JP2004132689A - Heat recovery and recycling method and system for waste activated carbon - Google Patents

Heat recovery and recycling method and system for waste activated carbon Download PDF

Info

Publication number
JP2004132689A
JP2004132689A JP2003274677A JP2003274677A JP2004132689A JP 2004132689 A JP2004132689 A JP 2004132689A JP 2003274677 A JP2003274677 A JP 2003274677A JP 2003274677 A JP2003274677 A JP 2003274677A JP 2004132689 A JP2004132689 A JP 2004132689A
Authority
JP
Japan
Prior art keywords
activated carbon
coal
waste activated
waste
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003274677A
Other languages
Japanese (ja)
Inventor
Norihiro Yaide
矢出 乃大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Ebara Engineering Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Engineering Service Co Ltd filed Critical Ebara Engineering Service Co Ltd
Priority to JP2003274677A priority Critical patent/JP2004132689A/en
Publication of JP2004132689A publication Critical patent/JP2004132689A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat recovery and recycling method and system for waste activated carbon disposed from a gas treatment and/or water treatment facility. <P>SOLUTION: The system is composed so that the waste activated carbon and coal disposed from the gas treatment and/or water treatment facility is stored in an existing coal yard 2 adjacent to a combustion facility 6. In the system, water is sprinkled on the waste activated carbon and coal via a sprinkling means 8 during storage in the coal yard 2 to remove chemicals and adsorbed components adsorbed by the waste activated carbon. The waste activated carbon and coal are pulverized by a pulverizing means 4, and a pulverized coal mixture of the waste activated carbon and the coal is burned by the combustion facility 6. In this case, low grade coal can be used as the coal. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、廃活性炭の処理方法及び装置並びに熱回収再利用方法及びシステムに関し、特にガス処理設備や水処理設備から廃棄される廃活性炭の熱回収再利用方法及びシステムに関する。 The present invention relates to a method and an apparatus for treating waste activated carbon and a method and a system for heat recovery and reuse, and more particularly to a method and a system for heat recovery and reuse of waste activated carbon discarded from a gas treatment facility or a water treatment facility.

 活性炭は、優れた吸着作用を呈することから、排ガス処理、排水処理、汚水処理、浄水処理などの諸設備で幅広く利用されている。
 例えば、燃焼排ガスのダイオキシン除去設備などの排ガス処理設備においては、活性炭を充填した活性炭吸着塔を用いており、燃焼排ガスをこの活性炭吸着塔に通過させて、燃焼排ガス中に含まれているダイオキシンなどの有害物質を活性炭に吸着させている。また、有機溶剤除去設備においては、活性炭を充填した活性炭吸着塔に、印刷工場などの有機溶剤を使用する工程からの排ガスを通過させて、トルエンなどの有機溶剤を活性炭に吸着させている。
Activated carbon, which exhibits an excellent adsorption effect, is widely used in various facilities such as exhaust gas treatment, wastewater treatment, sewage treatment, and water purification treatment.
For example, in an exhaust gas treatment facility such as a dioxin removal facility for a combustion exhaust gas, an activated carbon adsorption tower filled with activated carbon is used, and the combustion exhaust gas is passed through the activated carbon adsorption tower, and the dioxin and the like contained in the combustion exhaust gas are used. Harmful substances are adsorbed on activated carbon. Further, in the organic solvent removal equipment, an exhaust gas from a process using an organic solvent, such as a printing plant, is passed through an activated carbon adsorption tower filled with activated carbon to adsorb an organic solvent such as toluene onto the activated carbon.

 さらに、浄水処理設備においては、水道原水を凝集沈殿処理及び/又は砂濾過処理した後に、残留するカビ臭や、発ガン性物質であるトリハロメタンや、トリハロメタンの前駆物質であるフミン質等の種々の有機物質を吸着除去する工程において、粒状活性炭を用いて高度処理している。 Further, in the water purification treatment equipment, after the raw tap water is subjected to coagulation and sedimentation treatment and / or sand filtration treatment, various mold odors, trihalomethane which is a carcinogenic substance, and humic substances which are precursors of trihalomethane are used. In the step of removing organic substances by adsorption, advanced treatment is performed using granular activated carbon.

 これらガス処理設備及び水処理設備において用いられる活性炭には、除去対象物質を吸着するための薬剤が含浸されていることが多く、廃活性炭には除去対象物質ばかりでなく含浸された薬剤も含まれている。例えば、アンモニア除去用のリン酸、硫酸などの酸、硫化水素除去用の苛性ソーダなどのアルカリ剤、硫化メチル除去用の臭素などのハロゲンなどの含浸された薬剤や、アンモニア、硫化水素、メチルメルカプタン、硫化メチル、二硫化メチルなどの除去対象物質や、活性炭に吸着された除去対象物質が酸化等により変性した硫黄など、各種化学物質が含まれている。 Activated carbon used in these gas treatment facilities and water treatment facilities is often impregnated with chemicals for adsorbing substances to be removed, and waste activated carbon contains not only substances to be removed but also impregnated chemicals. ing. For example, phosphoric acid for removing ammonia, an acid such as sulfuric acid, an alkaline agent such as caustic soda for removing hydrogen sulfide, an agent impregnated with halogen such as bromine for removing methyl sulfide, ammonia, hydrogen sulfide, methyl mercaptan, Various chemical substances are included, such as a substance to be removed such as methyl sulfide and methyl disulfide, and a substance obtained by modifying a substance to be removed adsorbed on activated carbon by oxidation or the like.

 また、ガス処理設備や水処理設備において吸着剤として利用する活性炭は、永久的に使用できるものではなく、少なくとも破過する前、好ましくは吸着能が低下する前に、新しい活性炭と交換する必要がある。例えば、水処理施設における高度処理では、流入水の除去対象物質濃度が1mg/L以下と非常に低濃度であるので、活性炭の交換頻度は5〜7年に1回程度と少ないが、多量の活性炭を用いているので、交換時に廃棄される廃活性炭の量は数千トンにも上る。また、高度処理施設は都市部や大都市近郊の汚染の激しい河川の表流水や伏流水を原水とする浄水場に設置されることが多く、このような都市部の浄水場の処理能力は1日当たり数十万〜数百万トンにもなり、交換時に廃棄される廃活性炭の量が非常に多い。これら多量の廃活性炭の再利用として、かつて活性炭が高価であった時代には、古い活性炭の再生利用が主流であったが、活性炭が廉価になった現況下では、活性炭再生利用は経済的な再利用方法ではなくなっている。 In addition, activated carbon used as an adsorbent in gas treatment equipment and water treatment equipment cannot be used permanently, and it is necessary to replace it with new activated carbon at least before breakthrough, and preferably before adsorption capacity decreases. is there. For example, in the advanced treatment in a water treatment facility, the concentration of the substance to be removed is very low at 1 mg / L or less. Therefore, the exchange frequency of the activated carbon is as small as about once every 5 to 7 years. Since activated carbon is used, the amount of waste activated carbon discarded at the time of replacement amounts to several thousand tons. In addition, advanced treatment facilities are often installed in water treatment plants that use surface water or underground water of highly polluted rivers in urban areas and suburbs near large cities as raw water, and the treatment capacity of such urban water treatment plants is one. Hundreds of thousands to millions of tons per day, and the amount of waste activated carbon discarded during replacement is very large. In the days when activated carbon was once expensive, the recycling of old activated carbon was the mainstream for the reuse of these large amounts of waste activated carbon, but under the current situation where activated carbon has become inexpensive, activated carbon recycling is economical. It is no longer a reuse method.

