JP2004134418A - Printed wiring board for mounting semiconductor and its manufacturing method - Google Patents

Printed wiring board for mounting semiconductor and its manufacturing method Download PDF

Info

Publication number
JP2004134418A
JP2004134418A JP2002294413A JP2002294413A JP2004134418A JP 2004134418 A JP2004134418 A JP 2004134418A JP 2002294413 A JP2002294413 A JP 2002294413A JP 2002294413 A JP2002294413 A JP 2002294413A JP 2004134418 A JP2004134418 A JP 2004134418A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
plating
terminals
nickel plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002294413A
Other languages
Japanese (ja)
Other versions
JP3922995B2 (en
Inventor
Norio Matsumoto
松本規雄
Naoki Kuwabara
桑原直樹
Kunihiko Yamamoto
山本邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002294413A priority Critical patent/JP3922995B2/en
Publication of JP2004134418A publication Critical patent/JP2004134418A/en
Application granted granted Critical
Publication of JP3922995B2 publication Critical patent/JP3922995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a printed wiring board which solves a connecting failure of a solder ball due to electroless nickel plating and which has high connecting reliable strength to the solder ball without embrittling a solder bump due to a cold. <P>SOLUTION: Connecting terminals 106, 107 made of patterned copper foils 103, 105 are formed on both surfaces of an insulating board 102, and the terminals of both the surfaces are electrically connected by a conductor layer 108 passing through the insulating board. Electroless nickel plating/electroless flash gold plating two layers 602 are formed on the foil 103 of the terminal 106, and electrolytic nickel plating/electrolytic nickel plating two layers 403 are formed on the foil 105 of the terminal 107. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップを実装するためのプリント配線板に関し、さらに詳しくは、半導体チップをハンダによるフリップチップ実装するためのプリント配線板に関する。
【0002】
【従来の技術】
電子部品を保持し、その端子を電気的に接続するためにプリント配線板が用いられる。プリント配線板の片方の面に部品を実装する端子があり、反対の面から他のプリント配線板に接続する端子があるプリント配線板であって、このプリント配線板は少なくとも2つの導体層と、少なくとも1つの絶縁層と、前記絶縁層のうち1つ以上を貫通して複数の導体層を電気的に接続する中空あるいは内部が導体で満たされている導体柱とからなる。最外層となる導体層には、電子部品と接続するための端子があり、端子を除いた部分は樹脂皮膜で絶縁・保護されている。プリント配線板の端子はパッドと呼ばれる。パッドと電子部品の端子とを電気的に接続するためにハンダが使用される場合が多い。
【0003】
電子部品として半導体チップを、直接、プリント配線板に実装する工法がある。この場合、半導体チップの外周付近に端子を1列に配列し、プリント配線板のパッドと金ワイヤで接続するのが主流である。このようにして得られた半導体チップを実装されたプリント配線板は、半導体デバイスとして、マザーボードと呼ばれるプリント配線板に実装される。
【0004】
最近、多機能化に伴い端子数が増加する傾向にあり、外周部の端子の間隔が狭くなってきている。金ワイヤの接合には100μm程度の間隔が必要であるため、端子数に限界がある。
【0005】
