JP2004132812A - 力検知素子 - Google Patents

力検知素子 Download PDF

Info

Publication number
JP2004132812A
JP2004132812A JP2002297126A JP2002297126A JP2004132812A JP 2004132812 A JP2004132812 A JP 2004132812A JP 2002297126 A JP2002297126 A JP 2002297126A JP 2002297126 A JP2002297126 A JP 2002297126A JP 2004132812 A JP2004132812 A JP 2004132812A
Authority
JP
Japan
Prior art keywords
gauge
force
force transmitting
mesa
transmitting body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002297126A
Other languages
English (en)
Other versions
JP4254192B2 (ja
Inventor
Kentarou Mizuno
水野 健太朗
Atsushi Tsukada
塚田 厚志
Jiro Sakata
坂田 二郎
Yoshiteru Omura
大村 義輝
Shoji Hashimoto
橋本 昭二
Masayoshi Masuoka
増岡 優美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2002297126A priority Critical patent/JP4254192B2/ja
Priority to US10/659,294 priority patent/US7021154B2/en
Publication of JP2004132812A publication Critical patent/JP2004132812A/ja
Application granted granted Critical
Publication of JP4254192B2 publication Critical patent/JP4254192B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】力伝達体の中心部でゲージ部を押圧するように配置することによって、精度良くかつ高感度に荷重を検知する。
【解決手段】基板の一方の主面には、円柱状のゲージ部32及びゲージ部32を中心とするリング状力伝達体支持部34が形成されている。力伝達体支持部34は、リング状であるため、円柱状ゲージ部32を中心として完全対称になる。ゲージ部とゲージ部に対して対称となるように形成した力伝達体支持とにより力伝達体を支持するようにしたので、力伝達体に過大な荷重が作用したときでも、ゲージ部にはバランスよく応力が作用するため、強度に優れ、またゲージ部が力伝達体の応力が大きくなる領域によって押圧されるため、精度良くかつ高感度に荷重を検知することができる
【選択図】  図4

Description

【0001】
【発明の属する技術分野】
本発明は、力検知素子に係り、特に、圧縮力を電気信号に変換する半導体のピエゾ抵抗効果を用いて荷重等を検知する力検知素子に関する。
【0002】
【従来の技術】
従来より、荷重やエンジンのシリンダ内燃焼圧力等を検知するために使用される力検知素子として、ピエゾ抵抗素子を利用した小型の力検知素子が知られている。ピエゾ抵抗素子は、歪み(応力変形)に応じて歪みが生じた部分の抵抗率が変化する素子である。このピエゾ抵抗素子は、一般に、半導体製造技術により単結晶Si基板の主面上に形成されたゲージ抵抗によって構成されている。
【0003】
従来の力検知素子は、(110)面を主面とする単結晶Si基板上に、ピエゾ抵抗係数π13を利用したピエゾ抵抗効果を持つ4つのメサ型ゲージ抵抗を<100>方向及び<110>方向に沿って、主面の中心に対して対称な位置に形成してホイートストンブリッジを構成し、このホイートストンブリッジの上に力伝達ブロックを配置して構成されている(例えば、特許文献1参照)。
【0004】
この力検知素子では、力伝達ブロックに力が作用すると、力伝達ブロックから単結晶Si基板の厚み方向に応力が伝達されるので、この応力の方向に対して垂直方向に電流が流れるように電圧を印加する。そして、応力に応じて発生するゲージ抵抗のピエゾ抵抗効果が<100>方向と<110>方向とで異なることから、抵抗値に差が生じることを利用し、この抵抗値の差を電圧差として検知することで力伝達ブロックに作用した荷重等の力を検知している。
【0005】
また、ピエゾ抵抗素子上に配置される力伝達ブロックは、ピエゾ抵抗素子への力伝達特性を考慮して、高剛性の直方体状力伝達体と直方体状力伝達体の上に配置された半球状力伝達体とにより構成されている(例えば、特許文献2参照)。この力伝達ブロックでは、半球状力伝達体により半球上部に作用する1点集中荷重を半球下面で等分布荷重とし、直方体状力伝達体を介してピエゾ抵抗素子のゲージ部を押圧して変形させている。
【0006】
【特許文献1】
特開平8−271363号公報
【特許文献2】
特開2001−305001号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来の力検知素子では、(メサ型)ゲージ抵抗が主面の中心に配置されていないため、力伝達ブロック、ゲージ抵抗、及び単結晶Si基板が変形する程の荷重・圧力が力伝達ブロックに作用したときに、高精度には荷重を検知できない。また、過大荷重に対しても更なる高耐圧が求められている。
【0008】
この問題を解決するために、単結晶Si基板の主面の中心部に力伝達部を支持する直方体状の支持部を形成することも考えられるが、力伝達ブロックがゲージ部以外に支持部にも接触することから、力伝達ブロックの接触面積が増大し、単位面積当たりに作用する応力が減少し、更に力伝達ブロックから支持部に最も大きな荷重が伝達され、ゲージ部には大きな荷重が伝達されなくなり、更なる高感度化には限界がある。
【0009】
本発明は、上記問題を解決すべく成されたもので、ゲージ部にバランスよく力が作用するようにして、精度良くかつ高耐圧、高感度に荷重等の力を検知することができるようにした力検知素子を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明は、ゲージ部と、前記ゲージ部に電流経路を形成するための電極と、作用した力を前記ゲージ部に伝達する力伝達体と、を含む力検知素子であって、前記力伝達体から伝達される力が作用する領域の中心に前記ゲージ部の力を受ける領域の中心が位置するように前記ゲージ部を配置したことを特徴とする。
【0011】
本発明では、力伝達体から伝達される力が作用する領域の中心にゲージ部の力を受ける領域の中心が位置するようにゲージ部を配置したので、力伝達体から伝達される力が作用する領域の中心によってゲージ部の中心が押圧される。これによって、ゲージ部は力伝達体の応力が大きくなる領域(例えば、中心部)の直下に位置することになり、このゲージ部によって力伝達体が支持される。このため、力伝達体に過大な荷重が作用したときに、ゲージ部にはバランスよく応力が作用するので、充分な強度が得られ、またゲージ部が力伝達体の応力が大きくなる領域によって押圧されるので、精度良くかつ高感度に荷重を検知することができる。
【0012】
ピエゾ抵抗係数π11のピエゾ抵抗効果を利用する場合、本発明のゲージ部は、(110)面を主面とするp型半導体基板、(111)面を主面とするp型半導体基板、または(100)面を主面とするn型半導体基板自体で形成され、かつ力伝達体から伝達される力によって半導体基板の厚み方向に押圧されるゲージ部で構成することができる。また、他の係数のピエゾ抵抗効果を利用する場合には、半導体基板上にエピタキシャル成長等によって形成されたピエゾ抵抗効果を有するメサ型ゲージ部で構成することもできる。
【0013】
ゲージ部をメサ型ゲージ部で構成した場合には、メサ型ゲージ部が力伝達体のエッジ部と交差しないように配置するのが好ましい。このように配置することにより、力伝達体のエッジ部がメサ型ゲージ部等に接触しないので、力伝達体のエッジ部に強度低下が生じていても経年変化や過大圧力に対してより安定な特性が得られる。
【0014】
また、ゲージ部をメサ型ゲージ部で形成した場合には、メサ型ゲージ部の前記力伝達体から伝達される力が大きくなる領域の単位長さ当たりの抵抗値を、前記メサ型ゲージ部の他の領域の単位長さ当たりの抵抗値より大きくするのが効果的である。この抵抗値は、メサ型ゲージ部の力伝達体から伝達される力が大きくなる領域の幅を、メサ型ゲージ部の他の領域の幅より狭くするか、または、メサ型ゲージ部の力伝達体から伝達される力が大きくなる領域の不純物拡散領域の幅を、メサ型ゲージ部の他の領域の不純物拡散領域の幅より狭くすることにより、大きくすることができる。このように抵抗値を大きくすることにより、より高感度に荷重を検知することができる。
【0015】
なお、上記のように幅を狭くすると、高抵抗になることに加えて、メサ型ゲージ部の幅狭部の圧縮応力が更に大きくなり、これによってより高感度に荷重を検知することができる。
【0016】
本発明では、力伝達体を支持するように、ゲージ部に対して対称に配置された支持部を更に含むようにすることができる。すなわち、力伝達体を支持する支持部をメサ型ゲージ部に対して線対称に複数個形成したり、ゲージ部を円柱等の柱状ゲージ部で形成し、力伝達体支持部をこのゲージ部を中心として完全対称となるように形成したリング支持部で支持するように構成したり、柱状ゲージ部を中心とする円周上に等間隔に複数個の支持部を配置したりすることができる。
【0017】
このように力伝達体を支持する支持部を配置することにより、力伝達体を更に安定に支持することができるため、ゲージ部にはよりバランスよく応力が作用し、より高感度に荷重を検知することができる。なお、力伝達体の力を伝達する領域とゲージ部の力を受ける領域とが同じ大きさまたは略同じ大きさの場合には、この支持部を配置しなくてもよい。
【0018】
上記で説明したピエゾ抵抗係数π11のピエゾ抵抗効果を利用する場合は、(110)面を主面とするp型シリコン単結晶の場合には<110>方向、(111)面を主面とするp型シリコン単結晶の場合には<111>方向、(100)面を主面とするn型シリコン単結晶の場合には、<100>方向に、各々最大の感度を持つので、各々高感度を有する結晶方向に電流経路が形成されるようにゲージ部を形成するのがよい。また、ピエゾ抵抗係数π12を利用する場合には、(100)面上の<110>方向のp型ゲージを利用するとよいが、<100>方向でも良い。ピエゾ抵抗係数π13を利用する場合には、(110)面上の<110>方向にp型ゲージを形成すると高感度にすることができる。
【0019】
上記の利用するピエゾ抵抗係数、基板の種類、結晶面、電流経路が形成される結晶方向をまとめると以下の表に示すようになる。
【0020】
【表1】
Figure 2004132812
【0021】
【発明の実施の形態】
以下、図面を参照して本発明の力検知素子の実施の形態のについて詳細に説明する。図1に示すように、本実施の形態の力検知素子24は、検知素子部20と、検知素子部20の上面に載置された半球状の力伝達体22とによって構成されている。
【0022】
力伝達体22は、高電気導電性材料で構成するのが好ましく、また電気導電性を有しない材料や、低電気導電性材料で構成した場合には、力伝達体22の表面に、Ni無電解メッキ等の電気導電性処理を施し、電気導電性が良好になるように構成すればよい。
【0023】
次に、力検知素子の検知素子部について詳細に説明する。第1の実施の形態の力検知素子の検知素子部を図2〜図3に示す。
【0024】
検知素子部を構成する半導体基板としては、(110)面を主面とするp型半導体(例えば、シリコン単結晶)基板、または(100)面を主面とするn型半導体(例えば、シリコン単結晶)基板、または(111)面を主面とするp型半導体(例えば、シリコン単結晶)基板を用いることができる。これらの基板は、下部電極とオーミック接触が得られるように、例えば、0.01Ω・cmレベルか、またはそれ以上の不純物の濃度を有する基板が使用される。
【0025】
以下では、半導体基板としてシリコン単結晶基板を用いた場合について説明する。シリコン単結晶基板の一方の主面には、円柱状のゲージ部32及びゲージ部32を中心とするリング状力伝達体支持部34が形成され、他方の主面には下部電極40が形成されている。このゲージ部32には、シリコン単結晶基板の厚み方向に電流が流れるように、すなわち、シリコン単結晶基板の厚み方向に電流経路が形成されるように、下部電極40と対向させて上部電極38が形成されている。
【0026】
この検知素子部は、以下のようにして製造される。まず、シリコン単結晶基板上に、エピタキシャル成長により、例えば抵抗値0.1〜1Ω・cm、厚さ1〜3μmのエピタキシャル層を成長させる。
【0027】
次に、図2及び図3に示すように、一方の主面の中心に円柱状ゲージ部32が形成されると共に、円柱状ゲージ部32を中心とするリング状力伝達体支持部34が形成されるように、エピタキシャル層の不用部分をエッチングにより除去する。力伝達体支持部34は、リング状であるため、円柱状ゲージ部32を中心として完全対称に形成されている。
【0028】
その後、シリコン単結晶基板上面(主面)の全面に、SiO膜36からなる絶縁膜を形成する。エピタキシャル層の厚さが1〜3μmであるので、円柱状ゲージ部32及びリング状力伝達体支持部34の高さは、1〜3μm程度である。
【0029】
円柱状ゲージ部32の上面に形成されたSiO膜は、ウエットエッチングによりコンタクトホールが形成され、Alスパッタと反応性イオンエッチングによりこのコンタクトホールを介してゲージ部32とオーミック接触した第1の電極としての上部電極38が形成されている。
【0030】
また、シリコン単結晶基板の下面には、全面にわたって第2の電極としての下部電極40が形成されている。
【0031】
これによって、上部電極38と下部電極40とは対向して形成され、上部電極38と下部電極40との間に電圧を印加したときに、上部電極38から下部電極40へ向かう電流経路が形成される。この電流経路は、シリコン単結晶基板の厚み方向を向いており、例えば、p型シリコン単結晶基板の場合には図3に示すように<110>方向または<111>方向、n型シリコン単結晶基板の場合には図4に示すように<100>方向に形成される。
【0032】
上部電極及び下部電極の材料としては、オーミック接触が得られる材料であれば良く、上記で説明したAl、またはAl合金を使用することができるが、材料強度の面からはW,Ni,Ti,Cr等のいずれかが望ましく、電極の最表面は、酸化され難い金属材料、例えばAuでコーティングするのが好ましい。
【0033】
ゲージ部32の形状は、ゲージ部の目的とする抵抗値により決定される。ゲージ部の抵抗値は、下記の式で表されるので、例えば、汎用的に使用されている歪ゲージのゲージ抵抗(120Ω〜1kΩ)を用いると、例えば、円柱状ゲージ部の比抵抗を0.1Ω・cm、ゲージ高さを3μm、円柱状ゲージ部の直径を5μmとすれば、ゲージ抵抗値として約160Ωが得られる。
【0034】
ゲージ部の抵抗が比較的高いエピタキシャル層(例えば、1Ωレベル)を用いる場合は、上部電極とのオーミック接触が得られ難いため、この場合には、例えばイオン注入技術によりゲージ部表面に浅い高濃度層を形成すればよい。同様に、下部電極とのオーミック接触が得にくい場合には、下部電極と基板との接触面の不純物濃度を高くすればよい。
【0035】
ゲージ部の抵抗値=ゲージ部の比抵抗(エピタキシャル層濃度)
×ゲージ厚さ÷ゲージ部の表面積
なお、円柱状ゲージ部の直径及び高さの上下限値は、荷重作用下でのゲージ部の破壊耐久性及び出力感度により決定される。
【0036】
また、上記ではリング状の力伝達体支持部について説明したが、ゲージの出力感度及び破壊耐久性に影響を与えないような形状であればよく、特に限定されず、ゲージ部を中心とした四角形や五角形等の多角形状に形成してもよい。
【0037】
力伝達体22に作用した荷重は、上側電極38に伝達され、ゲージ部32を電流経路の方向に押圧する。この押圧力は、シリコン単結晶基板のピエゾ抵抗係数π11によるピエゾ抵抗効果に基づく抵抗変化に変換される。従って、定電流駆動した場合は、抵抗変化に伴う電圧の変化から力伝達体22に作用した荷重を正確に検知することができる。
【0038】
なお、上記では、エピタキシャル成長させた部分にゲージ部を形成する例について説明したが、図5に示すようにエピタキシャル成長していないシリコン単結晶基板をダイシング加工等により削り出してゲージ部32及び支持部34を形成してもよい。この場合、ゲージ部はシリコン単結晶基板自体で形成される。
【0039】
次に、第2の実施の形態の力検知素子の検知素子部を図6〜図8を参照して説明する。なお、以下の実施の形態の検知素子部は、上記で説明した方法を用いて製造することができ、電極等の材料も上記で説明した材料を使用することができる。
【0040】
この第2の実施の形態は、リング状力伝達体支持部に代えて、複数の円柱状力伝達体支持部を円周上に等間隔に配置することによって、ゲージ部に対して点対称に力伝達体支持部を配置したものである。このため、図6〜図8において、図2〜図4と対応する部分には同一符号を付して説明を省略する。
【0041】
この実施の形態では、図6、図7に示すように、エピタキシャル層の不用部分がエッチングにより除去されて、一方の主面の中心に形成された円柱状ゲージ部32を中心とする円周上に、等間隔に複数個(例えば、4個)の円柱状力伝達体支持部35が形成されている。この力伝達体支持部35の高さは、円柱状ゲージ部32と同様に1〜3μm程度であり、ゲージ部に対して点対称に配置されている。
【0042】
なお、図7は、p型シリコン単結晶基板を用い、電流経路を<110>方向、または<111>方向に形成した例を示すものであり、図8は、n型シリコン単結晶基板を用い、電流経路を<100>方向に形成した例を示すものである。また、複数の力伝達体支持部の配置位置及び各力伝達体支持部の形状は、ゲージの出力感度及び破壊耐久性に影響を与えないような配置及び形状であればよく、特に限定されない。
【0043】
通常、半導体回路は、(100)面またはこの面と等価な結晶面に形成されるので、第1及び第2の実施の形態においてn型シリコン単結晶(100)基板を使用すれば、半導体荷重センサに増幅器や駆動回路を容易に組合せることができるため、これまで困難であった制御回路一体型センサが実現可能となる。
【0044】
第2の実施の形態においても、第1の実施の形態の変形例(図5)で説明したように、エピタキシャル成長していないシリコン単結晶基板をダイシング加工により削り出してゲージ部及び支持部を形成してもよい。この場合も、ゲージ部はシリコン単結晶基板自体で形成されることになる。
【0045】
次に、図9(A)、(B)を参照して、第3の実施の形態の力検知素子の検知素子部を説明する。第3の実施の形態は、ピエゾ抵抗係数π13を利用したピエゾ抵抗効果に対して最大感度を有する方向に延在するようにメサ型ゲージ部を形成し、力伝達体支持部をメサ型ゲージ部に対して線対称に複数(本実施の形態では4個)配置したものである。
【0046】
図に示すように、(110)面を主面とするn型シリコン単結晶基板50の主面上には、中心が主面の中心に重なり、かつ<110>方向に延在するように、断面矩形状のp型のメサ型ゲージ部52が形成されている。また、このメサ型ゲージ部52の両端には、メサ型ゲージ部52に連続した電極配置部54が形成されている。メサ型ゲージ部52及び電極配置部54の表面から所定深さの領域には、p型の不純物層56が形成されている。
【0047】
シリコン単結晶基板50の主面上であって、メサ型ゲージ部52に対して対称な位置には、4個の円柱状の力伝達体支持部62が形成されている。
【0048】
シリコン単結晶基板50の主面側は、p型の不純物層56が形成されたメサ型ゲージ部52、電極配置部54、及び力伝達体支持部62を覆うように、SiO膜58で構成された酸化膜により被覆されている。
【0049】
SiO膜58で被覆された各々の電極配置部54の上には、各々電極配置部54と略相似形の電極60が形成されている。電極60の各々は、電極60の裏面に形成され、かつSiO膜58にエッチングにより穿設されたコンタクトホールを貫通するコンタクト部60Aを介して、電極配置部54の不純物層56にオーミック接触されている。
【0050】
SiO膜58で被覆されたメサ型ゲージ部52及び力伝達体支持部62の上方には、パイレックス(R)ガラス等のガラスブロックで形成された直方体状の力伝達体64が載置される。更に、力伝達体64の上に上記で説明した半球状の力伝達体22が載置されてもよい。直方体状の力伝達体64を載置したときに、メサ型ゲージ部52は、力伝達体64の裏面の中心を通り、かつ裏面の対向する辺の一方から他方に延びる帯状部分で力伝達体64を支持し、力伝達体支持部62は、力伝達体64の4つの角部で力伝達体64を支持する。このため、力伝達体64の最も応力が大きくなる中心部でメサ型ゲージ部52が押圧されることになる。
【0051】
本実施の形態では、力伝達体64に荷重が作用すると、メサ型ゲージ部52が歪み、または作用した応力により抵抗率が変化するので、この抵抗率変化から荷重を検知することができる。また、メサ型ゲージ部は、力伝達体の重心の直下に位置し、対称性よく配置した支持部によりゲージ部にはバランスよく応力が作用しているので、高精度に荷重・圧力を検知することができ、対称配置によりバランスよい応力分布が得られ、耐圧・耐荷重特性に優れる。
【0052】
第3の実施の形態の変形例を図10及び図11に示す。図10に示す変形例は、第3の実施の形態の円柱状の力伝達体支持部に代えて、メサ型ゲージ部52に対して線対称の位置に、メサ型ゲージ部52と並行に形成されたメサ型力伝達体支持部66を用いるようにしたものである。また、図11に示す変形例は、図10の各々のメサ型力伝達体支持部の両端をメサ型ゲージ部52方向に直角に伸ばして形成した、コ字状のメサ型力伝達体支持部68を用いるようにしたものである。
【0053】
次に、図12(A)を参照して第4の実施の形態の検知素子部を説明する。この実施の形態は、メサ型ゲージ部の中心領域の幅を、メサ型ゲージ部の他の領域の幅より狭くしたものである。これにより、メサ型ゲージ部の前記力伝達体から伝達される力が大きくなる領域の幅が、メサ型ゲージ部の他の領域の幅より狭くなる。なお、本実施の形態は、第3の形態と同様であるので、図9(A)と対応する部分には同一符号を付して説明を省略する。
【0054】
図に示すように、本実施の形態のメサ型ゲージ部68は、両端から中心に向かって幅が連続して徐々に狭くなるように形成することによって、メサ型ゲージ部の中心領域の幅が狭くなるように形成されている。このように幅を狭くすると、メサ型ゲージ部の幅狭部の圧縮応力が更に大きくなり、かつ幅狭であることから単位長さ当たりの抵抗値が大きくなって高抵抗となり、これによってより高感度に荷重を検知することができる。
【0055】
なお、本実施形態では、幅を連続して狭くする例について説明したが、段階的に幅を狭くしてもよく、また中心部分のみ幅を狭くするようにしてもよい。また、力伝達体支持部は、図10または図11で説明したメサ型力伝達体支持部を用いるようにしてもよい。
【0056】
図12(B)は、第4の実施の形態の変形例を示すものである。この変形例では、メサ型ゲージ部の幅を変更せずに、メサ型ゲージ部の中心領域の不純物の拡散領域69の幅をメサ型ゲージ部68のメサ幅より狭くし、メサ型ゲージ部の中心領域の不純物の拡散幅が、他の領域の不純物の拡散幅より狭くなるように形成されている。これにより、ゲージ部中心付近の単位長さ当たりのゲージ抵抗値が他の部分より大きくなるようにされている。この変形例によれば、メサ幅を変更することなく、不純物の拡散のみによって単位長さ当たりのゲージ抵抗値を大きくしているので、製造が簡単になる。
【0057】
次に、図13(A)、(B)を参照して、本発明の第5の実施の形態の検知素子部を説明する。図に示すように、(110)面を主面とするn型シリコン単結晶基板70の主面上には、中心が主面の中心に重なり、かつ<110>方向に所定長さで延在した四角錐台状のメサ型ゲージ部72が形成されている。また、このメサ型ゲージ部72を挟むように、四角錐台状の一対のメサ型電極配置部74が形成されている。この電極配置部74は、上記の実施の形態と異なりメサ型ゲージ部とは連続していない。
【0058】
メサ型ゲージ部72の表面、メサ型ゲージ部72と一方の電極配置部74との間の部分であってメサ型ゲージ部72の幅と同じ幅の領域、及び、この領域と同じ幅の電極配置部74の側面及び上面の一部の領域には、表面から所定深さの領域にp型の不純物が拡散されて、荷重に対する感度が零の拡散引出し部76が形成されている。なお、拡散引出し部76の他方の電極配置部74側は、メサ型ゲージ部72と他方の電極配置部74との間の部分の途中の領域まで延びている。
【0059】
シリコン単結晶基板70の主面上であって、メサ型ゲージ部72に対して対称な位置には、4個の円錐台状の力伝達体支持部82が形成されている。
【0060】
シリコン単結晶基板70の主面側は、拡散引出し部76、電極配置部74、及び力伝達体支持部82を覆うように、SiO膜78で構成された酸化膜により被覆されている。
【0061】
SiO膜78で被覆された一方の電極配置部74の上には、電極配置部74と略相似形の電極80が形成され、SiO膜78で被覆された他方の電極配置部74の上には、メサ型ゲージ部72方向に延びた引出し部81Aが形成された電極81が形成されている。電極80は、電極80の裏面に形成され、かつSiO膜78にエッチングにより穿設されたコンタクトホールを貫通するコンタクト部を介して、また電極81の引出し部81Aは、引出し部81Aの裏面に形成され、かつSiO膜78にエッチングにより穿設されたコンタクトホールを貫通するコンタクト部を介して、各々拡散引出し部76にオーミック接触されている。
【0062】
SiO膜78で被覆されたメサ型ゲージ部72及び力伝達体支持部82の上方には、上記で説明したように、パイレックス(R)ガラス等のブロックで形成された直方体状の力伝達体64が載置される。
【0063】
本実施の形態では、力伝達体64に荷重が作用すると、メサ型ゲージ部72が歪み、抵抗が変化するので、この抵抗変化から荷重を検知することができる。また、メサ型ゲージ部は、力伝達体の重心の直下に位置している、すなわち平均圧縮応力よりも大きな応力が作用し易い位置に位置しているので、高感度に荷重を検知することができる。また、力伝達体54をガラスで構成した場合には、特にエッジ部が加工時にチッピングにより強度低下することが考えられるが、本実施の形態ではメサ型ゲージ部とガラスエッジ部とが交差しないため、経年変化や過大荷重に対しても安定な特性が得られる。更に、上記ではエッジ部両端と電極とを異なる手法で電気的に接続する例について説明したが、同じ手法で接続するようにしてもよい。
【0064】
なお、本実施の形態の力伝達体は、図10及び図11で説明したように、側面が半導体基板表面と垂直となるメサ型に形成するようにしてもよく、上記第3、第4の実施の形態では、メサ型ゲージの側面を垂直(第3の実施の形態)、または傾斜(第4の実施の形態)させて説明したが、側面形状は特に限定しない。
【0065】
次に、図14を参照して、本発明の第6の実施の形態を説明する。本実施の形態では、(110)面を主面とするn型シリコン単結晶基板を用いている。このシリコン単結晶基板の主面には、中心が主面の中心に重なり、かつ感度が最大である<110>方向に延在するようにp型のメサ型ゲージ部86が形成されている。このメサ型ゲージ部86の両端には、中間部においてこのメサ型ゲージ部86に連続する長さが同一の引出し部88が、<100>方向に沿って平行に形成されている。引出し部88は、後述するように作用する荷重に対する感度が低いので力伝達体を支持する力伝達体支持部として機能する。
【0066】
引出し部88の各々の基端部は、矩形状の電極配置部90に連続しており、メサ型ゲージ部86、引出し部88、及び電極配置部90は、SiO膜からなる絶縁膜によって被覆されている。
【0067】
SiO膜によって被覆された各電極配置部90の上面には、電極92が形成されている。この電極は、SiO膜に穿設されたコンタクトホールを介して電極配置部90とオーミック接続されている。
【0068】
メサ型ゲージ部86及び引出し部88の上には、直方体状の力伝達体64が載置され、力伝達体64の重心直下が力伝達体64の下部に位置するメサ型ゲージ部86によって支持され、また力伝達体64は一対の引出し部88によっても支持される。
【0069】
このメサ型ゲージ部86は、大きな抵抗率変化を示す(最大感度を有する)<110>方向に延在しているため、図16(A)に示すように、垂直荷重(ゲージ頂部の圧縮応力)に対する抵抗率変化の特性は、初期荷重では感度が若干低くなり、中程度の荷重で最適な感度を示し、高い荷重に対しては感度が若干高くなるため、S字カーブとなり、大きく抵抗が変化する領域まで良好な直線性が得られていない。また、引出し部88は、感度が非常に低い<100>方向に延在しているため、図16(B)に示すように、初期荷重に対して若干上に凸の感度を有し、高い荷重に対しては若干下に凸の感度を有する。
【0070】
本実施の形態では、電極92間に電圧を印加した状態で力伝達体64に荷重が作用すると、メサ型ゲージ部86に圧縮応力が作用し、メサ型ゲージ部86の抵抗が図16(A)示す特性に応じて抵抗値が変化すると共に、引出し部88の抵抗が図16(B)示す特性に応じて抵抗値が変化する。このとき、電流は、一方の引出し部88の1/2の部分、メサ型ゲージ部86、及び他方の引出し部88の1/2の部分からなる直列接続部分を流れる。このため、この直列接続部分の荷重に対する抵抗変化は、図16(A)の特性と図16(B)の特性とを合成した図16図(C)に示すようになり、大きな荷重が作用する領域、すなわち大きく抵抗率変化が生じる領域まで良好な直線性が得られる。
【0071】
図15は、第6の実施の形態の変形例を示すものである。この変形例では、メサ型ゲージ部86を複数回折り返して形成することにより、メサ型ゲージ部86の長さをより長くすることにより、作用する荷重に対する感度を更に高くしたものである。
【0072】
なお、(110)面を主面とするn型シリコン単結晶基板に<110>方向のp型のメサ型ゲージ部を形成する例について説明したが、これらと等価な結晶面及び結晶方向を有するシリコン単結晶基板であれば、いずれも使用することができ、結晶面及び結晶方向のいずれか一方にオフセットがあっても、感度は低下するが検知素子としては機能する。
【0073】
【発明の効果】
以上説明したように本発明によれば、力伝達体から伝達される力が作用する領域の中心にゲージ部の中心が位置するようにゲージ部を配置し、力伝達体から伝達される力が作用する領域の中心によってゲージ部の力を受ける領域の中心を押圧するようにしたので、力伝達体からの応力がバランスよくゲージ部に作用し、精度良くかつ高感度に荷重を検知することができと共に耐圧に優れる、という効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態の力検知素子の拡大図である。
【図2】本発明の第1の実施の形態の検知素子部の斜視図である。
【図3】図2の検知素子部のp型シリコン単結晶基板を用いた場合の断面図である。
【図4】図2の検知素子部のn型シリコン単結晶基板を用いた場合の断面図である。
【図5】本発明の第1の実施の形態の変形例を示す断面図である。
【図6】本発明の第2の実施の形態の検知素子部の斜視図である。
【図7】図6の検知素子部のp型シリコン単結晶基板を用いた場合の断面図である。
【図8】図6の検知素子部のn型シリコン単結晶基板を用いた場合の断面図である。
【図9】(A)は本発明の第3の実施の形態の検知素子部の平面図、(B)は(A)のB−B線断面図である。
【図10】本発明の第3の実施の形態の変形例を示す平面図である。
【図11】本発明の第3の実施の形態の他の変形例を示す平面図である。
【図12】(A)は本発明の第4の実施の形態の検知素子部の平面図であり、(B)は変形例である。
【図13】(A)は、本発明の第5の実施の形態の検知素子部の平面図、(B)は、(A)のB−B線断面図である。
【図14】本発明の第6の実施の形態の検知素子部の平面図である。
【図15】第6の実施の形態の変形例を示す平面図である。
【図16】(A)は<110>方向の荷重特性を示す線図、(B)は<100>方向の荷重特性を示す線図、(C)は第6の実施の形態の荷重特性を示す線図である。
【符号の説明】
20 検知素子部
22 力伝達体
32 ゲージ部
34 力伝達体支持部

Claims (6)

  1. ゲージ部と、前記ゲージ部に電流経路を形成するための電極と、作用した力を前記ゲージ部に伝達する力伝達体と、を含む力検知素子であって、
    前記力伝達体から伝達される力が作用する領域の中心に前記ゲージ部の力を受ける領域の中心が位置するように前記ゲージ部を配置した力検知素子。
  2. 前記ゲージ部を、半導体基板上に形成されたピエゾ抵抗効果を有するメサ型ゲージ部で構成した請求項1記載の力検知素子。
  3. 前記力伝達体のエッジ部と交差しないように前記メサ型ゲージ部を配置した請求項2記載の力検知素子。
  4. 前記メサ型ゲージ部の前記力伝達体から伝達される力が大きくなる領域の単位長さ当たりの抵抗値を、前記メサ型ゲージ部の他の領域の単位長さ当たりの抵抗値より大きくした請求項2または請求項3記載の力検知素子。
  5. 前記力伝達体を支持するように、前記ゲージ部に対して対称に配置された支持部を更に含む請求項1〜請求項4のいずれか1項記載の力検知素子。
  6. 伝達された力に対して高感度を有する結晶方向に前記電流経路が形成されるように前記ゲージ部を形成した請求項1〜5のいずれか1項記載の力検知素子。
JP2002297126A 2002-09-24 2002-10-10 力検知素子 Expired - Fee Related JP4254192B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002297126A JP4254192B2 (ja) 2002-10-10 2002-10-10 力検知素子
US10/659,294 US7021154B2 (en) 2002-09-24 2003-09-11 Force sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297126A JP4254192B2 (ja) 2002-10-10 2002-10-10 力検知素子

Publications (2)

Publication Number Publication Date
JP2004132812A true JP2004132812A (ja) 2004-04-30
JP4254192B2 JP4254192B2 (ja) 2009-04-15

Family

ID=32286907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297126A Expired - Fee Related JP4254192B2 (ja) 2002-09-24 2002-10-10 力検知素子

Country Status (1)

Country Link
JP (1) JP4254192B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248371A (ja) * 2006-03-17 2007-09-27 Toyota Central Res & Dev Lab Inc 力検知素子
JP2010117179A (ja) * 2008-11-11 2010-05-27 Toyota Central R&D Labs Inc 力検知素子
JP2010139380A (ja) * 2008-12-11 2010-06-24 Ngk Spark Plug Co Ltd 圧力センサ
JP2010175445A (ja) * 2009-01-30 2010-08-12 Ngk Spark Plug Co Ltd 圧力センサ
JP2015001495A (ja) * 2013-06-18 2015-01-05 株式会社豊田中央研究所 力検知素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248371A (ja) * 2006-03-17 2007-09-27 Toyota Central Res & Dev Lab Inc 力検知素子
JP2010117179A (ja) * 2008-11-11 2010-05-27 Toyota Central R&D Labs Inc 力検知素子
US8171806B2 (en) 2008-11-11 2012-05-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Force detection element
JP2010139380A (ja) * 2008-12-11 2010-06-24 Ngk Spark Plug Co Ltd 圧力センサ
JP2010175445A (ja) * 2009-01-30 2010-08-12 Ngk Spark Plug Co Ltd 圧力センサ
JP2015001495A (ja) * 2013-06-18 2015-01-05 株式会社豊田中央研究所 力検知素子

Also Published As

Publication number Publication date
JP4254192B2 (ja) 2009-04-15

Similar Documents

Publication Publication Date Title
US7146865B2 (en) Piezoresistive strain concentrator
US10775248B2 (en) MEMS strain gauge sensor and manufacturing method
US6642594B2 (en) Single chip multiple range pressure transducer device
EP0050136A1 (en) Silicon pressure sensor
CN104748904B (zh) 一种分段质量块应力集中结构微压传感器芯片及制备方法
US6634113B1 (en) Tilt sensor and method of forming such device
CN206828092U (zh) 一种梁膜机构的微机电系统压力传感器芯片
CN113218544B (zh) 具有应力集中结构的微压传感器芯片及其制备方法
EP0303875A2 (en) Si crystal force transducer
JPH06213743A (ja) 半導体圧力センサ
JP2004132812A (ja) 力検知素子
US7021154B2 (en) Force sensing element
CN112284605B (zh) 一种十字岛梁膜高温微压传感器芯片及制备方法
EP2769191B1 (en) Sic high temperature pressure transducer
CA2470792A1 (en) Sensor formed on silicon on insulator structure and having reduced power up drift
JP4019876B2 (ja) 力検知素子
JP2624311B2 (ja) 半導体センサ
CN215217879U (zh) 一种mems压阻式压力传感器
CN114088257B (zh) 一种mems压阻式压力传感器及其制备方法
KR101318260B1 (ko) 반도체 소자 및 이를 이용하는 물리 센서
CN113340486A (zh) 一种mems压阻式压力传感器及其制备方法
JP2004125417A (ja) 半導体式圧力センサ
CN113776703A (zh) 一种线性渐变梁结构的mems压阻式压力传感器及其制备方法
JP2611330B2 (ja) 半導体圧力センサ
JPH1117195A (ja) 加速度センサの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees