JP2004132589A - Heat exchanger and its manufacturing method - Google Patents

Heat exchanger and its manufacturing method Download PDF

Info

Publication number
JP2004132589A
JP2004132589A JP2002296407A JP2002296407A JP2004132589A JP 2004132589 A JP2004132589 A JP 2004132589A JP 2002296407 A JP2002296407 A JP 2002296407A JP 2002296407 A JP2002296407 A JP 2002296407A JP 2004132589 A JP2004132589 A JP 2004132589A
Authority
JP
Japan
Prior art keywords
corrugated
heat exchanger
positioning
laminated
corrugated plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002296407A
Other languages
Japanese (ja)
Inventor
Masahiko Nagashima
長島 政彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2002296407A priority Critical patent/JP2004132589A/en
Publication of JP2004132589A publication Critical patent/JP2004132589A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate the fitting of corrugated sheets in a laminated state and to eliminate the joining work between the laminated corrugated sheets. <P>SOLUTION: In this heat exchanger, the corrugated sheets 13 having chevron parts 13a protruded to one surface side and valley parts 13b protruded to the other surface side alternately formed at a prescribed pitch are arranged in the laminated state between tubes 12. Either one of the chevron part 13a and valley part 13b of each corrugated sheets 13 has a positioning projection part 15 protruded to the opposite direction in the same protruding size. Mutually adjacent corrugated sheets 13 are laminated so that the respective chevron parts 13a and valley parts 13b are arranged in the same position, and the positioning projection part 15 of at least one corrugated sheets 13 is overlapped with the chevron part 13a or valley part 13b of the other corrugated sheets 13. The corrugated sheets 13 adjacent to each tube 12 is arranged with the surface having no protrusion of the positioning projection part 15 as the surface to make contact with the tube 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、積層された波板によって多数のセルを形成し、このセル内を流体の通過経路とする熱交換器及びその製造方法に関する。
【0002】
【従来の技術】
燃料電池システム等に使用される従来の熱交換器1は液体と熱交換器との接触面積を増やす目的で、図7に示すように、間隔を隔てた位置に対向配置されたチューブ2と、この対向配置されたチューブ2間に積層状態で配置された2枚の波板3と、この2枚の波板3の間に介在された平板状の仕切り板4とを備えている。対向配置されたチューブ2の間にはチューブ2、波板3、仕切り板4によって仕切られた多数のセル5が形成されており、このセル5内が流体の流通経路とされる。チューブ2,波板3及び仕切り板4間は全て溶接、ロー付け等によって接合されている(例えば、特許文献1参照。)。
【0003】
2枚の波板3は、互いの山部と谷部とが同じ位置に配置された状態で積層されている。仕切り板4は、隣接する波板3同士を直接に配置すると波板3が容易に位置ずれしてセル形状が壊れるため、これを防止するために介在されている。
【0004】
【特許文献1】
特開2000−203801号公報、第1頁、図4
【0005】
【発明が解決しようとする課題】
しかしながら、上記した従来の熱交換器1では、波板3を積層状態に組み付けする時に仕切り板4も同時に組み付けしなければならないため、積層部品がその分増加し組み付け性が悪いという問題があった。
【0006】
また、波板3の位置ずれによるセル形状の変形を防止するために、チューブ2と波板3との間のみならず波板3と仕切り板4との間も溶接やロー付けなどで接合する必要があるため、接合作業が面倒であるという問題があった。
【0007】
そこで、本発明の目的は、波板を積層状態に容易に組み付けでき、しかも、積層される波板間の接合作業を行う必要がない熱交換器及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
請求項1の発明は、一方面側に突出する山部と他方面側に突出する谷部とが所定ピッチで交互に形成された波板を、チューブ間に積層状態で配置する熱交換器において、前記波板の前記山部と前記谷部のいずれか一方に、これらと反対方向に突出し、且つ、同じ突出サイズの位置決め突起部を設け、隣接する前記波板は、互いの前記山部と前記谷部が同じ位置に配置され、且つ、少なくとも一方の前記波板の前記位置決め突起部が他方の前記波板の前記山部又は前記谷部に重ね合わされた状態で積層され、前記各チューブに隣接する前記波板は、前記位置決め突起部の突出しない面を前記チューブに接触する面として配置されていることを特徴とする熱交換器である。
