JP2004132667A - Fluidized bed type gasifying melting furnace system - Google Patents

Fluidized bed type gasifying melting furnace system Download PDF

Info

Publication number
JP2004132667A
JP2004132667A JP2002299870A JP2002299870A JP2004132667A JP 2004132667 A JP2004132667 A JP 2004132667A JP 2002299870 A JP2002299870 A JP 2002299870A JP 2002299870 A JP2002299870 A JP 2002299870A JP 2004132667 A JP2004132667 A JP 2004132667A
Authority
JP
Japan
Prior art keywords
air
melting furnace
temperature
furnace
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002299870A
Other languages
Japanese (ja)
Inventor
Tomoo Kitasaka
北坂 朋生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002299870A priority Critical patent/JP2004132667A/en
Publication of JP2004132667A publication Critical patent/JP2004132667A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To secure stable fluidization and control temperature for solving the problem of temperature increase of a gasifying furnace, especially when treating low quality garbage in a fluidized bed type gasifying melting furnace system. <P>SOLUTION: High oxygen concentration air and high nitrogen concentration air are divided by an air nature separator 16, and stable fluidization characteristics are maintained with restraining combustion of garbage by feeding the high nitrogen concentration air into the gasifying furnace 2. When layer temperature decreases, part of the high oxygen concentration air fed to a melting furnace 3 is fed to the gasifying furnace 2 and the oxygen content is increased for restraining temperature of the gasifying furnace. The high oxygen concentration air is used for combustion inside the melting furnace 3, combustible matter produced in the gasifying furnace 2 and assisting-fuels are burnt at high temperature, and use quantity of the assisting-fuel is decreased for decreasing running costs without changing entire air ratios. The system can be stably operated by securing gas for fluidizing from the high nitrogen concentration air not contributing to combustion and by restraining temperature with the high oxygen concentration air. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、流動床式ガス化溶融炉システムに係り、特に、広範囲なごみ質に対応するのに好適な流動床式ガス化溶融炉システムに関する。
【0002】
【従来の技術】
ガス化溶融炉システムは、ガス化炉でごみ中の可燃分を熱分解し、生成した熱分解ガスを溶融炉で燃焼し、灰融点以上まで温度上昇させて灰溶融し、最終処分の減量化を図るシステムである。
【0003】
この種の従来技術で、ガス化炉に流動床式ガス化炉を用いる場合、流動層の層温制御には、流動化空気量を制御するための助燃料を投入したり、冷却水を層やガス化炉内に噴霧する等の層温度制御を実施している。(特許文献1参照)。
【0004】
【特許文献1】
特開2001−182925号公報
【0005】
【発明が解決しようとする課題】
しかし、特に水分が多いごみ低位発熱量の比較的低いごみ質(以下、低質ごみと称する)を燃焼する際には、層温を上昇させるために、ガス化炉でごみの持つ発熱量の大半を消費してしまう。
【0006】
そのため、この水分蒸発に必要な熱量を取り除く必要から、ガス火炉へごみを投入する前処理として、乾燥機や脱水機等の設備を使って水分を除去し、低質ごみの発熱量を増加させて層温上昇を維持し、かつ溶融炉での助燃使用量低減を図っている。
【0007】
特に、本システムにて空気量を制御する場合、ごみの中に可燃分が少ない低質ごみは、燃焼空気をあまり必要としないため、流動床の安定流動化を維持するための最低空気量を維持しつつ層温度およびガス化炉内温度を一定範囲内に制御することは困難であった。
【0008】
また、温度が上昇しすぎた場合には、せっかく乾燥機や脱水機で水分を取り除いたにも拘らず、ガス化炉内に水噴霧を実施することとなり、溶融炉での燃焼に不利な条件となる可能性があった。
【0009】
このように、上記従来技術では、ごみ質の広範囲な変動に対応することは困難であり、かつ、ごみ質が低質ごみに偏るような場合は、上述のように層温度およびガス化炉内温度の制御に問題があった。
【0010】
本発明の目的は、流動床式ガス化溶融炉システムにおいて、安定した流動を確保しつつ、温度制御が可能であり、特に低質ごみ時のガス化炉高温化対策を解決することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明の流動床式ガス化溶融炉システムは、ごみを熱分解して熱分解ガスを生成する流動床式ガス化炉と、前記熱分解ガスを燃焼溶融する溶融炉とを備え、空気を酸素濃度の高い空気と窒素濃度の高い空気とに分離する空気性状分離手段と、前記窒素濃度の高い空気を前記ガス化炉へ供給する第1の供給手段と、前記酸素濃度の高い空気を前記溶融炉へ供給する第2の供給手段とを備えたことを特徴とするものである。
【0012】
本発明によれば、ガス化炉の流動化のための気体を、燃焼に寄与する割合が少ない窒素濃度の高い空気で確保しつつ、酸素濃度の高い空気で温度制御することにより、安定したガス化を維持することが可能となる。また、酸素濃度の高い空気を溶融炉で燃焼用空気として使用することにより、通常の空気で燃焼するよりも高温化を図ることができ、灰溶融点以上に温度を維持することが容易となる。
【0013】
しかも、総空気比を従来のものと変えることなく、溶融炉で助燃料を使用するような低質ごみの処理時においても、その使用量を低減でき、近年、ごみ焼却プラントの保証事項にもあるランニングコストの低減が可能となる。
【0014】
【発明の実施の形態】
本発明の実施形態の概略を図1により説明する。本例は、ごみを処理する流動床式ガス化溶融炉システムにおいて、空気性状分離装置16により、大気を酸素濃度の高い空気と窒素濃度の高い空気とに分離し、ガス化炉2には窒素濃度の高い空気を供給してごみ燃焼を抑制しつつ安定流動化を維持する。ガス化炉内層温度が低下した場合は、溶融炉3へ供給する酸素濃度の高い空気の一部をガス火炉2へ供給し、酸素含有率を上げてガス化炉温度を制御するようにしものである。
【0015】
一方、酸素濃度の高い空気は溶融炉3での燃焼用空気に用い、ガス化炉2で発生した可燃物質や助燃料を高温燃焼し、助燃料使用量を低減して総空気比を変えずにランニングコストを低減するようにした。
【0016】
以上のように、燃焼に寄与しない窒素濃度の高い空気を供給することにより、ガス化炉の安定した流動化を確保し、一方、酸素濃度の高い空気を燃焼用空気として溶融炉に供給することにより、通常の空気で燃焼するよりも高温化を図ることができ、灰溶融点以上に温度を維持することが容易となる。
【0017】
以下、本発明の第1の実施形態を、図1を参照して説明する。図1に、空気性状分離装置を使用した本発明システムにおけるガス化溶融炉システムの系統図を示す。ごみ供給ライン1から供給されたごみは、ガス化炉2において可燃性ガスとチャー(未燃炭素分)とに分解し、ガス化炉出口連絡管20を通って溶融炉3で1300℃以上の高温で燃焼する
【0018】
この高温燃焼で生成するスラグ(溶融した灰分)はスラグタップ4より系外へ排出され、燃焼ガスは一次燃焼室5を通って二次燃焼室6において二次空気と混合燃焼され、二次燃焼室出口煙道21を通って後流機器へ送られる。
【0019】
ガス化炉2へ供給される空気は、大気を空気性状分離装置16に通して、窒素濃度の高い空気に分離し、流動化空気送風機7で昇圧し、流動化用空気予熱器9にて昇温した後、ガス化炉2へ供給する。
【0020】
ガス化炉2へ供給される窒素濃度の高い空気は、燃焼に関与する酸素濃度が低いため、ガス化炉での層温上昇のため以外のごみ燃焼には関係しないことから、溶融炉の熱源となる可燃性ガスの発生に有効である。
【0021】
なお、図1において、符号の8は燃焼用空気送風機、11および12は、溶融炉出口ガス温度に基づいて作動する二次燃焼空気調整ダンパと溶融炉空気調整ダンパ、14は窒素濃度の高い流動化空気流量計、15は酸素濃度の高い燃焼用空気流量計、19は酸素濃度計、22は燃焼用空気送風機18を制御する制御装置、23は助燃バーナである。
【0022】
図2(a)に、ごみ中の炭素分が一酸化炭素に変わる割合の概略を示す。また、図2(b)に、二酸化炭素に変わる割合の概略を示す。これらの図に示すように、ごみ中の炭素分が溶融炉での熱源となる一酸化炭素に移行するCO転換率は、層温に比例して上昇することがわかる。
【0023】
一方、二酸化炭素は、空気中の酸素濃度が上昇すると、一酸化炭素にとどまらずに二酸化炭素に移行し、つまり完全燃焼して、溶融炉の熱源としては有効に働かない。
【0024】
このことからも、ガス化炉に、酸素濃度が低く、窒素濃度の高い空気を供給してガス化することは有効であることがわかる。本システムでは、ガス化炉層温度計17によって、層温度が設定範囲より低下傾向にある場合は、酸素濃度調整ダンパ13を開け、流動化用送風機が酸素濃度の高い空気を吸い込むようにした。
【0025】
このことによって、今まで窒素濃度が高かった流動化空気中の酸素濃度が上昇し、ごみが燃焼して層温度を上昇させる。これによって、層温を一定に保ち、安定した可燃性ガスとチャーを溶融炉へ供給することが可能となる。
【0026】
層温が上昇傾向になった場合は、従来と同様に、流動化空気送風機7の風量または流動化空気予熱器9での昇温を低下させ、燃焼または分解反応を低下して層温を一定にする。
【0027】
一方、ガス化炉2で発生した可燃性ガスとチャーは溶融炉3へ供給される。空気性状装置16で分離した酸素濃度の高い空気が、燃焼用空気送風機8にて昇圧され、燃焼用空気予熱器10で昇温した後、溶融炉3へ供給される。
【0028】
溶融炉3では、ガス化炉で発生した可燃性ガスとチャーを酸素濃度の高い空気で燃焼することにより、通常の空気で燃焼させるよりも容易に、ごみ中の灰分をスラグ化するのに必要な高温にできるので、安定したスラグ化と排出が可能となる。
【0029】
図3に、空気中の酸素濃度の変化による断熱燃焼温度の変化を示す。本図から、酸素分を多くした空気を溶融炉ヘ供給することが、燃焼温度をより高温に維持するので有効であることがわかる。
【0030】
溶融炉で高温燃焼することは、スラグの安定排出のためには有効であるが、設備保護のために、溶融炉出口ガス温度計18にて、機器を損傷しないような温度になるように、酸素濃度の高い燃焼空気量を制御する。残った空気は、二次燃焼室6での二段燃焼に使用される。
【0031】
本実施形態のシステムを使用することで、空気中の酸素濃度の違う空気をガス化炉と溶融炉で使用することにより、従来のシステムでは必要だった総空気比を変えることなく、容易にスラグ化とその排出が可能となり、安定したガス化溶融炉システムの運用を実現できる。
【0032】
また、助燃料を用いる運用時においても、溶融炉内の温度を上昇させることが容易にできるので、ガス化溶融炉システムおよびプラント運用のランニングコストを低減することが可能である。
【0033】
次に、本発明の他の実施形態として、図4に、酸素発生装置24を使用した例を示す。なお、図4において図1と同一構造部分には同一の符号を付す。本例では、空気供給ブロア25から廃棄物燃焼に必要な総空気比の10〜30%程度の空気を酸素発生装置24に供給する。
【0034】
酸素発生装置24で発生した酸素は、酸素濃度調整ダンパ13にてその量を調整し、ガス化炉2側と溶融炉3の燃焼用空気側へ分配する。一方、酸素発生装置24で酸素を取り除かれた窒素分は、酸素発生装置24からガス化炉2の流動化空気側へ供給され、ガス化炉2での安定した流動化維持に使用される。
【0035】
ガス化炉層温度が低下した場合は、ガス化炉層温度計17の信号により、酸素濃度調整ダンパ13の開度を制御・調整し、ガス化炉側へ酸素を供給することで、ごみを燃焼させ層温度を上昇させる。
【0036】
ガス化炉層温度が上昇した場合は、ガス化炉層温時計17の信号により、酸素濃度調整ダンパ13および流動化用空気予熱器9の昇温量を制御することで層温度を低下させる。
【0037】
溶融炉3に供給される空気は、酸素発生装置24から酸素を供給されているので、酸素濃度の高い空気と同じ効果があり、図1に示した実施形態と同様の高温燃焼効果が得られる。
【0038】
【発明の効果】
以上のように、本発明によれば、従来運用している流動床式ガス化溶融炉システムでの運用性を向上し、かつ、低質ごみ時の助燃料低減によりランニングコストを低減できる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示し、空気性状分離装置を使用したガス化溶融炉システムの系統図。
【図2】ごみ中炭素分の一酸化炭素および二酸化炭素への移行特性を示す図。
【図3】空気中の酸素濃度増加による断熱燃焼温度の変化を示す図。
【図4】本発明の他の実施形態を示し、酸素発生装置を使用したガス化溶融炉システムの系統図。
【符号の説明】
1 ごみ供給ライン
2 ガス化炉
3 溶融炉
4 スラグタップ
5 一次燃焼室
6 二次燃焼室
7 流動化空気送風機
8 燃焼用空気送風機
9 流動化用空気予熱器
10 燃焼用空気予熱器
11 二次燃焼空気調整ダンパ
12 溶融炉空気調整ダンパ
13 酸素濃度調整ダンパ
14 流動化空気流量計
15 燃焼用空気流量計
16 空気性状分離装置
17 ガス化炉層温度計
18 溶融炉出口ガス温度計
19 酸素濃度計
20 ガス化炉出口連絡管
21 二次燃焼室出口煙道
22 制御装置
23 助燃バーナ
24 酸素発生装置
25 空気供給ブロア
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluidized bed gasification / melting furnace system, and more particularly to a fluidized bed gasification / melting furnace system suitable for dealing with a wide range of wastes.
[0002]
[Prior art]
The gasification and melting furnace system pyrolyzes the combustibles in the refuse in the gasification furnace, burns the generated pyrolysis gas in the melting furnace, raises the temperature to above the ash melting point, melts the ash, and reduces the final disposal. It is a system aiming at.
[0003]
When a fluidized-bed gasifier is used as a gasifier in this type of conventional technology, the bed temperature of the fluidized bed is controlled by adding auxiliary fuel for controlling the amount of fluidized air or by adding cooling water. And bed temperature control such as spraying into the gasification furnace. (See Patent Document 1).
[0004]
[Patent Document 1]
JP-A-2001-182925 [0005]
[Problems to be solved by the invention]
However, when combusting waste with relatively low calorific value (hereinafter referred to as low quality waste), especially in waste containing much moisture, most of the calorific value of the waste in the gasification furnace is required to raise the bed temperature. Consumes.
[0006]
Therefore, since it is necessary to remove the amount of heat required for this water evaporation, as a pre-process for putting the refuse into the gas furnace, the water is removed using equipment such as a dryer and a dehydrator to increase the calorific value of the low-quality refuse. The stratum temperature rise is maintained and the amount of auxiliary combustion used in the melting furnace is reduced.
[0007]
