JP2005309339A - Optical compensating film and manufacturing method for polarizing plate - Google Patents

Optical compensating film and manufacturing method for polarizing plate Download PDF

Info

Publication number
JP2005309339A
JP2005309339A JP2004130153A JP2004130153A JP2005309339A JP 2005309339 A JP2005309339 A JP 2005309339A JP 2004130153 A JP2004130153 A JP 2004130153A JP 2004130153 A JP2004130153 A JP 2004130153A JP 2005309339 A JP2005309339 A JP 2005309339A
Authority
JP
Japan
Prior art keywords
film
optical compensation
stretching
polarizing plate
optical compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004130153A
Other languages
Japanese (ja)
Inventor
Masakatsu Tagami
昌克 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2004130153A priority Critical patent/JP2005309339A/en
Publication of JP2005309339A publication Critical patent/JP2005309339A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical compensating film which is unwound to a part near to a core in a no-curling state and stuck to a polarizing plate in a smooth state, and suitably used as the optical compensating film of a vertical alignment type liquid crystal cell. <P>SOLUTION: The optical compensating film is obtained by stretching long-length film composed of saturated cyclic olefin polymer resin at least in one direction and has effective width ≥650mm. When the longitudinal direction of the film is defined as (x), the width direction thereof is defined as (y), the thickness direction thereof is defined as (z), and refractive indexes in the respective directions are specified as (nx), (ny) and (nz), the optical compensating film satisfies relation ny≥nx>nz, and is wound around the core whose outside diameter is ≥125mm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶表示装置のコントラスト及び視野角の改善に用いられる光学補償フィルム及びこの光学補償フィルムを用いた偏光板の製造方法に関する。   The present invention relates to an optical compensation film used for improving the contrast and viewing angle of a liquid crystal display device and a method for producing a polarizing plate using the optical compensation film.

液晶による複屈折で表示装置を見る視角により表示色やコントラスト等が変化することの防止を目的に、液晶セルに対し位相差板を配置して複屈折に基づく光学特性を補償して視角特性を改善する技術が提案されている。
特にVA型と称される垂直配向型の液晶セルの光学補償においては、厚み方向の屈折率が小さい、即ち、フィルム面内における最大屈折率を示す方向の屈折率をnx(又はny)、この方向と直角方向の屈折率をny(又はnx)、厚み方向の屈折率をnzと定義したとき、nx≧ny>nz(又はny≧nx>nz)となる関係を示す位相差フィルムを用いることが最適とされている(特許文献1参照)。
しかし、このような位相差フィルムはnx、nyのうち、遅相軸と呼ばれる屈折率の大きい方向が位相差フィルムと隣接する偏光板の吸収軸に直交させて貼合させねばならず、特に位相差フィルムは一般的に薄く、貼合時にフィルムに僅かなカールがあると貼合角度がずれたり、位相差フィルムに応力がかかった状態で貼合わされることにより、偏光板貼付後の耐久性試験時に位相差変化が大きくなってしまうことがあり、結果液晶ディスプレイが所定の性能を発揮できないことがあった。
特にその傾向は位相差フィルムの巻芯側で強く、巻取り後の経過時間が長いほど巻芯の外周に沿ったカールが顕著に発現する傾向があった。
In order to prevent changes in display color, contrast, etc. depending on the viewing angle when viewing the display device due to the birefringence due to the liquid crystal, a retardation plate is arranged for the liquid crystal cell to compensate the optical characteristics based on the birefringence and to improve the viewing angle characteristics. Improvement techniques have been proposed.
Particularly in the optical compensation of a vertical alignment type liquid crystal cell called VA type, the refractive index in the thickness direction is small, that is, the refractive index in the direction showing the maximum refractive index in the film plane is nx (or ny), Use a retardation film showing a relationship of nx ≧ ny> nz (or ny ≧ nx> nz) when the refractive index in the direction perpendicular to the direction is defined as ny (or nx) and the refractive index in the thickness direction is defined as nz. (See Patent Document 1).
However, such a retardation film must be bonded so that a direction of a large refractive index called a slow axis out of nx and ny is orthogonal to an absorption axis of a polarizing plate adjacent to the retardation film, The retardation film is generally thin, and if the film has a slight curl during bonding, the bonding angle will shift, or the retardation film will be bonded in a state where stress is applied. Sometimes the phase difference change becomes large, and as a result, the liquid crystal display may not exhibit a predetermined performance.
In particular, the tendency was strong on the core side of the retardation film, and the longer the elapsed time after winding, the more the curl along the outer periphery of the core tended to appear significantly.

特許第3383359号Japanese Patent No. 3383359

本発明は、上記現状に鑑み、光学補償フィルムを巻芯近くの部位までカールが無い状態で巻き出し、平滑な状態で偏光板と貼合でき、垂直配向型液晶セルの光学補償フィルムとして好適に用いられる光学補償フィルム、及びこの光学補償フィルムを用いた偏光板の製造方法を提供することを目的とする。   In view of the above-described situation, the present invention allows the optical compensation film to be unwound to a portion near the core without curling, and can be bonded to a polarizing plate in a smooth state, and is suitable as an optical compensation film for a vertically aligned liquid crystal cell. It is an object of the present invention to provide an optical compensation film used and a method for producing a polarizing plate using the optical compensation film.

光学補償フィルム生産時の巻き付け芯の外径を125mm以上とすることによって本課題を解決することができる。   This problem can be solved by setting the outer diameter of the winding core during production of the optical compensation film to 125 mm or more.

請求項1記載の発明は、飽和環状オレフィン重合体系樹脂からなる長尺フィルムを少なくとも一方向に延伸して得られる650mm以上の有効幅を有する光学補償フィルムであって、フィルムの長手方向をx、幅方向をy、厚味方向をzとし、各方向の屈折率をnx、ny、nzと規定した場合、ny≧nx>nzの関係を満たし、外径125mm以上の巻芯に巻かれている光学補償フィルムである。   The invention according to claim 1 is an optical compensation film having an effective width of 650 mm or more obtained by stretching a long film made of a saturated cyclic olefin polymer-based resin in at least one direction, wherein the longitudinal direction of the film is x, When the width direction is y, the thickness direction is z, and the refractive index in each direction is defined as nx, ny, nz, the relationship of ny ≧ nx> nz is satisfied, and the coil is wound around a core having an outer diameter of 125 mm or more. It is an optical compensation film.

請求項2記載の発明は、長手方向に吸収軸を有する偏光フィルムの長尺体に対して、前記光学補償フィルムを巻き戻しながら、その長手方向を一致させつつ、粘着剤又は接着剤を介して連続的に貼り合わせることを特徴とする偏光板の製造方法である。   In the invention according to claim 2, the longitudinal direction of the polarizing film having the absorption axis in the longitudinal direction is rewound, and the longitudinal direction thereof is matched with the adhesive or the adhesive. It is a manufacturing method of a polarizing plate characterized by pasting together.

本発明に用いられる光学補償フィルムの樹脂としては、低波長分散性、低光弾性係数に優れていることから、飽和環状オレフィン系樹脂が用いられる。
飽和環状オレフィン系樹脂としては、特に限定されず、例えば、ノルボルネン系モノマー同士の開環(共)重合体の水素添加物、ノルボルネン系モノマーとオレフィン系モノマーとの付加重合体、ノルボルネン系モノマー同士の付加(共)重合体等が挙げられ、これら飽和環状オレフィン系樹脂は単独で用いられても2種以上が併用されてもよい。
As the resin of the optical compensation film used in the present invention, a saturated cyclic olefin resin is used because of its excellent low wavelength dispersibility and low photoelastic coefficient.
The saturated cyclic olefin-based resin is not particularly limited. For example, a hydrogenated product of a ring-opening (co) polymer of norbornene monomers, an addition polymer of a norbornene monomer and an olefin monomer, or between norbornene monomers Examples include addition (co) polymers, and these saturated cyclic olefin resins may be used alone or in combination of two or more.

上記ノルボルネン系モノマーとしては、ノルボルネン環を有するモノマーであれば、特に限定されず、例えば、ノルボルネン、ノルボルナジエン等の二環体;ジシクロペンタジエン、ジヒドロキシペンタジエン等の三環体;テトラシクロドデセン等の四環体;シクロペンタジエン三量体等の五環体;テトラシクロペンタジエン等の七環体;これらのメチル、エチル、プロピル、ブチル等のアルキル置換体、ビニル等のアルケニル置換体、エチリデン等のアルキリデン置換体、フェニル、トリル、ナフチル等のアリール置換体;さらにこれらのエステル基、エーテル基、シアノ基、ハロゲン原子、アルコキシカルボニル基、ピリジル基、水酸基、カルボン酸基、アミノ基、無水酸基、シリル基、エポキシ基、アクリル基、メタクリル基等の炭素、水素以外の元素を含有する、いわゆる極性基を有する置換体等が挙げられる。これらのノルボルネン系モノマーの内、入手が容易であり、反応性に優れ、得られる光学補償フィルムの耐熱性が優れていることから、三環体以上の多環ノルボルネン系モノマーが好ましく、三環体、四環体及び五環体のノルボルネン系モノマーがより好ましい。なお、ノルボルネン系モノマーは、単独で用いられても二種類以上が併用されてもよい。   The norbornene-based monomer is not particularly limited as long as it is a monomer having a norbornene ring. For example, bicyclic compounds such as norbornene and norbornadiene; tricyclic compounds such as dicyclopentadiene and dihydroxypentadiene; tetracyclododecene and the like Tetracycles; pentacycles such as cyclopentadiene trimers; heptacycles such as tetracyclopentadiene; alkyl substitutions such as methyl, ethyl, propyl and butyl, alkenyl substitutions such as vinyl, and alkylidenes such as ethylidene Substituents, aryl substituents such as phenyl, tolyl, naphthyl; and ester groups, ether groups, cyano groups, halogen atoms, alkoxycarbonyl groups, pyridyl groups, hydroxyl groups, carboxylic acid groups, amino groups, non-hydroxyl groups, silyl groups , Epoxy group, acrylic group, methacryl group and other carbon Containing elements other than hydrogen, substitution products having a so-called polar group. Among these norbornene monomers, tricyclic or higher polycyclic norbornene monomers are preferred because they are easily available, have excellent reactivity, and the resulting optical compensation film has excellent heat resistance. More preferred are tetracyclic and pentacyclic norbornene monomers. In addition, a norbornene-type monomer may be used independently or 2 or more types may be used together.

又、上記ノルボルネン系モノマーの開環(共)重合体の水素添加物としては、上記ノルボルネン系モノマーを公知の方法で開環(共)重合させた後、残留している二重結合が水素添加されているものが広く用いられ、ノルボルネン系モノマーの単独重合体の水素添加物であってもよいし、異種のノルボルネン系モノマー同士の共重合体の水素添加物であってもよい。   Further, as the hydrogenated product of the ring-opening (co) polymer of the norbornene monomer, the remaining double bond is hydrogenated after ring-opening (co) polymerization of the norbornene monomer by a known method. What is currently used is widely used, and may be a hydrogenated product of a homopolymer of norbornene-based monomers or a hydrogenated product of a copolymer of different norbornene-based monomers.

更に、上記ノルボルネン系モノマーとオレフィン系モノマーとの付加共重合体としては、ノルボルネン系モノマーとα−オレフィンとの共重合体が挙げられる。上記α−オレフィンとしては、炭素数が2〜20のα−オレフィンが好ましく、炭素数が2〜10のα−オレフィンがより好ましい。   Furthermore, examples of the addition copolymer of the norbornene monomer and the olefin monomer include a copolymer of a norbornene monomer and an α-olefin. As the α-olefin, an α-olefin having 2 to 20 carbon atoms is preferable, and an α-olefin having 2 to 10 carbon atoms is more preferable.

なお、上記α−オレフィンとしては、例えば、エチレン、プロピレン、1−ブテン、3−メチル−1−ブテン、1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン等が挙げられ、共重合性が高いことから、エチレンが好ましい。また、他のα−オレフィンをノルボルネン系モノマーと共重合させる場合にも、エチレンを存在させることにより、α−オレフィンの共重合性が高められる。   Examples of the α-olefin include ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, and 1-hexene. , 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene and the like, and ethylene is preferable because of high copolymerizability. Further, when other α-olefin is copolymerized with a norbornene-based monomer, the copolymerization property of the α-olefin can be enhanced by the presence of ethylene.

上記ノルボルネン系モノマーの開環(共)重合体は、例えば、ノルボルネン系モノマーを、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金等の金属のハロゲン化物、硝酸塩若しくはアセチルアセトン化合物と、還元剤とからなる触媒系、又は、チタン、タングステン、モリブデン等の金属のハロゲン化物若しくはアセチルアセトン化合物と、有機アルミニウム化合物とからなる触媒系等を用いて、溶媒中又は無溶媒で、通常、−50℃〜100℃の温度、0〜4.9MPaの圧力下で開環(共)重合させることにより得ることができる。   The ring-opening (co) polymer of the norbornene monomer comprises, for example, a norbornene monomer comprising a metal halide such as ruthenium, rhodium, palladium, osmium, iridium, platinum, nitrate or acetylacetone compound, and a reducing agent. Using a catalyst system or a catalyst system composed of a metal halide such as titanium, tungsten, molybdenum, or an acetylacetone compound and an organoaluminum compound, in a solvent or without a solvent, usually at -50 ° C to 100 ° C. It can be obtained by ring-opening (co) polymerization at a temperature of 0 to 4.9 MPa.

又、上記ノルボルネン系モノマーとオレフィン系化合物との付加共重合体は、例えば、モノマー成分を、溶媒中又は無溶媒で、バナジウム化合物と有機アルミニウム化合物、好ましくはハロゲン含有有機アルミニウム化合物とからなる触媒を用いて、通常、−50℃〜100℃の温度、0〜4.9MPaの圧力下で共重合させることにより得ることができる。   The addition copolymer of the norbornene monomer and the olefin compound includes, for example, a catalyst composed of a vanadium compound and an organoaluminum compound, preferably a halogen-containing organoaluminum compound, with a monomer component in a solvent or without a solvent. In general, it can be obtained by copolymerization at a temperature of −50 ° C. to 100 ° C. and a pressure of 0 to 4.9 MPa.

なお、上記ノルボルネン系樹脂の具体例としては、特開平1−240517号公報に記載されているものが挙げられ、商業的に入手できるノルボルネン系樹脂の具体例としては、例えば、JSR社製の商品名「アートン」シリーズ、日本ゼオン社製の商品名「ゼオノア」シリーズ、三井化学社製の商品名「アペル」シリーズ等が挙げられる。   Specific examples of the norbornene-based resin include those described in JP-A-1-240517, and specific examples of commercially available norbornene-based resins include, for example, products manufactured by JSR Corporation. The name “Arton” series, the product name “Zeonoa” series manufactured by Nippon Zeon Co., Ltd., the product name “Apel” series manufactured by Mitsui Chemicals, etc.

上記飽和環状オレフィン系樹脂の数平均分子量は、小さすぎると得られる光学補償フィルムの機械的強度が低下することがあり、大きすぎると溶液粘度や溶融粘度が高くなったりして、製膜が困難になることがあるので、5000〜50000が好ましく、8000〜30000がより好ましい。なお、飽和環状オレフィン系樹脂の数平均分子量は、GPC(ゲルパーミエーションクロマトグラフ)によって測定されたポリスチレン換算の数平均分子量である。   If the number average molecular weight of the saturated cyclic olefin-based resin is too small, the mechanical strength of the optical compensation film obtained may decrease, and if it is too large, the solution viscosity and melt viscosity will increase, making film formation difficult. 5000 to 50000 is preferable, and 8000 to 30000 is more preferable. In addition, the number average molecular weight of saturated cyclic olefin resin is the number average molecular weight of polystyrene conversion measured by GPC (gel permeation chromatograph).

又、上記飽和環状オレフィン系樹脂には、光学補償フィルムの機能を阻害しない範囲内において、成形時の飽和環状オレフィン系樹脂の劣化防止や光学補償フィルムの耐熱性、耐紫外線性、平滑性等を向上させるために、フェノール系、リン系等の酸化防止剤;ラクトン系等の熱劣化防止剤;ベンゾフェノン系、ベンゾトリアゾール系、アクリロニトリル系等の紫外線吸収剤;脂肪族アルコールのエステル系、多価アルコールの部分エステル系、多価アルコールの部分エーテル系等の滑剤;アミン系等の帯電防止剤等の各種添加剤が添加されていてもよい。なお、添加剤は単独で用いられても二種以上が併用されてもよい。   In addition, the saturated cyclic olefin resin does not deteriorate the saturated cyclic olefin resin during molding, and the heat resistance, ultraviolet resistance, smoothness, etc. of the optical compensation film are within the range that does not impair the function of the optical compensation film. In order to improve, antioxidants such as phenols and phosphoruss; thermal degradation inhibitors such as lactones; UV absorbers such as benzophenones, benzotriazoles and acrylonitriles; esters of aliphatic alcohols, polyhydric alcohols Various additives such as partial ester-based and polyhydric alcohol partial ether-based lubricants; amine-based antistatic agents and the like may be added. In addition, an additive may be used independently or 2 or more types may be used together.

次に、上記光学補償フィルムの製造方法について説明するが、製造方法は、フィルムの製膜、延伸、巻き取りの工程からなる。
飽和環状オレフィン系樹脂フィルムの製膜は、従来からフィルムの製造方法として行われている方法で行われる。具体的方法としては、飽和環状オレフィン系樹脂を押出機に供給して溶融、混練し、押出機の先端に取り付けた金型からフィルム状に押し出して長尺状の飽和環状オレフィン系樹脂フィルムを製膜する、所謂溶融押出法、飽和環状オレフィン系樹脂を有機溶媒中に溶解してなる溶液をドラム又はバンド上に流延した後に有機溶媒を蒸発させて長尺状の飽和環状オレフィン系樹脂フィルムを製膜する、所謂溶液流延法等が挙げられる。
Next, although the manufacturing method of the said optical compensation film is demonstrated, a manufacturing method consists of the process of film forming of a film, extending | stretching, and winding up.
The production of the saturated cyclic olefin-based resin film is performed by a method conventionally used as a method for producing a film. As a specific method, a saturated cyclic olefin-based resin film is produced by supplying a saturated cyclic olefin-based resin to an extruder, melting and kneading, and extruding it from a mold attached to the tip of the extruder into a film shape. A so-called melt-extrusion method, a solution obtained by dissolving a saturated cyclic olefin resin in an organic solvent is cast on a drum or band, and then the organic solvent is evaporated to form a long saturated cyclic olefin resin film. Examples include so-called solution casting method for forming a film.

上記飽和環状オレフィン系樹脂フィルムの厚さは、特に限定されないが、50〜200μmが好ましく、80〜150μmがより好ましい。厚さが50μm未満の場合は位相差値が発現しにくくなり、厚さが200μmを超えると、偏光膜に貼付されて液晶パネルに用いられた際に、液晶パネルとして総厚が厚くなるので好ましくない。   Although the thickness of the said saturated cyclic olefin resin film is not specifically limited, 50-200 micrometers is preferable and 80-150 micrometers is more preferable. When the thickness is less than 50 μm, it is difficult to develop a retardation value, and when the thickness exceeds 200 μm, the total thickness of the liquid crystal panel is preferably increased when it is applied to the polarizing film and used in the liquid crystal panel. Absent.

なお、飽和環状オレフィン系樹脂フィルムの厚さが80μm以上の場合には、溶液流延法では、有機溶媒を充分に蒸発、除去させることが困難となるので、溶融押出法を用いて飽和環状オレフィン系樹脂フィルムを製造するのが好ましい。   When the thickness of the saturated cyclic olefin resin film is 80 μm or more, it is difficult to sufficiently evaporate and remove the organic solvent by the solution casting method. It is preferable to produce a resin-based resin film.

上記飽和環状オレフィン系樹脂フィルムを延伸することによって飽和環状オレフィン系樹脂分子を少なくとも一方向に配向させて二軸性の光学補償フィルムを得る。延伸方法としては、テンタークリップ等を用いてロールの幅方向に引っ張る横延伸法、さらに縦延伸を別工程で実施する逐次二軸延伸法(特開2002-148438号公報参照)、これら2方向の延伸を同時に行う同時二軸延伸法等が知られている。本発明においては、どのような延伸法であってもよい。   By stretching the saturated cyclic olefin resin film, the saturated cyclic olefin resin molecules are oriented in at least one direction to obtain a biaxial optical compensation film. As the stretching method, a transverse stretching method in which a tenter clip or the like is used to pull in the width direction of the roll, a sequential biaxial stretching method in which longitudinal stretching is performed in a separate process (see JP 2002-148438 A), these two directions A simultaneous biaxial stretching method in which stretching is performed simultaneously is known. In the present invention, any stretching method may be used.

VAモードの液晶セルに対して光学補償フィルムを用いる場合、その遅相軸は隣接する偏光板の吸収軸と直交させる必要がある。しかしながら、従来、一般に用いられている偏光板の原反はその吸収軸が長手方向に一致しており、一方、上記で得られる光学補償フィルムの遅相軸もまた光学補償フィルムの長手方向に一致しているため、長尺原反同士を連続的に直交貼りすることができなかった。本発明で用いる光学補償フィルムの遅相軸は長手方向に直交するものである。   When an optical compensation film is used for a VA mode liquid crystal cell, it is necessary to make its slow axis orthogonal to the absorption axis of the adjacent polarizing plate. However, the polarizing plate of a polarizing plate that has been generally used has an absorption axis that coincides with the longitudinal direction. On the other hand, the slow axis of the optical compensation film obtained as described above also coincides with the longitudinal direction of the optical compensation film. As a result, it was impossible to continuously orthogonally cross the long original fabrics. The slow axis of the optical compensation film used in the present invention is perpendicular to the longitudinal direction.

以下に、飽和環状オレフィン系樹脂フィルムを、逐次二軸延伸法によって、その遅相軸が長手方向に直交するとともに、厚み方向の屈折率を小さくする方法を詳細に説明する。
先ず溶融押出製膜されたフィルムを幅方向(TD方向)に横延伸する。横延伸は、一般的には、テンタークリップでフィルムの両端を把持しながら、当該樹脂のTg前後の温度でTD方向に拡幅するテンター延伸法で行われる。
延伸温度は、延伸倍率と共に要求される位相差値によって適宜設定される。低倍率で高位相差を出すにはTgに近い温度で延伸を行い、高倍率で高位相差を出すにはTg+5〜30℃、好ましくはTg+5〜15℃の温度で延伸を行うのが望ましい。
拡幅延伸後の正面複屈折|nx−ny|は0.0010〜0.0060が好ましく、より好ましくは0.0015〜0.0040である。すなわち、50μmの厚み換算で面内位相差(Re)は50〜300nmが好ましく、より好ましくは75〜200nmである。
この拡幅延伸後の複屈折性が低すぎると、次工程(長手方向への延伸時)で厚み方向の位相差(Rth)が発現しにくくなり、逆に複屈折性が高すぎると、その制御が困難になるからである。
上記拡幅延伸により遅相軸がTD方向を向いた位相差板中間品が得られる。
Hereinafter, a method of reducing the refractive index in the thickness direction of the saturated cyclic olefin-based resin film by the sequential biaxial stretching method while the slow axis thereof is orthogonal to the longitudinal direction will be described in detail.
First, the film formed by melt extrusion is transversely stretched in the width direction (TD direction). The transverse stretching is generally performed by a tenter stretching method in which the film is widened in the TD direction at a temperature around Tg of the resin while holding both ends of the film with a tenter clip.
The stretching temperature is appropriately set depending on the retardation value required together with the stretching ratio. In order to obtain a high phase difference at a low magnification, stretching is performed at a temperature close to Tg, and in order to obtain a high phase difference at a high magnification, it is desirable to perform stretching at a temperature of Tg + 5 to 30 ° C., preferably Tg + 5 to 15 ° C.
The front birefringence | nx−ny | after widening stretching is preferably 0.0010 to 0.0060, more preferably 0.0015 to 0.0040. That is, the in-plane retardation (Re) is preferably 50 to 300 nm, more preferably 75 to 200 nm in terms of a thickness of 50 μm.
If the birefringence after this widening is too low, the retardation (Rth) in the thickness direction will be difficult to develop in the next step (at the time of stretching in the longitudinal direction). This is because it becomes difficult.
A phase difference plate intermediate product having a slow axis in the TD direction is obtained by the widening stretching.

次に、先の工程で発生した遅相軸の方向と垂直な方向(MD方向)に縦延伸する。縦延伸方法としては、ロール間ネックイン延伸法や近接ロール延伸法が挙げられるが、フィルムにキズ、シワ等が入りにくいといった点で前者のロール間ネックイン延伸法が好ましい。   Next, longitudinal stretching is performed in a direction (MD direction) perpendicular to the direction of the slow axis generated in the previous step. Examples of the longitudinal stretching method include an inter-roll neck-in stretching method and a proximity roll stretching method, but the former inter-roll neck-in stretching method is preferable in that scratches, wrinkles and the like are less likely to enter the film.

ロール間ネックイン延伸法は、走行する長尺フィルムを、所定間隔を隔てて設置された速比の異なる2対のニップロールで挟圧しながら、Tg前後の加熱炉中で、自由端でネックイン変形させながら延伸する方法である。
この際の延伸量は、前工程(横延伸工程)の延伸量の1/3以下にすることによって、遅相軸の方向を変えることなく効率的に、光学補償フィルムを得ることができる。
後工程(縦延伸)の延伸量が前工程(横延伸)延伸量の1/3を越えると、遅相軸の方向が転換してしまい、MD方向(流れ方向)となってしまう。
遅相軸がMD方向になると、偏光板吸収軸と光学補償フィルムの遅相軸を直交させて用いる二軸性光学補償フィルムの主たる使用用途にそぐわなくなる。
上記で得られる遅相軸がTD方向を向いた光学補償フィルムは、必要に応じ端部のスリット、コロナ処理等の工程を経て、最終的に保護フィルムに貼合されて巻き取られる。保護フィルムとしては、ポリエステル系樹脂が好ましく、粘着剤部分はEVA、アクリル等用途によって適宜最適なものが選択して用いられるが、粘着剤の無いフィルムを光学補償フィルムの間に連続的に差し込んで巻き取っても構わない。
The neck-in stretching method between rolls is the neck-in deformation at the free end in a heating furnace around Tg, while the traveling long film is clamped by two pairs of nip rolls with different speed ratios installed at a predetermined interval. It is the method of extending | stretching.
By making the stretching amount at this time 1/3 or less of the stretching amount in the previous step (lateral stretching step), an optical compensation film can be obtained efficiently without changing the direction of the slow axis.
When the amount of stretching in the subsequent process (longitudinal stretching) exceeds 1/3 of the amount of stretching in the preceding process (lateral stretching), the direction of the slow axis is changed, and the MD direction (flow direction) is obtained.
When the slow axis is in the MD direction, it becomes unsuitable for the main usage of the biaxial optical compensation film that uses the polarizing plate absorption axis and the slow axis of the optical compensation film orthogonal to each other.
The optical compensation film having the slow axis obtained in the above direction in the TD direction is finally bonded to a protective film and wound up through steps such as slits at the end and corona treatment as necessary. The protective film is preferably a polyester-based resin, and the pressure-sensitive adhesive portion is appropriately selected and used depending on the application, such as EVA or acrylic, but a film without a pressure-sensitive adhesive is continuously inserted between the optical compensation films. You can wind it up.

上記の工程により延伸された後に、光学補償フィルムは外径が125mm以上の巻芯に巻き取られる。巻芯の材質は表面が平滑であり、製品巻取り中や輸送中に割れ、ヒビ、たわみ等が発生しない強度があれば塩ビ、ABS、PS等一般的なものが特に制限されず使用できる。
一般にロール状に巻き取られたフィルムは、経時の巻締まりによって、その形状が巻芯に沿った形で固定されてしまい、巻径が小さいほど元に戻す際の応力発生が大きくなる。
また、巻き付け時の張力は巻き巣、テレスコープ等が発生しない最低限の張力で巻き取ることにより、巻芯外径の効果と併せてカール防止効果を高く発現させることができる。
After being stretched by the above process, the optical compensation film is wound around a core having an outer diameter of 125 mm or more. The material of the winding core is smooth, and general materials such as polyvinyl chloride, ABS, and PS can be used without any particular limitation as long as they have a strength that does not cause cracks, cracks, deflection, etc. during product winding or transportation.
In general, a film wound in a roll shape is fixed in a shape along the winding core due to tightening over time, and the smaller the winding diameter, the greater the generation of stress when returning to the original state.
In addition, the winding tension can be made high with the effect of the outer diameter of the core in addition to the effect of curling the outer diameter of the core by winding with the minimum tension that does not generate a winding nest, telescope and the like.

このようにして得られた光学補償フィルムは、偏光板と組み合わされて液晶表示装置の組み立て材料として好適に用いられる。
上記偏光板としては、従来から液晶表示装置に用いられているものであれば、特に限定されず、偏光子の両面を保護膜で被覆してなるものが挙げられるが、偏光子の片面(液晶セル側の面)を保護膜の代りに上記光学補償フィルムで代用してもよく、このようにすることで、液晶表示装置の薄膜化及び製造効率の向上を図ることができる。
偏光板との貼合は、偏光板ロールと位相差板ロールを平行で巻きだしてニップロール間で貼合する方式(図1a)、平滑な面上を走行する偏光板に、位相差板を貼合していく方式(図1b)等があるが、どちらの貼合方式でも構わない。
本発明における光学補償フィルムロールから巻き出された光学補償フィルムはカールの発生が小さく、偏光板貼合時にズレ発生や想定外の応力が掛かることなく、均一に貼合することが可能となる。
The optical compensation film thus obtained is suitably used as an assembly material for a liquid crystal display device in combination with a polarizing plate.
The polarizing plate is not particularly limited as long as it is conventionally used in a liquid crystal display device, and includes one obtained by coating both surfaces of a polarizer with a protective film. The above-mentioned optical compensation film may be substituted for the cell-side surface) instead of the protective film, and in this way, the liquid crystal display device can be made thinner and the manufacturing efficiency can be improved.
Bonding with a polarizing plate is a method in which a polarizing plate roll and a retardation plate roll are wound in parallel and bonded between nip rolls (FIG. 1a), and a retardation plate is attached to a polarizing plate that runs on a smooth surface. Although there is a method of combining (FIG. 1b), etc., either bonding method may be used.
The optical compensation film unwound from the optical compensation film roll according to the present invention is less likely to curl and can be uniformly bonded without causing any deviation or unexpected stress during polarizing plate bonding.

本発明の光学補償フィルムは、上述した内容であるので、ロールから巻き出された光学補償フィルムはカールの発生が小さく、偏光板貼合時にズレ発生や想定外の応力が掛かることなく、均一に貼合することが可能となる。   Since the optical compensation film of the present invention has the above-mentioned contents, the optical compensation film unwound from the roll has a small amount of curling, and is uniform without any occurrence of misalignment or unexpected stress during polarizing plate bonding. It becomes possible to paste.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
1)原反の準備
熱可塑性飽和ノルボルネン系樹脂として、市販のノルボルネン系樹脂(ゼオノア#1600、日本ゼオン社製)を単軸溶融押出機にTダイを配置してなる溶融押出成形機にて230℃の溶融温度で押出成形を行い、幅800mm、平均厚み100μmのフィルムを得た。
2)Tgの測定
上記で得られたフィルムのTgをDSC220C(セイコー電子工業社製)を用いて測定したところTgは161.0℃であった。
3)延伸(横延伸)・測定
一般的なテンタークリップを用いた横延伸装置において、予熱温度150℃、延伸温度163℃、熱緩和温度163℃、冷却温度120℃のゾーン構成で200%の倍率で拡幅し正面位相差Re(=(ny−nx)×d)=210nmの遅相軸がTD方向を向いた光学補償フィルムを作製した。(図2参照)
4)縦延伸・測定
上記3)で作製したフィルムを、ロール間縦一軸延伸装置を用いて、予熱温度100℃、延伸温度161℃、冷却温度100℃のゾーン構成で、115%一軸延伸を行って、Re=80nm、Rth=150nmの二軸性光学補償フィルムを作製した
5)巻取り
4)で冷却ゾーンから出た光学補償フィルムに総厚60μmのポリエチレン系保護フィルム(積水化学工業株式会社製 #6221F)を貼合せ、その後シアー刃方式のスリッターにて700mm幅にスリットして、表1に示したように、実施例として外形150mmの塩ビ芯と比較例として外径75mmの塩ビ芯に各500mと1000m巻き取って4種類のロールフィルムを得た。その後40℃に調温された部屋において500時間放置した。
6)カールの評価
上記4種類のフィルムを23℃×55%RHに調温調湿された部屋に24時間放置し、その後巻出して、巻芯部分に20m残した状態にし、そこから長手方向に全幅×500mmのサンプルを切り出し、同室にて水平な机上にカールが大きくなる方向に10分間放置し、最もカールの大きい部分の高さを測定した。結果は表1のとおりであった。
7)位相差(Re)の測定
上記4種類のフィルムを、ラミネーターを用いて偏光板(HLC2−5618、サンリッツ社製)にロール方式で貼り合わせた。貼り合わせ品を100mm×100mmの大きさに切りだし、厚さ2mmのアルカリガラスにラミネーターを用いて貼り合わせた後、オートクレーブを用いて50℃、4.9MPaの条件で20分間処理を行った。処理後30分放置した後に、位相差計(KOBRA−WR、王子計測社製)を用いて中心部のReを測定し、100℃のオーブン中で24時間処理した後に、30分間放冷し中心部のReを測定した。結果を表1に示した。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
1) Preparation of raw fabric As a thermoplastic saturated norbornene-based resin, a commercially available norbornene-based resin (Zeonor # 1600, manufactured by Nippon Zeon Co., Ltd.) is used in a melt extrusion molding machine in which a T-die is disposed in a single-screw melt extruder. Extrusion was performed at a melting temperature of 0 ° C. to obtain a film having a width of 800 mm and an average thickness of 100 μm.
2) Measurement of Tg When Tg of the film obtained above was measured using DSC220C (manufactured by Seiko Denshi Kogyo Co., Ltd.), Tg was 161.0 ° C.
3) Stretching (lateral stretching) / measurement In a transverse stretching apparatus using a general tenter clip, a magnification of 200% in a zone configuration with a preheating temperature of 150 ° C., a stretching temperature of 163 ° C., a thermal relaxation temperature of 163 ° C., and a cooling temperature of 120 ° C. And an optical compensation film having a slow axis with a front phase difference Re (= (ny−nx) × d) = 210 nm in the TD direction was produced. (See Figure 2)
4) Longitudinal Stretching / Measurement Using the inter-roll longitudinal uniaxial stretching apparatus, the film produced in 3) above was subjected to 115% uniaxial stretching in a zone configuration with a preheating temperature of 100 ° C, a stretching temperature of 161 ° C, and a cooling temperature of 100 ° C. Thus, a biaxial optical compensation film having Re = 80 nm and Rth = 150 nm was prepared. 5) Winding 4) A polyethylene protective film having a total thickness of 60 μm (made by Sekisui Chemical Co., Ltd.) # 6221F), and then slit to 700 mm width with a shear blade type slitter. As shown in Table 1, each of the examples is divided into a PVC core having an outer diameter of 150 mm as an example and a PVC core having an outer diameter of 75 mm as a comparative example. 500 m and 1000 m were wound up to obtain four types of roll films. Thereafter, it was left in a room adjusted to 40 ° C. for 500 hours.
6) Evaluation of curls The above four types of films are left in a room where the temperature and humidity are controlled at 23 ° C. × 55% RH for 24 hours, and then unwound to leave 20 m in the core portion, from there in the longitudinal direction. A sample with a total width of 500 mm was cut out and left in the same room on a horizontal desk for 10 minutes in the direction of increasing curl, and the height of the portion with the largest curl was measured. The results are shown in Table 1.
7) Measurement of retardation (Re) The above four kinds of films were bonded to a polarizing plate (HLC2-5618, manufactured by Sanlitz) by a roll method using a laminator. The bonded product was cut into a size of 100 mm × 100 mm, bonded to 2 mm thick alkali glass using a laminator, and then treated for 20 minutes at 50 ° C. and 4.9 MPa using an autoclave. After being left for 30 minutes after the treatment, Re at the center is measured using a phase difference meter (KOBRA-WR, manufactured by Oji Scientific), treated in an oven at 100 ° C. for 24 hours, and then allowed to cool for 30 minutes. The Re of the part was measured. The results are shown in Table 1.

Figure 2005309339
Figure 2005309339

偏光板に光学補償フィルムを貼り付ける方法の模式図。The schematic diagram of the method of sticking an optical compensation film on a polarizing plate. 横延伸の模式図。Schematic diagram of transverse stretching.

Claims (2)

飽和環状オレフィン重合体系樹脂からなる長尺フィルムを少なくとも一方向に延伸して得られる650mm以上の有効幅を有する光学補償フィルムであって、フィルムの長手方向をx、幅方向をy、厚味方向をzとし、各方向の屈折率をnx、ny、nzと規定した場合、ny≧nx>nzの関係を満たし、外径125mm以上の巻芯に巻かれていることを特徴とする光学補償フィルム。   An optical compensation film having an effective width of 650 mm or more obtained by stretching a long film made of a saturated cyclic olefin polymer resin in at least one direction, wherein the longitudinal direction of the film is x, the width direction is y, and the thick direction Is an optical compensation film that satisfies the relationship of ny ≧ nx> nz and is wound around a core having an outer diameter of 125 mm or more, where z is a refractive index in each direction and nx, ny, nz . 長手方向に吸収軸を有する偏光フィルムの長尺体に対して、前記光学補償フィルムを巻き戻しながら、その長手方向を一致させつつ、粘着剤又は接着剤を介して連続的に貼り合わせることを特徴とする偏光板の製造方法。
The polarizing film having an absorption axis in the longitudinal direction is continuously bonded via an adhesive or an adhesive while the optical compensation film is rewound while the longitudinal direction is matched. A method for producing a polarizing plate.
JP2004130153A 2004-04-26 2004-04-26 Optical compensating film and manufacturing method for polarizing plate Withdrawn JP2005309339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130153A JP2005309339A (en) 2004-04-26 2004-04-26 Optical compensating film and manufacturing method for polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130153A JP2005309339A (en) 2004-04-26 2004-04-26 Optical compensating film and manufacturing method for polarizing plate

Publications (1)

Publication Number Publication Date
JP2005309339A true JP2005309339A (en) 2005-11-04

Family

ID=35438153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130153A Withdrawn JP2005309339A (en) 2004-04-26 2004-04-26 Optical compensating film and manufacturing method for polarizing plate

Country Status (1)

Country Link
JP (1) JP2005309339A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240570A (en) * 2006-03-06 2007-09-20 Jsr Corp Optical film roll and method of manufacturing polarizing plate
WO2007119560A1 (en) * 2006-03-31 2007-10-25 Zeon Corporation Polarizing plate, liquid crystal display and protective film
US20080068545A1 (en) * 2006-09-05 2008-03-20 Tosoh Corporation Optical compensation film and retardation film
JP2008112141A (en) * 2006-10-04 2008-05-15 Tosoh Corp Optical film
JP2009109870A (en) * 2007-10-31 2009-05-21 Tosoh Corp Optical compensation film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240570A (en) * 2006-03-06 2007-09-20 Jsr Corp Optical film roll and method of manufacturing polarizing plate
WO2007119560A1 (en) * 2006-03-31 2007-10-25 Zeon Corporation Polarizing plate, liquid crystal display and protective film
US8139181B2 (en) 2006-03-31 2012-03-20 Zeon Corporation Polarization plate, liquid crystal display device and protective film
US20080068545A1 (en) * 2006-09-05 2008-03-20 Tosoh Corporation Optical compensation film and retardation film
TWI406899B (en) * 2006-09-05 2013-09-01 Tosoh Corp Optical compensation film and phase difference film
US8545970B2 (en) * 2006-09-05 2013-10-01 Tosoh Corporation Optical compensation film and retardation film
JP2008112141A (en) * 2006-10-04 2008-05-15 Tosoh Corp Optical film
JP2009109870A (en) * 2007-10-31 2009-05-21 Tosoh Corp Optical compensation film

Similar Documents

Publication Publication Date Title
KR101425231B1 (en) Continuous stretched film, process for producing the stretched film, and use of the stretched film
JP5587063B2 (en) Biaxial optical polynorbornene-based film and manufacturing method thereof, integrated optical compensation polarizing plate including the same, manufacturing method thereof, and liquid crystal display device including the film and / or polarizing plate
US10088605B2 (en) Optical film and production method for same
KR101042213B1 (en) Retardation film, fabrication method thereof, and liquid crystal display comprising the same
TW200804064A (en) Thermoplastic film and method of producing the same, polarizing plate, optical compensation film, antireflection film and crystal display device
JP2005254812A (en) Method for manufacturing stretched film composed of thermoplastic norbornene and phase difference film
JP2005099097A (en) Optical film and its manufacturing method, and polarizing plate using optical film
JP2012215623A (en) Method for manufacturing retardation film, retardation film, composite polarizing plate, and polarizing plate
JP2008039808A (en) Method of manufacturing optical retardation film, optical retardation film, compound polarizing plate and polarizing plate
JP2003131036A (en) Optical film, manufacturing method thereof, and polarizing plate
JP2005017435A (en) Optical retardation compensation film, onjugated polarizer and liquid crystal display
JP2005309339A (en) Optical compensating film and manufacturing method for polarizing plate
JP2005004096A (en) Phase difference compensating film, method for manufacturing the same composite polarizing plate, polarizing plate, and liquid crystal display device
CN110959126B (en) Polarizing plate
KR101188751B1 (en) Acryl-based retardation film with positive birefringence and liquid crystal display comprising the same
JP2006308917A (en) Manufacturing method of retardation film, retardation film, composite polarizing plate, liquid crystal display device and polarizing plate
JP2006285136A (en) Manufacturing method of retardation film, retardation film, composite polarizing plate and polarizing plate
JP2006018212A (en) Method for manufacturing retardation film
JP2011156874A (en) Method for manufacturing polyvinyl alcohol-based film
JP2005010413A (en) Retardation compensation film, composite polarizing plate, polarizing plate, liquid crystal display device, and manufacturing method of retardation compensation film
JP2009288334A (en) Phase difference film, laminated polarizing film, and liquid crystal display device
KR101146169B1 (en) Resin composition for optical film and optical film comprising the same
KR101150290B1 (en) Resin composition for optical film and optical film comprising the same
JP2013200408A (en) Retardation plate and manufacturing method of the same
WO2022145152A1 (en) Optical film and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A761 Written withdrawal of application

Effective date: 20080125

Free format text: JAPANESE INTERMEDIATE CODE: A761