そこで、多端子の場合には、半導体チップの端子とプリント配線板のパッドを対向させてハンダで接続する工法が有利である。この工法をフリップチップ実装と呼ぶ。フリップチップ実装の場合、プリント配線板のパッドにあらかじめハンダによる突起(ハンダバンプ)を形成しており、半導体チップの端子に突き当てて、ハンダ付けする。端子を半導体チップの全面に配置することができるため、同一のチップ寸法に対して金ワイヤで実装する場合よりも多くの端子を配置できる。
【0006】
さて、プリント配線板にハンダバンプを形成する際に、ハンダの濡れ性を向上させるため、パッド表面に金メッキによる表面保護膜を形成しておく必要がある。表面保護膜がない場合、パッド表面が酸化し、濡れ性が劣化するため、ハンダバンプとパッドの接合強度が低く、接続不良となる恐れがある。
【0007】
半導体チップを実装した後、半導体チップの端子面を保護する目的で、半導体チップとプリント配線板の隙間に樹脂を流し込み、硬化させる。また、半導体チップ実装面と反対の面にはハンダボールが実装される。ハンダボールはマザーボードと接続するための端子となる。
【0008】
前記金メッキは、詳しくは、電解ニッケルメッキと電解金メッキの積層構造になっている。電解メッキをパッド表面に析出させるために、工程途中のプリント配線板では、すべてのパッドはバス配線と呼ばれる配線を通して短絡されている。メッキ液にプリント配線板を浸漬し、バス配線を通して通電することにより、パッド表面で電解反応を起こし、ニッケルメッキ皮膜および金メッキ皮膜を形成する。バス配線は最終工程においてNC加工などにより、プリント配線板の端部で切断される。しかしながら、バス配線はパッドと接続されたままであるため、アンテナとして作用し、電気信号が放射・吸収されることによる誤動作の原因となる場合がある。
【0009】
そこで、電解金メッキのかわりに無電解フラッシュ金メッキを施す方法がある。無電解フラッシュ金メッキの場合、パッドの表面にパラジウムなどの触媒となる物質を付着させ、次に、次亜リン酸などの助剤を含むニッケルメッキ液に浸漬することによりニッケルメッキを析出させる。このとき、ニッケルメッキ皮膜には助剤に含まれるリンが一緒に析出する。次に金メッキ液に浸漬し、ニッケルメッキの表面に金メッキを析出させる。この反応は、ニッケルと金イオンの置換反応であるため、表面のみで反応が起こり、0.02μm〜0.07μm程度の薄い皮膜が得られる。
【0010】
バス配線が不要なため、信号配線の密度を向上することができる。端子数が300を超える場合には、ほとんどのプリント配線板でフラッシュ金メッキが採用されている。また、半導体デバイスの動作周波数が高くなり、バス配線による電気特性の劣化が問題になる場合にも、無電解フラッシュ金メッキが採用される。
【0011】
【発明が解決しようとする課題】
ハンダボールはマザーボードとの接続に使用されるが、半導体デバイス実装後に交換のため取り外したり、樹脂充填ノズルの挿入スペースをデバイス周辺に確保しにくいなどの制約があり、半導体デバイスとマザーボードのあいだに樹脂を充填することはまれである。そのため、落下による衝撃や実使用での冷熱サイクルに起因して、接続不良が発生する。
【0012】
すなわち、本発明は、無電解ニッケルメッキに起因するハンダボールの接続不良を解決し、冷熱によるハンダバンプの脆弱化がなく、また、ハンダボールとの接合信頼性強度が高いプリント配線板を得ることを目的とする。
【0013】
【課題を解決するための手段】
前記の課題を解決するため、プリント配線板の半導体チップを実装する面(以下、A面)に無電解フラッシュ金メッキを施し、ハンダボールを実装する面(B面)には電解金メッキを施し、また、いずれの導体層にもバス配線のないプリント配線板を発明した。
【0014】
すなわち本発明は、少なくとも2つの導体層と少なくとも1つの絶縁層からなり、前記導体層のうち最外層にある2つの導体層はそれぞれ少なくとも1つの接続端子があり、これらの接続端子は少なくとも1つの絶縁層を貫通する導体により電気的に接続されているプリント配線板において、前記接続端子のうち片方の面にある接続端子は銅/無電解ニッケルメッキ/フラッシュ金メッキで構成され、もう片方の面にある接続端子は銅/電解ニッケルメッキ/電解金メッキで構成されており、プリント配線板の基板の端部から露出する配線がないことを特徴とするプリント配線板である。
【0015】
本発明によれば、ハンダボールとの接合部においてはリンの濃化層に起因した接続不良が起こらず、さらにはバス配線がないため、高速信号を取り扱う場合であっても信号の劣化に伴う誤動作がおこらないプリント配線板を提供することができる。
【0016】
このようなプリント配線板は次のようにして製造することができる。少なくとも2つの導体層と少なくとも1つの絶縁層からなり、前記導体層のうち最外層にある2つの導体層はそれぞれ少なくとも1つの接続端子があり、これらの接続端子は絶縁層を貫通する導体により電気的に接続されているプリント配線板において、前記接続端子のうち片方の面(A面)にある接続端子を反対の面(B面)にある接続端子よりも先に形成し、前記B面をメッキレジストで被覆したうえで前記B面から通電して前記A面の接続端子に電解ニッケルメッキおよび電解金メッキを析出させ、次に前記B面の接続端子を形成し、前記A面をメッキレジストで被覆した上で前記B面の接続端子に無電解ニッケルメッキおよび無電解フラッシュ金メッキを析出させる。
【0017】
【発明の実施の形態】
次に、図にしたがって、本発明の実施に関わるプリント配線板およびその製造方法を説明する。ここでは両面板について説明するが、4層以上の多層板やビルドアップ基板についても同様の製造方法で作製することができる。
【0018】