In particular, when controlling the amount of air with this system, low-quality garbage with low combustible content in the garbage does not require much combustion air, so the minimum amount of air for maintaining stable fluidization of the fluidized bed is maintained. However, it was difficult to control the bed temperature and the gasification furnace temperature within a certain range.
[0008]
Also, if the temperature rises too high, water will be sprayed into the gasifier even though the water has been removed with a dryer or dehydrator, which is disadvantageous for combustion in the melting furnace. Could be.
[0009]
As described above, it is difficult for the above-described conventional technology to cope with a wide range of fluctuations in the waste quality, and when the waste quality is biased toward low-quality waste, the bed temperature and the gasification furnace temperature are reduced as described above. There was a problem with the control of.
[0010]
An object of the present invention is to provide a fluidized-bed gasification-melting furnace system capable of controlling the temperature while ensuring stable flow, and solving the problem of increasing the temperature of the gasification furnace particularly at low-quality waste.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a fluidized bed gasification and melting furnace system according to the present invention includes a fluidized bed gasification furnace that pyrolyzes refuse to generate a pyrolysis gas, and a melting and combustion method that burns and melts the pyrolysis gas. An air property separating means for separating air into air having a high oxygen concentration and air having a high nitrogen concentration, a first supply means for supplying the air having a high nitrogen concentration to the gasification furnace, Second supply means for supplying air having a high oxygen concentration to the melting furnace.
[0012]
According to the present invention, a gas for fluidization of a gasifier is secured by air having a high nitrogen concentration, which has a small contribution to combustion, and by controlling the temperature with air having a high oxygen concentration, a stable gas is obtained. Can be maintained. In addition, by using air having a high oxygen concentration as combustion air in a melting furnace, it is possible to achieve a higher temperature than burning with normal air, and it becomes easy to maintain the temperature at or above the ash melting point. .
[0013]
In addition, the amount of air can be reduced even when treating low-quality waste such as using auxiliary fuel in a melting furnace without changing the total air ratio from the conventional one, and in recent years there are also guarantees for waste incineration plants. The running cost can be reduced.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be schematically described with reference to FIG. In this example, in a fluidized-bed gasification and melting furnace system for treating refuse, the air is separated into air having a high oxygen concentration and air having a high nitrogen concentration by the air property separation device 16, and the gasification furnace 2 is provided with a nitrogen gas. Stable fluidization is maintained while supplying high-concentration air to suppress refuse combustion. When the gasification furnace inner layer temperature decreases, a part of the high oxygen concentration air to be supplied to the melting furnace 3 is supplied to the gas furnace 2, and the oxygen content is increased to control the gasification furnace temperature. is there.
[0015]
On the other hand, air having a high oxygen concentration is used as combustion air in the melting furnace 3, and combustible substances and auxiliary fuel generated in the gasification furnace 2 are burned at a high temperature, and the amount of auxiliary fuel used is reduced to keep the total air ratio unchanged. The running cost was reduced.
[0016]
As described above, by supplying air with high nitrogen concentration that does not contribute to combustion, stable fluidization of the gasifier is ensured, while air with high oxygen concentration is supplied to the melting furnace as combustion air. Accordingly, it is possible to achieve a higher temperature than burning with normal air, and it is easy to maintain the temperature at or above the ash melting point.
[0017]
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a system diagram of a gasification and melting furnace system in the system of the present invention using an air property separation device. The refuse supplied from the refuse supply line 1 is decomposed into combustible gas and char (unburned carbon) in the gasification furnace 2, passes through the gasification furnace outlet connection pipe 20, and is heated to 1300 ° C. or higher in the melting furnace 3. Combustion at high temperature
The slag (molten ash) generated by the high-temperature combustion is discharged from the slag tap 4 to the outside of the system, and the combustion gas passes through the primary combustion chamber 5 and is mixed and burned with the secondary air in the secondary combustion chamber 6 to perform secondary combustion. It is sent to the downstream equipment through the room outlet flue 21.
[0019]
The air supplied to the gasification furnace 2 passes the atmosphere through an air property separation device 16 to be separated into air having a high nitrogen concentration, and is pressurized by a fluidizing air blower 7 and raised by a fluidizing air preheater 9. After warming, it is supplied to the gasifier 2.
[0020]
Air having a high nitrogen concentration supplied to the gasification furnace 2 has a low oxygen concentration involved in the combustion, and is not involved in refuse combustion except for raising the bed temperature in the gasification furnace. This is effective for generating flammable gas.
[0021]
In FIG. 1, reference numeral 8 is a combustion air blower, 11 and 12 are secondary combustion air adjustment dampers and melting furnace air adjustment dampers that operate based on the temperature of the gas at the outlet of the melting furnace, and 14 is a flow having a high nitrogen concentration. Reference numeral 15 denotes a combustion air flow meter having a high oxygen concentration, reference numeral 19 denotes an oxygen concentration meter, reference numeral 22 denotes a control device for controlling the combustion air blower 18, and reference numeral 23 denotes an auxiliary burner.
[0022]
FIG. 2A schematically shows the ratio of the carbon content in the garbage to carbon monoxide. FIG. 2B shows an outline of the ratio of carbon dioxide. As shown in these figures, it can be seen that the CO conversion at which the carbon content in the refuse is transferred to carbon monoxide, which is a heat source in the melting furnace, increases in proportion to the bed temperature.
[0023]
On the other hand, when the oxygen concentration in the air rises, the carbon dioxide is not limited to carbon monoxide but shifts to carbon dioxide, that is, complete combustion and does not work effectively as a heat source of the melting furnace.
[0024]
This also indicates that supplying gas having a low oxygen concentration and a high nitrogen concentration to the gasifier for gasification is effective. In this system, when the bed temperature is lower than the set range by the gasification furnace bed thermometer 17, the oxygen concentration adjusting damper 13 is opened, and the fluidizing blower sucks air having a high oxygen concentration.
[0025]
As a result, the oxygen concentration in the fluidized air, which has been high in nitrogen concentration, rises, and the refuse is burned to increase the bed temperature. This makes it possible to keep the bed temperature constant and supply stable combustible gas and char to the melting furnace.
[0026]
If the bed temperature is on the rise, the air volume of the fluidizing air blower 7 or the temperature rise in the fluidizing air preheater 9 is reduced, and the combustion or decomposition reaction is reduced to keep the bed temperature constant, as in the prior art. To
[0027]
On the other hand, the combustible gas and char generated in the gasification furnace 2 are supplied to the melting furnace 3. The high oxygen concentration air separated by the air property device 16 is pressurized by the combustion air blower 8, heated by the combustion air preheater 10, and then supplied to the melting furnace 3.
[0028]
In the smelting furnace 3, the flammable gas and char generated in the gasification furnace are burned with air having a high oxygen concentration. Because of the high temperature, stable slag formation and discharge are possible.
[0029]
FIG. 3 shows a change in adiabatic combustion temperature due to a change in oxygen concentration in air. From this figure, it can be seen that supplying oxygen-enriched air to the melting furnace is effective because the combustion temperature is maintained at a higher temperature.
[0030]
High-temperature combustion in the melting furnace is effective for stable discharge of slag, but for protection of the equipment, the melting furnace outlet gas thermometer 18 is set to a temperature that does not damage the equipment. Control the amount of combustion air with high oxygen concentration. The remaining air is used for two-stage combustion in the secondary combustion chamber 6.
[0031]
By using the air of different oxygen concentration in the air in the gasification furnace and the melting furnace by using the system of this embodiment, the slag can be easily formed without changing the total air ratio required in the conventional system. Gasification and discharge are possible, and stable operation of the gasification and melting furnace system can be realized.
[0032]
In addition, since the temperature in the melting furnace can be easily increased even during the operation using the auxiliary fuel, the running cost of the gasification and melting furnace system and the plant operation can be reduced.
[0033]
Next, as another embodiment of the present invention, FIG. 4 shows an example in which an oxygen generator 24 is used. In FIG. 4, the same components as those in FIG. 1 are denoted by the same reference numerals. In this example, air of about 10 to 30% of the total air ratio required for waste combustion is supplied from the air supply blower 25 to the oxygen generator 24.
[0034]
The amount of oxygen generated by the oxygen generator 24 is adjusted by the oxygen concentration adjusting damper 13 and distributed to the gasification furnace 2 and the combustion air side of the melting furnace 3. On the other hand, the nitrogen from which oxygen has been removed by the oxygen generator 24 is supplied from the oxygen generator 24 to the fluidizing air side of the gasification furnace 2, and is used to maintain stable fluidization in the gasification furnace 2.
[0035]
When the temperature of the gasification furnace layer decreases, the degree of opening of the oxygen concentration adjustment damper 13 is controlled and adjusted by a signal from the gasification furnace temperature meter 17, and oxygen is supplied to the gasification furnace side to reduce waste. Combustion increases bed temperature.
[0036]
When the gasification furnace temperature rises, the temperature of the oxygen concentration adjustment damper 13 and the fluidizing air preheater 9 are controlled by the signal of the gasification furnace temperature clock 17 to lower the bed temperature.
[0037]
Since the air supplied to the melting furnace 3 is supplied with oxygen from the oxygen generator 24, the air has the same effect as the air having a high oxygen concentration, and the high-temperature combustion effect similar to that of the embodiment shown in FIG. 1 is obtained. .
[0038]
【The invention's effect】
As described above, according to the present invention, the operability of the fluidized bed gasification and melting furnace system conventionally operated can be improved, and the running cost can be reduced by reducing the auxiliary fuel at the time of low-quality waste.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention, and is a system diagram of a gasification and melting furnace system using an air property separation device.
FIG. 2 is a graph showing characteristics of transfer of carbon in refuse to carbon monoxide and carbon dioxide.
FIG. 3 is a diagram showing a change in adiabatic combustion temperature due to an increase in oxygen concentration in air.
FIG. 4 shows another embodiment of the present invention, and is a system diagram of a gasification and melting furnace system using an oxygen generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Garbage supply line 2 Gasification furnace 3 Melting furnace 4 Slag tap 5 Primary combustion chamber 6 Secondary combustion chamber 7 Fluidized air blower 8 Combustion air blower 9 Fluidization air preheater 10 Combustion air preheater 11 Secondary combustion Air adjustment damper 12 Melting furnace air adjustment damper 13 Oxygen concentration adjustment damper 14 Fluidized air flow meter 15 Combustion air flow meter 16 Air property separator 17 Gasifier bed thermometer 18 Melting furnace outlet gas thermometer 19 Oxygen concentration meter 20 Gasification furnace outlet connection pipe 21 Secondary combustion chamber outlet flue 22 Control device 23 Burner burner 24 Oxygen generator 25 Air supply blower

Claims (3)

ごみを熱分解して熱分解ガスを生成する流動床式ガス化炉と、前記熱分解ガスを燃焼溶融する溶融炉とを備え、空気を酸素濃度の高い空気と窒素濃度の高い空気とに分離する空気性状分離手段と、前記窒素濃度の高い空気を前記ガス化炉へ供給する第1の供給手段と、前記酸素濃度の高い空気を前記溶融炉へ供給する第2の供給手段とを備えたことを特徴とする流動床式ガス化溶融炉システム。A fluidized-bed gasifier that pyrolyzes refuse to generate pyrolysis gas and a melting furnace that burns and melts the pyrolysis gas, separating air into air with high oxygen concentration and air with high nitrogen concentration An air property separating means, a first supply means for supplying the air having a high nitrogen concentration to the gasification furnace, and a second supply means for supplying the air having a high oxygen concentration to the melting furnace. A fluidized bed gasification and melting furnace system characterized by the above-mentioned. 請求項1に記載の流動床式ガス化溶融炉システムにおいて、前記酸素濃度の異なる空気をガス化炉と溶融炉とに供給することにより、総空気比を変えることなく燃焼可能であることを特徴とする流動床式ガス化溶融炉システム。2. The fluidized-bed gasification and melting furnace system according to claim 1, wherein the air having the different oxygen concentration is supplied to the gasification furnace and the melting furnace so that combustion can be performed without changing the total air ratio. Fluidized bed gasification and melting furnace system. 請求項1または2に記載の流動床式ガス化溶融炉システムにおいて、前記ガス化炉の流動化に使用する燃焼空気の成分割合を調整することにより、該ガス化炉流動層および該ガス化炉内温度を制御することを特徴とするガス化溶融炉システム。3. The fluidized bed gasification and melting furnace system according to claim 1, wherein the gasification furnace fluidized bed and the gasification furnace are adjusted by adjusting a component ratio of combustion air used for fluidizing the gasification furnace. 4. A gasification and melting furnace system characterized by controlling the internal temperature.
JP2002299870A 2002-10-15 2002-10-15 Fluidized bed type gasifying melting furnace system Pending JP2004132667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299870A JP2004132667A (en) 2002-10-15 2002-10-15 Fluidized bed type gasifying melting furnace system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299870A JP2004132667A (en) 2002-10-15 2002-10-15 Fluidized bed type gasifying melting furnace system

Publications (1)

Publication Number Publication Date
JP2004132667A true JP2004132667A (en) 2004-04-30

Family

ID=32288883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299870A Pending JP2004132667A (en) 2002-10-15 2002-10-15 Fluidized bed type gasifying melting furnace system

Country Status (1)

Country Link
JP (1) JP2004132667A (en)

Similar Documents

Publication Publication Date Title
JP4126316B2 (en) Operation control method of gasification and melting system and system
JP2005201621A (en) Refuse gasifying and melting method and apparatus
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP4362428B2 (en) Treatment method of sludge and incineration ash
JP3949386B2 (en) Oxygen-enriched combustion method for stoker waste incinerator
JP2007002825A (en) Waste power generation method
JP2007078197A (en) Incinerator and incinerating method of waste
JP2004132667A (en) Fluidized bed type gasifying melting furnace system
JP3825263B2 (en) Gasification and melting equipment
JP2006071215A (en) Thermal decomposition gasification melting system and its temperature raising method
JPH1130410A (en) Disposing method for waste utilizing waste plastic gasification/ash melting
JP3868205B2 (en) Waste gasification combustion apparatus and combustion method
JP2019190730A (en) Waste gasification melting device and waste gasification melting method
JP3548994B2 (en) Control method and apparatus for gasification melting processing plant
JPH11270821A (en) Combustion method in waste gasificating combustion furnace
JP2005201620A (en) Refuse gasifying and melting method and apparatus
JP3859390B2 (en) Operation method of waste gasification and melting system
JP2006097916A (en) Combustion control method of incinerator
JP2004271039A (en) Thermal decomposition gasifying melting system
JP3750379B2 (en) Waste gasification and melting treatment system
JPH11153312A (en) Thermal decomposition/gasification melting apparatus
JP2004251618A (en) Processing method and gasifying and fusing apparatus for combustible material
JP2004278819A (en) Method for efficiently recovering refuse waste heat
JP2004028400A (en) Melting system for pyrolytical gasification
JP2000018531A (en) Method and device for gasifying and melting waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050829

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A02 Decision of refusal

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A02