【0009】
請求項2の発明は、請求項1記載の熱交換器であって、積層される前記波板は2枚であり、2枚の前記波板は、互いに前記位置決め突起部の突出する面で向き合わされ、且つ、双方の前記位置決め突起部が互いに相手側の前記山部又は前記谷部に重ね合わされた状態で積層されたことを特徴とする熱交換器である。
【0010】
請求項3の発明は、請求項1記載の熱交換器であって、積層された前記波板は、3枚以上であり、1枚を除いて隣接する前記波板は、前記位置決め突起部の突出する面と前記位置決め突起部の突出しない面で突き合わされ、且つ、一方の前記位置決め突起部が他方の前記山部又は前記谷部に重ね合わされた状態で積層され、この積層状態の端に配置された前記波板と他の1枚の前記波板は、互いに前記位置決め突起部の突出する面で向き合わされ、且つ、双方の前記位置決め突起部が互いに相手側の前記山部又は前記谷部に重ね合わされた状態で積層されたことを特徴とする熱交換器である。
【0011】
請求項4の発明は、請求項1乃至請求項3のいずれか一項に記載された熱交換器であって、少なくとも前記波板の表面には触媒が担持されていることを特徴とする。
【0012】
請求項5の発明は、一方面側に突出する山部と他方面側に突出する谷部とが所定ピッチで交互に形成され、且つ、前記山部と前記谷部のいずれか一方に、これらと同じ突出サイズで反対方向に突出する位置決め用突起部が形成された波板を用い、この波板同士を、少なくとも一方の前記波板の前記位置決め突起部が他方の前記波板の前記山部又は前記谷部に重ね合わせることにより積層すると共に、積層される両端に配置される前記波板は、前記位置決め突起部の突出しない面をチューブに接触する面として積層したことを特徴とする熱交換器の製造方法である。
【0013】
請求項6の発明は、請求項5記載の熱交換器の製造方法であって、積層される前記波板は2枚であり、2枚の前記波板を、互いに前記位置決め突起部の突出する面で向き合わせ、且つ、双方の前記位置決め突起部が互いに相手側の前記山部又は前記谷部に重ね合わせることにより積層したことを特徴とする熱交換器の製造方法である。
【0014】
請求項7の発明は、請求項5記載の熱交換器の製造方法であって、積層された前記波板は3枚以上であり、1枚を除いて隣接する前記波板は、前記位置決め突起部の突出する面と前記位置決め突起部の突出しない面で突き合わせ、且つ、一方の前記位置決め突起部が他方の前記山部又は前記谷部に重ね合わせることにより積層し、この積層状態の端に配置された前記波板と他の1枚の前記波板は、互いに前記位置決め突起部の突出する面で向き合わせ、且つ、双方の前記位置決め突起部が互いに相手側の前記山部又は前記谷部に重ね合わせることにより積層したことを特徴とする熱交換器の製造方法である。
【0015】
【発明の効果】
請求項1の発明によれば、波板同士が従来のように仕切り板を介在することなく直接に積層され、しかも、積層した波板同士が位置決め突起部によって位置決めされ、位置ずれが発生しないため、波板を積層状態に容易に組み付けでき、しかも、積層される波板間の接合作業を行う必要がない。また、各チューブに隣接する波板は、位置決め突起部が突出しない面でチューブに接触し、接触面積を十分に取ることができるため、チューブと波板との接合強度の低下を抑えることができる。
【0016】
請求項2の発明によれば、波板を2枚積層するものにあって、請求項1の発明と同様の効果が得られる。
【0017】
請求項3の発明によれば、波板を3枚以上積層するものにあって、請求項1の発明と同様の効果が得られる。
【0018】
請求項4の発明によれば、このように波板が積層されることにより、波板部分での表面積が大きくなり、この波板の表面に触媒が担持されているため、触媒作用の効率を高めるという効果がある。
【0019】
請求項5の発明によれば、波板同士を従来のように仕切り板を介在することなく直接に積層し、しかも、積層した波板同士が位置決め突起部によって位置決めされ、位置ずれを発生しないため、波板を積層状態に容易に組み付けでき、しかも、積層される波板間の接合作業を行う必要がない。また、各チューブに隣接する波板は、位置決め突起部が突出しない面でチューブに接触し、接触面積を十分に取ることができるため、チューブと波板との接合強度の低下を極力抑えることができる。
【0020】
請求項6の発明によれば、波板を2枚積層するものにあって、請求項5の発明と同様の効果が得られる。
【0021】
請求項7の発明によれば、波板を3枚以上積層するものにあって、請求項5の発明と同様の効果が得られる。
【0022】
【発明の実施の形態】
以下、本発明に係る熱交換器及びその製造方法の実施形態を図面に基づいて説明する。
【0023】
(第1実施形態)
図1は本発明の第1実施形態を示し、図1は熱交換器の断面図、図2は図1のA−A線断面図、図3は熱交換器の要部分解正面図、図4は熱交換器の要部正面図、図5は2枚の波板の斜視図である。
【0024】
図1及び図2に示すように、熱交換器10は、例えば燃料電池システム等に使用されるものであり、流体の流入口11aと流出口11bを有するケーシング11と、このケーシング11内に内蔵され、間隔を隔てた上下位置に対向配置されたチューブ12と、この対向配置されたチューブ12間に積層状態で配置された2枚の波板13とを備えている。チューブ12内には冷媒液などが流通される。対向配置されたチューブ12の間には、2枚の波板13の仕切りによって多数のセル14が形成され、このセル14内が流体の流通経路とされる。
【0025】
各波板13は、図3〜図5に示すように、一方面側に突出する山部13aと他方面側に突出する谷部13bとが所定ピッチで交互に形成され、且つ、山部13aと谷部13bのいずれか一方に、これらと同じ突出サイズで反対方向に突出する位置決め突起部15が形成されている。尚、山部13aと谷部13bは相対的な概念であるため、本明細書では、図面上で上方に位置するものを山部13aとし、図面上で下方に位置するものを谷部13bとする。従って、波板13の表裏を逆転すれば、山部であったものが谷部に、谷部であったものが山部になる。そして、積層される2枚の波板13は、互いに位置決め突起部15の突出する面で向き合わされ、且つ、双方の位置決め突起部15が互いに相手側の山部13a及び谷部13bに重ね合わされた状態で積層されている。つまり、2枚の波板13は表裏逆に配置された状態で積層されている。
【0026】
また、上記した波板13の配置により、上下位置の各波板13は、位置決め突起部15の突出しない面をチューブ12に接触する面として配置されている。
【0027】
次に、上記熱交換器10の製造方法を説明する。図3及び図4に示すように、2枚の波板13を、互いに位置決め突起部15の突出する面で向き合わせ、且つ、双方の位置決め突起部15が互いに相手側の山部13a又は谷部13bに重ね合わせた状態で積層する。具体的には、上方位置の波板13の位置決め突起部15は、下方位置の波板13の谷部13bに重ね合わされ、下方位置の波板13の位置決め突起部15は、上方位置の波板13の山部13aに重ね合わされる。
【0028】
このように積層された2枚の波板13の上下面に1対のチューブ12を配置し、チューブ12と波板13との接触部分のみをロー付けなどによって接合する。この波板13とチューブ12の組付け体をケーシング11に内蔵すれば完了する。
【0029】
以上、上記熱交換器10では、波板13同士が従来例のような仕切り板を介在することなく直接に積層され、しかも、積層した波板13同士が位置決め突起部15によって位置決めされ、位置ずれを発生しないため、波板13を積層状態に容易に組み付けでき、しかも、積層される波板13間の接合作業を行う必要がない。
【0030】
また、各チューブ12に隣接する波板13は、位置決め突起部15の突出しない面でチューブ12に接触し、接触面積を十分に取ることができるため、チューブ12と波板13との接合強度の低下を抑えることができる。
【0031】
さらに、本実施形態では、波板13の表面に触媒が担持した場合は、波板13の表面積が大きいため、触媒の作用効率を高めることができる。
【0032】
(第2実施形態)
図6は本発明に係る熱交換器及びその製造方法の第2実施形態を示し、熱交換器の要部分解正面図である。上記した第1実施形態の熱交換器10は2枚の波板13を積層したものであったが、この第2実施形態の熱交換器は、3枚以上の波板13を積層したものである。他の構成は第1実施形態と同様であるため説明を省略する。
【0033】
図6に示すように、最下方位置以外の波板13は、位置決め突起部15の突出する面を全て下方に向けて積層され、隣接する波板13同士は、位置決め突起部15の突出する面と位置決め突起部15の突出しない面で突き合わされ、且つ、上位置の波板13の位置決め突起部15が下方の波板13の谷部13bに重ね合わされた状態で積層されている。最下方の波板13は、位置決め突起部15の突出する面を上方に向けて積層され、最下方の波板13とその上の波板13は、互いに位置決め突起部15の突出する面で向き合わされ、且つ、双方の位置決め突起部15が互いに相手側の山部13a及び谷部13bに重ね合わされた状態で積層されている。つまり、最下方以外の複数の波板13は表裏同じ面に配置され、最下方の波板13だけがこれらとは表裏逆に配置された状態で積層されている。
【0034】
また、上記した波板13の配置により、最上位置及び最下位置の各波板13は、位置決め突起部15の突出しない面をチューブ12に接触する面として配置されている。
【0035】
次に、上記熱交換器の製造方法を説明する。図6に示すように、最下方位置以外の波板13については、位置決め突起部15の突出する面を全て下方に向け、最下方位置の波体13については、位置決め突起部15の突出する面を上方に向け、且つ、位置決め突起部15が相手側の谷部13b又は山部13aに重ね合わせる状態で積層する。具体的には、最下方位置以外の波板13の位置決め突起部15は、下方位置の波板13の谷部13bに重ね合わされ、最下方位置の波板13の位置決め突起部15は、上方位置の波板13の山部13aに重ね合わされる。
【0036】
このように積層された3枚以上の波板13の上下面に1対のチューブ12を配置し、チューブ12と波板13との接触部分のみをロー付けなどによって接合する。この波板13とチューブ12の組付け体をケーシング11に内蔵すれば完了する。
【0037】
以上、この熱交換器でも、波板13同士が従来例のような仕切り板を介在することなく直接に積層され、しかも、積層した波板13同士が位置決め突起部15によって位置決めされ、位置ずれを発生しないため、波板13を積層状態に容易に組み付けでき、しかも、積層される波板13間の接合作業を行う必要がない。また、各チューブ12に隣接する波板13は、位置決め突起部15の突出しない面でチューブ12に接触し、接触面積を十分に取ることができるため、チューブ12と波板13との接合強度の低下を極力抑えることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示し、熱交換器の断面図である。
【図2】本発明の第1実施形態を示し、図1のA−A線断面図である。
【図3】本発明の第1実施形態を示し、熱交換器の要部分解正面図である。
【図4】本発明の第1実施形態を示し、熱交換器の要部正面図である。
【図5】本発明の第1実施形態を示し、2枚の波板の斜視図である。
【図6】本発明の第2実施形態を示し、熱交換器の要部分解正面図である。
【図7】従来例の熱交換器の要部正面図である。
【符号の説明】
10 熱交換器
12 チューブ
13 波板
13a 山部
13b 谷部
15 位置決め突起部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger in which a large number of cells are formed by laminating corrugated sheets and a fluid passage is provided in the cells, and a method of manufacturing the same.
[0002]
[Prior art]
A conventional heat exchanger 1 used in a fuel cell system or the like has a tube 2 disposed opposite to each other at an interval as shown in FIG. 7 in order to increase a contact area between a liquid and the heat exchanger. The apparatus includes two corrugated sheets 3 arranged in a stacked state between the tubes 2 opposed to each other, and a flat partition plate 4 interposed between the two corrugated sheets 3. A large number of cells 5 partitioned by the tube 2, the corrugated plate 3, and the partition plate 4 are formed between the opposed tubes 2, and the inside of the cells 5 serves as a fluid flow path. The tube 2, the corrugated plate 3, and the partition plate 4 are all joined by welding, brazing, or the like (for example, see Patent Document 1).
[0003]
The two corrugated sheets 3 are stacked with their peaks and valleys arranged at the same position. When the adjacent corrugated plates 3 are directly arranged, the partition plate 4 is easily interposed between the corrugated plates 3 and the cell shape is broken.
[0004]
[Patent Document 1]
JP-A-2000-203801, page 1, FIG.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional heat exchanger 1, when the corrugated plates 3 are assembled in a laminated state, the partition plates 4 must be assembled at the same time, so that there is a problem that the number of laminated components increases and the assemblability is poor. .
[0006]
Further, in order to prevent the cell shape from being deformed due to the displacement of the corrugated plate 3, not only the tube 2 and the corrugated plate 3 but also the corrugated plate 3 and the partition plate 4 are joined by welding or brazing. Since it is necessary, there is a problem that the joining operation is troublesome.
[0007]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat exchanger that can easily assemble corrugated sheets in a laminated state and that does not require joining work between laminated corrugated sheets, and a method of manufacturing the same.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is a heat exchanger in which corrugated plates in which ridges protruding on one side and valleys protruding on the other side are alternately formed at a predetermined pitch are arranged in a stacked state between tubes. , One of the peaks and the valleys of the corrugated sheet, projecting in the opposite direction, and provided with a positioning projection of the same protruding size, the adjacent corrugated sheet, the crests of each other The valleys are arranged at the same position, and the positioning projections of at least one of the corrugated sheets are stacked in a state of being superimposed on the ridges or the valleys of the other corrugated sheet, and each of the tubes is The heat exchanger is characterized in that the adjacent corrugated plate is arranged such that a surface on which the positioning protrusion does not protrude is in contact with the tube.
[0009]
The invention according to claim 2 is the heat exchanger according to claim 1, wherein the two corrugated sheets are laminated, and the two corrugated sheets face each other on a surface on which the positioning protrusion projects. The heat exchanger is characterized in that both the positioning projections are stacked on top of each other on the crests or valleys on the other side.
[0010]
The invention according to claim 3 is the heat exchanger according to claim 1, wherein the number of the laminated corrugated sheets is three or more, and the corrugated sheets adjacent except for one are the same as the positioning protrusions. The protruding surface and the non-projecting surface of the positioning protrusion are abutted, and one of the positioning protrusions is stacked on the other crest or the valley, and is disposed at an end in this stacked state. The corrugated plate and the other one of the corrugated plates are opposed to each other on the projecting surface of the positioning protrusion, and both the positioning protrusions are on the crests or the valleys on the other side. It is a heat exchanger characterized by being stacked in a state of being overlapped.
[0011]
A fourth aspect of the present invention is the heat exchanger according to any one of the first to third aspects, wherein a catalyst is supported on at least a surface of the corrugated plate.
[0012]
The invention according to claim 5 is such that ridges protruding on one side and valleys protruding on the other side are alternately formed at a predetermined pitch, and one of the ridges and the valleys includes A corrugated sheet having a positioning protrusion projecting in the opposite direction with the same protrusion size as that of the corrugated sheet is used. At least one corrugated sheet is provided with the positioning protrusion of the other corrugated sheet. Alternatively, the heat exchange is performed by laminating by laminating the valleys, and the corrugated plates disposed at both ends to be laminated are laminated such that a surface on which the positioning protrusion does not protrude is a surface that contacts a tube. It is a manufacturing method of the container.
[0013]
The invention according to claim 6 is the method for manufacturing a heat exchanger according to claim 5, wherein the two corrugated plates are laminated, and the two corrugated plates are projected from each other by the positioning projection. A method for manufacturing a heat exchanger, characterized in that the positioning projections are opposed to each other on a surface, and both positioning projections are stacked by overlapping with each other on the crest or valley on the other side.
[0014]
The invention according to claim 7 is the method for manufacturing a heat exchanger according to claim 5, wherein three or more corrugated sheets are laminated, and the corrugated sheets adjacent except for one are provided with the positioning protrusions. The protruding surface of the portion and the non-protruding surface of the positioning protrusion protrude from each other, and one of the positioning protruding portions is superimposed on the other of the crests or the valleys. The corrugated plate and the other one of the corrugated plates face each other on a surface where the positioning protrusion projects, and both the positioning protrusions are on the crests or the valleys on the other side. A method for manufacturing a heat exchanger, wherein the heat exchanger is stacked by overlapping.
[0015]
【The invention's effect】
According to the first aspect of the present invention, the corrugated sheets are directly laminated without the interposition of the partition plate as in the related art, and furthermore, the laminated corrugated sheets are positioned by the positioning projections, so that no displacement occurs. In addition, the corrugated sheets can be easily assembled in a laminated state, and it is not necessary to perform a joining operation between the laminated corrugated sheets. In addition, the corrugated plate adjacent to each tube contacts the tube on the surface where the positioning protrusion does not protrude, and a sufficient contact area can be obtained, so that a decrease in the bonding strength between the tube and the corrugated plate can be suppressed. .
[0016]
According to the second aspect of the invention, two corrugated sheets are laminated, and the same effect as the first aspect of the invention can be obtained.
[0017]
According to the third aspect of the invention, three or more corrugated sheets are laminated, and the same effect as the first aspect of the invention can be obtained.
[0018]
According to the invention of claim 4, by laminating the corrugated sheets in this way, the surface area at the corrugated plate portion is increased, and the catalyst is supported on the surface of the corrugated sheets. It has the effect of increasing.
[0019]
According to the fifth aspect of the present invention, the corrugated sheets are directly laminated without the interposition of the partition plate as in the related art, and the laminated corrugated sheets are positioned by the positioning projections, so that no displacement occurs. In addition, the corrugated sheets can be easily assembled in a laminated state, and it is not necessary to perform a joining operation between the laminated corrugated sheets. In addition, the corrugated sheet adjacent to each tube comes into contact with the tube on the surface where the positioning protrusion does not protrude, and a sufficient contact area can be obtained, so that a decrease in the joining strength between the tube and the corrugated sheet can be suppressed as much as possible. it can.
[0020]
According to the sixth aspect of the invention, two corrugated sheets are laminated, and the same effect as that of the fifth aspect of the invention can be obtained.
[0021]
According to the seventh aspect of the invention, three or more corrugated sheets are laminated, and the same effect as the fifth aspect of the invention can be obtained.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a heat exchanger and a method for manufacturing the same according to the present invention will be described with reference to the drawings.
[0023]
(1st Embodiment)
FIG. 1 shows a first embodiment of the present invention, FIG. 1 is a cross-sectional view of a heat exchanger, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. 4 is a front view of a main part of the heat exchanger, and FIG. 5 is a perspective view of two corrugated sheets.
[0024]
As shown in FIGS. 1 and 2, a heat exchanger 10 is used, for example, in a fuel cell system or the like, and has a casing 11 having a fluid inlet 11 a and a fluid outlet 11 b, and a heat exchanger 10 built in the casing 11. The tube 12 includes two tubes 12 that are opposed to each other at upper and lower positions at an interval, and two corrugated plates 13 that are arranged between the opposed tubes 12 in a stacked state. A refrigerant liquid or the like is circulated in the tube 12. A large number of cells 14 are formed between the opposed tubes 12 by the partition of two corrugated plates 13, and the inside of the cells 14 serves as a fluid flow path.
[0025]
As shown in FIGS. 3 to 5, each corrugated plate 13 is formed with ridges 13 a protruding on one side and valleys 13 b protruding on the other side alternately at a predetermined pitch. A positioning projection 15 having the same projection size and projecting in the opposite direction is formed on one of the valley portion 13b and the valley portion 13b. Since the peak 13a and the valley 13b are relative concepts, in the present specification, the one located at the top in the drawing is referred to as a peak 13a, and the one located at the bottom in the drawing is referred to as the valley 13b. I do. Therefore, if the front and back of the corrugated sheet 13 are reversed, the ridge becomes the valley and the valley becomes the ridge. The two corrugated plates 13 to be laminated face each other on the surface on which the positioning projections 15 protrude, and both the positioning projections 15 are overlapped on the crests 13a and the valleys 13b on the other side. They are stacked in a state. That is, the two corrugated plates 13 are stacked in a state where they are arranged upside down.
[0026]
In addition, due to the arrangement of the corrugated plates 13 described above, the corrugated plates 13 at the upper and lower positions are arranged such that the surfaces on which the positioning projections 15 do not protrude are in contact with the tubes 12.
[0027]
Next, a method for manufacturing the heat exchanger 10 will be described. As shown in FIGS. 3 and 4, the two corrugated plates 13 face each other on the surface on which the positioning projections 15 protrude, and both the positioning projections 15 face each other on the crest 13 a or the valley. 13b is laminated in a state of being overlapped. Specifically, the positioning projections 15 of the corrugated sheet 13 at the upper position are overlapped with the valleys 13b of the corrugated sheet 13 at the lower position, and the positioning projections 15 of the corrugated sheet 13 at the lower position are corrugated with the corrugated sheet at the upper position. It is superimposed on the 13 peaks 13a.
[0028]
A pair of tubes 12 are arranged on the upper and lower surfaces of the two corrugated plates 13 thus laminated, and only the contact portions between the tubes 12 and the corrugated plates 13 are joined by brazing or the like. The assembly is completed when the assembled body of the corrugated plate 13 and the tube 12 is incorporated in the casing 11.
[0029]
As described above, in the heat exchanger 10, the corrugated plates 13 are directly laminated without interposing a partition plate as in the conventional example, and furthermore, the laminated corrugated plates 13 are positioned by the positioning projections 15, and the misalignment is caused. Therefore, the corrugated plates 13 can be easily assembled in a laminated state, and further, there is no need to perform a joining operation between the laminated corrugated plates 13.
[0030]
Further, the corrugated plate 13 adjacent to each tube 12 comes into contact with the tube 12 on the surface on which the positioning protrusion 15 does not protrude, and a sufficient contact area can be obtained. Reduction can be suppressed.
[0031]
Further, in the present embodiment, when the catalyst is carried on the surface of the corrugated plate 13, the surface area of the corrugated plate 13 is large, so that the operation efficiency of the catalyst can be increased.
[0032]
(2nd Embodiment)
FIG. 6 shows a second embodiment of the heat exchanger and the method for manufacturing the same according to the present invention, and is an exploded front view of a main part of the heat exchanger. The heat exchanger 10 according to the first embodiment has a structure in which two corrugated plates 13 are laminated, but the heat exchanger according to the second embodiment has a structure in which three or more corrugated plates 13 are laminated. is there. The other configuration is the same as that of the first embodiment, and the description is omitted.
[0033]
As shown in FIG. 6, the corrugated plates 13 other than the lowermost position are stacked with all the protruding surfaces of the positioning projections 15 facing downward. And the positioning projections 15 of the corrugated plate 13 at the upper position are abutted on the surface on which the positioning projections 15 do not project, and the positioning projections 15 of the upper corrugated plate 13 are stacked on the valleys 13b of the lower corrugated plate 13. The lowermost corrugated sheet 13 is laminated with the surface on which the positioning projection 15 protrudes upward, and the lowermost corrugated sheet 13 and the corrugated sheet 13 thereon are opposed to each other on the surface on which the positioning projection 15 protrudes. In addition, the positioning projections 15 are stacked in a state where the positioning projections 15 are overlapped with the crests 13a and the valleys 13b on the other side. In other words, the plurality of corrugated sheets 13 other than the lowermost one are arranged on the same front and back surfaces, and only the lowermost corrugated sheet 13 is stacked in a state where these are arranged upside down.
[0034]
Also, due to the arrangement of the corrugated plates 13 described above, the corrugated plates 13 at the uppermost position and the lowermost position are arranged such that the surface on which the positioning projection 15 does not protrude is in contact with the tube 12.
[0035]
Next, a method for manufacturing the heat exchanger will be described. As shown in FIG. 6, with respect to the corrugated plate 13 other than the lowermost position, all the surfaces where the positioning protrusions 15 protrude face downward, and as for the wave body 13 at the lowermost position, the surface where the positioning protrusions 15 protrude. Are directed upward, and the positioning protrusions 15 are superimposed on the valleys 13b or the peaks 13a on the other side. Specifically, the positioning projections 15 of the corrugated plate 13 other than the lowermost position are superimposed on the valleys 13b of the corrugated plate 13 at the lower position, and the positioning projections 15 of the corrugated plate 13 at the lowermost position are positioned at the upper position. Of the corrugated plate 13 of FIG.
[0036]
A pair of tubes 12 are arranged on the upper and lower surfaces of three or more corrugated plates 13 thus laminated, and only the contact portions between the tubes 12 and the corrugated plates 13 are joined by brazing or the like. The assembly is completed when the assembled body of the corrugated plate 13 and the tube 12 is incorporated in the casing 11.
[0037]
As described above, also in this heat exchanger, the corrugated plates 13 are directly laminated without interposing a partition plate as in the conventional example, and furthermore, the laminated corrugated plates 13 are positioned by the positioning projections 15, and the positional deviation is reduced. Since it does not occur, the corrugated plates 13 can be easily assembled in a laminated state, and further, there is no need to perform a joining operation between the laminated corrugated plates 13. Further, the corrugated plate 13 adjacent to each tube 12 comes into contact with the tube 12 on the surface on which the positioning protrusion 15 does not protrude, and a sufficient contact area can be obtained. Reduction can be suppressed as much as possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a heat exchanger according to a first embodiment of the present invention.
FIG. 2 shows the first embodiment of the present invention, and is a cross-sectional view taken along line AA of FIG.
FIG. 3 is an exploded front view of a main part of the heat exchanger, showing the first embodiment of the present invention.
FIG. 4 shows the first embodiment of the present invention, and is a front view of a main part of the heat exchanger.
FIG. 5 shows the first embodiment of the present invention, and is a perspective view of two corrugated sheets.
FIG. 6 shows a second embodiment of the present invention and is an exploded front view of a main part of a heat exchanger.
FIG. 7 is a front view of a main part of a conventional heat exchanger.
[Explanation of symbols]
Reference Signs List 10 heat exchanger 12 tube 13 corrugated plate 13a peak 13b trough 15 positioning projection

Claims (7)

一方面側に突出する山部(13a)と他方面側に突出する谷部(13b)とが所定ピッチで交互に形成された波板(13)を、チューブ(12)間に積層状態で配置する熱交換器(10)であって、
前記波板(13)の前記山部(13a)と前記谷部(13b)のいずれか一方に、これらと反対方向に突出し、且つ、同じ突出サイズの位置決め突起部(15)を設け、
隣接する前記波板(13)は、互いの前記山部(13a)と前記谷部(13b)が同じ位置に配置され、且つ、少なくとも一方の前記波板(13)の前記位置決め突起部(15)が他方の前記波板(13)の前記山部(13a)又は前記谷部(13b)に重ね合わされた状態で積層され、
前記各チューブ(12)に隣接する前記波板(13)は、前記位置決め突起部(15)の突出しない面を前記チューブ(12)に接触する面として配置されていることを特徴とする熱交換器(10)。
A corrugated plate (13) in which ridges (13a) protruding on one side and valleys (13b) protruding on the other side are alternately formed at a predetermined pitch is arranged in a stacked state between tubes (12). Heat exchanger (10)
A positioning projection (15), which protrudes in a direction opposite to those of the corrugated portion (13a) and the valley portion (13b) of the corrugated plate (13) and has the same protruding size, is provided;
The adjacent corrugated plate (13) has the crests (13a) and the valleys (13b) arranged at the same position, and the positioning projections (15) of at least one of the corrugated plates (13). ) Is stacked on the corrugated plate (13) in a state of being superimposed on the crest (13a) or the valley (13b) of the other corrugated plate (13),
The corrugated plate (13) adjacent to each of the tubes (12) is provided with a surface on which the positioning projection (15) does not protrude as a surface in contact with the tubes (12). Vessel (10).
請求項1記載の熱交換器(10)であって、
積層される前記波板(13)は2枚であり、互いに前記位置決め突起部(15)の突出する面で向き合わされ、且つ、双方の前記位置決め突起部(15)が互いに相手側の前記山部(13a)又は前記谷部(13b)に重ね合わされた状態で積層されたことを特徴とする熱交換器(10)。
The heat exchanger (10) according to claim 1, wherein:
The two corrugated plates (13) to be laminated are opposed to each other on the projecting surfaces of the positioning projections (15), and both of the positioning projections (15) are opposed to each other at the crest. (13a) The heat exchanger (10), wherein the heat exchanger (10) is stacked in a state of being superimposed on the valley (13b).
請求項1記載の熱交換器(10)であって、
積層された前記波板(13)は、3枚以上であり、1枚を除いて隣接する前記波板(13)は、前記位置決め突起部(15)の突出する面と前記位置決め突起部(15)の突出しない面で突き合わされ、且つ、一方の前記位置決め突起部(15)が他方の前記山部(13a)又は前記谷部(13b)に重ね合わされた状態で積層され、この積層状態の端に配置された前記波板(13)と他の1枚の前記波板(13)は、互いに前記位置決め突起部(15)の突出する面で向き合わされ、且つ、双方の前記位置決め突起部(15)が互いに相手側の前記山部(13a)又は前記谷部(13b)に重ね合わされた状態で積層されたことを特徴とする熱交換器(10)。
The heat exchanger (10) according to claim 1, wherein:
The number of the laminated corrugated plates (13) is three or more, and except for one corrugated plate (13), the corrugated plate (13) is adjacent to the surface on which the positioning protrusion (15) projects and the positioning protrusion (15). ), And the positioning protrusions (15) are stacked in a state where one of the positioning protrusions (15) is overlapped with the other of the ridges (13a) or the valleys (13b). The corrugated plate (13) and another one of the corrugated plates (13) are opposed to each other on the projecting surface of the positioning protrusion (15), and both of the positioning protrusions (15). The heat exchanger (10) is characterized in that the heat exchanger (10) is stacked in a state of being overlapped with the crest (13a) or the valley (13b) of the other party.
請求項1乃至請求項3のいずれか一項に記載された熱交換器(10)であって、
少なくとも前記波板(13)の表面には触媒が担持されていることを特徴とする熱交換器(10)。
A heat exchanger (10) according to any one of the preceding claims, wherein:
A heat exchanger (10), wherein a catalyst is supported on at least the surface of the corrugated plate (13).
一方面側に突出する山部(13a)と他方面側に突出する谷部(13b)とが所定ピッチで交互に形成され、且つ、前記山部(13a)と前記谷部(13b)のいずれか一方に、これらと同じ突出サイズで反対方向に突出する位置決め用突起部(15)が形成された波板(13)を用い、
この波板(13)同士を、少なくとも一方の前記波板(13)の前記位置決め突起部(15)が他方の前記波板(13)の前記山部(13a)又は前記谷部(13b)に重ね合わせることにより積層すると共に、積層される両端に配置される前記波板(13)は、前記位置決め突起部(15)の突出しない面をチューブ(12)に接触する面として積層したことを特徴とする熱交換器(10)の製造方法。
Crests (13a) protruding on one surface side and troughs (13b) protruding on the other surface side are formed alternately at a predetermined pitch, and any one of the crests (13a) and the troughs (13b) is formed. On one side, a corrugated plate (13) having the same projection size and a positioning projection (15) projecting in the opposite direction is used,
The positioning projections (15) of at least one of the corrugated plates (13) are connected to the peaks (13a) or the valleys (13b) of the other corrugated plate (13). The corrugated plates (13) arranged at both ends to be laminated are laminated by being overlapped, and the surface of the corrugated plate (13) on which the positioning protrusion (15) does not protrude is laminated as a surface that contacts the tube (12). A method for producing a heat exchanger (10).
請求項5記載の熱交換器(10)の製造方法であって、
積層される前記波板(13)は2枚であり、2枚の前記波板(13)を、互いに前記位置決め突起部(15)の突出する面で向き合わせ、且つ、双方の前記位置決め突起部(15)が互いに相手側の前記山部(13a)又は前記谷部(13b)に重ね合わせることにより積層したことを特徴とする熱交換器(10)の製造方法。
The method for producing a heat exchanger (10) according to claim 5,
The number of the corrugated plates (13) to be laminated is two, and the two corrugated plates (13) face each other on the projecting surface of the positioning protrusion (15), and both the positioning protrusions are provided. (15) The method for manufacturing a heat exchanger (10), wherein the heat exchanger (10) is laminated by overlapping the peak (13a) or the valley (13b) on the other side.
請求項5記載の熱交換器(10)の製造方法であって、
積層された前記波板(13)は3枚以上であり、1枚を除いて隣接する前記波板(13)は、前記位置決め突起部(15)の突出する面と前記位置決め突起部(15)の突出しない面で突き合わせ、且つ、一方の前記位置決め突起部(15)が他方の前記山部(13a)又は前記谷部(13b)に重ね合わせることにより積層し、この積層状態の端に配置された前記波板(13)と他の1枚の前記波板(13)は、互いに前記位置決め突起部(15)の突出する面で向き合わせ、且つ、双方の前記位置決め突起部(15)が互いに相手側の前記山部(13a)又は前記谷部(13b)に重ね合わせることにより積層したことを特徴とする熱交換器(10)の製造方法。
The method for producing a heat exchanger (10) according to claim 5,
The number of the corrugated plates (13) stacked is three or more, and except for one corrugated plate (13), the corrugated plate (13) adjacent to the corrugated plate (13) and the protruding surface of the positioning protrusion (15) and the positioning protrusion (15) And the positioning protrusions (15) are overlapped with one another by the positioning protrusions (15) on the other ridges (13a) or the valleys (13b), and are arranged at the ends of the stacked state. The corrugated plate (13) and the other corrugated plate (13) face each other on the projecting surface of the positioning protrusion (15), and both the positioning protrusions (15) are mutually opposed. A method for manufacturing a heat exchanger (10), wherein the heat exchanger (10) is laminated by being overlapped with the mountain (13a) or the valley (13b) on the other side.
JP2002296407A 2002-10-09 2002-10-09 Heat exchanger and its manufacturing method Pending JP2004132589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296407A JP2004132589A (en) 2002-10-09 2002-10-09 Heat exchanger and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296407A JP2004132589A (en) 2002-10-09 2002-10-09 Heat exchanger and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004132589A true JP2004132589A (en) 2004-04-30

Family

ID=32286406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296407A Pending JP2004132589A (en) 2002-10-09 2002-10-09 Heat exchanger and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004132589A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063040A (en) * 2010-09-14 2012-03-29 Fujitsu General Ltd Heat exchanger
EP2871435A1 (en) 2013-11-07 2015-05-13 Air To Air Sweden AB A sheet for exchange of heat or mass transfer between fluid flows, a device comprising such a sheet, and a method of manufacturing the sheet
CN109141083A (en) * 2018-10-11 2019-01-04 广东索特能源科技有限公司 A kind of novel primary surface heat exchanger applied to fuel cell
CN110274253A (en) * 2019-07-22 2019-09-24 瑞燃(上海)环境工程技术有限公司 A kind of heat storage and the heat accumulating type Catalytic oxidation furnace using the heat storage
CN110274253B (en) * 2019-07-22 2024-04-26 瑞燃(上海)环境工程技术有限公司 Heat accumulating type catalytic oxidation furnace adopting heat accumulator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270276U (en) * 1985-10-14 1987-05-02
JPS6332296A (en) * 1986-07-24 1988-02-10 Showa Alum Corp Layered heat exchanger
JPH02109179U (en) * 1989-02-10 1990-08-30
JPH08159603A (en) * 1994-12-02 1996-06-21 Osaka Gas Co Ltd Regenerator in absorption type refrigerator
JPH08204074A (en) * 1995-01-30 1996-08-09 Calsonic Corp Heat sink and manufacture of the same
JPH09152292A (en) * 1995-11-29 1997-06-10 Mitsubishi Electric Corp Heat exchanging element
JPH1089879A (en) * 1996-09-12 1998-04-10 Mitsubishi Electric Corp Heat exchanger and manufacture of heat exchanging member of the heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270276U (en) * 1985-10-14 1987-05-02
JPS6332296A (en) * 1986-07-24 1988-02-10 Showa Alum Corp Layered heat exchanger
JPH02109179U (en) * 1989-02-10 1990-08-30
JPH08159603A (en) * 1994-12-02 1996-06-21 Osaka Gas Co Ltd Regenerator in absorption type refrigerator
JPH08204074A (en) * 1995-01-30 1996-08-09 Calsonic Corp Heat sink and manufacture of the same
JPH09152292A (en) * 1995-11-29 1997-06-10 Mitsubishi Electric Corp Heat exchanging element
JPH1089879A (en) * 1996-09-12 1998-04-10 Mitsubishi Electric Corp Heat exchanger and manufacture of heat exchanging member of the heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063040A (en) * 2010-09-14 2012-03-29 Fujitsu General Ltd Heat exchanger
EP2871435A1 (en) 2013-11-07 2015-05-13 Air To Air Sweden AB A sheet for exchange of heat or mass transfer between fluid flows, a device comprising such a sheet, and a method of manufacturing the sheet
CN109141083A (en) * 2018-10-11 2019-01-04 广东索特能源科技有限公司 A kind of novel primary surface heat exchanger applied to fuel cell
CN109141083B (en) * 2018-10-11 2024-04-12 广东索特能源科技有限公司 Primary surface heat exchanger applied to fuel cell
CN110274253A (en) * 2019-07-22 2019-09-24 瑞燃(上海)环境工程技术有限公司 A kind of heat storage and the heat accumulating type Catalytic oxidation furnace using the heat storage
CN110274253B (en) * 2019-07-22 2024-04-26 瑞燃(上海)环境工程技术有限公司 Heat accumulating type catalytic oxidation furnace adopting heat accumulator

Similar Documents

Publication Publication Date Title
US11056735B2 (en) Heat exchanger and battery unit structure for cooling thermally conductive batteries
JP5194010B2 (en) Plate stack heat exchanger
US9520626B2 (en) Expandable stacked plate heat exchanger for a battery unit
JP2000508751A (en) Plate heat exchanger
JP3302869B2 (en) Plate heat exchanger and method of manufacturing the same
CN113424009B (en) Heat exchanger
US6739385B2 (en) Plate-type heat exchanger
JP4072876B2 (en) Laminate heat exchanger
JP2004184075A (en) Heat-transfer plate and plate-type heat-exchanger
JP2002350083A (en) Inner fin for heat exchanger
JP2004132589A (en) Heat exchanger and its manufacturing method
JP5316470B2 (en) Laminate heat exchanger
CN112146484B (en) Plate heat exchanger
JP4827909B2 (en) Plate heat exchanger
JP5341549B2 (en) heatsink
JP2012138405A (en) Heat exchanger
JP2000220971A (en) Plate type heat exchanger
JPH03230096A (en) Plate fin type heat exchanger
JP2002107082A (en) Inner fin for heat exchanger
JP2003322492A (en) Heat exchanger
JPH10332224A (en) Lamination type evaporator
CN113474613B (en) Heat exchanger
JPH07294177A (en) Laminated type heat exchanger
CN113551544A (en) Compact heat exchanger plate bundle
JPS5924195A (en) Member for heat exchanger and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127