図1は、絶縁基板102の両面にパターニングされた銅箔103、105からなる接続端子106,107が形成されており、両面の接続端子は絶縁基板を貫通する導体層108で電気的に接続されている。接続端子106には、銅箔103の上に無電解ニッケルメッキ/無電解フラッシュ金メッキ2層602が形成され、接続端子107には銅箔105の上に電解ニッケルメッキ/電解金メッキ2層403が形成されている。接続端子107にハンダボールを、接続端子106に半導体チップを実装すればよい。
【0019】
無電解ニッケルメッキの皮膜にはリンが含有されており、電解ニッケルメッキに比較して脆弱であるという問題がある。半導体チップの実装については半導体チップとプリント配線板の間に樹脂が充填されており、半導体チップとプリント配線板は固着しているため、無電解ニッケルの脆弱性に起因する問題はほとんど起こらない。
【0020】
以下に製造方法を説明する。
(1)穴あけ・銅メッキ
図2(a)に断面を示す厚さが0.2mmの絶縁板102の両面に厚さが12μmの銅箔103を張り合わせた銅張り積層板101(三井化学製 BN300S)に、ドリルで直径0.2mmの穴をあけ、銅箔表面及び穴の内壁に膜厚が約15μmの銅メッキを施す。その後、穴の内部にエポキシ樹脂104(山栄化学製 PHP400−DC−5−4)を充填し、硬化させる(図2(b))。
【0021】
(2)B面回路形成
(1)で得た基板の両面に感光性ドライフィルム201(旭化成製 AQ2575)を圧着し(図2(c))、半導体チップ実装面(A面)は全面露光し、ハンダボール実装面(B面)は配線パターンを描画したマスクフィルムを重ねて露光する。この基板を現像・エッチングしたのち、ドライフィルムを剥離する。A面は銅が全面に残り、B面は配線が形成された基板となる(図2(d))。
【0022】
(3)B面ソルダーレジスト形成
B面に感光性ソルダーレジストインク301(太陽インキ製 PSR4000−AUS5)を塗布し、オーブンで溶剤成分を除去した後、パッドパターンを描画したマスクフィルム302を重ねて露光する(図3(a))。現像・熱硬化することによりソルダーレジスト皮膜を得る(図3(b))。
【0023】
(4)B面電解金メッキ
A面を耐金メッキ性ドライフィルム401(旭化成製 AQ5085)で被覆し、A面402から通電しつつ(図3(c))、電解ニッケルメッキ液、電解金メッキ液にそれぞれ浸漬し、電解ニッケルメッキ/電解金メッキ2層403からなる被膜を得る。そののち、ドライフィルムを剥離する(図3(d))。
【0024】
(5)A面回路形成・ソルダーレジスト形成
両面に感光性ドライフィルム201(旭化成製 AQ2575)を圧着し、半導体チップ実装面(A面)は配線パターンを描画したマスクフィルムを重ねて露光し、ハンダボール実装面(B面)は全面露光する(図4(a))。この基板を現像・エッチングしたのち、ドライフィルムを剥離する。
次にA面に感光性ソルダーレジストインク301(太陽インキ製 PSR4000−AUS5)を塗布し、オーブンで溶剤成分を除去した後、パッドパターンを描画したマスクフィルム302を重ねて露光する(図4(b))。現像・熱硬化することにより開口部を有するソルダーレジスト皮膜を得る(図4(c))。
【0025】
(6)A面無電解フラッシュ金メッキ
B面を耐無電解フラッシュ金メッキ性ドライフィルム601(日立化成製 H−8050)で被覆し(図5(a))、無電解ニッケルメッキ液および無電解フラッシュ金メッキ液に浸漬し、無電解ニッケルメッキ/無電解フラッシュ金メッキ2層602を得る(図5(b))。その後、ドライフィルムを剥離し、半導体チップを実装する寸法にNCルーターで切断する。
【0026】
以上の工程により、半導体チップ実装面には無電解フラッシュ金メッキ、ハンダボール実装面には電解金メッキを形成し、また、バス配線のないプリント配線板を製造した。
【0027】
比較例として、両方の面とも電解金メッキを使用したプリント配線板(比較例1)と両方の面とも無電解フラッシュ金メッキを使用したプリント配線板(比較例2)を作製した。これらのプリント配線板を次の項目にしたがって評価した。
【0028】
<隣接した端子での雑音電圧>
隣接した2つの端子において、1つの端子に1GHz、3.3Vpkの矩形波信号を入力し、もう一方の端子に発生する電圧を測定した。比較例1の場合、これらの端子からは電解メッキのために平行にバス配線が配置されており、バス配線の長さは15.7mm、2つのバス配線の距離は平均して50μmとした。
【0029】
<ハンダボールのせん断強度>
直径0.6mmのパッドに直径0.8mmのハンダボールを実装し、シェアテスタ(Dage社製 PC−2400)でせん断強度を測定した。15点を測定し、平均値および最小値で判定する。
上記の評価結果を表にまとめた。
【0030】
【表1】

Figure 2004134418
【0031】
(   )は、不合格部分
【0032】
【発明の効果】
ハンダによるフリップチップ接合を行った場合、冷熱によるハンダバンプの脆弱化がなく、また、ハンダボールとの接合信頼性強度が高いプリント配線板を得ることができる。また低ノイズのプリント配線板が得られた。
【図面の簡単な説明】
【図1】本発明のプリンタ配線板の断面を示す図。
【図2】本発明のプリント配線板の製造工程の1部を示す図。
【図3】本発明のプリント配線板の製造工程の1部を示す図。
【図4】本発明のプリント配線板の製造工程の1部を示す図。
【図5】本発明のプリント配線板の製造工程の1部を示す図。
【符号の説明】
101・・  積層板      102・・  絶縁基板
103,105 ・・  銅箔   106,107・・   接続端子
201・・  感光性ドライフィルム      301・・ ソルダーレジストインク
302・・   マスクフィルム       404,601・・  ドライフィルム
403・・  電解ニッケルメッキ/電解金メッキ2層