 このため、再生利用以外の廃活性炭の再利用方法が種々提案されている。
 例えば、燃焼排ガスのガス処理で、排ガス中のダイオキシンを活性炭吸着塔に通し、ダイオキシンを除去する方式において、ダイオキシンを含む粒状活性炭を、粉砕機で粉末状活性炭にして集塵器手前に噴霧し、排ガスのダイオキシンを吸着除去する廃活性炭の利用方法が提案されている(特開2000-45647号公報)。
For this reason, various methods for reusing waste activated carbon other than recycling have been proposed.
For example, in the gas treatment of combustion exhaust gas, dioxin in the exhaust gas is passed through an activated carbon adsorption tower, and in a method of removing dioxin, granular activated carbon containing dioxin is turned into powdered activated carbon with a pulverizer and sprayed in front of a dust collector, A method of utilizing waste activated carbon for adsorbing and removing dioxin from exhaust gas has been proposed (JP-A-2000-45647).

 また、浄水処理工程から廃棄される揮発分含有量10〜20重量%、水分含有量0.1以上の廃活性炭を、コークス原料の石炭と共にコークス炉に装入する廃活性炭の利用方法が提案されている(特開2002-38161号公報)。 In addition, a method of using waste activated carbon, in which waste activated carbon having a volatile content of 10 to 20% by weight and a water content of 0.1 or more, which is discarded from the water purification process, is charged into a coke oven together with coke raw material coal, has been proposed. (JP-A-2002-38161).

 さらに、廃活性炭を製鉄所の焼結原料とし、廃活性炭中のシリカや酸化カルシウム、酸化アルミナを高炉スラグに利用し、廃活性炭の炭素と吸着物質中の炭化水素を燃料と還元剤とし、粉コークスの代替として用いる廃活性炭の利用方法が提案されている(特開2002-88416号公報)。 Furthermore, waste activated carbon is used as a raw material for sintering in steel mills, silica, calcium oxide, and alumina oxide in waste activated carbon are used for blast furnace slag, and carbon in waste activated carbon and hydrocarbons in adsorbent are used as fuel and reducing agent, A method of using waste activated carbon used as a substitute for coke has been proposed (JP-A-2002-88416).

 しかし、水処理設備から排出される廃活性炭の量は数千トン/1回にも達し、再利用に供するまで一時的に貯蔵するスペースの確保が困難である、という問題がある。
 また、浄水処理など水処理設備から排出される廃活性炭の水分含有量が50%程度と高く、コークス炉での燃焼や焼結原料として再利用するためには、予め乾燥させることが必要で、工程及び設備が煩雑になり、設備投資が過大になる、という問題がある。
However, there is a problem that the amount of waste activated carbon discharged from the water treatment equipment reaches several thousand tons / time, and it is difficult to secure a space for temporarily storing the waste activated carbon for reuse.
In addition, the water content of waste activated carbon discharged from water treatment equipment such as water purification treatment is as high as about 50%, and it is necessary to dry it in advance in order to burn it in a coke oven and reuse it as a raw material for sintering. There is a problem that the process and the equipment become complicated, and the capital investment becomes excessive.

 さらに、廃活性炭を微粉化してしまうと、再利用する場所まで搬送することが困難になる、という問題もある。
 また、ガス処理設備や水処理設備から排出される廃活性炭は、有害な化学物質を多量に含み、特にガス処理設備からの廃活性炭の場合など、硫黄化合物を含む場合には再利用設備機器の腐食や、再利用後の排ガス中に含まれる硫黄酸化物による大気汚染など、二次汚染が発生する、という問題がある。
Furthermore, there is also a problem that it becomes difficult to transport waste activated carbon to a place where it is reused if it is pulverized.
Waste activated carbon discharged from gas treatment equipment and water treatment equipment contains a large amount of harmful chemical substances. There is a problem that secondary pollution occurs such as corrosion and air pollution caused by sulfur oxides contained in exhaust gas after reuse.

 一方、石炭として使用される低品位石炭は、硫黄分の含有量が高く、未処理のまま燃焼させると、生体へ悪影響を及ぼし、酸性雨や地球温暖化の原因ともなる多量の粉塵やSOxを発生する。また、灰分も多く、燃焼後に多量のフライアッシュを産出するので、産業廃棄物の処理コストが増大する。さらに、低品位石炭単独では燃焼熱量が少ないので、必要量の熱量を得るために多量の低品位石炭を燃焼させなければならず、多量の粉塵、SOx、フライアッシュなどの発生を導き、大気汚染問題や産業廃棄物処理問題を増長している。 On the other hand, low-grade coal, which is used as coal, has a high sulfur content and, if burned untreated, has an adverse effect on living organisms and produces large amounts of dust and SOx, which cause acid rain and global warming. appear. In addition, since the ash content is large and a large amount of fly ash is produced after combustion, the cost of treating industrial waste increases. Furthermore, since low-grade coal alone has a small heat of combustion, a large amount of low-grade coal must be burned in order to obtain the required amount of heat, leading to the generation of a large amount of dust, SOx, fly ash, etc., and air pollution. Problems and industrial waste disposal problems are increasing.

特開2002-45647号公報JP 2002-45647 A 特開2002-38161号公報JP 2002-38161 A 特開2002-88416号公報JP 2002-88416 A

 そこで、本発明は、多量に排出される廃活性炭を安価に、容易に、二次汚染を引き起こすことなく、再利用する方法及びシステムを提供することを目的とする。
 具体的には、乾燥工程を不要として処理コストの低下及び処理工程の簡易化を図ることができる廃活性炭を再利用する方法及びシステムを提供することを目的とする。
Accordingly, an object of the present invention is to provide a method and a system for reusing a large amount of waste activated carbon inexpensively, easily and without causing secondary pollution.
Specifically, it is an object of the present invention to provide a method and a system for reusing waste activated carbon, which can reduce a processing cost and simplify a processing step by eliminating a drying step.

 また、廃活性炭に吸着している有害物質を予め除去して、二次汚染を引き起こすことなく廃活性炭を再利用する方法及びシステムを提供することを目的とする。
 また、多量の廃活性炭を貯蔵するスペースを確保し、容易に廃活性炭を再利用する方法及びシステムを提供することを目的とする。
It is another object of the present invention to provide a method and system for removing harmful substances adsorbed on waste activated carbon in advance and reusing the waste activated carbon without causing secondary pollution.
It is another object of the present invention to provide a method and system for securing a space for storing a large amount of waste activated carbon and easily reusing the waste activated carbon.

 さらに、微粉化した廃活性炭の搬送の困難性を解決し、容易に廃活性炭を再利用する方法及びシステムを提供することを目的とする。
 さらに、低品位石炭燃焼などに伴う多量の粉塵やSOx発生の問題を解決する廃活性炭の再利用方法及びシステムを提供することを目的とする。
Still another object of the present invention is to provide a method and a system that can solve the difficulty of transporting the pulverized waste activated carbon and easily reuse the waste activated carbon.
It is a further object of the present invention to provide a method and a system for reusing waste activated carbon that solve the problem of generation of a large amount of dust and SOx associated with low-grade coal combustion.

 さらに、低品位石炭燃焼では不足しがちな熱量を補助することができる廃活性炭の熱回収的再利用方法及びシステムを提供することを目的とする。 Further, it is an object of the present invention to provide a method and a system for heat recovery and reuse of waste activated carbon, which can assist the amount of heat that tends to be insufficient in low-grade coal combustion.

 本発明によれば、廃活性炭を石炭とを微粉化し、微粉化した廃活性炭と石炭との混合物を石炭燃焼手段に供給して燃焼させることを特徴とする廃活性炭の熱回収再利用方法が提供される。 According to the present invention, there is provided a method for heat recovery and reuse of waste activated carbon, characterized in that waste activated carbon is pulverized into coal, and a mixture of the pulverized waste activated carbon and coal is supplied to coal combustion means and burned. Is done.

 本発明において再利用に供することができる廃活性炭は、任意に使用された廃活性炭でよく、特に限定されるものではない。しかし、含浸された薬剤や有害物質を吸着していて他の用途に再利用することが望ましくないガス処理設備及び/又は水処理設備からの廃活性炭である場合に、本発明の熱回収再利用方法が特に有効である。例えば、燃焼排ガスのダイオキシン除去設備などの排ガス処理設備における活性炭吸着塔に充填して用いた活性炭の廃棄物、有機溶剤使用工程からの排ガスから有機溶剤を吸着させる活性炭吸着装置に用いた活性炭の廃棄物、浄水処理設備における水道原水を凝集沈殿処理及び/又は砂濾過処理した後に、残留するカビ臭や、発ガン性物質であるトリハロメタンや、トリハロメタンの前駆物質であるフミン質等の種々の有機物質を吸着除去する工程において用いた活性炭の廃棄物、排水のCODや色度除去用活性炭の廃棄物、硫化水素等の悪臭ガスの脱臭用活性炭の廃棄物などの廃活性炭を好ましく挙げることができる。これらの廃活性炭には、アンモニア除去用のリン酸、硫酸などの酸、硫化水素除去用の苛性ソーダなどのアルカリ剤、硫化メチル除去用の臭素などのハロゲンなどの含浸された薬剤や、アンモニア、硫化水素、メチルメルカプタン、硫化メチル、二硫化メチルなどの除去対象物質や、活性炭に吸着された除去対象物質が酸化等により変性した硫黄など、各種化学物質が含まれていることが多い。 廃 Waste activated carbon that can be reused in the present invention may be any used waste activated carbon, and is not particularly limited. However, in the case of waste activated carbon from a gas treatment facility and / or a water treatment facility which adsorbs the impregnated drug or harmful substance and is not desired to be reused for other uses, the heat recovery and reuse of the present invention The method is particularly effective. For example, waste of activated carbon used in an activated carbon adsorption tower in an exhaust gas treatment facility such as a dioxin removal facility for combustion exhaust gas, disposal of activated carbon used in an activated carbon adsorption device that adsorbs organic solvent from exhaust gas from an organic solvent use process And various organic substances, such as residual mold odor, carcinogenic trihalomethane, and humic substances that are precursors of trihalomethane after coagulation and sedimentation and / or sand filtration of raw water in wastewater treatment facilities Waste activated carbon such as activated carbon waste used in the step of adsorbing and removing CO2 and wastewater, activated carbon waste for removing COD and chromaticity, and activated carbon waste for deodorizing malodorous gas such as hydrogen sulfide can be preferably exemplified. These waste activated carbons contain chemicals impregnated with acids such as phosphoric acid and sulfuric acid for removing ammonia, alkaline agents such as caustic soda for removing hydrogen sulfide, halogens such as bromine for removing methyl sulfide, ammonia, sulfuric acid, and the like. Various chemical substances are often contained, such as hydrogen, methyl mercaptan, methyl sulfide, methyl disulfide, and other substances to be removed, and sulfur to which the substances to be removed adsorbed on activated carbon have been modified by oxidation or the like.

 廃活性炭の形状は、特に限定されず、粒状、破砕状、円柱状など種々の形状でよい。
 本発明において廃活性炭と混合する石炭としては、通常の石炭を制限なく用いることができる。例えば、瀝青炭や無煙炭などの高品位石炭、褐炭、亜瀝青炭、泥炭や亜炭などの低品位石炭を好ましく挙げることができる。特に、褐炭など固定炭素が55%以下の低品位石炭を用いる場合には、廃活性炭と混合することにより低品位石炭の熱量不足を補うことができ、発電や蒸気発生など燃焼目的を達成するに要する熱量を得るために必要な低品位石炭の使用量を減少させることができ、結果的に粉塵やSOxの発生量を抑制することができるので好ましい。
The shape of the waste activated carbon is not particularly limited, and may be various shapes such as a granular shape, a crushed shape, and a columnar shape.
In the present invention, as the coal mixed with the waste activated carbon, ordinary coal can be used without limitation. For example, high-grade coal such as bituminous coal and anthracite, lignite, sub-bituminous coal, and low-grade coal such as peat and lignite can be preferably exemplified. In particular, when using low-grade coal with a fixed carbon of 55% or less, such as lignite, mixing with waste activated carbon can compensate for the shortage of calories of low-grade coal and achieve combustion purposes such as power generation and steam generation. This is preferable because it is possible to reduce the amount of low-grade coal used to obtain the required calorific value and consequently to suppress the generation of dust and SOx.

 本発明において用いることができる燃焼手段としては、通常の石炭の燃焼設備であれば特に限定されない。例えば、石炭を燃料として電力を発生させる商業用又は自家用石炭火力発電施設、工場やコンビナート内の自家発電所などのボイラ、蒸気を発生させる蒸気ボイラ、セメント製造キルンなどの炉、産業廃棄物焼却炉、熱分解炉など、一般的な燃焼設備を挙げることができる。廃活性炭との混焼による燃料の均一性、既存燃焼バーナーの使用、燃料使用量の大きさなどから、特に石炭火力発電設備が好ましい。 燃 焼 The combustion means that can be used in the present invention is not particularly limited as long as it is a normal coal combustion facility. For example, commercial or private coal-fired power plants that generate electricity using coal as fuel, boilers such as private power plants in factories and industrial complexes, steam boilers that generate steam, furnaces such as cement manufacturing kilns, and industrial waste incinerators And general combustion equipment such as a pyrolysis furnace. In particular, coal-fired power generation equipment is preferable in view of the uniformity of fuel by co-firing with waste activated carbon, the use of existing combustion burners, and the amount of fuel used.

 本発明において燃焼させる廃活性炭と石炭との混合微粉炭の混合比率は、特に限定されないが、燃料設備の所望の燃料効率に影響を与えない程度であることが好ましい。例えば、商業用火力発電所等の燃料設備で混合して燃焼させる場合には、廃活性炭:石炭=1:9〜7:3の範囲で混合することが好ましく、自家用発電設備などの燃料設備で混合して燃焼させる場合には、廃活性炭:石炭=1:9〜9:1の範囲で混合することが好ましい。石炭として高品位炭を用いる場合には、硫黄分や灰分が低品位炭よりも少ないために、廃活性炭の混合率を低品位炭の場合よりも減少させることができる。 混合 The mixing ratio of the pulverized coal of the waste activated carbon and the coal to be burned in the present invention is not particularly limited, but it is preferable that the mixing ratio does not affect the desired fuel efficiency of the fuel equipment. For example, when mixing and burning in a fuel facility such as a commercial thermal power plant, it is preferable to mix in a range of waste activated carbon: coal = 1: 9 to 7: 3, and in a fuel facility such as a private power generation facility. In the case of mixing and burning, it is preferable to mix in a range of waste activated carbon: coal = 1: 9 to 9: 1. When high-grade coal is used as the coal, the sulfur content and ash content are lower than those of low-grade coal, so that the mixing ratio of waste activated carbon can be reduced as compared with the case of low-grade coal.

 本発明において、廃活性炭と石炭との混合は、廃活性炭及び石炭の微粉化の前でも後でもよく、混合と微粉化との順番は特に限定されない。混合は通常の態様で行うことができ、例えば、廃活性炭と石炭とをそれぞれ微粉化した後に、両者を混合して燃焼手段に供給すればよい。あるいは廃活性炭と石炭とを混合してから微粉化して、燃焼手段に供給してもよい。 In the present invention, the mixing of the waste activated carbon and the coal may be performed before or after the pulverization of the waste activated carbon and the coal, and the order of the mixing and the pulverization is not particularly limited. Mixing can be performed in a usual manner. For example, after each of the waste activated carbon and coal is pulverized, both may be mixed and supplied to the combustion means. Alternatively, the waste activated carbon and the coal may be mixed, pulverized, and supplied to the combustion means.

 本発明において廃活性炭と石炭とを微粉化するには、通常の粉砕機を用いることができる。例えば、粉砕媒体としてのロッドボールが入った容器を駆動させ、粉砕媒体に遠心力を与えて媒体同士及び媒体と容器壁との間で、廃活性炭に衝撃力、剪断力及び摩擦力を与えて粉砕するボールミル、チューブミル、円盤状テーブルや円筒壁面にローラを油圧と遠心力とで押さえつけながら回転させるロールミルなどを好ましく用いることができる。ボールミルやローラミル等を用いて摩擦熱を利用することにより、廃活性炭に含まれていた水分が蒸発除去されるので、水処理設備等からの水分含有量の多い廃活性炭を再利用する場合に、別途乾燥工程に供する必要がない。 に お い て In the present invention, in order to pulverize the waste activated carbon and the coal, an ordinary pulverizer can be used. For example, by driving a container containing a rod ball as a pulverizing medium, applying a centrifugal force to the pulverizing medium, between the media and between the medium and the container wall, applying an impact force, a shearing force, and a frictional force to the waste activated carbon. A ball mill for grinding, a tube mill, a roll mill for rotating a disc-shaped table or a cylindrical wall while pressing a roller against hydraulic pressure and centrifugal force can be preferably used. By utilizing frictional heat using a ball mill, roller mill, etc., the water contained in the waste activated carbon is removed by evaporation, so when reusing waste activated carbon with a high water content from water treatment equipment, etc. There is no need to provide a separate drying step.

 本発明において微粉化により得られる廃活性炭及び石炭の混合物である微粉炭の粒径は、数μm〜1mmの範囲であることが好ましい。粒径が数μmよりも小さくなると、微粉炭製造コストが高くなり、粒径が1mmを越えると燃焼バーナーなどの摩耗や閉塞を引き起こすので好ましくない。 粒径 In the present invention, the particle size of pulverized coal, which is a mixture of waste activated carbon and coal obtained by pulverization, is preferably in the range of several μm to 1 mm. If the particle size is smaller than several μm, the cost of pulverized coal production increases, and if the particle size exceeds 1 mm, wear and blockage of the combustion burner and the like are caused, which is not preferable.

 また、本発明において、廃活性炭を微粉化する前に、廃活性炭に散水して、廃活性炭に吸着されている被吸着成分及び/又は含浸された薬剤を除去することが好ましい。散水することにより、廃活性炭の細孔内部では被吸着成分及び/又は含浸された薬剤が微生物の作用により、水溶性で安定な硫酸塩や硝酸塩に酸化分解されて、水と一緒に細孔内部から流出して除去される。特に脱臭処理を目的として使用された水処理設備及び/又はガス処理設備からの廃活性炭の場合には、被吸着成分としてアンモニアを含み、アンモニア除去用の含浸された薬剤としてリンを含むので、これらアンモニア及びリンが栄養源ともなり、微生物活性が増進されるので、微生物による被吸着成分及び/又は含浸された薬剤の酸化分解が促進される。このように、散水処理した廃活性炭からは有害物質が生物学的に除去されるので、硫黄酸化物の増加などによる二次汚染を防止することができる。また、散水することにより、貯蔵中の廃活性炭と石炭との自然発火及び粉塵発生を防止することもできる。 In addition, in the present invention, before pulverizing the waste activated carbon, it is preferable to sprinkle water on the waste activated carbon to remove the components to be adsorbed and / or the impregnated chemicals adsorbed on the waste activated carbon. By spraying water, the components to be adsorbed and / or the impregnated chemicals are oxidized and decomposed into water-soluble and stable sulfates and nitrates by the action of microorganisms inside the pores of the waste activated carbon, and together with the water, Spilled out of the tank. In particular, in the case of waste activated carbon from a water treatment facility and / or a gas treatment facility used for the purpose of deodorization, ammonia is contained as a component to be adsorbed, and phosphorus is contained as an impregnated agent for removing ammonia. Since ammonia and phosphorus also serve as nutrients and enhance microbial activity, oxidative degradation of the adsorbed component and / or the impregnated drug by the microbe is promoted. In this way, harmful substances are biologically removed from the sprinkled waste activated carbon, so that secondary pollution due to an increase in sulfur oxides can be prevented. Sprinkling can also prevent spontaneous ignition and dust generation of waste activated carbon and coal during storage.

 本発明において、ガス処理施設及び/又は水処理施設から廃棄された廃活性炭を微粉化する前に、燃焼設備に近接している貯蔵スペースに貯蔵することが好ましい。この貯蔵スペースとしては、一般的に石炭火力発電施設などに設けられている石炭を貯蔵する貯炭場や石炭ヤードなどを利用することができる。具体的には、貯炭場や石炭ヤードなどに貯蔵されている石炭の上に廃活性炭を集積させることで簡易に貯蔵でき、貯蔵中に廃活性炭と石炭とが混合してもよい。廃活性炭と石炭とを一緒に貯蔵することで、石炭の自然発火を防止することができ、散水量や散水頻度の削減を図ることができる。これは、石炭には水分を保持することができる細孔がないが、廃活性炭には細孔が存在するため、散水された水分を廃活性炭の細孔内に保持することができるためである。この細孔の水分保持量は、乾燥ベース当たり50w/w%程度である。 In the present invention, before pulverizing the waste activated carbon discarded from the gas treatment facility and / or the water treatment facility, it is preferable to store the waste activated carbon in a storage space close to the combustion facility. As this storage space, a coal storage yard, a coal yard, or the like, which is generally provided in a coal-fired power generation facility or the like and stores coal, can be used. Specifically, waste activated carbon can be easily stored by accumulating it on coal stored in a coal storage yard or a coal yard, and the waste activated carbon and coal may be mixed during storage. By storing waste activated carbon and coal together, it is possible to prevent spontaneous ignition of coal, and to reduce the amount of water spray and the frequency of water spray. This is because coal does not have pores that can hold moisture, but waste activated carbon has pores, so that sprinkled water can be retained in the pores of waste activated carbon. . The water retention of the pores is about 50% w / w per dry basis.

 また、本発明によれば、廃活性炭と石炭とを一緒に貯蔵する貯蔵手段と、廃活性炭と石炭とを微粉化する微粉化手段と、微粉化した廃活性炭と石炭とからなる微粉炭を燃焼させる燃焼手段と、を具備する廃活性炭の熱回収再利用システムが提供される。 Further, according to the present invention, storage means for storing waste activated carbon and coal together, pulverizing means for pulverizing waste activated carbon and coal, and burning pulverized coal comprising pulverized waste activated carbon and coal And a combustion means for causing the waste activated carbon to recover and reuse heat.

 前記貯蔵手段は、さらに散水手段を具備することが好ましい。
 前記貯蔵手段は、前記燃焼手段に近接して設けられている既設の石炭貯蔵スペースであることが好ましい。
Preferably, the storage means further comprises a watering means.
Preferably, the storage means is an existing coal storage space provided close to the combustion means.

