
実施例5
多層フレキシブル配線板の接続部作成のため積層する際、仮接着を0.3MPaで行った以外、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0025】
比較例1
片面外層配線板120のフラックス機能付接着剤シート111をフラックス機能のない一般的な接着剤シート(デュポン製 パイララックスLF100)に変更した以外、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0026】
比較例2
内層フレキシブル配線板230の積層部に表面被覆を行わず、表面被覆開口部207がない以外、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0027】
実施例1〜5の多層フレキシブル配線板は、金属同士で層間接続部が確実に金属接合されており、温度サイクル試験では、断線不良の発生がなく、金属接合部の接合状態も良好で、絶縁抵抗試験でも絶縁抵抗が上昇しなかった。しかし、比較例1の場合、導体2層ポストとパッド間に樹脂噛みしているものもみられ、その導体2層ポストとパッドは金属接合がなされず、信頼性が低下した。また、比較例2の場合、半田がパッド及び配線間に広がり、配線を短絡させ、信頼性を低下した。
【0028】
【発明の効果】
本発明の多層フレキシブル配線板の接続方法に従うと、金属表面の清浄化機能を有した層間接着剤を用いることで配線板の積層における金属接合部を信頼性高く接続することができ、また、層間接続であるので、設計自由度の高い多層フレキシブル配線板を得ることができる。
【図面の簡単な説明】
【図1】本発明の導体2層バンプを有する片面外層配線板とその製造方法を説明するための断面図。
【図2】本発明のパッドを有する内層配線板とその製造方法を説明するための断面図。
【図3】本発明の多層フレキシブル配線板の接続方法を説明するための断面図。
【図4】本発明の他の多層フレキシブル配線板の接続方法を説明するための断面図。
【符号の説明】
101、201:銅箔
102、202:支持基材
103、204:配線パターン
104、206:表面被覆
105、207:表面被覆開口部
106:支持基材開口部
107:導体2層ポスト
108:銅ポスト
109、208:表面処理
110:片面積層板
111:フラックス機能付き接着剤層
120:片面外層配線板
205:パッド
210:両面板
220:内層配線板
230:内層フレキシブル配線板
240:片面配線板
310:多層フレキシブル配線板
320:多層部
330:フレキシブル部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for connecting a multilayer flexible wiring board used as a component of an electronic device.
[0002]
[Prior art]
With the recent increase in the density of electronic devices, multilayered printed wiring boards used for the electronic devices have been developed, and flexible wiring boards having a multilayer structure are often used. The printed wiring board may be a rigid-flex wiring board which is a composite board of a flexible wiring board and a rigid wiring board, and its use is expanding.
[0003]
A conventional method for manufacturing a multilayer flexible wiring board or a rigid-flex wiring board is similar to a method for manufacturing a multilayer rigid wiring board. That is, a laminated plate in which a plurality of patterned copper foils and insulating layers are alternately stacked, a through-hole for interlayer connection is made, and after plating the through-hole for interlayer connection, processing of the outermost layer circuit and the like is performed. The way of doing was mainstream. However, further miniaturization and higher density of mounted components are progressing, and the conventional method of forming connection lands and through holes of each layer in the same place throughout all layers makes it difficult to perform high-density wiring and causes a problem in mounting components. It is becoming.
[0004]
Against such a background, in recent years, a build-up method has been adopted as a new laminating technique in a multilayer rigid wiring board. The build-up method is a method in which an insulating layer made of only a resin and a conductor are stacked, and interlayer connection is made between single layers. As the interlayer connection method, various methods such as a laser method, a plasma method, and a photo method are used instead of the conventional drilling to achieve high density by freely arranging small-diameter via holes.
[0005]
Conventionally, when forming an interlayer connection, copper plating is applied to a through hole or a via hole. However, the material of the insulating layer in which the interlayer connection is formed only of the resin changes in thickness due to heat and cannot be endured by copper plating, so that the connection may be broken and reliability may be reduced. In addition, smears generated when forming a through hole or a via hole and adhered to the wall surface of the via become an obstacle, so that plating of interlayer connection becomes insufficient and reliability is reduced.
[0006]
Therefore, the build-up method is roughly classified into a method of forming a via in an insulating layer and then connecting the layers, and a method of forming an interlayer connecting portion and then stacking the insulating layer. The interlayer connection portion is divided into a case where a via hole is formed by plating and a case where the via hole is formed by a conductive paste or the like, and is further subdivided depending on an insulating material used and a via forming method.
[0007]
Among them, a method of forming fine vias for interlayer connection in an insulating layer with a laser, filling the via holes with a conductive adhesive such as copper paste, and obtaining an electrical connection with the conductive adhesive, a method of forming a via on the via. Since a stacked via for forming a via is possible, the density can be increased and the restriction on the wiring design can be reduced (for example, see Japanese Patent Application Laid-Open No. 8-316598). However, in this method, the electrical connection between the layers is performed by using a mixture of a conductive substance (metal) and an insulating substance (adhesive), so that the reliability is not sufficient. In addition, when embedding the conductive adhesive in the fine vias, advanced technology such as filling the fine via with the adhesive and defoaming the conductive adhesive is required, and it is difficult to cope with further miniaturization. It is. Also, there is a method in which a protrusion made of metal is formed on a wiring pattern, and the protrusion penetrates an insulating layer by lamination, and is brought into contact with a wiring pattern of an adjacent layer in a thickness direction to perform interlayer connection (for example, See JP-A-8-125344. However, in this method, the interlayer connection is only physical contact, there is no means for maintaining the contact, and the reliability is low. Therefore, as a measure for improving reliability, a solder layer having a melting temperature higher than the curing temperature of the insulating resin is formed on the metal protrusion, and the uncured insulating layer is penetrated by lamination, and the solder layer is further melted and cooled. There is also a method of forming a solder joint by this (for example, see Japanese Patent Application Laid-Open No. 8-195560). However, if the surface of the solder layer and the conductor circuit layer at the tip of the protrusion are not sufficiently cleaned, that is, if the surface oxide is not removed or reduced, the solder cannot be spread by wetting, so the solder joining becomes insufficient. This method is also unreliable. In addition, the multilayer flexible wiring board uses a thermosetting adhesive for interlayer bonding. However, in the conventional technology, the post part simply removes the adhesive physically and reaches the connection pad and connects. (For example, see Japanese Patent Application Laid-Open No. H11-54934), but it is still difficult to completely remove the adhesive between the connection post and the pad, and the reliability is low. Further, when plating is used as a method for forming the connection post, this post is added to the thickness of the surface covering material of the flexible wiring board having pads to be connected to the base material thickness of the single-sided wiring board, and further to the adhesive thickness between the layers. Must be added, and the plating step of forming the post is an inefficient step for a long time.
[0008]
[Patent Document 1]
JP-A-8-316598 [Patent Document 2]
JP-A-8-125344 [Patent Document 3]
JP-A-8-195560 [Patent Document 4]
JP-A-11-54934
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention provides a method for connecting a multilayer flexible wiring board that enables reliable and highly reliable interlayer connection in order to solve the above problems.
[0010]
[Means for solving the problem]
The present invention
[1] Copper and metal or copper and alloy having a wiring pattern on one side of a supporting substrate made of a polyimide film or a resin containing a substrate as an insulating material, and protruding from a surface of the supporting substrate opposite to the wiring pattern And a pad for connecting to the conductor double-layer post on at least one side of a single-sided wiring board using a polyimide film or a resin containing a substrate as a supporting substrate as an insulating material. An inner wiring board having a wiring pattern, the inner wiring board having a surface covering material having an opening on the pad, and the opening being coated with a metal or an alloy so as to have a thickness of 5 μm or more. A flux function adhesive layer is interposed between the conductor two-layer post and the pad, and the flux of the flux function adhesive layer is higher than the melting point of the metal or the alloy. Functions to activate the and, by a pressurized conductor two layers post is advanced into the metal or alloy on the pad, the method of connecting the multilayer flexible wiring board, which comprises forming a metal bond,
[2] The method for connecting a multilayer flexible printed wiring board according to [1], wherein the metal is at least one of gold, silver, nickel, tin, lead, silver, zinc, bismuth, antimony, and copper;
[3] The method for connecting a multilayer flexible printed wiring board according to [1] or [2], wherein the alloy comprises at least two kinds of tin, lead, silver, zinc, bismuth, antimony, and copper;
[4] A step of positioning the one-sided outer wiring board on the inner-layer wiring board, repeating the step of temporarily bonding with the adhesive having a flux function, and then performing a bonding press. To [3], the method for connecting a multilayer flexible wiring board according to any one of the above items,
[5] The multilayer flexible circuit according to any one of [1] to [3], wherein the step of performing the bonding press after positioning the one-sided outer wiring board on the inner-layer wiring board between the respective layers is repeated. Wiring board connection method,
[6] The multilayer according to any one of [1] to [3], wherein after performing only alignment of the one-sided outer wiring board on all the layers on the inner-layer wiring board, a bonding press is performed. Flexible wiring board connection method,
It is.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
[0012]
FIGS. 1 to 3 are diagrams illustrating an example of a method of connecting a multilayer flexible wiring board according to an embodiment of the present invention. FIG. 3B is a diagram illustrating the present invention having both a multilayer section 320 and a flexible section 330. It is sectional drawing which shows the connection structure of the obtained multilayer flexible wiring board 310.
As a method for connecting a multilayer flexible wiring board of the present invention, first, as step A (FIG. 1), a single-sided outer wiring board 120 having a conductor two-layer post 107 is formed. Subsequently, as step B (FIG. 2), an inner wiring board 220 having the pads 205 is formed. Finally, as step C (FIG. 3), a metal bond is formed between the pad 208 of the inner wiring board 220 and the conductor two-layer post 107 of the one-side outer wiring board 120 by the function of the adhesive layer 111 with a flux function, and the electrical connection is made. To form The above can be divided into three steps.
[0013]
As a method for forming the single-sided outer wiring board 120 having the conductor two-layer bumps 107 in step A, a copper foil 101 is attached to one surface of a support base material 102 made of an insulating material obtained by curing a resin such as a polyimide resin or an epoxy resin. A one-area layer plate 110 is prepared (FIG. 1A). At this time, between the supporting substrate and the copper foil, it is preferable that there is no adhesive layer for bonding the copper foil and the supporting substrate, in order to prevent the occurrence of smear that hinders the conductor connection, It may be bonded using an adhesive. A wiring pattern 103 is formed by etching the copper foil 101 on one side of the support base 110 (FIG. 1B), and a surface coating 104 is applied to the wiring pattern (FIG. 1C). For the surface coating 104, there is a method of attaching an overlay film in which an adhesive is applied to an insulating resin, or a method of printing ink directly on a supporting substrate. The surface coating 104 may be provided with a surface coating opening 105 for surface treatment such as plating. Next, a support base opening 106 is formed from the surface on the support base 102 side until the wiring pattern 103 is exposed (FIG. 1D).
[0014]
At this time, if a laser method is used, an opening can be easily formed and a small diameter can be opened. Further, it is preferable to remove the resin remaining in the support base opening 106 by a method such as wet desmear using an aqueous solution of potassium permanganate or dry desmear using plasma, because the reliability of interlayer connection is improved. The two-layer conductor post 107 is formed in the support base opening 106 until it protrudes from the surface of the support base 102 (FIG. 1F). As a method for forming the conductor two-layer post 107, after forming the copper post 108 by a paste or plating method (FIG. 1E), the post is covered with a metal or an alloy. The metal is made of at least one of gold, silver, nickel, tin, lead, silver, zinc, bismuth, antimony, and copper, and may be a single layer or two or more layers. The alloy is a solder composed of at least two kinds of metals selected from tin, lead, silver, zinc, bismuth, antimony, and copper. For example, there are tin-lead, tin-silver, tin-zinc, tin-bismuth, tin-antimony, tin-silver-bismuth, tin-copper, etc. Instead, an optimal one may be selected. The thickness is 0.05 μm or more, preferably 0.5 μm or more. At this time, the surface of the surface covering opening 105 may be simultaneously surface-treated 109 with the same solder, metal, or alloy as described above. Next, an adhesive layer 111 with a flux function is formed on the surface of the support base 102 from which the two-layer conductor posts 107 protrude (FIG. 1 (g)). The adhesive layer with the flux function may be formed on the inner wiring board 220 having pads for connecting to the posts. The adhesive layer with a flux function can be applied to the support base material 102 by a printing method, for example. A method of laminating the adhesive in sheet form on the support base material 102 is simple. . And if necessary, it may be cut into individual pieces according to the size of the multilayer part.
In addition, as a method of manufacturing the conductor two-layer bump 107, the support base material opening 106 is first formed on the one-layer plate 110, the conductor two-layer post 107 is formed, the wiring pattern 103 is formed, and the surface of the wiring pattern is coated. 104 may be applied.
[0015]
The adhesive having a flux function used in the present invention is an adhesive having a function of cleaning a metal surface, for example, a function of removing an oxide film present on a metal surface and a function of reducing an oxide film. The composition of the agent includes a resin such as a phenol novolak resin having a phenolic hydroxyl group, a cresol novolak resin, an alkylphenol novolak resin, a resol resin, and a polyvinylphenol resin, and a curing agent for the resin. As the curing agent, a phenol base such as bisphenol, phenol novolak, alkylphenol novolak, biphenol, naphthol or resorcinol, or a skeleton based on an aliphatic, cycloaliphatic or unsaturated aliphatic skeleton is used. Epoxy resin and isocyanate compound.
[0016]
As a method of forming the inner layer wiring board 220 having the pads 205 in Step B, a supporting substrate 202 made of an insulating material obtained by curing a resin such as a polyimide resin and an epoxy resin and a laminate board having a copper foil 201 on at least one surface 210 is prepared (FIG. 2A). It is preferable that the adhesive layer is not present in the laminated plate 210 so that the processing in Step B can be performed, but it may be present. By etching this laminated plate 210, a pad 203 that can receive the wiring pattern 204 and the conductor two-layer post 107 is formed (FIG. 2B). Thereafter, a surface coating 206 (FIG. 2C) in which a surface coating opening 207 is formed on the pad 205 is applied. Further, a surface treatment 208 is performed on the opening using solder plating, a solder paste, or a solder ball (FIG. 2D). The thickness of this plating is preferably 5 μm or more, and is preferably equal to or lower than the height of the surface coating 208 by 2 μm. The surface treatment is performed with a metal or an alloy. The metal is not particularly limited, but tin is preferable because of its low melting point. The alloy for the surface treatment is a solder composed of at least two or more metals selected from tin, lead, silver, zinc, bismuth, antimony, and copper. For example, there are tin-lead, tin-silver, tin-zinc, tin-bismuth, tin-antimony, tin-silver-bismuth, tin-copper, etc. Instead, an optimal one may be selected. By increasing the thickness of the surface treatment, the height of the two-layer post can be reduced, and the two-layer post 107 can enter and be immersed in the melted surface treatment part 208 at the time of connection. Can be shortened, and even if the height of the two-layer post varies, it can be buffered by the thickness of the surface treatment 208, thereby improving connection reliability. Through the above steps, the inner-layer flexible wiring board 230 serving as a core can have a structure having pads on both surfaces (FIG. 2E). Alternatively, the single-sided wiring board 240 may be formed by using Step A (forming two-layer bumps) described above (FIG. 2F).
[0017]
As a method of forming the multilayer flexible wiring board 310 in Step C, the individual single-sided outer wiring board 120 is laid up on the inner flexible wiring board 230 (FIG. 3A). The positioning at this time can be performed by a method of reading and positioning a positioning mark formed in advance on the wiring pattern of each layer by an image recognition device, or a method of positioning with a positioning pin. After that, the conductor layer 107 is heated to a temperature at which solder bonding is possible, and the adhesive layer 111 with the flux function is activated and pressurized. The post 107 enters the solder 208 of the pad portion 205 of the inner flexible wiring board 230, and the solder of the pad portion is melt-bonded to form a metal bond (FIG. 3B). Further, a single-sided wiring board 240 may be inserted between the single-sided outer wiring board 120 and the inner-layer flexible wiring board 230 (FIG. 4B).
[0018]
Example 1
[Creation of single-sided outer wiring board]
A wiring pattern 103 is formed by etching a single-area layer plate 110 having a copper foil 101 having a thickness of 12 μm on a support base material 102 (Sumilite APL-4001 manufactured by Sumitomo Bakelite) made of an insulating material obtained by curing an epoxy resin having a thickness of 60 μm. Then, a liquid resist (SR9000W manufactured by Hitachi Chemical Co., Ltd.) is printed, and a surface coating 104 is applied. Next, a support base opening 106 having a diameter of 100 μm is formed from the surface on the support base 102 side by a CO 2 laser, and desmearing is performed with an aqueous solution of potassium permanganate. After the inside of the supporting base material opening 106 is subjected to electrolytic copper plating to a height of 100 μm, a solder plating thickness of 10 μm is applied to form the conductor post 107. Next, a thermosetting adhesive sheet with a flux function (interlayer adhesive sheet RCF made by Sumitomo Bakelite) having a thickness of 20 μm is laminated on the surface of the support base 102 from which the conductor posts 107 protrude, and the adhesive layer with a flux function 111 is formed. Form. Finally, the outer shape was processed to the size of the laminated portion to obtain a single-sided outer wiring board 120 having a conductor two-layer post.
[0019]
[Creation of inner wiring board]
The copper foil 201 has a thickness of 18 μm, and the support base 202 has a polyimide film thickness of 25 μm. After the through hole 203 is formed by copper plating and the front and back electrical continuity is formed, the pad 205 that can receive the wiring pattern 204 and the conductor post 107 is formed by etching. Thereafter, a surface coating 206 is formed on the wiring pattern 203 using a 25 μm thick thermosetting adhesive (a material developed in-house) on a 25 μm thick polyimide (Apical NPI manufactured by Kaneka Chemical Industry Co., Ltd.). Next, in order to open the pad 205, a hole is formed by a CO 2 laser and desmearing is performed to form a surface covering opening 207. Next, solder plating having a thickness of 45 μm is formed as a surface treatment 208 on the opening to form an inner-layer flexible wiring board 230 having a pad portion 205.
[0020]
[Creation of connection part by multi-layer flexible wiring board connection method]
The single-sided outer wiring board 120 was laid up on the inner flexible wiring board 230 using a jig with a pin guide for positioning. Then, after temporarily bonding at 130 ° C. and 0.1 MPa for 10 seconds with a vacuum pressurizing laminator, pressing with a hydraulic press at 260 ° C. and 1.0 MPa for 75 seconds to activate the adhesive layer 111 with a flux function. Then, the conductor post 107 enters the solder of the surface treatment 208 of the pad 205 of the inner layer flexible wiring board 230, and is melt-bonded to form a metal bond, thereby forming a connection portion of the multilayer flexible wiring board.
[0021]
Example 2
A multilayer flexible wiring board obtained by the same method as in Example 1 except that the diameter of the support base opening 106 was changed to a minimum of 50 μm and the conductor two-layer post 107 was formed when the single-sided outer wiring board was manufactured. .
[0022]
Example 3
In the same manner as in Example 1 except that, during the production of the single-sided outer wiring board, the electroless copper plating was performed in the step of forming the copper post 108, the electrolytic copper plating was performed, and the conductor two-layer post was further formed by solder plating. Multi-layer flexible wiring board obtained by the method as described above.
[0023]
Example 4
When manufacturing the inner layer wiring board, the same as Example 1 except that the surface coating 206 was formed on the entire surface by a coverlay punched and punched with a die in advance so that the surface coating opening 207 coincided with the pad 205. A multilayer flexible wiring board obtained by the same method.
[0024]
Example 5
A multilayer flexible wiring board obtained in the same manner as in Example 1, except that the temporary bonding is performed at 0.3 MPa when the multilayer flexible wiring board is laminated for forming a connection portion.
[0025]
Comparative Example 1
Multilayer flexible wiring obtained by the same method as in Example 1 except that the adhesive sheet with flux function 111 of the single-sided outer wiring board 120 is changed to a general adhesive sheet without flux function (Pilalux LF100 manufactured by DuPont). Board.
[0026]
Comparative Example 2
A multilayer flexible wiring board obtained in the same manner as in Example 1, except that the surface of the laminated portion of the inner layer flexible wiring board 230 is not coated and the surface coating opening 207 is not provided.
[0027]
In the multilayer flexible wiring boards of Examples 1 to 5, the metal-to-metal connection at the interlayer connection portion is surely performed. In the temperature cycle test, no disconnection failure occurs, the bonding state of the metal connection portion is good, and the insulation is excellent. The insulation resistance did not increase even in the resistance test. However, in the case of Comparative Example 1, there was also observed one in which resin was bitten between the conductor two-layer post and the pad, and the metal was not bonded between the conductor two-layer post and the pad, and the reliability was reduced. In the case of Comparative Example 2, the solder spread between the pad and the wiring, causing the wiring to be short-circuited, and the reliability was reduced.
[0028]
【The invention's effect】
According to the method for connecting a multilayer flexible wiring board of the present invention, it is possible to connect metal joints in a laminate of wiring boards with high reliability by using an interlayer adhesive having a metal surface cleaning function. Because of the connection, a multilayer flexible wiring board having a high degree of design freedom can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining a single-sided outer wiring board having a conductor two-layer bump of the present invention and a method for manufacturing the same.
FIG. 2 is a cross-sectional view for explaining an inner wiring board having a pad of the present invention and a method of manufacturing the same.
FIG. 3 is a cross-sectional view illustrating a method for connecting a multilayer flexible wiring board according to the present invention.
FIG. 4 is a cross-sectional view for explaining a method for connecting another multilayer flexible wiring board according to the present invention.
[Explanation of symbols]
101, 201: Copper foil 102, 202: Support base material 103, 204: Wiring pattern 104, 206: Surface coating 105, 207: Surface coating opening 106: Support base opening 107: Conductor two-layer post 108: Copper post 109, 208: Surface treatment 110: Single-area layer board 111: Adhesive layer with flux function 120: Single-sided outer wiring board 205: Pad 210: Double-sided board 220: Inner-layer wiring board 230: Inner-layer flexible wiring board 240: Single-sided wiring board 310: Multi-layer flexible wiring board 320: Multi-layer part 330: Flexible part

Claims (6)

絶縁材としてポリイミドフィルムまたは基材入り樹脂からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅と金属又は銅と合金からなる導体2層ポストを有する片面外層配線板と、絶縁材としてポリイミドフィルムまたは基材入り樹脂を支持基材とする片面配線板の少なくとも片面に該導体2層ポストと接続するためのパッドを有する配線パターンで構成された内層配線板で、該パッド上に開口部を有する表面被覆材で構成され、かつ開口部に金属または合金の被覆をその厚みが5μm以上になるように施した内層配線板とを、該導体2層ポストと該パッドの間にフラックス機能付き接着剤層を介在させ、該金属または該合金の融点以上の温度で該フラックス機能付き接着剤層のフラックス機能を活性化させ、且つ加圧して該導体2層ポストを該パッド上の金属または合金内に進入させて、金属結合を形成することを特徴とする多層フレキシブル配線板の接続方法。A conductor made of copper and metal or an alloy of copper and having a wiring pattern on one side of a support substrate made of a polyimide film or a resin containing a substrate as an insulating material, and protruding on the opposite side of the support substrate from the wiring pattern. A wiring pattern having a single-sided outer wiring board having a two-layer post and a pad for connecting to the conductor two-layer post on at least one surface of a single-sided wiring board having a polyimide film or a resin containing a base material as a supporting base material as an insulating material. An inner wiring board configured with a surface covering material having an opening on the pad, and having an opening coated with a metal or alloy such that the thickness thereof is 5 μm or more, An adhesive layer with a flux function is interposed between the two-layer conductor post and the pad, and a flux of the adhesive layer with a flux function is formed at a temperature equal to or higher than the melting point of the metal or the alloy. Functions by activating, and the pressurizing conductor two layers posts is advanced in a metal or alloy on the pad, the connection method for a multilayer flexible wiring board, which comprises forming a metallic bond. 金属が金、銀、ニッケル、錫、鉛、銀、亜鉛、ビスマス、アンチモン、銅の少なくとも1種類からなる請求項1記載の多層フレキシブルプリント配線板の接続方法。2. The method according to claim 1, wherein the metal is at least one of gold, silver, nickel, tin, lead, silver, zinc, bismuth, antimony, and copper. 合金が、錫、鉛、銀、亜鉛、ビスマス、アンチモン、銅の少なくとも2種類からなる請求項1又は2記載の多層フレキシブルプリント配線板の接続方法。3. The method according to claim 1, wherein the alloy comprises at least two of tin, lead, silver, zinc, bismuth, antimony, and copper. 前記内層配線板上に、前記片面外層配線板を位置あわせした後、前記フラックス機能付き接着剤により仮接着する工程を繰り返した後、接合プレスをすることを特徴とする請求項1〜3いずれかに記載の多層フレキシブル配線板の接続方法。After aligning the one-sided outer layer wiring board on the inner layer wiring board, repeating the step of temporarily bonding with the adhesive having a flux function, and then performing a bonding press. 3. The method for connecting a multilayer flexible wiring board according to the above. 前記内層配線板上に前記片面外層配線板を、各層間で位置あわせ後接合プレスを行う工程を繰り返すことを特徴とする請求項1〜3いずれかに記載の多層フレキシブル配線板の接続方法。The method for connecting a multilayer flexible wiring board according to any one of claims 1 to 3, wherein a step of performing the bonding press after positioning the single-sided external wiring board between the respective layers on the inner wiring board is repeated. 前記内層配線板と前記片面外層配線板を全層位置あわせのみを行った後、接合プレスを行うことを特徴とする請求項1〜3いずれかに記載の多層フレキシブル配線板の接続方法。The method for connecting a multilayer flexible wiring board according to any one of claims 1 to 3, wherein after the inner wiring board and the single-sided outer wiring board are all aligned, bonding pressing is performed.
JP2002296723A 2002-10-09 2002-10-09 Method for connecting flexible multilayer wiring board Pending JP2004134536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296723A JP2004134536A (en) 2002-10-09 2002-10-09 Method for connecting flexible multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296723A JP2004134536A (en) 2002-10-09 2002-10-09 Method for connecting flexible multilayer wiring board

Publications (1)

Publication Number Publication Date
JP2004134536A true JP2004134536A (en) 2004-04-30

Family

ID=32286624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296723A Pending JP2004134536A (en) 2002-10-09 2002-10-09 Method for connecting flexible multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2004134536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353861A (en) * 2004-06-11 2005-12-22 Ibiden Co Ltd Flex rigid wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353861A (en) * 2004-06-11 2005-12-22 Ibiden Co Ltd Flex rigid wiring board

Similar Documents

Publication Publication Date Title
JP3906225B2 (en) Circuit board, multilayer wiring board, method for manufacturing circuit board, and method for manufacturing multilayer wiring board
JPH1154934A (en) Multilayered printed wiring board and its manufacture
JP2007273654A (en) Flexible circuit board, method for manufacturing the same, and electronic component
JP2005317943A (en) Printed circuit board and manufacturing method therefor
JPH11204939A (en) Multilayer circuit board and manufacture thereof
JPH1154926A (en) One-sided circuit board and its manufacture
WO2004012489A1 (en) Circuit substrate, multi-layer wiring plate, circuit substrate manufacturing method, and multi-layer wiring plate manufacturing method
JP2003229665A (en) Multilayered flexible wiring board and its manufacturing method
JP2004228322A (en) Method for manufacturing multilayer flexible wiring board
JP2005039136A (en) Circuit board and method for connection thereof
JP2004063908A (en) Multilayer flexible wiring board and its producing process
JP2007173343A (en) Multilayer board and electronic apparatus
JP2004134536A (en) Method for connecting flexible multilayer wiring board
JP2003243837A (en) Multilayer wiring board
JP4351939B2 (en) Multilayer wiring board and manufacturing method thereof
JP2004111758A (en) Multilayer flexible wiring board and its production method
JP2004072125A (en) Manufacturing method of printed wiring board, and printed wiring board
JP4277723B2 (en) Multilayer circuit board and method for manufacturing multilayer circuit board
JP2004095695A (en) Multilayer flexible wiring board and manufacturing method thereof
JP2003218532A (en) Multilayered wiring board, wiring board for manufacturing the same, and their manufacturing methods
JP2005183944A (en) Multi-layer substrate and manufacturing method of multi-layer substrate
JP2005109188A (en) Circuit board and multilayer board, and method for manufacturing circuit board and multilayer board
JP4968616B2 (en) Manufacturing method of multilayer printed wiring board
JP2004214227A (en) Interlayer connection part and multilayer wiring board
JP3492667B2 (en) Single-sided circuit board for multilayer printed wiring board, multilayer printed wiring board and method of manufacturing the same