602・・  無電解ニッケルメッキ/無電解フラッシュ金メッキ2層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a printed wiring board for mounting a semiconductor chip, and more particularly to a printed wiring board for flip chip mounting of a semiconductor chip by solder.
[0002]
[Prior art]
A printed wiring board is used to hold electronic components and to electrically connect the terminals. There is a terminal for mounting components on one side of the printed wiring board, and a printed wiring board having a terminal for connecting to another printed wiring board from the opposite side, the printed wiring board comprising at least two conductor layers, It is composed of at least one insulating layer and a hollow or a conductive pillar filled with a conductor that penetrates one or more of the insulating layers and electrically connects a plurality of conductive layers. The outermost conductor layer has terminals for connection to electronic components, and the portions other than the terminals are insulated and protected by a resin film. The terminals of the printed wiring board are called pads. Solder is often used to electrically connect the pads and the terminals of the electronic component.
[0003]
There is a method of mounting a semiconductor chip directly on a printed wiring board as an electronic component. In this case, the mainstream is to arrange the terminals in a row near the outer periphery of the semiconductor chip and connect the pads of the printed wiring board with gold wires. The printed wiring board on which the semiconductor chip thus obtained is mounted is mounted on a printed wiring board called a mother board as a semiconductor device.
[0004]
Recently, the number of terminals tends to increase as the number of functions increases, and the interval between terminals on the outer peripheral portion is becoming narrower. Since bonding of gold wires requires an interval of about 100 μm, the number of terminals is limited.
[0005]
Therefore, in the case of multiple terminals, a method of connecting the terminals of the semiconductor chip and the pads of the printed wiring board so as to face each other with solder is advantageous. This method is called flip chip mounting. In the case of flip chip mounting, protrusions (solder bumps) are formed in advance on the pads of the printed wiring board, and are abutted against the terminals of the semiconductor chip and soldered. Since the terminals can be arranged on the entire surface of the semiconductor chip, more terminals can be arranged for the same chip size than when mounted with gold wires.
[0006]
Now, when forming solder bumps on the printed wiring board, it is necessary to form a surface protective film by gold plating on the pad surface in order to improve the wettability of the solder. Without the surface protective film, the pad surface is oxidized and the wettability is deteriorated, so that the bonding strength between the solder bump and the pad is low, which may result in poor connection.
[0007]
After mounting the semiconductor chip, a resin is poured into the gap between the semiconductor chip and the printed wiring board and cured for the purpose of protecting the terminal surface of the semiconductor chip. Solder balls are mounted on the surface opposite to the semiconductor chip mounting surface. Solder balls serve as terminals for connection to the motherboard.
[0008]
Specifically, the gold plating has a laminated structure of electrolytic nickel plating and electrolytic gold plating. In order to deposit electrolytic plating on the pad surface, in the printed wiring board in the middle of the process, all pads are short-circuited through wiring called bus wiring. By immersing the printed wiring board in the plating solution and energizing through the bus wiring, an electrolytic reaction is caused on the pad surface to form a nickel plating film and a gold plating film. The bus wiring is cut at the end of the printed wiring board by NC processing or the like in the final process. However, since the bus wiring remains connected to the pad, it acts as an antenna and may cause a malfunction due to radiation and absorption of electrical signals.
[0009]
Therefore, there is a method of performing electroless flash gold plating instead of electrolytic gold plating. In the case of electroless flash gold plating, a substance serving as a catalyst such as palladium is attached to the surface of the pad, and then nickel plating is deposited by dipping in a nickel plating solution containing an auxiliary agent such as hypophosphorous acid. At this time, phosphorus contained in the auxiliary agent is deposited together with the nickel plating film. Next, it is immersed in a gold plating solution, and gold plating is deposited on the surface of the nickel plating. Since this reaction is a substitution reaction between nickel and gold ions, the reaction occurs only on the surface, and a thin film of about 0.02 μm to 0.07 μm is obtained.
[0010]
Since no bus wiring is required, the density of signal wiring can be improved. When the number of terminals exceeds 300, flash gold plating is adopted in most printed wiring boards. Electroless flash gold plating is also used when the operating frequency of a semiconductor device becomes high and deterioration of electrical characteristics due to bus wiring becomes a problem.
[0011]
[Problems to be solved by the invention]
Solder balls are used to connect to the motherboard, but there are restrictions such as removal after replacement of the semiconductor device for replacement, and it is difficult to secure the insertion space for the resin-filled nozzle around the device. It is rare to fill. For this reason, a connection failure occurs due to an impact caused by dropping or a cooling cycle in actual use.
[0012]
That is, the present invention solves the solder ball connection failure caused by electroless nickel plating, does not weaken the solder bump due to cold heat, and obtains a printed wiring board having high bonding reliability strength with the solder ball. Objective.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, electroless flash gold plating is applied to the surface on which the semiconductor chip of the printed wiring board is mounted (hereinafter referred to as A surface), and the surface on which the solder ball is mounted (surface B) is subjected to electrolytic gold plating. Invented a printed wiring board having no bus wiring in any of the conductor layers.
[0014]
That is, the present invention comprises at least two conductor layers and at least one insulating layer, and the two conductor layers in the outermost layer of the conductor layers each have at least one connection terminal, and these connection terminals include at least one connection terminal. In the printed wiring board electrically connected by a conductor penetrating the insulating layer, the connection terminal on one side of the connection terminals is composed of copper / electroless nickel plating / flash gold plating, and on the other side. A connection terminal is constituted by copper / electrolytic nickel plating / electrolytic gold plating, and is a printed wiring board characterized in that there is no wiring exposed from the end of the substrate of the printed wiring board.
[0015]
According to the present invention, there is no connection failure due to the phosphorus-concentrated layer at the joint with the solder ball, and there is no bus wiring. A printed wiring board that does not malfunction can be provided.
[0016]
Such a printed wiring board can be manufactured as follows. The conductor layer is composed of at least two conductor layers and at least one insulating layer, and the two outermost conductor layers of the conductor layers each have at least one connection terminal, and these connection terminals are electrically connected by a conductor penetrating the insulation layer. In the printed wiring board connected in general, the connection terminal on one surface (A surface) of the connection terminals is formed before the connection terminal on the opposite surface (B surface), and the B surface is formed. After covering with a plating resist, the B surface is energized to deposit electrolytic nickel plating and electrolytic gold plating on the A surface connection terminals, then the B surface connection terminals are formed, and the A surface is coated with a plating resist. After coating, electroless nickel plating and electroless flash gold plating are deposited on the B-side connection terminals.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, a printed wiring board and a method for manufacturing the same according to the present invention will be described with reference to the drawings. Here, a double-sided board will be described, but a multilayer board having four or more layers and a build-up board can also be manufactured by the same manufacturing method.
[0018]
In FIG. 1, connection terminals 106 and 107 made of patterned copper foils 103 and 105 are formed on both surfaces of an insulating substrate 102, and the connection terminals on both surfaces are electrically connected by a conductor layer 108 penetrating the insulating substrate. ing. The connection terminal 106 has an electroless nickel plating / electroless flash gold plating two-layer 602 formed on the copper foil 103, and the connection terminal 107 has an electrolytic nickel plating / electrolytic gold plating two-layer 403 formed on the copper foil 105. Has been. A solder ball may be mounted on the connection terminal 107 and a semiconductor chip may be mounted on the connection terminal 106.
[0019]
The electroless nickel plating film contains phosphorus, and has a problem that it is weaker than the electrolytic nickel plating. Regarding the mounting of the semiconductor chip, since the resin is filled between the semiconductor chip and the printed wiring board and the semiconductor chip and the printed wiring board are fixed, problems caused by the weakness of the electroless nickel hardly occur.
[0020]
The manufacturing method will be described below.
(1) Drilling / copper plating Copper clad laminate 101 (BN300S manufactured by Mitsui Chemicals) in which a copper foil 103 having a thickness of 12 μm is laminated on both sides of an insulating plate 102 having a thickness of 0.2 mm, whose cross section is shown in FIG. ), A hole with a diameter of 0.2 mm is drilled, and copper plating with a film thickness of about 15 μm is applied to the copper foil surface and the inner wall of the hole. Thereafter, epoxy resin 104 (manufactured by Yamaei Chemical Co., Ltd., PHP400-DC-5-4) is filled into the hole and cured (FIG. 2B).
[0021]
(2) Photosensitive dry film 201 (AQ2575 manufactured by Asahi Kasei) is pressure-bonded to both sides of the substrate obtained by B-side circuit formation (1) (FIG. 2 (c)), and the semiconductor chip mounting surface (A-side) is fully exposed. The solder ball mounting surface (B surface) is exposed by overlapping a mask film on which a wiring pattern is drawn. After developing and etching the substrate, the dry film is peeled off. Copper remains on the A side and the B side becomes a substrate on which wiring is formed (FIG. 2D).
[0022]
(3) B side solder resist formation After applying the photosensitive solder resist ink 301 (PSR4000-AUS5 made by Taiyo Ink) on the B side and removing the solvent component in the oven, the mask film 302 on which the pad pattern is drawn is overlaid and exposed. (FIG. 3A). A solder resist film is obtained by developing and thermosetting (FIG. 3B).
[0023]
(4) B side electrolytic gold plating A side is covered with a gold-plating resistant dry film 401 (AQ5085 manufactured by Asahi Kasei) and energized from A side 402 (FIG. 3 (c)). Immersion is performed to obtain a coating composed of two layers of electrolytic nickel plating / electrolytic gold plating 403. After that, the dry film is peeled off (FIG. 3D).
[0024]
(5) A side circuit formation / solder resist formation A photosensitive dry film 201 (AQ2575 manufactured by Asahi Kasei) is pressure-bonded on both sides, and a semiconductor chip mounting surface (A surface) is overlaid with a mask film on which a wiring pattern is drawn and exposed. The entire ball mounting surface (B surface) is exposed (FIG. 4A). After developing and etching the substrate, the dry film is peeled off.
Next, a photosensitive solder resist ink 301 (PSR4000-AUS5 made by Taiyo Ink) is applied to the A side, and after removing the solvent component in an oven, a mask film 302 on which a pad pattern is drawn is superimposed and exposed (FIG. 4B). )). A solder resist film having an opening is obtained by development and thermosetting (FIG. 4C).
[0025]
(6) A side electroless flash gold plating B side is covered with electroless flash gold plating dry film 601 (H-8050, manufactured by Hitachi Chemical Co., Ltd.) (FIG. 5 (a)), and electroless nickel plating solution and electroless flash gold plating Immersion in the solution gives an electroless nickel plating / electroless flash gold plating two layer 602 (FIG. 5B). Thereafter, the dry film is peeled off and cut with an NC router to a size for mounting a semiconductor chip.
[0026]
Through the above steps, electroless flash gold plating was formed on the semiconductor chip mounting surface, and electrolytic gold plating was formed on the solder ball mounting surface, and a printed wiring board without bus wiring was manufactured.
[0027]
As a comparative example, a printed wiring board (Comparative Example 1) using electrolytic gold plating on both sides and a printed wiring board (Comparative Example 2) using electroless flash gold plating on both sides were prepared. These printed wiring boards were evaluated according to the following items.
[0028]
<Noise voltage at adjacent terminals>
In two adjacent terminals, a rectangular wave signal of 1 GHz and 3.3 Vpk was input to one terminal, and a voltage generated at the other terminal was measured. In the case of Comparative Example 1, bus wirings are arranged in parallel from these terminals for electrolytic plating, and the length of the bus wiring is 15.7 mm, and the distance between the two bus wirings is 50 μm on average.
[0029]
<Shear strength of solder balls>
A solder ball with a diameter of 0.8 mm was mounted on a pad with a diameter of 0.6 mm, and the shear strength was measured with a shear tester (PC-2400, manufactured by Dage). 15 points are measured and judged by the average value and the minimum value.
The above evaluation results are summarized in a table.
[0030]
[Table 1]
Figure 2004134418
[0031]
() Indicates a rejected part.
【The invention's effect】
When flip chip bonding is performed by solder, a solder bump is not weakened by cold heat, and a printed wiring board having high bonding reliability strength with a solder ball can be obtained. Moreover, a low noise printed wiring board was obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a printer wiring board according to the present invention.
FIG. 2 is a diagram showing a part of a manufacturing process of a printed wiring board according to the present invention.
FIG. 3 is a diagram showing a part of a manufacturing process of a printed wiring board according to the present invention.
FIG. 4 is a diagram showing a part of a manufacturing process of a printed wiring board according to the present invention.
FIG. 5 is a diagram showing a part of a manufacturing process of the printed wiring board according to the present invention.
[Explanation of symbols]
101 .. Laminated plate 102 .. Insulating substrate 103, 105 .. Copper foil 106, 107 .. Connection terminal 201 .. Photosensitive dry film 301 .. Solder resist ink 302 .. Mask film 404, 601 .. Dry film 403 .. Electrolytic nickel plating / electrolytic gold plating two layers 602 .. Electroless nickel plating / electroless flash gold plating two layers

Claims (2)

少なくとも2つの導体層と少なくとも1つの絶縁層からなり、前記導体層のうち最外層にある2つの導体層はそれぞれ少なくとも1つの接続端子があり、これらの接続端子は少なくとも1つの絶縁層を貫通する導体により電気的に接続されているプリント配線板において、前記接続端子のうち片方の面にある接続端子は銅/無電解ニッケルメッキ/フラッシュ金メッキで構成され、もう片方の面にある接続端子は銅/電解ニッケルメッキ/電解金メッキで構成されており、プリント配線板の基板の端部から露出する配線がないことを特徴とするプリント配線板。It comprises at least two conductor layers and at least one insulating layer, and each of the two outermost conductor layers of the conductor layers has at least one connecting terminal, and these connecting terminals penetrate through at least one insulating layer. In the printed wiring board electrically connected by the conductor, the connection terminal on one side of the connection terminals is composed of copper / electroless nickel plating / flash gold plating, and the connection terminal on the other side is copper. A printed wiring board comprising: / electrolytic nickel plating / electrolytic gold plating, and no wiring exposed from the end of the printed wiring board substrate. 少なくとも2つの導体層と少なくとも1つの絶縁層からなり、前記導体層のうち最外層にある2つの導体層はそれぞれ少なくとも1つの接続端子があり、これらの接続端子は絶縁層を貫通する導体により電気的に接続されているプリント配線板において、前記接続端子のうち片方の面(A面)にある接続端子を反対の面(B面)にある接続端子よりも先に形成し、前記B面をメッキレジストで被覆したうえで前記B面から通電して前記A面の接続端子に電解ニッケルメッキおよび電解金メッキを析出させ、次に前記B面の接続端子を形成し、前記A面をメッキレジストで被覆した上で前記B面の接続端子に無電解ニッケルメッキおよび無電解フラッシュ金メッキを析出させることを特徴とするプリント配線板の製造方法。The conductor layer is composed of at least two conductor layers and at least one insulating layer, and the two outermost conductor layers of the conductor layers each have at least one connection terminal, and these connection terminals are electrically connected by a conductor penetrating the insulation layer. In the printed wiring board connected in general, the connection terminal on one surface (A surface) of the connection terminals is formed before the connection terminal on the opposite surface (B surface), and the B surface is formed. After covering with a plating resist, the B surface is energized to deposit electrolytic nickel plating and electrolytic gold plating on the A surface connection terminals, then the B surface connection terminals are formed, and the A surface is coated with a plating resist. An electroless nickel plating and an electroless flash gold plating are deposited on the connection terminals on the B surface after being coated.
JP2002294413A 2002-10-08 2002-10-08 Printed wiring board for semiconductor mounting and manufacturing method thereof Expired - Fee Related JP3922995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294413A JP3922995B2 (en) 2002-10-08 2002-10-08 Printed wiring board for semiconductor mounting and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294413A JP3922995B2 (en) 2002-10-08 2002-10-08 Printed wiring board for semiconductor mounting and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004134418A true JP2004134418A (en) 2004-04-30
JP3922995B2 JP3922995B2 (en) 2007-05-30

Family

ID=32284957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294413A Expired - Fee Related JP3922995B2 (en) 2002-10-08 2002-10-08 Printed wiring board for semiconductor mounting and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3922995B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8737087B2 (en) 2004-10-27 2014-05-27 Ibiden Co., Ltd. Multilayer printed wiring board and manufacturing method of multilayer printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8737087B2 (en) 2004-10-27 2014-05-27 Ibiden Co., Ltd. Multilayer printed wiring board and manufacturing method of multilayer printed wiring board

Also Published As

Publication number Publication date
JP3922995B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
US8177577B2 (en) Printed wiring board having a substrate with higher conductor density inserted into a recess of another substrate with lower conductor density
JP3670917B2 (en) Semiconductor device and manufacturing method thereof
US8710374B2 (en) Printed wiring board with reinforced insulation layer and manufacturing method thereof
KR101109701B1 (en) Capacitor-mounted wiring board and method of manufacturing the same
KR100688769B1 (en) Embedded chip print circuit board and method for fabricating the same by means of plating
KR101131759B1 (en) Multilayer printed wiring board
JP4133560B2 (en) Printed wiring board manufacturing method and printed wiring board
US20100108371A1 (en) Wiring board with built-in electronic component and method for manufacturing the same
US8327533B2 (en) Printed wiring board with resin complex layer and manufacturing method thereof
US20150163919A1 (en) Substrate with built-in electronic component and method for manufacturing substrate with built-in electronic component
JP2001036253A (en) Multi-layered wiring circuit board and its manufacture
JP2009170941A (en) Capacitor mounting wiring board
JP2010027948A (en) Capacitor, capacitor built-in substrate and method for manufacturing capacitor
TW201444440A (en) Printed circuit board and fabricating method thereof
US8546922B2 (en) Wiring board
JP2005183466A (en) Multilayer printed wiring board
JP4315580B2 (en) Printed wiring board and printed wiring board manufacturing method
JP3922995B2 (en) Printed wiring board for semiconductor mounting and manufacturing method thereof
KR101523840B1 (en) Printed wiring board and method for manufacturing printed wiring board
JP4437361B2 (en) Printed wiring board and printed wiring board manufacturing method
JP2003198146A (en) Multilayer wiring substrate and electronic device using the same
JPH11274734A (en) Electronic circuit device and its manufacture
KR100688697B1 (en) Method of manufacturing package substrate
JP5370883B2 (en) Wiring board
JPH10200264A (en) Multilayer printed wiring board and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Ref document number: 3922995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees