【0001】
【発明の属する技術分野】
本発明は、面内のレタデーション値のバラツキが小さく、光学的均一性の優れた位相差フィルム及びその製造方法に関する。
【0002】
【従来の技術】
従来、液晶ディスプレイ用位相差フィルムの合成樹脂材料として、フェノキシエーテル型架橋性樹脂、エポキシ樹脂、ポリカーボネート樹脂、アリレート樹脂などの各種フィルム形成性樹脂が使用されてきた。
【0003】
しかしながら、これらのフィルム形成性樹脂は均一な延伸が困難な上、耐湿性が不十分であり、使用環境の湿度変化によりレタデーション安定性が低下する。又、ポリカーボネート樹脂、アリレート樹脂等は、耐熱性が高いため、延伸温度が高温であり、そのため延伸温度の制御が困難で、光学的に均一な位相差フィルムの製造が難しい等の欠点があった。
【0004】
そのため近年では、透明性、耐熱性、耐湿性、耐薬品性等に優れ、低光弾性係数であり、光学的均一性、視野角特性が良好であるなどの理由から、溶液流延法により製膜された熱可塑性飽和ノルボルネン系樹脂フィルムを一軸延伸した位相差フィルムが用いられている。
【0005】
上記溶液流延法は、熱可塑性飽和ノルボルネン系樹脂を有機溶媒に溶解し、支持体上にコーター等により流延後、有機溶媒を乾燥させて膜状物とした後、該膜状物を支持体より剥離することにより熱可塑性飽和ノルボルネン系樹脂フィルムを製造する方法である。
【0006】
そして、位相差フィルムは、溶液流延法等により得られた熱可塑性飽和ノルボルネン系樹脂フィルムを、長さ方向又は幅方向に延伸しフィルムに複屈折性を与えることにより製造されている。
【0007】
従来、上記熱可塑性飽和ノルボルネン系樹脂の溶液流延法における有機溶媒としては、塩化メチレンが用いられていたが、塩化メチレンはハロゲン化炭化水素であるため、環境衛生上の問題から使用されなくなり、最近は、トルエン、キシレン、エチルベンゼン、クロロベンゼン、トリエチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン等の溶媒が使用されてきているが、これらの溶媒は沸点が高く、乾燥しにくいという欠点がある。
【0008】
一方、液晶ディスプレイ用位相差板は鮮明な色彩と精細な画像を得るために、複屈折性層の全面が光学的に均一であると共に、温度や湿度の変化によっても光学的特性が変化しないことが必要である。
【0009】
特に、自動車搭載用の液晶ディスプレイパネルに用いる場合には、過酷な条件での使用が予測されるため、少なくとも60℃以上、好ましくは80℃以上、より好ましくは100℃以上の耐熱温度が要求される。
【0010】
又、高温の使用の際に、残存溶媒が多量にあるとレタデーション値が不均一になったり、複屈折性層以外の樹脂層の表面が侵食されるなど、悪影響を及ぼすため、位相差フィルム中の残存溶媒濃度は、通常2重量%以下、好ましくは1重量%以下、より好ましくは0.5重量%以下であることが求められている。
【0011】
上記要求を満足させるため、例えば、数平均分子量が25,000〜100,000の熱可塑性飽和ノルボルネン系樹脂を溶液流延法により作製したフィルムを、平板又はロール上で残存溶媒量が10重量%以下、好ましくは5重量%以下になるまで1次乾燥した後、平板又はロールからフィルムを剥離し、残留溶媒量が1重量%以下、好ましくは0.5重量%以下になるまで2次乾燥し、次いで、延伸して位相差フィルムを得る方法が提案されている(例えば、特許文献1参照)。
【0012】
【特許文献1】
特許第3220478号公報
【0013】
しかし、残存溶媒量を下げるためには、乾燥時間を長くするか、乾燥温度を高くする必要があるが、乾燥時間を長くするためには、乾燥炉の長さを長くする必要があり、設備が大きくなり製造コストが上昇するという欠点があった。
【0014】
又、乾燥温度を高くするには、製造コストが高くなり、熱可塑性飽和ノルボルネン系樹脂のTg(ガラス転移温度)付近或いはそれ以上の高い温度で乾燥すると、発泡が起こりやすくなる、フィルムの自立性が不足し切断する等の欠点があった。
【0015】
乾燥工程を簡略化して位相差フィルムを製造する方法としては、例えば、有機溶剤に溶解した樹脂溶液を支持体に塗工後、1次乾燥において残存溶剤を5.0〜10.0重量%に減少させ、支持体からフィルムを剥離し、2次乾燥において長さ方向に1.1〜1.5倍延伸させながら残存溶剤が0.5〜5.0重量%に減少するまで乾燥させる位相差フィルムの製造方法が提案されている(例えば、特許文献2参照)。
【0016】
【特許文献2】
特開2001−296422号公報
【0017】
しかし、上記製造方法で得られた位相差フィルムは、レタデーションのバラツキがまだ大きく、位相差フィルムとして使用するには不適当であった。
【0018】
【発明が解決しようとする課題】
本発明は、上記従来技術の課題に鑑みてなされたものであり、レタデーションのバラツキが小さく、耐熱性及び耐湿性の優れた位相差フィルム及びその製造方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明の位相差フィルムは、熱可塑性飽和ノルボルネン系樹脂を沸点100℃以上の有機溶媒に溶解し、溶液流延法にて製膜された熱可塑性飽和ノルボルネン系樹脂フィルムを一軸延伸することにより、複屈折性が付与された位相差フィルムであって、一軸延伸前の熱可塑性飽和ノルボルネン系樹脂フィルムの残存溶媒量が2.0重量%以上であり、一軸延伸前の熱可塑性飽和ノルボルネン系樹脂フィルムの幅方向に5mm間隔での厚み変化量の最大値をΔd(μm)とし、一軸延伸後の熱可塑性飽和ノルボルネン系樹脂フィルムの同じ位置における、波長590nmの光線を入射した際の面内レタデーションの変化量をΔRe(nm)としたときに、|ΔRe/Δd|<1を満足することを特徴とする。
【0020】
本発明で使用される熱可塑性飽和ノルボルネン系樹脂は、従来より光学用途フィルムに使用されている樹脂であって、例えば、(イ)ノルボルネン系モノマーの開環重合体若しくは開環共重合体を、必要に応じてマレイン酸付加、シクロペンタジエン付加等の変性を行った後に、水素添加した樹脂、(ロ)ノルボルネン系モノマーを付加重合させた樹脂、(ハ)ノルボルネン系モノマーとエチレンやα−オレフィン等のオレフィン系モノマーと付加重合させた樹脂、(ニ)ノルボルネン系モノマーとシクロペンテン、シクロオクテン、5,6−ジヒドロジシクロペンタジエン等の環状オレフィン系モノマーと付加重合させた樹脂及びこれらの樹脂の変性物等が挙げられる。
【0021】
上記熱可塑性飽和ノルボルネン系樹脂を構成するノルボルネン系モノマーとしては、例えば、ノルボルネン、5−メチル−2−ノルボルネン、5−エチル−2−ノルボルネン、5−ブチル−2−ノルボルネン、5−エチリデン−2−ノルボルネン、5−メトキシカルボニル−2−ノルボルネン、5,5−ジメチル−2−ノルボルネン、5−シアノ−2−ノルボルネン、5−メチル−5−メトキシカルボニル−2−ノルボルネン、5−フェニル−2−ノルボルネン、5−フェニル−5−メチル−2−ノルボルネン、6−メチル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−エチル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−エチル−1,4:5,8−エチリデン−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−クロロ−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−シアノ−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−ピリジル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−メトキシカルボニル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、1,4−ジメタノ−1,4,4a,4b,5,8,8a,9a−オクタヒドロフルオレン、5,8−メタノ−1,2,3,4,4a,5,8,8a−オクタヒドロ−2,3−シクロペンタジエノナフタレン、4,9:5,8−ジメタノ−3a,4,4a,5,8,8a,9,9a−オクタヒドロ−1H−ベンゾインデン、4,11:5,10:6,9−トリメタノ−3a,4,4a,5,5a,6,9,9a,10,10a,11,11a−ドデカヒドロ−1H−シクロペンタアントラセン等が挙げられる。
【0022】
上記重合は、例えば、重合触媒としてIr、Os、Ruの三塩化物の含水塩、MoCl5 、、WCl6 、ReCl5 、(C2 H5 )3 Al、(C2 H5 )3 Al/TiCl4 、(π−C4 H7 )4 Mo/TiCl4 、(π−C4 H7 )4 W/TiCl4 、(π−C3 H5 )3 Cr/WCl6 等を用いて、常法により行うことができる。
【0023】
上記熱可塑性飽和ノルボルネン系樹脂は、種々の特許公報に記載の樹脂であり(例えば、特許文献3及び特許文献4参照)、日本ゼオン社より商品名「ゼオノア」、「ゼオネックス」、ジェイエスアール社より商品名「アートン」として上市されており、溶剤選択性の観点から「ゼオネックス」及び「アートン」が好適に使用される。
【0024】
【特許文献3】
特開平3−14882号公報
【特許文献4】
特開平3−122137号公報
【0025】
上記熱可塑性飽和ノルボルネン系樹脂の数平均分子量は、小さくなると機械的強度が低下し、大きくなるとフィルム成形性が低下するので、トルエン溶媒によるゲル・パーミエーション・クロマトグラフィで測定して、2万5千〜10万が好ましく、より好ましくは3万〜8万である。
【0026】
上記熱可塑性飽和ノルボルネン系樹脂には、位相差フィルムの耐熱性、耐紫外線性、平滑性等を向上させるために、フェノール系、リン系などの老化防止剤、フェノール系などの熱劣化防止剤、アミン系などの帯電防止剤、脂肪族アルコールのエステル、多価アルコールの部分エステルなどの滑剤、ベンゾフェノン系、ベンゾトリアゾール系などの紫外線吸収剤等が添加されても良い。
【0027】
本発明で使用される熱可塑性飽和ノルボルネン系樹脂フィルムは、上記熱可塑性飽和ノルボルネン系樹脂を沸点100℃以上の有機溶媒に溶解し、溶液流延法にて製膜された熱可塑性飽和ノルボルネン系樹脂フィルムである。
【0028】
上記有機溶媒は、沸点が100℃以上で熱可塑性飽和ノルボルネン系樹脂を溶解しうる有機溶媒であればよく、例えば、トルエン、キシレン、エチルベンゼン、クロロベンゼン、トリエチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン等が挙げられる。
【0029】
又、上記有機溶媒に熱可塑性飽和ノルボルネン系樹脂を溶解しうる範囲内において、シクロヘキサン、ベンゼン、テトラヒドロフラン、ヘキサン、オクタン等の低沸点溶媒を混合して使用してもよい。
【0030】
溶液流延法に使用する溶液の熱可塑性飽和ノルボルネン系樹脂濃度は、薄くなると粘度が低くなり厚み調整が困難になり、濃くなると粘度が高くなり作業性が低下するので、好ましくは5〜60重量%であり、より好ましくは10〜50重量%である。
【0031】
溶液流延法は、従来公知の任意の溶液流延法が採用されてよく、例えば、得られた樹脂溶液を、バーコーター、ドクターナイフ、メイアバー、ロール、Tダイ等を用いて、支持体上に塗工し、加熱乾燥すればよい。
【0032】
上記支持体としては、上記樹脂溶液に用いられている有機溶媒に侵されず、且つ、表面が平滑性に優れるものであれば特に限定されるものではなく、例えば、銅、ステンレス鋼等の金属、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱変形性の低い合成樹脂、上記金属や合成樹脂の表面にガラスやセラミックスを被覆したもの或いはこれらの表面をシリコーン樹脂、フッ素樹脂等で離型処理したものが、ドラム、エンドレスベルト、板等の形態で使用される。