 また、本発明は、以下の態様を含む。
1.ガス処理設備及び/又は水処理設備から廃棄される廃活性炭を、石炭火力発電所の貯炭場に集積し、該集積した廃活性炭を燃料炭と共に微粉化した後に、ボイラへ供給することにより廃活性炭を熱回収的に処理することを特徴とする廃活性炭の処理方法。
2.前記石炭火力発電所の貯炭場に集積した廃活性炭は、散水することにより吸着した吸着成分及び/又は含浸させた薬剤を生物学的に分解、除去した後に微粉化することを特徴とする上記1項に記載の廃活性炭の処理方法。
3.ガス処理設備及び/又は水処理設備から廃棄される廃活性炭を集積する散水手段を有する石炭火力発電所の貯炭場と、該貯炭場の廃活性炭と燃料炭とを微粉化する粉砕装置と、該微粉化燃料を燃焼するボイラとを有することを特徴とする廃活性炭の処理装置。
Further, the present invention includes the following aspects.
1. Waste activated carbon discarded from a gas treatment facility and / or a water treatment facility is accumulated in a coal storage plant of a coal-fired power plant, and the accumulated waste activated carbon is pulverized together with fuel charcoal, and then supplied to a boiler. A method for treating waste activated carbon, comprising treating wastewater with heat recovery.
2. The waste activated carbon accumulated in the coal storage plant of the coal-fired power plant is pulverized after biologically decomposing and removing an adsorbed component and / or an impregnated drug that have been adsorbed by spraying water. A method for treating waste activated carbon as described in the above item.
3. A coal storage plant of a coal-fired power plant having a sprinkling means for accumulating waste activated carbon discarded from a gas treatment facility and / or a water treatment facility; a pulverizing device for pulverizing waste activated carbon and fuel coal in the coal storage facility; A waste activated carbon processing apparatus, comprising: a boiler for burning pulverized fuel.

 本発明の廃活性炭の再利用方法及びシステムによれば、多量に排出される廃活性炭を安価に、容易に、二次汚染を引き起こすことなく、熱回収的に再利用することができる。
 本発明の方法及びシステムによれば、廃活性炭を微粉化することで同時に含有水分を除去できるので、水処理施設から廃棄される廃活性炭の再利用に従来必要とされていた乾燥工程を不要とすることができる。
ADVANTAGE OF THE INVENTION According to the recycling method and system of the waste activated carbon of this invention, the waste activated carbon discharged | emitted in large quantities can be reused cheaply and easily by heat recovery, without causing secondary pollution.
According to the method and system of the present invention, the water content can be simultaneously removed by pulverizing the waste activated carbon, thereby eliminating the need for a drying step conventionally required for reusing waste activated carbon discarded from a water treatment facility. can do.

 また、廃活性炭の貯蔵中に散水することにより、廃活性炭に吸着している有害物質などを除去することができるので、廃活性炭の燃焼時に有害排ガスの生成を抑止でき、二次汚染を引き起こさずに廃活性炭を再利用することができる。 In addition, by spraying water during storage of waste activated carbon, it is possible to remove harmful substances and the like adsorbed on the waste activated carbon, so that generation of harmful exhaust gas during combustion of the waste activated carbon can be suppressed, and secondary pollution will not occur. Waste activated carbon can be reused.

 また、石炭火力発電所などに既設の貯炭場や石炭ヤードなどの石炭貯蔵スペースを共用することで、多量の廃活性炭を貯蔵するスペースを別途確保する必要を排斥し、容易に廃活性炭を再利用することができる。 In addition, by sharing the existing coal storage space and coal yard storage space at coal-fired power plants, etc., the need to secure a separate space for storing a large amount of waste activated carbon is eliminated, and waste activated carbon can be easily reused. can do.

 さらに、燃焼設備に隣接した石炭貯蔵スペースを利用し、再利用する場所で微粉化するので、微粉化した廃活性炭の搬送の困難性を解決し、容易に廃活性炭を再利用することができる。 Furthermore, since the coal storage space adjacent to the combustion facility is used and pulverized at a place where the coal is reused, the difficulty of transporting the pulverized waste activated carbon can be solved, and the waste activated carbon can be easily reused.

 さらに、廃活性炭と石炭とを一緒に貯炭場などに貯蔵することにより、石炭の自然発火を防止するための散水量及び散水頻度を減少することができる。
 さらに、石炭として低品位石炭を利用する場合には、低品位石炭燃焼の熱量不足を補助することができる。
Furthermore, by storing waste activated carbon and coal together in a coal storage or the like, the amount and frequency of watering for preventing spontaneous ignition of coal can be reduced.
Further, when low-grade coal is used as the coal, it is possible to assist the lack of heat of low-grade coal combustion.

 さらに、石炭として低品位石炭と一緒に混合して燃焼させる場合には、所望熱量を得るために必要な低品位石炭の量を減少させることができるので、低品位石炭単独で燃焼させる場合と比較して、粉塵やSOxなどの発生量を減少させることができる。 Furthermore, when the mixture is burned together with the low-grade coal as the coal, the amount of the low-grade coal required to obtain the desired calorific value can be reduced. As a result, the amount of generated dust and SOx can be reduced.

 本発明の好ましい実施形態を図面を参照しながら説明する。
 本発明によれば、図1に示すように、廃活性炭と石炭とを一緒に貯蔵する貯蔵手段2と、廃活性炭と石炭とを微粉化する微粉化手段4と、微粉化した廃活性炭と石炭とからなる微粉炭を燃焼させる燃焼手段6と、を具備する廃活性炭の熱回収再利用システム1が提供される。貯蔵手段2は、さらに、廃活性炭と石炭とに散水する散水手段8を具備することが好ましい。さらに、廃活性炭と石炭とに散水された散水手段8からの水を処理するための排水処理手段10を具備することが好ましく、排水処理手段10から散水手段8に水を循環させることがさらに好ましい。
Preferred embodiments of the present invention will be described with reference to the drawings.
According to the present invention, as shown in FIG. 1, storage means 2 for storing waste activated carbon and coal together, pulverizing means 4 for pulverizing waste activated carbon and coal, pulverized waste activated carbon and coal And a combustion means 6 for burning pulverized coal comprising: a heat recovery and reuse system 1 for waste activated carbon. It is preferable that the storage means 2 further includes a watering means 8 for watering the waste activated carbon and the coal. Further, it is preferable to include a wastewater treatment means 10 for treating water from the watering means 8 sprinkled on the waste activated carbon and coal, and it is more preferable to circulate water from the wastewater treatment means 10 to the watering means 8. .

 本発明において、貯蔵手段2は、燃焼手段6に近接して設けられていることが好ましい。貯蔵手段2としては、石炭火力発電施設などに設置されている貯炭場、石炭ヤードなどを好ましく挙げることができる。 に お い て In the present invention, it is preferable that the storage means 2 is provided close to the combustion means 6. As the storage means 2, a coal storage yard, a coal yard or the like installed in a coal-fired power generation facility or the like can be preferably mentioned.

 微粉化手段4としては、転動ボールミルや振動ボールミルなどのボールミル、ローラミル、ロッドミル、ハンマーミルなどの一般的な粉砕機を好ましく挙げることができ、特に転動ボールミルや振動ボールミルが微粉化に好適である。 Preferred examples of the pulverizing means 4 include a ball mill such as a rolling ball mill and a vibrating ball mill, and a general pulverizer such as a roller mill, a rod mill and a hammer mill. In particular, a rolling ball mill and a vibrating ball mill are suitable for pulverizing. is there.

 燃焼手段6としては、商業用又は自家用石炭火力発電施設、蒸気発生ボイラ、セメント製造キルン、熱分解炉など、一般的な石炭燃焼炉を挙げることができる。
 散水手段8としては、排水処理設備の処理水槽に貯留されている処理水を貯炭場の石炭又は廃活性炭の表面に散水することができるものであれば、特に限定されない。例えば、ポンプで圧送された処理水を散水ノズル、スプレイノズルあるいはパイプに複数の孔を開けた多孔管などから排出させてもよい。散水の態様は、間欠的でも連続的でもよい。
Examples of the combustion means 6 include a general coal combustion furnace such as a commercial or private coal-fired power generation facility, a steam generating boiler, a cement manufacturing kiln, and a pyrolysis furnace.
The water spraying means 8 is not particularly limited as long as it can spray the treated water stored in the treated water tank of the wastewater treatment facility onto the surface of the coal or the waste activated carbon in the coal storage yard. For example, the treated water pumped by a pump may be discharged from a watering nozzle, a spray nozzle, or a perforated pipe having a plurality of holes formed in a pipe. The mode of watering may be intermittent or continuous.

 排水処理手段10としては、凝集沈殿処理手段又は凝集沈殿処理と濾過との組合せなどを好ましく挙げることができる。凝集沈殿処理としては、PAC(ポリ塩化アルミニウム)などの無機凝集剤を排水に添加して、重力沈殿槽で固液分離して処理水を得る態様を好ましく挙げることができる。濾過としては、砂などで構成された濾過槽に凝集沈殿処理水を通過させてSS(浮遊物)を除去する態様を好ましく挙げることができる。なお、散水手段8としてスプレイノズルを用いる場合には、ノズルの目詰まり防止のために、排水処理手段10として濾過を含む態様が好ましい。 As the wastewater treatment means 10, a coagulation / sedimentation treatment means or a combination of coagulation / sedimentation treatment and filtration can be preferably mentioned. As the coagulation sedimentation treatment, a preferred embodiment is one in which an inorganic coagulant such as PAC (polyaluminum chloride) is added to wastewater, and solid-liquid separation is performed in a gravity sedimentation tank to obtain treated water. As the filtration, an embodiment in which SS (floating matter) is removed by passing coagulated sedimentation treatment water through a filtration tank made of sand or the like can be preferably mentioned. In the case where a spray nozzle is used as the water spraying means 8, it is preferable that the wastewater treatment means 10 includes filtration in order to prevent clogging of the nozzle.

 次に、図1に示す本発明の廃活性炭の熱回収再利用システムを用いた場合の廃活性炭の再利用方法を説明する。
 ガス処理設備及び/又は水処理設備から廃棄された廃活性炭を貯炭場などの貯蔵手段2まで搬送し、貯蔵手段2に貯蔵されている低品位石炭などの石炭と一緒に貯蔵する。貯蔵中に、廃活性炭及び石炭に、散水手段8から間欠的に散水する。次いで、廃活性炭及び石炭を一緒に、粉砕機などの微粉化手段4に供給して、摩擦熱を利用して含有水分を除去しながら粉砕して微粉炭とする。得られた微粉炭をボイラなどの燃料設備6に供給して燃焼させると、水蒸気となる。水蒸気をそのまま製造工程に利用したり、熱交換器を用いて電力にエネルギー転換させたりすることにより、熱回収的に再利用する。散水手段8により貯蔵手段2に貯蔵中の廃活性炭及び石炭に散水された水は、排水処理手段10を介して回収され、散水手段8に再循環されて、再び、貯蔵中の廃活性炭及び石炭に散水される。
Next, a method for reusing waste activated carbon when the system for recovering and recycling waste activated carbon of the present invention shown in FIG. 1 is used will be described.
The waste activated carbon discarded from the gas treatment facility and / or the water treatment facility is transported to a storage means 2 such as a coal storage, and stored together with coal such as low-grade coal stored in the storage means 2. During storage, water is intermittently sprinkled from the sprinkling means 8 onto the waste activated carbon and coal. Next, the waste activated carbon and the coal are supplied together to the pulverizing means 4 such as a pulverizer, and pulverized while removing water content using frictional heat to obtain pulverized coal. When the obtained pulverized coal is supplied to a fuel facility 6 such as a boiler and burned, it becomes steam. The steam is reused for heat recovery by directly using it in the production process or by converting the energy into electric power using a heat exchanger. The water sprinkled on the waste activated carbon and the coal stored in the storage means 2 by the watering means 8 is recovered through the wastewater treatment means 10, recirculated to the watering means 8, and again stored waste activated carbon and the coal Sprinkled on

 図2に、貯蔵中の廃活性炭からの被吸着成分及び/又は含浸された薬剤の分解・除去の概要を示す。
 貯蔵手段2において石炭の上に集積された廃活性炭に、散水手段8から散水すると、廃活性炭中に吸着されている被吸着成分及び含浸された薬剤のうち、水溶性の成分は水により洗い流されて廃活性炭細孔から除去される。廃活性炭細孔内部では、微生物の作用により、被吸着成分及び含浸された薬剤が酸化分解されて、安定な水溶性の硫酸塩や硝酸塩を形成するので、これらも水により洗い流されて廃活性炭細孔から除去される。このようにして被吸着成分及び含浸された薬剤を予め除去することにより、廃活性炭を燃焼する際に、硫黄酸化物などの有害物質の発生を防止することができる。
FIG. 2 shows an outline of decomposition / removal of a component to be adsorbed and / or a drug impregnated from waste activated carbon during storage.
When water is sprinkled from the watering means 8 onto the waste activated carbon accumulated on the coal in the storage means 2, the water-soluble components of the adsorbed components and the impregnated chemicals adsorbed in the waste activated carbon are washed away with water. And removed from the waste activated carbon pores. In the pores of the waste activated carbon, the components to be adsorbed and the impregnated chemicals are oxidatively decomposed by the action of microorganisms to form stable water-soluble sulfates and nitrates. Removed from the hole. By thus removing the components to be adsorbed and the impregnated chemical in advance, it is possible to prevent the generation of harmful substances such as sulfur oxides when burning the waste activated carbon.

 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

 浄水場の高度処理設備から廃活性炭を採取した。表1に、この廃活性炭の性状及びオーストラリア産の瀝青炭の性状を示す。 廃 Waste activated carbon was collected from the advanced treatment equipment at the water treatment plant. Table 1 shows the properties of this waste activated carbon and the properties of bituminous coal produced in Australia.

Figure 2004132689
Figure 2004132689

 湿潤状態の廃活性炭100gをボールミル(CMT(株)製TI-100)で15分間粉砕した。粉砕した廃活性炭の水分含有量は約8%であった。粉砕した廃活性炭と、同様に粉砕したオーストラリア産の石炭(瀝青炭)とを混合した試料20gを磁性皿に入れて空気雰囲気で900℃の電気炉中で1時間燃焼させた。燃焼後、灰分を秤量し、硫黄酸化物濃度(電気炉排ガス300リットル中)をガステック製北川式検知管(No. 5M、No.5La、No.5Lb)で測定した。結果を表2に示す。 100 100 g of wet activated carbon in a wet state was pulverized for 15 minutes by a ball mill (TI-100 manufactured by CMT). The water content of the crushed waste activated carbon was about 8%. A 20 g sample of a mixture of pulverized waste activated carbon and similarly pulverized Australian coal (bituminous coal) was placed in a magnetic dish and burned for 1 hour in a 900 ° C. electric furnace in an air atmosphere. After the combustion, the ash content was weighed, and the sulfur oxide concentration (in 300 liters of electric furnace exhaust gas) was measured with a Kitagawa type detector tube (No. 5M, No. 5La, No. 5Lb) manufactured by Gastech. Table 2 shows the results.

Figure 2004132689
Figure 2004132689

 廃活性炭と瀝青炭とを混合して燃焼させた場合には、燃焼残渣である灰分が瀝青炭単独の場合の半分以下になり、硫黄酸化物濃度が瀝青炭単独の場合の3/4に減少した。つまり、廃活性炭と石炭とを混合して燃焼させることによって、灰分と硫黄酸化物との両者を好ましく低減することができることがわかる。 When the waste activated carbon and bituminous coal were mixed and burned, the ash content of the combustion residue was less than half that of bituminous coal alone, and the sulfur oxide concentration was reduced to 3/4 that of bituminous coal alone. That is, it can be seen that by mixing and burning waste activated carbon and coal, both ash and sulfur oxides can be preferably reduced.

 下水処理場の汚泥処理設備の脱臭装置から採取した廃活性炭について、吸着されている臭気成分(硫化メチルや二硫化メチル)の分解除去実験を行った。
 水道水に硫酸第一鉄10mg/L、リン酸二水素ナトリウム20mg/L、尿素10mg/Lを溶かし、散水用溶液を調製した。
An experiment was conducted to decompose and remove adsorbed odor components (methyl sulfide and methyl disulfide) from waste activated carbon collected from the deodorizer of the sludge treatment facility at the sewage treatment plant.
10 mg / L of ferrous sulfate, 20 mg / L of sodium dihydrogen phosphate, and 10 mg / L of urea were dissolved in tap water to prepare a solution for watering.

 廃活性炭1000gを目開き1mmの篩いに入れ、散水用溶液50mLを一日数回、廃活性炭表面に散水した。廃活性炭層の温度は16〜25℃であった。3週間後には、廃活性炭を通過した散水用溶液残液のpHが4に低下した。さらに1週間、同様な操作を行った。 (4) 1000 g of waste activated carbon was put into a sieve having an opening of 1 mm, and 50 mL of a watering solution was sprayed on the surface of the waste activated carbon several times a day. The temperature of the waste activated carbon layer was 16 to 25 ° C. Three weeks later, the pH of the residual solution for watering that had passed through the waste activated carbon was lowered to 4. The same operation was performed for another week.

 表3に、本実験前後における廃活性炭の性状を測定した結果を示す。 Table 3 shows the results of measuring the properties of the waste activated carbon before and after the experiment.

Figure 2004132689
Figure 2004132689

 表3より、廃活性炭に吸着されていた臭気成分(硫化メチルや二硫化メチル)が、廃活性炭を微粉化する前に散水することによって、良好に除去されたことがわかる。
 次いで、散水により臭気成分を除去した廃活性炭を粉砕し、実施例1と同様に粉砕した瀝青炭と混合して混合試料を調製し、電気炉での燃焼実験を行った。結果を表4に示す。
From Table 3, it can be seen that the odor components (methyl sulfide and methyl disulfide) adsorbed on the waste activated carbon were removed well by sprinkling water before pulverizing the waste activated carbon.
Next, the waste activated carbon from which the odor component was removed by water sprinkling was pulverized, mixed with bituminous coal pulverized in the same manner as in Example 1, a mixed sample was prepared, and a combustion experiment was performed in an electric furnace. Table 4 shows the results.

Figure 2004132689
Figure 2004132689

 廃活性炭と瀝青炭とを混合して燃焼させた場合には、燃焼残渣である灰分が瀝青炭単独の場合よりも少なく、硫黄酸化物濃度が瀝青炭単独の場合よりも少なくなることがわかる。さらに、実施例1と比較すると、散水することにより、廃活性炭単独の場合でも、燃焼後の硫黄酸化物濃度が非常に低くなり(1/7)、散水による硫黄成分の除去効果を確認できる。 わ か る It can be seen that when waste activated carbon and bituminous coal are mixed and burned, the ash as a combustion residue is lower than that of bituminous coal alone, and the sulfur oxide concentration is lower than that of bituminous coal alone. Further, as compared with Example 1, the sprinkling of water makes the sulfur oxide concentration after combustion extremely low (1/7) even in the case of waste activated carbon alone, and the effect of removing sulfur components by watering can be confirmed.

 浄水場の高度処理施設から採取した廃活性炭と中国産の褐炭(低品位石炭)との性状を表5に示す。 5 Table 5 shows the properties of waste activated carbon collected from the advanced treatment facility at the water treatment plant and brown coal (low-grade coal) produced in China.

Figure 2004132689
Figure 2004132689

 湿潤状態の廃活性炭100gをボールミル(CMT(株)TI-100)で15分間粉砕した。粉砕した廃活性炭の水分含有量は約8%であった。褐炭についても同様に粉砕し、粉砕した廃活性炭と褐炭とを表6に示す比率で混合して、微粉炭試料200gを得た。微粉炭試料200gを磁性皿に入れて、空気雰囲気中の電気炉で750℃で2時間加熱した。燃焼処理後の試料の灰分(燃焼残渣)を秤量し、電気炉排ガス300L中の硫黄酸化物濃度をガステック製北川式検知管(No. 5M、No. 5La、No. 5Lb)で測定した。結果を表6に示す。 (4) 100 g of the waste activated carbon in a wet state was pulverized by a ball mill (CMT Corporation TI-100) for 15 minutes. The water content of the crushed waste activated carbon was about 8%. Similarly, the brown coal was pulverized, and the pulverized waste activated carbon and the brown coal were mixed at a ratio shown in Table 6 to obtain a pulverized coal sample of 200 g. A 200 g pulverized coal sample was placed in a magnetic dish and heated at 750 ° C. for 2 hours in an electric furnace in an air atmosphere. The ash content (combustion residue) of the sample after the combustion treatment was weighed, and the sulfur oxide concentration in 300 L of the electric furnace exhaust gas was measured using a Kitagawa detector tube (No. 5M, No. 5La, No. 5Lb) manufactured by Gastech. Table 6 shows the results.

Figure 2004132689
Figure 2004132689

 表6より、廃活性炭と低品位石炭(褐炭)との微粉炭試料を燃焼した場合には、低品位石炭単独の場合よりも未燃物の発生が少なくなることがわかる。 よ り From Table 6, it can be seen that when pulverized coal samples of waste activated carbon and low-grade coal (brown coal) are burned, the generation of unburned matter is smaller than in the case of low-grade coal alone.

 乾燥状態の廃活性炭と瀝青炭(高品位石炭)又は褐炭(低品位石炭)との混合物を、実施例3と同様に粉砕して、熱研式B型熱量計(JIS M8814-1985に準拠)で高位発熱量を測定した。結果を表7に示す。 A mixture of waste activated carbon in a dry state and bituminous coal (high-grade coal) or lignite (low-grade coal) is pulverized in the same manner as in Example 3, and is crushed with a thermostat type B calorimeter (based on JIS M8814-1985). The higher heating value was measured. Table 7 shows the results.

Figure 2004132689
Figure 2004132689

 表7より、廃活性炭と瀝青炭(高品位石炭)との混合物においては、廃活性炭と瀝青炭との混合比率に関わりなく、7300〜8000kacl/kgとほぼ一定の高位発熱量を示したが、廃活性炭と褐炭(低品位石炭)との混合物においては、廃活性炭の混合比率が高くなると高位発熱量が増加した。 From Table 7, the mixture of waste activated carbon and bituminous coal (high-grade coal) showed a substantially constant high calorific value of 7300 to 8000 kacl / kg, regardless of the mixing ratio of waste activated carbon and bituminous coal. In the mixture of coal and brown coal (low-grade coal), the higher the mixing ratio of waste activated carbon, the higher the heating value.

 よって、本発明において、石炭として低品位石炭を用いた場合には、廃活性炭の利用により高位発熱量を増加させることができ、廃活性炭を熱回収的に再利用できることが確認できた。 Accordingly, in the present invention, when low-grade coal was used as the coal, it was confirmed that the higher calorific value can be increased by using the waste activated carbon, and the waste activated carbon can be reused for heat recovery.

図1は、本発明の廃活性炭の熱回収再利用方法の概略フローを示す概略説明図である。FIG. 1 is a schematic explanatory view showing a schematic flow of a method for heat recovery and reuse of waste activated carbon of the present invention. 図2は、本発明の散水による被吸着成分の分解除去工程の概略説明図である。FIG. 2 is a schematic explanatory view of a step of decomposing and removing a component to be adsorbed by water spray according to the present invention.

符号の説明Explanation of reference numerals

1:廃活性炭の熱回収再利用システム
2:貯炭場(貯蔵手段)
4:粉砕機(微粉化手段)
6:ボイラ(燃焼手段)
8:散水手段
10:排水処理手段
1: Heat recovery and reuse system for waste activated carbon 2: Coal storage (storage means)
4: Pulverizer (pulverization means)
6: Boiler (combustion means)
8: Watering means 10: Wastewater treatment means

Claims (8)

 廃活性炭と石炭とを微粉化し、微粉化した廃活性炭と石炭との混合物を石炭燃焼手段に供給して燃焼させることを特徴とする廃活性炭の熱回収再利用方法。 (4) A method for heat recovery and reuse of waste activated carbon, comprising pulverizing waste activated carbon and coal, and supplying a mixture of the pulverized waste activated carbon and coal to a coal burning means for combustion.  前記廃活性炭は、ガス処理設備及び/又は水処理設備からの廃棄物である請求項1に記載の廃活性炭の熱回収再利用方法。 The heat recovery and reuse method for waste activated carbon according to claim 1, wherein the waste activated carbon is waste from a gas treatment facility and / or a water treatment facility.  前記廃活性炭は、前記石炭燃焼手段の貯炭場に集積させた後に、前記廃活性炭と前記石炭とを微粉化することを特徴とする請求項1又は2に記載の廃活性炭の熱回収再利用方法。 The heat recovery and reuse method for waste activated carbon according to claim 1 or 2, wherein the waste activated carbon is accumulated in a coal storage of the coal burning means, and then the waste activated carbon and the coal are pulverized. .  前記廃活性炭を微粉化する前に、前記廃活性炭に散水して、前記廃活性炭に吸着されている被吸着成分及び/又は含浸された薬剤を除去することを特徴とする請求項1〜3のいずれか1項に記載の廃活性炭の熱回収再利用方法。 Before pulverizing the waste activated carbon, water is sprayed on the waste activated carbon to remove adsorbed components and / or impregnated chemicals adsorbed on the waste activated carbon. The method for heat recovery and reuse of waste activated carbon according to any one of the preceding claims.  前記石炭は、低品位石炭である請求項1〜4のいずれか1項にに記載の廃活性炭の熱回収再利用方法。 The heat recovery and reuse method for waste activated carbon according to any one of claims 1 to 4, wherein the coal is a low-grade coal.  廃活性炭と石炭とを一緒に貯蔵する貯蔵手段と、廃活性炭と石炭とを微粉化する微粉化手段と、微粉化した廃活性炭と石炭とからなる微粉炭を燃焼させる燃焼手段と、を具備する廃活性炭の熱回収再利用システム。 Storage means for storing waste activated carbon and coal together, pulverizing means for pulverizing waste activated carbon and coal, and combustion means for burning pulverized coal comprising pulverized waste activated carbon and coal Heat recovery and reuse system for waste activated carbon.  前記貯蔵手段は、さらに散水手段を具備する請求項6に記載の廃活性炭の熱回収再利用システム。 7. The heat recovery and reuse system for waste activated carbon according to claim 6, wherein the storage means further includes a water sprinkling means.  前記貯蔵手段は、前記燃焼手段に近接して設けられている既設の石炭貯蔵スペースである請求項6又は7に記載の廃活性炭の熱回収再利用回収システム。 The heat recovery / reuse / recovery system for waste activated carbon according to claim 6 or 7, wherein the storage means is an existing coal storage space provided close to the combustion means.
JP2003274677A 2002-09-17 2003-07-15 Heat recovery and recycling method and system for waste activated carbon Pending JP2004132689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274677A JP2004132689A (en) 2002-09-17 2003-07-15 Heat recovery and recycling method and system for waste activated carbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002269652 2002-09-17
JP2003274677A JP2004132689A (en) 2002-09-17 2003-07-15 Heat recovery and recycling method and system for waste activated carbon

Publications (1)

Publication Number Publication Date
JP2004132689A true JP2004132689A (en) 2004-04-30

Family

ID=32301648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274677A Pending JP2004132689A (en) 2002-09-17 2003-07-15 Heat recovery and recycling method and system for waste activated carbon

Country Status (1)

Country Link
JP (1) JP2004132689A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150065821A (en) * 2012-10-01 2015-06-15 그레이트포인트 에너지, 인크. Use of contaminated low-rank coal for combustion
JP2018167233A (en) * 2017-03-30 2018-11-01 宇部興産株式会社 Treatment method of organic sludge and sulfur-containing waste
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
CN113930558A (en) * 2021-09-29 2022-01-14 武汉钢铁有限公司 Method for effectively determining proportion of waste activated carbon powder replacing sintered fuel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150065821A (en) * 2012-10-01 2015-06-15 그레이트포인트 에너지, 인크. Use of contaminated low-rank coal for combustion
KR101717863B1 (en) * 2012-10-01 2017-03-17 그레이트포인트 에너지, 인크. Use of contaminated low-rank coal for combustion
JP2018167233A (en) * 2017-03-30 2018-11-01 宇部興産株式会社 Treatment method of organic sludge and sulfur-containing waste
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
CN113930558A (en) * 2021-09-29 2022-01-14 武汉钢铁有限公司 Method for effectively determining proportion of waste activated carbon powder replacing sintered fuel
CN113930558B (en) * 2021-09-29 2023-01-10 武汉钢铁有限公司 Method for effectively determining proportion of waste activated carbon powder replacing sintered fuel

Similar Documents

Publication Publication Date Title
Al-Ghouti et al. Recent advances and applications of municipal solid wastes bottom and fly ashes: Insights into sustainable management and conservation of resources
Zhang et al. Status and development of sludge incineration in China
Werther et al. Sewage sludge combustion
JP4724032B2 (en) Organic waste treatment system
US9653190B2 (en) Removal device for radioactive cesium
JP2007167782A (en) Waste treatment method
Chen et al. Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process
CN103420549B (en) Harmless waste treatment method in coal chemical industry
CN101357290A (en) Method and system of controlling dioxin discharge in flue gas by duty-cycle operation of sulphur-containing inhibitor
CN102336507A (en) Sludge treatment system and treatment method
CN106439843A (en) Harmless treatment process for unrecyclable wastes in petrochemical industry
JP2008138890A (en) Incineration system
JP2004132689A (en) Heat recovery and recycling method and system for waste activated carbon
Zheng et al. CaO-assisted hydrothermal treatment combined with incineration of sewage sludge: Focusing on phosphorus (P) fractions, P-bioavailability, and heavy metals behaviors
CN108426250B (en) Domestic waste gasification melting power generation system
JP2006247483A (en) Treatment method of contaminated soil
CN104194861B (en) Sludge of sewage treatment plant low combustion value anthracite synthesizes
CN110715297A (en) Harmless treatment system and method for plasma gasification furnace and waste incineration power plant
RU2532198C1 (en) Method of producing phosphorus-containing fertiliser from sludge of urban water treatment plants and fertiliser produced using said method
CN211575133U (en) Oily sludge high-temperature treatment equipment
Guibelin Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release
JP2004290862A (en) Method and apparatus for recovering nitrogen and phosphorus
CN112499925A (en) Indirect electric heating rotary kiln pyrolysis system for treating oily sludge
JP2006273629A (en) Method for recycling incinerated ash
JP2008138889A (en) Resource circulation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071025