【0033】
上記加熱乾燥は、従来公知の任意の加熱乾燥法が採用されてよく、例えば、支持体上の塗膜の法線方向に設置された複数対の熱風吹出しノズルから前記樹脂溶液の粘度に応じて与えられる風速の範囲内で熱風を吹き出して乾燥する方法、上記塗膜面とその反対側の支持体面の両側から熱風を吹き出して乾燥する方法、塗膜面に対して斜め方向あるいは塗膜面に平行の吹出しノズルから熱風を吹き出して乾燥する方法、上記支持体や搬送ロールの加熱により乾燥する方法等が挙げられ、又、赤外線等の輻射熱を補助乾燥手段として用いても良い。
【0034】
熱可塑性飽和ノルボルネン系樹脂フィルムは、残存溶媒量が2.0重量%以上、好ましくは2.0〜10.0重量%、より好ましくは2.0〜6.0重量%になるように乾燥される。
【0035】
残存溶媒量が2.0重量%未満になると、熱可塑性飽和ノルボルネン系樹脂フィルムの厚みムラが一軸延伸後の位相差フィルムの面内レタデーションのムラとして現れ、熱可塑性飽和ノルボルネン系樹脂フィルムの厚み精度が低い場合、|ΔRe/Δd|<1を満足する光学的均一性を有する位相差フィルムが得られにくくなり、且つ、見かけのTgが高くなり、比較的低温の条件で一軸延伸した場合、面内レタデーションのバラツキが大きくなり光学的均一性を有する位相差フィルムが得られにくくなるので、残存溶媒量は2.0重量%以上に限定される。
【0036】
又、残存溶媒量が多くなりすぎた場合も、熱可塑性飽和ノルボルネン系樹脂フィルムの厚みムラが一軸延伸後の位相差フィルムの面内レタデーションのムラとして現れ、熱可塑性飽和ノルボルネン系樹脂フィルムの厚み精度が低い場合、|ΔRe/Δd|<1を満足する光学的均一性を有する位相差フィルムが得られにくくなり、且つ、見かけの粘度が急激に低下して、レタデーションの発現効率が低下し、所望のレタデーションを有する位相差フィルムが得られにくくなるので、残存溶媒量は上記範囲が好ましい。
【0037】
本発明の位相差フィルムは、上記残存溶媒量が2.0重量%以上の熱可塑性飽和ノルボルネン系樹脂フィルムを一軸延伸することにより、複屈折性が付与された位相差フィルムであって、一軸延伸前の熱可塑性飽和ノルボルネン系樹脂フィルムの幅方向に5mm間隔での厚み変化量の最大値をΔd(μm)とし、一軸延伸後の熱可塑性飽和ノルボルネン系樹脂フィルムの同じ位置における、波長590nmの光線を入射した際の面内レタデーションの変化量をΔRe(nm)としたときに、|ΔRe/Δd|<1を満足することを特徴とする位相差フィルムである。
【0038】
上記厚み変化量とは、一軸延伸前の熱可塑性飽和ノルボルネン系樹脂フィルムの幅方向に5mm間隔で厚みを測定し、隣り合う地点の厚みの差を意味し、その厚み変化量の最大値をΔd(μm)とする。
【0039】
上記面内レタデーションの変化量とは、一軸延伸後の熱可塑性飽和ノルボルネン系樹脂フィルムに波長590nmの光線を入射し、熱可塑性飽和ノルボルネン系樹脂フィルムの幅方向に一定間隔で面内レタデーションを測定し、隣り合う地点の面内レタデーションの差を意味し、その値をΔRe(nm)とする。
【0040】
上記面内レタデーションの測定地点は、厚み変化量が最大値Δd(μm)を示す地点である。従って、一軸延伸前の熱可塑性飽和ノルボルネン系樹脂フィルムの厚み変化量が最大値Δd(μm)を示す地点を特定しておき、一軸延伸後に同一地点で面内レタデーションの変化量を測定する。
【0041】
但し、厚み変化量は、一軸延伸前の熱可塑性飽和ノルボルネン系樹脂フィルムの幅方向に5mm間隔で測定するが、一軸延伸すると熱可塑性飽和ノルボルネン系樹脂フィルムの幅が小さくなるので、面内レタデーションの測定地点を補正して測定する必要がある。
【0042】
即ち、一軸延伸すると熱可塑性飽和ノルボルネン系樹脂フィルムの幅は、1/(延伸倍率)1/2 倍になる。従って、面内レタデーションは、厚み変化量が最大値Δd(μm)を示す一方の地点及びこの地点から所定の幅方向に、5×[1/(延伸倍率)1/2 ]mm離れた地点を測定すればよい。
【0043】
|ΔRe/Δd|の値は、大きくなると位相差フィルムの面内レタデーションのバラツキが大きくなり光学的均一性が低下し、位相差フィルムとして好適に使用できなくなるので、1以下に限定される。
【0044】
本発明の位相差フィルムの製造方法は、従来公知の任意の方法が採用されてよいが、熱可塑性飽和ノルボルネン系樹脂を沸点100℃以上の有機溶媒に溶解し、溶液流延法にて製膜された、残存溶媒量が2.0重量%以上である熱可塑性飽和ノルボルネン系樹脂フィルムを、延伸倍率が1.1〜1.5倍であり、残存溶媒量が該熱可塑性飽和ノルボルネン系樹脂フィルムの残存溶媒量以下であって、0.5〜4.0重量%になるように、一軸延伸(以下、「一次延伸」という。)した後に、再度一軸延伸(以下、「二次延伸」という。)することを特徴とする位相差フィルムの製造方法が好ましい。
【0045】
上記一次延伸は、上記残存溶媒量が2.0重量%以上である熱可塑性飽和ノルボルネン系樹脂フィルムを、延伸倍率が1.1〜1.5倍であり、残存溶媒量が該熱可塑性飽和ノルボルネン系樹脂フィルムの残存溶媒量以下であって、0.5〜4.0重量%になるように、一軸延伸する。
【0046】
上記延伸倍率は、小さくなると有機溶媒が効率よく揮発しなくなり、厚みの均一化効果が低下し、大きくなると熱可塑性飽和ノルボルネン系樹脂フィルム幅が小さくなり、厚みも薄くなり、位相差フィルムとして不適当になるので、1.1〜1.5倍であり、好ましくは1.2〜1.4倍である。
【0047】
上記残存溶媒量を0.5重量%未満にするには長時間加熱乾燥する必要があり、装置を大型化しなければならず、製造コストが高く且つ製造時間も長くなり、残存溶媒量が4.0重量%を超えると、熱可塑性飽和ノルボルネン系樹脂フィルムの厚みムラが二次延伸後の位相差フィルムの面内レタデーションのムラとして現れ、熱可塑性飽和ノルボルネン系樹脂フィルムの厚み精度が低い場合、|ΔRe/Δd|<1を満足する光学的均一性を有する位相差フィルムが得られにくくなり、且つ、見かけの粘度が急激に低下して、レタデーションの発現効率が低下し、所望のレタデーションを有する位相差フィルムが得られにくくなるので、残存溶媒量は0.5〜4.0重量%に限定され、好ましくは0.5〜2.0重量%であり、より好ましくは0.5〜1.0重量%である。
【0048】
上記一次延伸方法は、自由幅一軸延伸方法であれば特に限定されるものではなく、熱可塑性飽和ノルボルネン系樹脂フィルムの長さ方向に延伸する縦一軸延伸法が好ましく、特に、ニップロールの回転速度差を利用した長区間のエアーフローティング方式、ターンロール搬送方式、近接延伸方式等の加熱延伸方法が好ましい。又、延伸方法は一段延伸方法でもよいし、2段以上の多段延伸方法でもよい。
【0049】
上記一次延伸温度は、低いと張力を加えても延伸が困難になり、高くなると熱可塑性飽和ノルボルネン系樹脂フィルムが柔らかくなり、変形したり切断したりするようになるので、有機溶媒の沸点以上であって、熱可塑性飽和ノルボルネン系樹脂フィルムのみかけTg以上の温度が好ましく、より好ましくは「みかけTg+10℃」〜「みかけTg+50℃」であり、更に好ましくは「みかけTg+20℃」〜「みかけTg+40℃」である。
【0050】
尚、上記「みかけTg」とは、熱可塑性飽和ノルボルネン系樹脂と残存溶媒を含めたTgであり、一次延伸及び二次延伸を行う時点での熱可塑性飽和ノルボルネン系樹脂フィルムのTgを意味する。
【0051】
一次延伸された熱可塑性飽和ノルボルネン系樹脂フィルムは、次に二次延伸されて位相差フィルムが得られる。
【0052】
上記二次延伸の延伸倍率は、小さくなると必要とするレタデーション値が得られず、大きくなると光学的均一性が低下し、延伸の際に切断するので、1.1〜2.0倍が好ましい。
【0053】
上記二次延伸方法は、自由幅一軸延伸方法であれば特に限定されるものではなく、熱可塑性飽和ノルボルネン系樹脂フィルムの長さ方向に延伸する縦一軸延伸法が好ましく、特に、ニップロールの回転速度差を利用した長区間のエアーフローティング方式、ターンロール搬送方式、近接延伸方式等の加熱延伸方法が好ましい。又、延伸方法は一段延伸方法でもよいし、2段以上の多段延伸方法でもよい。
【0054】
上記二次延伸温度は、低いと張力を加えても延伸が困難になり、高くなると必要とするレタデーション値が得られず、熱可塑性飽和ノルボルネン系樹脂フィルムが柔らかくなり、変形したり切断したりするようになるので、Tg±5℃が好ましい。
【0055】
【発明の実施の形態】
以下、本発明の実施例について説明するが、下記の例に限定されるものではない。
【0056】
(実施例1,2、比較例1,2)
熱可塑性飽和ノルボルネン系樹脂(日本ゼオン社製商品名「ゼオネックス490」、数平均分子量27400)100重量部をトルエン150重量部に溶解した樹脂溶液を金属ベルト上に流延し、90℃、125℃及び150℃で順次各2分間乾燥することにより、幅1325mmの長尺熱可塑性飽和ノルボルネン系樹脂フィルムを得た。
【0057】
得られた長尺熱可塑性飽和ノルボルネン系樹脂フィルムの厚みを、セイコーEM社製、連続厚み計を用いてフィルムの幅方向に5mm間隔に測定したところ、厚みのバラツキは67±1.6μmであり、厚み変化量の最大値Δdは1.2μmであった。
【0058】
得られた長尺熱可塑性飽和ノルボルネン系樹脂フィルムを、表2に示した所定温度に保たれた一次加熱炉と表2に示した所定温度に保たれた二次加熱炉を順次有する、フローティング方式の一軸延伸機に供給し、表2に示した所定倍率まで一次延伸して、一次延伸フィルムを得た。
【0059】
得られた長尺熱可塑性飽和ノルボルネン系樹脂フィルムと一次延伸フィルムの残存溶媒量を測定して表1に示した。尚、残存溶媒量はガスクロマトグラフィを用い、フィルムを幅方向に6分割した地点のトルエンの量を測定し、その平均値で示した。
【0060】
又、得られた長尺熱可塑性飽和ノルボルネン系樹脂フィルムと一次延伸フィルムのみかけTgを測定し、表1に示した。
【0061】
(みかけTgの測定方法)
動的粘弾性測定装置(アイティ計測制御社製、商品名DVA−200)にて、
変形様式:引張
測定開始温度:室温
昇温速度:5℃/分
データ取り込み間隔:1℃毎
測定周波数:10Hz
静/動力比:2
の測定条件下での、損失弾性率のピーク時の温度をみかけTgとした。
【0062】
得られた一次延伸フィルムを、表2に示した所定温度に保たれた加熱炉を有する、フローティング方式の一軸延伸機に供給し、1.5倍に二次延伸して、位相差フィルムを得た。
【0063】
得られた位相差フィルムのレタデーション値を、大塚電子社製、光学検査装置RETS−2000を用いてフィルムの中心部990mmを幅方向に25mm間隔に40点測定し、そのバラツキを表1に示した。
【0064】
又、得られた位相差フィルムの、長尺熱可塑性飽和ノルボルネン系樹脂フィルムが厚み変化量の最大値を示した地点のレタデーション値を同様に測定し、面内レタデーションの変化量ΔReを計算して表1に示した。
【0065】
上記厚み変化量の最大値Δdと面内レタデーションの変化量ΔReから|ΔRe/Δd|の値を計算し、表1に示した。
【0066】
【表1】
【0067】
【表2】
【0068】
【発明の効果】
本発明の位相差フィルムの構成は上述の通りであり、レタデーションのバラツキが小さく光学的均一性が優れており、且つ、耐熱性及び耐湿性が優れている。又、本発明の位相差フィルムの製造方法により、上記位相差フィルムが容易に製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a retardation film having small in-plane retardation value variation and excellent optical uniformity, and a method for producing the same.
[0002]
[Prior art]
Conventionally, various film-forming resins such as a phenoxy ether-type crosslinkable resin, an epoxy resin, a polycarbonate resin, and an arylate resin have been used as a synthetic resin material of a retardation film for a liquid crystal display.
[0003]
However, these film-forming resins have difficulty in uniform stretching, and have insufficient moisture resistance, and the retardation stability is reduced due to a change in the humidity of the use environment. In addition, polycarbonate resins, arylate resins, and the like have drawbacks such as high heat resistance, a high stretching temperature, which makes it difficult to control the stretching temperature, and makes it difficult to produce an optically uniform retardation film. .
[0004]
Therefore, in recent years, it has been manufactured by the solution casting method because of its excellent transparency, heat resistance, moisture resistance, chemical resistance, etc., low photoelastic coefficient, good optical uniformity, and good viewing angle characteristics. A retardation film obtained by uniaxially stretching a formed thermoplastic saturated norbornene-based resin film is used.
[0005]
In the above solution casting method, a thermoplastic saturated norbornene resin is dissolved in an organic solvent, and after casting on a support by a coater or the like, the organic solvent is dried to form a film, and the film is supported. This is a method for producing a thermoplastic saturated norbornene-based resin film by peeling from a body.
[0006]
The retardation film is manufactured by stretching a thermoplastic saturated norbornene-based resin film obtained by a solution casting method or the like in a length direction or a width direction to give birefringence to the film.
[0007]
Conventionally, methylene chloride has been used as an organic solvent in the solution casting method of the thermoplastic saturated norbornene-based resin, but since methylene chloride is a halogenated hydrocarbon, it is no longer used due to environmental health problems. Recently, solvents such as toluene, xylene, ethylbenzene, chlorobenzene, triethylbenzene, diethylbenzene, and isopropylbenzene have been used, but these solvents have a drawback that they have high boiling points and are difficult to dry.
[0008]
On the other hand, in order to obtain clear colors and fine images, the retardation plate for liquid crystal displays must be optically uniform over the entire surface of the birefringent layer, and the optical characteristics do not change even with changes in temperature or humidity. is necessary.
[0009]
In particular, when used in a liquid crystal display panel mounted on an automobile, since use under severe conditions is expected, a heat resistance temperature of at least 60 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher is required. You.
[0010]
In addition, during use at high temperatures, a large amount of the residual solvent may cause uneven retardation values, or erosion of the surface of the resin layer other than the birefringent layer. Is required to be usually 2% by weight or less, preferably 1% by weight or less, more preferably 0.5% by weight or less.
[0011]
In order to satisfy the above requirements, for example, a film prepared by a solution-casting method using a thermoplastic saturated norbornene resin having a number average molecular weight of 25,000 to 100,000 is prepared on a flat plate or a roll with a residual solvent amount of 10% by weight. Thereafter, the film is primarily dried until it is preferably 5% by weight or less, and then the film is peeled off from a flat plate or a roll, and secondly dried until the residual solvent amount is 1% by weight or less, preferably 0.5% by weight or less. Then, a method of obtaining a retardation film by stretching is proposed (for example, see Patent Document 1).
[0012]
[Patent Document 1]
Japanese Patent No. 3220478
However, in order to reduce the amount of residual solvent, it is necessary to increase the drying time or increase the drying temperature, but in order to increase the drying time, it is necessary to increase the length of the drying furnace, And the manufacturing cost increases.
[0014]
In addition, when the drying temperature is increased, the production cost is increased, and when the film is dried at a temperature close to or higher than Tg (glass transition temperature) of the thermoplastic saturated norbornene resin, foaming easily occurs. However, there were drawbacks such as cutting due to lack of.
[0015]
As a method for producing a retardation film by simplifying a drying step, for example, a resin solution dissolved in an organic solvent is applied to a support, and then the residual solvent is reduced to 5.0 to 10.0% by weight in primary drying. The film is peeled off from the support, and stretched 1.1 to 1.5 times in the length direction in the secondary drying while drying until the residual solvent is reduced to 0.5 to 5.0% by weight. A film manufacturing method has been proposed (for example, see Patent Document 2).
[0016]
[Patent Document 2]
JP 2001-296422 A
However, the retardation film obtained by the above-mentioned production method has a large variation in retardation, and is not suitable for use as a retardation film.
[0018]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems of the related art, and has as its object to provide a retardation film having small retardation variation, excellent heat resistance and moisture resistance, and a method for producing the same.
[0019]
[Means for Solving the Problems]
The retardation film of the present invention is obtained by dissolving a thermoplastic saturated norbornene-based resin in an organic solvent having a boiling point of 100 ° C. or higher, and uniaxially stretching the thermoplastic saturated norbornene-based resin film formed by a solution casting method. A retardation film provided with birefringence, wherein the residual amount of the thermoplastic saturated norbornene-based resin film before uniaxial stretching is 2.0% by weight or more, and the thermoplastic saturated norbornene-based resin film before uniaxial stretching. The maximum value of the thickness change amount at intervals of 5 mm in the width direction is defined as Δd (μm), and the in-plane retardation of the thermoplastic saturated norbornene-based resin film at the same position after uniaxial stretching when a light beam having a wavelength of 590 nm is incident. When the amount of change is ΔRe (nm), | ΔRe / Δd | <1 is satisfied.
[0020]
The thermoplastic saturated norbornene-based resin used in the present invention is a resin conventionally used for an optical film, and includes, for example, (a) a ring-opening polymer or a ring-opening copolymer of a norbornene-based monomer, If necessary, after modification such as maleic acid addition or cyclopentadiene addition, hydrogenated resin, resin obtained by addition polymerization of (b) norbornene-based monomer, (c) norbornene-based monomer and ethylene or α-olefin, etc. Resins obtained by addition polymerization with olefin monomers of the formula (1), resins obtained by addition polymerization of (d) norbornene monomers with cyclic olefin monomers such as cyclopentene, cyclooctene and 5,6-dihydrodicyclopentadiene, and modified products of these resins And the like.
[0021]
Examples of the norbornene-based monomer constituting the thermoplastic saturated norbornene-based resin include norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, and 5-ethylidene-2- Norbornene, 5-methoxycarbonyl-2-norbornene, 5,5-dimethyl-2-norbornene, 5-cyano-2-norbornene, 5-methyl-5-methoxycarbonyl-2-norbornene, 5-phenyl-2-norbornene, 5-phenyl-5-methyl-2-norbornene, 6-methyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-ethyl- 1,4: 5,8-dimetano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-ethyl 1,4: 5,8-ethylidene-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-chloro-1,4: 5,8-dimetano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-cyano-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6- Pyridyl-1,4: 5,8-dimetano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-methoxycarbonyl-1,4: 5,8-dimethano-1,4 , 4a, 5,6,7,8,8a-octahydronaphthalene, 1,4-dimethano-1,4,4a, 4b, 5,8,8a, 9a-octahydrofluorene, 5,8-methano-1 , 2,3,4,4a, 5,8,8a-octahydro-2,3-cyclopentadi Nonaphthalene, 4,9: 5,8-dimethano-3a, 4,4a, 5,8,8a, 9,9a-octahydro-1H-benzoindene, 4,11: 5,10: 6,9-trimethano- 3a, 4, 4a, 5, 5a, 6, 9, 9a, 10, 10a, 11, 11a-dodecahydro-1H-cyclopentaanthracene and the like.
[0022]
In the above polymerization, for example, a hydrated salt of Ir, Os, or Ru trichloride, MoCl 5 , WCl 6 , ReCl 5 , (C 2 H 5 ) 3 Al, (C 2 H 5 ) 3 Al / TiCl 4 , (π-C 4 H 7 ) 4 Mo / TiCl 4 , (π-C 4 H 7 ) 4 W / TiCl 4 , (π-C 3 H 5 ) 3 Cr / WCl 6, etc. It can be performed by a method.
[0023]
The above-mentioned thermoplastic saturated norbornene resin is a resin described in various patent publications (for example, see Patent Documents 3 and 4), and trade names “Zeonoa”, “Zeonex”, and JIS from ZEON Corporation. It is marketed under the trade name "ARTON", and "ZEONEX" and "ARTON" are suitably used from the viewpoint of solvent selectivity.
[0024]
[Patent Document 3]
JP-A-3-14882 [Patent Document 4]
JP-A-3-122137
The number average molecular weight of the thermoplastic saturated norbornene-based resin is 25,000 as measured by gel permeation chromatography using a toluene solvent since the mechanical strength decreases as the number decreases and the film formability decreases as the number increases. It is preferably from 100,000 to 100,000, and more preferably from 30,000 to 80,000.
[0026]
The thermoplastic saturated norbornene-based resin, to improve the heat resistance of the retardation film, ultraviolet resistance, smoothness, etc., phenolic, phosphorus-based antioxidants, phenol-based thermal degradation inhibitors, Antistatic agents such as amines, lubricants such as esters of aliphatic alcohols and partial esters of polyhydric alcohols, and ultraviolet absorbers such as benzophenone and benzotriazole may be added.
[0027]
The thermoplastic saturated norbornene-based resin film used in the present invention is a thermoplastic saturated norbornene-based resin obtained by dissolving the above-mentioned thermoplastic saturated norbornene-based resin in an organic solvent having a boiling point of 100 ° C. or more, and forming a film by a solution casting method. Film.
[0028]
The organic solvent may be any organic solvent having a boiling point of 100 ° C. or higher and capable of dissolving the thermoplastic saturated norbornene resin, and examples thereof include toluene, xylene, ethylbenzene, chlorobenzene, triethylbenzene, diethylbenzene, and isopropylbenzene.
[0029]
Further, a low boiling point solvent such as cyclohexane, benzene, tetrahydrofuran, hexane or octane may be mixed and used within a range in which the thermoplastic saturated norbornene resin can be dissolved in the organic solvent.
[0030]
The concentration of the thermoplastic saturated norbornene-based resin in the solution used for the solution casting method is preferably such that the viscosity becomes low and the thickness adjustment becomes difficult when the solution becomes thin, and the viscosity becomes high and the workability decreases when the solution becomes thick. %, More preferably 10 to 50% by weight.
[0031]
As the solution casting method, any conventionally known solution casting method may be employed.For example, the obtained resin solution is coated on a support using a bar coater, a doctor knife, a Meyer bar, a roll, a T-die, or the like. And heat-dry it.
[0032]
The support is not particularly limited as long as it is not affected by the organic solvent used in the resin solution and has a surface with excellent smoothness. For example, a metal such as copper or stainless steel is used. , Polyimide, polyethylene terephthalate, polyethylene naphthalate, etc., low heat deformable synthetic resin, the above-mentioned metal or synthetic resin whose surface is coated with glass or ceramics, or these surfaces were subjected to mold release treatment with silicone resin, fluorine resin, etc. It is used in the form of a drum, endless belt, plate or the like.
[0033]
For the heat drying, any conventionally known heat drying method may be adopted, for example, depending on the viscosity of the resin solution from a plurality of pairs of hot air blowing nozzles installed in the normal direction of the coating film on the support. A method of blowing hot air within the range of the given wind speed and drying, a method of blowing hot air from both sides of the coating surface and the opposite side of the support surface and drying, in a diagonal direction to the coating surface or in the coating surface Examples include a method of drying by blowing hot air from a parallel blowing nozzle, a method of drying by heating the support and the transport roll, and the like, and radiant heat such as infrared rays may be used as an auxiliary drying means.
[0034]
The thermoplastic saturated norbornene-based resin film is dried so that the residual solvent amount is 2.0% by weight or more, preferably 2.0 to 10.0% by weight, more preferably 2.0 to 6.0% by weight. You.
[0035]
When the amount of the residual solvent is less than 2.0% by weight, the thickness unevenness of the thermoplastic saturated norbornene-based resin film appears as unevenness in the in-plane retardation of the retardation film after uniaxial stretching, and the thickness accuracy of the thermoplastic saturated norbornene-based resin film is increased. Is low, it is difficult to obtain a retardation film having optical uniformity satisfying | ΔRe / Δd | <1, and the apparent Tg is high. Since the dispersion of the internal retardation becomes large and it becomes difficult to obtain a retardation film having optical uniformity, the amount of the residual solvent is limited to 2.0% by weight or more.
[0036]
Also, when the residual solvent amount is too large, the thickness unevenness of the thermoplastic saturated norbornene-based resin film appears as unevenness in the in-plane retardation of the retardation film after uniaxial stretching, and the thickness accuracy of the thermoplastic saturated norbornene-based resin film is increased. When the refractive index is low, it is difficult to obtain a retardation film having optical uniformity satisfying | ΔRe / Δd | <1, and the apparent viscosity is sharply reduced, whereby the retardation expression efficiency is reduced. It is difficult to obtain a retardation film having the following retardation, and the amount of the residual solvent is preferably in the above range.
[0037]
The retardation film of the present invention is a retardation film provided with birefringence by uniaxially stretching the thermoplastic saturated norbornene-based resin film having a residual solvent amount of 2.0% by weight or more, and is provided with a uniaxial stretching. The maximum value of the thickness change at intervals of 5 mm in the width direction of the previous thermoplastic saturated norbornene-based resin film is defined as Δd (μm), and a light beam having a wavelength of 590 nm at the same position of the thermoplastic saturated norbornene-based resin film after uniaxial stretching. Is a retardation film that satisfies | ΔRe / Δd | <1, where ΔRe (nm) is the amount of change in in-plane retardation upon incidence of light.
[0038]
The thickness change is measured at intervals of 5 mm in the width direction of the thermoplastic saturated norbornene-based resin film before uniaxial stretching, and means the difference in thickness between adjacent points, and the maximum value of the thickness change is Δd (Μm).
[0039]
The amount of change in the in-plane retardation is that a ray having a wavelength of 590 nm is incident on the thermoplastic saturated norbornene-based resin film after uniaxial stretching, and the in-plane retardation is measured at regular intervals in the width direction of the thermoplastic saturated norbornene-based resin film. , Meaning the difference between the in-plane retardations of adjacent points, and its value is referred to as ΔRe (nm).
[0040]
The measurement point of the in-plane retardation is a point where the thickness change shows the maximum value Δd (μm). Therefore, a point where the thickness change amount of the thermoplastic saturated norbornene resin film before the uniaxial stretching shows the maximum value Δd (μm) is specified, and the change amount of the in-plane retardation is measured at the same point after the uniaxial stretching.
[0041]
However, the thickness change is measured at intervals of 5 mm in the width direction of the thermoplastic saturated norbornene-based resin film before uniaxial stretching. However, the uniaxial stretching reduces the width of the thermoplastic saturated norbornene-based resin film. It is necessary to correct the measurement point before measurement.
[0042]
That is, when the film is uniaxially stretched, the width of the thermoplastic saturated norbornene-based resin film becomes 1 / (stretching ratio) 1/2 times. Therefore, the in-plane retardation is defined as one point at which the thickness change shows the maximum value Δd (μm) and a point 5 × [1 / (stretch ratio) 1/2 ] mm away from this point in the predetermined width direction. What is necessary is just to measure.
[0043]
As the value of | ΔRe / Δd | increases, the in-plane retardation of the retardation film varies greatly, the optical uniformity decreases, and the film cannot be suitably used as a retardation film.
[0044]
As the method for producing the retardation film of the present invention, any conventionally known method may be adopted, but a thermoplastic saturated norbornene-based resin is dissolved in an organic solvent having a boiling point of 100 ° C. or higher, and the film is formed by a solution casting method. The stretched thermoplastic saturated norbornene-based resin film having a residual solvent amount of 2.0% by weight or more is stretched at 1.1 to 1.5 times, and the residual solvent amount is the thermoplastic saturated norbornene-based resin film. , After uniaxial stretching (hereinafter, referred to as “primary stretching”) so as to be 0.5 to 4.0% by weight, and then again uniaxially stretching (hereinafter, referred to as “secondary stretching”). )) Is preferable.
[0045]
In the first stretching, the thermoplastic saturated norbornene-based resin film having the residual solvent amount of 2.0% by weight or more is stretched at a stretching ratio of 1.1 to 1.5 times and the residual solvent amount is the thermoplastic saturated norbornene. The film is uniaxially stretched so as to be not more than the amount of the residual solvent in the resin film and to be 0.5 to 4.0% by weight.
[0046]
When the stretching ratio is small, the organic solvent does not volatilize efficiently, the uniformizing effect of the thickness is reduced, and when it is large, the width of the thermoplastic saturated norbornene-based resin film is small, the thickness is small, and the film is unsuitable as a retardation film. Therefore, the ratio is 1.1 to 1.5 times, preferably 1.2 to 1.4 times.
[0047]
In order to reduce the amount of the residual solvent to less than 0.5% by weight, it is necessary to heat and dry for a long time, the apparatus must be increased in size, the production cost is increased, the production time is increased, and the amount of the residual solvent is 4. If it exceeds 0% by weight, the thickness unevenness of the thermoplastic saturated norbornene-based resin film appears as unevenness in the in-plane retardation of the retardation film after the secondary stretching, and when the thickness accuracy of the thermoplastic saturated norbornene-based resin film is low, | It is difficult to obtain a retardation film having optical uniformity satisfying ΔRe / Δd | <1, and the apparent viscosity sharply decreases, the retardation expression efficiency decreases, and a film having a desired retardation is obtained. Since it becomes difficult to obtain a retardation film, the amount of the residual solvent is limited to 0.5 to 4.0% by weight, preferably 0.5 to 2.0% by weight, and more preferably It is 0.5 to 1.0% by weight.
[0048]
The primary stretching method is not particularly limited as long as it is a free-width uniaxial stretching method, and a longitudinal uniaxial stretching method in which the thermoplastic saturated norbornene-based resin film is stretched in the longitudinal direction is preferable. Heat stretching methods such as a long section air floating method, a turn roll transport method, and a proximity stretching method using the above method are preferable. The stretching method may be a single-stage stretching method or a multi-stage stretching method of two or more stages.
[0049]
The primary stretching temperature is low, it is difficult to stretch even if tension is applied, and if it is high, the thermoplastic saturated norbornene-based resin film becomes soft and becomes deformed or cut, so that it is higher than the boiling point of the organic solvent. Therefore, the temperature is preferably higher than the apparent Tg of the thermoplastic saturated norbornene-based resin film, more preferably “apparent Tg + 10 ° C.” to “apparent Tg + 50 ° C.”, and further preferably “apparent Tg + 20 ° C.” to “apparent Tg + 40 ° C.” It is.
[0050]
The “apparent Tg” is a Tg including the thermoplastic saturated norbornene-based resin and the residual solvent, and means the Tg of the thermoplastic saturated norbornene-based resin film at the time of performing the primary stretching and the secondary stretching.
[0051]
The first-stretched thermoplastic saturated norbornene-based resin film is secondarily stretched to obtain a retardation film.
[0052]
The draw ratio of the secondary stretching is preferably 1.1 to 2.0 times since a required retardation value cannot be obtained when the ratio is small, and the optical uniformity is reduced when the ratio is large, and the film is cut during the stretching.
[0053]
The secondary stretching method is not particularly limited as long as it is a free-width uniaxial stretching method, and a longitudinal uniaxial stretching method in which the thermoplastic saturated norbornene-based resin film is stretched in the length direction is preferable, and particularly, a rotation speed of a nip roll. A heating stretch method such as a long section air floating method utilizing the difference, a turn roll transport method, and a proximity stretching method is preferable. The stretching method may be a single-stage stretching method or a multi-stage stretching method of two or more stages.
[0054]
When the secondary stretching temperature is low, stretching becomes difficult even when a tension is applied, and when it is high, the required retardation value is not obtained, and the thermoplastic saturated norbornene-based resin film becomes soft, and is deformed or cut. Therefore, Tg ± 5 ° C. is preferable.
[0055]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, examples of the present invention will be described, but the present invention is not limited to the following examples.
[0056]
(Examples 1 and 2, Comparative Examples 1 and 2)
A resin solution obtained by dissolving 100 parts by weight of a thermoplastic saturated norbornene resin (trade name “ZEONEX 490” manufactured by Zeon Corporation, number average molecular weight 27400) in 150 parts by weight of toluene is cast on a metal belt, and the mixture is heated at 90 ° C. and 125 ° C. Then, drying was performed successively at 150 ° C. for 2 minutes to obtain a long thermoplastic saturated norbornene resin film having a width of 1325 mm.
[0057]
When the thickness of the obtained long thermoplastic saturated norbornene resin film was measured at 5 mm intervals in the width direction of the film using a continuous thickness gauge manufactured by Seiko EM, the thickness variation was 67 ± 1.6 μm. The maximum value Δd of the amount of change in thickness was 1.2 μm.
[0058]
The obtained long thermoplastic saturated norbornene-based resin film is successively provided with a primary heating furnace maintained at a predetermined temperature shown in Table 2 and a secondary heating furnace maintained at a predetermined temperature shown in Table 2. And stretched primarily to a predetermined magnification shown in Table 2 to obtain a primary stretched film.
[0059]
Table 1 shows the residual solvent amounts of the obtained long thermoplastic saturated norbornene resin film and the first stretched film. The amount of residual solvent was measured by gas chromatography, and the amount of toluene at the point where the film was divided into six in the width direction was measured, and the average value was shown.
[0060]
The apparent Tg of the obtained long thermoplastic saturated norbornene-based resin film and the primary stretched film was measured, and the results are shown in Table 1.
[0061]
(Method of measuring apparent Tg)
With a dynamic viscoelasticity measurement device (manufactured by IT Measurement Control Co., Ltd., trade name: DVA-200)
Deformation mode: Tensile measurement start temperature: Room temperature heating rate: 5 ° C / min Data acquisition interval: Every 1 ° C Measurement frequency: 10 Hz
Static / power ratio: 2
The temperature at the peak of the loss elastic modulus under the measurement conditions of was defined as apparent Tg.
[0062]
The obtained primary stretched film is supplied to a floating type uniaxial stretching machine having a heating furnace maintained at a predetermined temperature shown in Table 2, and secondarily stretched 1.5 times to obtain a retardation film. Was.
[0063]
The retardation value of the obtained retardation film was measured at 40 points at a center of 990 mm in the width direction at intervals of 25 mm using an optical inspection device RETS-2000 manufactured by Otsuka Electronics Co., Ltd., and the variation was shown in Table 1. .
[0064]
In addition, the retardation value of the obtained retardation film was measured in the same manner at the point where the long thermoplastic saturated norbornene-based resin film showed the maximum value of the thickness change amount, and the change amount ΔRe of the in-plane retardation was calculated. The results are shown in Table 1.
[0065]
The value of | ΔRe / Δd | was calculated from the maximum value Δd of the thickness variation and the variation ΔRe of the in-plane retardation, and the results are shown in Table 1.
[0066]
[Table 1]
[0067]
[Table 2]
[0068]
【The invention's effect】
The constitution of the retardation film of the present invention is as described above, the dispersion of retardation is small, the optical uniformity is excellent, and the heat resistance and the moisture resistance are excellent. Further, the retardation film can be easily produced by the method for producing a retardation film of the present invention.