JP2004131189A - Pneumatic transport method and device for powder - Google Patents

Pneumatic transport method and device for powder Download PDF

Info

Publication number
JP2004131189A
JP2004131189A JP2000146088A JP2000146088A JP2004131189A JP 2004131189 A JP2004131189 A JP 2004131189A JP 2000146088 A JP2000146088 A JP 2000146088A JP 2000146088 A JP2000146088 A JP 2000146088A JP 2004131189 A JP2004131189 A JP 2004131189A
Authority
JP
Japan
Prior art keywords
air
transporter
pneumatic
suction
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000146088A
Other languages
Japanese (ja)
Other versions
JP4066062B2 (en
Inventor
Takeshi Arai
荒井 竹志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YMS KK
Original Assignee
YMS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YMS KK filed Critical YMS KK
Priority to JP2000146088A priority Critical patent/JP4066062B2/en
Priority to AU2001256725A priority patent/AU2001256725A1/en
Priority to PCT/JP2001/003996 priority patent/WO2001087746A1/en
Publication of JP2004131189A publication Critical patent/JP2004131189A/en
Application granted granted Critical
Publication of JP4066062B2 publication Critical patent/JP4066062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • B65G53/24Gas suction systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/52Adaptations of pipes or tubes
    • B65G53/525Adaptations of pipes or tubes for conveyance in plug-form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/60Devices for separating the materials from propellant gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/66Use of indicator or control devices, e.g. for controlling gas pressure, for controlling proportions of material and gas, for indicating or preventing jamming of material

Abstract

<P>PROBLEM TO BE SOLVED: To pneumatically and continuously transport powder in high vacuum/high density transportation mode by operating two batch type suction type pneumatic transport machines alternately. <P>SOLUTION: A pneumatic transport device is constituted in such a way that the transport machine 26 is first operated in high vacuum suction mode and the transport machine is put in a powder discharge process. In this device, a flap valve 62 of the transport machine is switched to "open" at the timing before the transport machine becomes full with powder to shift to simultaneous operation of both transport machines while maintaining plug transport or columnlike transport mode, then suction of the transport machine is stopped, and the flap valve 62 is closed to shut high vacuum in a suction chamber 52. Next, a back wash mechanism 74 of the transport machine is operated, and air pulses are discharged toward a bag filter 72 under high vacuum to effectively back-wash the bag filter by utilizing a difference in high pressure inside and outside the filter. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、交互に運転する2機のバッチ式の吸引式空気輸送機(バキュームコンベヤとも呼ばれる)を用いて粉体を連続的に空気輸送する方法に係り、より詳しくは、粉体輸送技術の分野で“プラグ輸送”又は“柱状輸送”と呼ばれる高真空・高濃度輸送モードで粉体を高効率で空気輸送する方法に関する。本発明は、また、斯る空気輸送方法の実施に用いるバッチ式吸引式空気輸送機に関する。本発明は、更に、この種の空気輸送機の防塵用フィルターを効果的に逆流洗浄しながら粉体を空気輸送する方法に関する。
【0002】
【従来の技術】
粉体の空気輸送は、粉体を背後から空気流で圧送する圧送式と、真空を利用して前方から吸引する吸引式とに大別することができる。後者の吸引式空気輸送には配管経路に亀裂などの損傷が生じても粉塵が漏洩しないという利点があるので、より望ましいと考えられている。
【0003】
吸引式空気輸送は、吸引式空気輸送機(バキュームコンベヤ)を用いて行われる。
吸引式空気輸送は輸送モードに応じてバッチ式と連続式とに分けることができ、使用される吸引式空気輸送機も輸送モードがバッチ式であるか連続式であるかに応じて構成が若干異なる。
【0004】
連続式の吸引式空気輸送は、本体の下部を開閉する排出ダンパー機構を備えていない形式の吸引式空気輸送機を用いて行われる。この形式の空気輸送機は密閉された輸送先容器の上に直に設置されるもので、粉体の吸引輸送を途切れなく連続的に行うことができるという利点がある。しかし、粉体輸送先容器を密閉しなければならないので、輸送先容器から粉体を定量供給するための切り出し装置としてはロータリバルブのような輸送先容器の真空を保持することの可能な密閉型の切り出し装置を使用しなければならないという難点がある。
【0005】
これに対して、バッチ式の吸引式空気輸送は、下部に排出ダンパー機構を備えた形式の吸引式空気輸送機を用いて行われる。排出ダンパー機構を備えたこの形式の空気輸送機は、空気輸送時には輸送機本体の下部を排出ダンパーで密閉することにより吸引室を真空に保持することができるので、輸送先容器を大気圧下に置くことができ、従って、ロータリバルブのような密閉型の切り出し装置を必要としないという利点がある。
本発明は、この排出ダンパー機構を備えた形式の吸引式空気輸送機(バッチ式吸引式空気輸送機という)およびそれを用いた空気輸送方法に関する。
【0006】
バッチ式の吸引式空気輸送においては、排出ダンパーを閉じて吸引室を密閉した上で粉体を本体の吸引室に吸引し、吸引された粉体で吸引室が一杯になると吸引を停止し、次に排出ダンパーを開けて粉体を輸送先容器に排出させ、これら一連の操作がバッチ毎に繰り返される。
【0007】
バッチ式の吸引式空気輸送の短所は、吸引輸送がバッチ毎に断続的にしか行われないので、連続式に比較して輸送効率が半減し或いはそれ以下に低下するということである。
そこで、従来技術においては、2台のバッチ式吸引式空気輸送機を用い、それらを交互に運転することにより粉体を連続的に空気輸送することが行われている。以下では、便宜上、この空気輸送方式を“ツインコンベヤ方式”と言う。
ツインコンベヤ方式では、図1に示したように、輸送先容器1の上に2台のバッチ式吸引式空気輸送機2を設置し、夫々の輸送機2の吸込管3を分岐管4を介して共通の輸送管5に接続し、この輸送管5の上流端は輸送すべき粉体を収容した第1容器7に接続する。
各吸込管3と分岐管4との間の管路8には遮断弁9が夫々配置してあり、これら2つの遮断弁9を交互に切り換えることにより2台の空気輸送機2を交互に作動させるようになっている。
【0008】
従来のツインコンベヤ方式では、管路8を開閉する遮断弁9としては、図2に示したようなピンチバルブが使用されている。
このピンチバルブ9は、ゴムのスリーブ10とその周りに形成された圧力室11を備え、圧縮空気入口12から圧縮空気を圧力室11に送ることによりゴムスリーブ10が狭窄され、図2(B)に示したように内部通路13を閉塞するようになっている。
圧力室11への圧縮空気の印加を解除すると、ゴムスリーブ10はその弾性により復元して図2(A)に示した円筒形状に戻る。
管路8の遮断弁としてこの種のピンチバルブを使用するのは、その全開状態においてその内部通路13の内径が前後の管路8の内径と等しくなるので、輸送される粉体に対する障害や抵抗がなくなるという利点があるからである。
【0009】
【発明が解決しようとする課題】
しかしながら、ピンチバルブには幾つかの問題が伴う。第1の問題点は、圧力室11への圧縮空気の印加を解除しても、その内部通路13に真空が作用している限りピンチバルブが全く開弁しないか、開弁のレスポンスが非常に遅いということである。
その理由は、ピンチバルブはゴムスリーブ10がその自らの弾性復元力により元の円筒形状に復元することで開弁するので、圧縮空気の供給停止により圧力室11内の圧力が大気圧になっても、ゴムスリーブ10の内側の通路に真空が存在し、真空の作用によりゴムスリーブ10を半径方向内側に引きつける力がゴムの弾性復元力に打ち勝っている間は、ゴムスリーブ10は拡径することがなく、図2(B)に示したように閉じたまゝにとどまるからである。
【0010】
そこで、2台の空気輸送機を切り換える際には、空気輸送機の真空ポンプを止めるなどの方法により、一旦、輸送管5内の真空を破壊させるか、真空度を低下させることにより、ゴムスリーブ10が復元するのを助けなければならない。
このように一時的に輸送管内に真空破壊を生じさせるか真空度を低下させると、輸送管の管内負圧が一瞬息をつく形になり、輸送管内の粉体空気混合物の流れが一時的に停止する。その結果、輸送管5の垂直配管5A(図1)内で粉体が失速・落下してその底に堆積し、垂直配管を閉塞することがある。
また、輸送管内を一時的に真空破壊した後に再び管内に高度の真空が回復するまでには必然的に一定の遅れがあるので、プラグ輸送ないし柱状輸送の形の高真空・高濃度輸送が所定時間中断される結果となり、ツインコンベヤシステム全体の輸送能力が低下する。
【0011】
ピンチバルブの他の問題点は、ゴムスリーブ10の損傷や摩耗が激しいので、ゴムスリーブの寿命が短縮されると共に、ゴムスリーブの摩耗粉が輸送すべき粉体に混入し粉体を汚染するということである。ゴムスリーブの損傷や摩耗が激しいのは、半開状態にあるゴムスリーブに粉体が衝突することにより、ゴムスリーブが研削されるからである。その結果、ゴムスリーブには早期に穴が開き、交換が必要となる。
ピンチバルブの更に他の問題点は、ゴムスリーブ10の復元力は管内圧力の影響を受けるので、切換え動作とタイミングが不安定かつ不確実となり、レスポンスが遅くタイムラグが生じるので、切り換えを正確に制御するのが困難であるということである。
【0012】
ピンチバルブ9の使用に代えて、輸送管5の分岐部4のところにボールバルブ型或いは摺動バルブ型の三方弁を配置し、この三方弁を切り換えることにより2台のバッチ式吸引式空気輸送機2を交互に運転することも可能である。
しかしながら、三方弁のボールバルブ或いは摺動バルブの構造上必然的に、切り換えの過渡時には三方弁の2つの出口は一時的に共に全閉状態になり、やはり輸送管5内の真空破壊が起こるので、前述したピンチバルブの場合と同様に、輸送管5の垂直配管5A内で失速・落下した粉体により垂直配管が閉塞されると共に、輸送能力が低下するという問題がある。
また、粉体の噛み込みにより三方弁のボールバルブや摺動バルブが早期に摩耗したり、それらの円滑な回転が阻害される。更に、ボールバルブや摺動バルブは回転運動により切り換わるので、開閉速度が遅いという難点がある。
【0013】
本発明の目的は、ツインコンベヤ方式により粉体を空気輸送するにあたり、2台の空気輸送機の切り換え時の輸送管路内の真空破壊(いわゆる、息つき)をなくし或いは最小限にすることにより、空気輸送機の切り換え時にもプラグ輸送から柱状輸送に至る高真空・高濃度輸送モードを実質的に持続することの可能な空気輸送方法および該方法に用いる空気輸送機を提供することにある。
【0014】
本発明の他の目的は、輸送能力において連続式吸引式空気輸送にも比肩するようなツインコンベヤ方式の高効率の空気輸送方法および該方法に用いる空気輸送機を提供することにある。
本発明の他の目的は、ツインコンベヤ方式により粉体を空気輸送するにあたり、空気輸送機の切り換え時に輸送管が粉体で閉塞することのない空気輸送方法および該方法に用いる空気輸送機を提供することにある。
【0015】
空気輸送の吸引工程では輸送機の吸引室から外部に排出される空気は防塵フィルターで濾過され、排出ダンパーの開放による粉体排出工程では逆流洗浄機構によりフィルターの内側に圧縮空気パルスを噴射することによりフィルターは逆流洗浄(以下、略して逆洗とも言う)される。
本発明の他の目的は、ツインコンベヤ方式であるか単独方式であるかを問わず、バッチ式吸引式空気輸送機の防塵フィルターを効果的に逆流洗浄しながら粉体を空気輸送する方法を提供することにある。
【0016】
【課題を解決するための手段】
本発明のツインコンベヤ方式による空気輸送では、2台のバッチ式吸引式空気輸送機を使用する。
夫々のバッチ式吸引式空気輸送機は、密閉可能な吸引室を画成する本体を備え、この本体は、内側端部(内側および外側の語は本体の軸線を中心とする位置関係を表す)が前記吸引室内に延び外側端部に空気輸送管が接続される吸込管と、真空源に接続される空気出口と、吸引室内の粉体を所定のタイミングで排出する排出ダンパー機構とを備えている。
夫々の空気輸送機は、更に、本体の吸引室内に配置され、前記吸込管の内側端部の開口を開閉制御する動力駆動フラップ弁機構と、前記出口の上流側において吸引室内に配置され、吸引室から出口へと流出する空気を濾過するためのフィルターと、前記フィルターの内側に配置され、所定のタイミングでフィルターの内側に圧縮空気パルスを噴射してフィルターを逆流洗浄するための逆流洗浄機構と、前記出口と真空源との間に接続され、真空源から吸引室へ印加される真空を遮断する遮断弁とを備えている。
【0017】
本発明の空気輸送機の一特徴は、吸込管を開閉制御するために動力駆動フラップ弁機構を使用したことにある。
好ましい実施態様においては、この動力駆動フラップ弁機構はエア駆動型フラップ弁機構であり、フラップ弁体を揺動させるエアアクチュエータを有する。
従来技術のピンチバルブと異なり、動力駆動フラップ弁は高真空下でも確実に開弁させることができるので、切り換えのために輸送管路を真空破壊する必要がない。従って、高真空・高濃度輸送モードを維持しながら2台の空気輸送機を切り換えることができる。
また、動力駆動フラップ弁機構は輸送機本体の吸引室内に配置したので、配管の取り回しが大幅に簡素化される。
ピンチバルブと異なり、フラップ弁機構は半開状態に留まることがないので、衝突する粉体による研削作用を受けることがなく、摩耗しないという利点がある。
【0018】
第1容器から第2容器へと粉体を空気輸送するに際しては、
(1)第2容器の上に第1および第2の2台のバッチ式吸引式空気輸送機を配置して、各空気輸送機の吸込管の外側端部を第1容器に付設された共通の吸引管に空気輸送管を介して接続すると共に、各空気輸送機の前記遮断弁を真空配管を介してエジェクターやブロワーなどからなる高真空源に接続し、
(2)第2空気輸送機の遮断弁を閉、フラップ弁を閉、排出ダンパーを開にし、かつ、第1空気輸送機の排出ダンパーを閉にした状態で、第1空気輸送機の遮断弁とフラップ弁を開くことにより、所定時間にわたり第1容器から第1空気輸送機の吸引室内へと粉体を空気輸送し、
(3)次に、第1空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開に維持することにより第1空気輸送機を高真空下で作動させながら、実質的に管路の真空破壊をすることなく、第2空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開に切り換えることにより、第1空気輸送機と第2空気輸送機の双方を同時に高真空で作動させる(双方同時運転)。
高真空下でも開くフラップ弁機構を使用したので、この段階では、空気輸送管内を真空破壊させることなく高真空を維持した状態でフラップ弁を開に切り換えることが出来る。その結果、同時運転移行時に空気輸送管内にはプラグ輸送ないし柱状輸送状態の高真空・高濃度輸送モードの空気流が持続される。
【0019】
(4)次に、第2空気輸送機の作動を継続しながら、第1空気輸送機の遮断弁を閉、フラップ弁を閉、排出ダンパーを開に切り換えることにより第1空気輸送機の吸引室への空気輸送を停止すると共に吸引室内の粉体を第2容器へと排出させ、
(5)次に、第2空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開に維持することにより第2空気輸送機を高真空下で作動させながら、実質的に管路の真空破壊をすることなく、第1空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開に切り換えることにより、第1空気輸送機と第2空気輸送機の双方を同時に高真空で作動させ、双方同時運転に移行する。上記(2)〜(5)の工程を必要なだけ繰り返すことにより空気輸送を行う。
【0020】
本発明の方法によれば、輸送管内にできるだけ高度の真空を作用させることにより高濃度輸送モードを確保することができると共に、同時運転移行時にもこの高真空が実質的に維持されるので、空気輸送の輸送効率が著しく向上する。
輸送管内の真空破壊を行いながら2台の空気輸送機を切り換える場合(例えば、1トン/時)に比較して、本発明の方法によれば、輸送能力は約4倍以上(4〜6トン/時)に増加する。
【0021】
好ましくは、前記(2)および(4)の空気輸送工程は平均約−30kPaよりも強い高真空下、より好ましくは平均約−50kPaよりも強い高真空下で行う。
【0022】
ツインコンベヤ方式の空気輸送の好ましい実施態様においては、
(1)第2容器の上に請求項1から3のいづれかに基づく第1および第2の2つのバッチ式吸引式空気輸送機を配置して、各空気輸送機の吸込管の外側端部を空気輸送管を介して第1容器からの共通の吸引管に接続すると共に、各空気輸送機の前記遮断弁を真空配管を介して真空源に接続し、
(2)第2空気輸送機の遮断弁を閉、排出ダンパーを開にし、かつ、第1空気輸送機の排出ダンパーを閉にした状態で、第1空気輸送機の遮断弁とフラップ弁を開くことにより、所定時間にわたり第1容器から第1空気輸送機の吸引室内へと粉体を空気輸送し、
(3)次に、第1空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開にした状態で、第2空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開に切り換え、第1空気輸送機および第2空気輸送機の双方の吸引室に真空を印加することにより、第1空気輸送機および第2空気輸送機の双方を同時に作動させ、
(4)次に、第1空気輸送機の排出ダンパーを閉、フラップ弁を開にした状態で、第1空気輸送機の遮断弁を閉に切り換えることにより、第1空気輸送機の吸引室への空気輸送を停止する一方、第2空気輸送機の吸引室内の真空を空気輸送管を介して第1空気輸送機の吸引室内に伝達させ反映させることにより第1空気輸送機の吸引室内に高真空を維持し、
(5)次に、第1空気輸送機のフラップ弁を閉じることにより第1空気輸送機の吸引室内に高真空を閉じ込める。
【0023】
(6)このように第1空気輸送機の吸引室内に高真空を閉じ込めた状態で、次に、第1空気輸送機の逆流洗浄機構を作動させて、高真空下の吸引室に対して圧縮空気パルスを噴射させることにより、第1空気輸送機のフィルターを逆流洗浄する。
この逆洗工程においては、高真空下に維持した吸引室に対して圧縮空気パルス(正圧)を噴射させるので、フィルターの内外の圧力差(△P)が高く、逆洗が効果的に行われる。
【0024】
(7)次に、第1空気輸送機の排出ダンパーを開くことにより第1空気輸送機の吸引室内の粉体を第2容器へと排出させ、
(8)次に、第1空気輸送機と第2空気輸送機との関係を上記とは逆にしながら上記(2)〜(7)の工程を実行する。上記(2)〜(8)の工程は必要なだけ繰り返す。
【0025】
好ましくは、前記逆流洗浄工程においては圧縮空気パルスの噴射は空気輸送機の吸引室内の圧力が大気圧になるまで繰り返す。このようにすれば、吸引室内の圧力が大気圧まで回復すると排出ダンパーはその自重と粉体の重量により自動的に開いて粉体を排出する。
【0026】
本発明は、また、単独でバッチ運転されるバッチ式吸引式空気輸送機の防塵フィルターを効果的に逆流洗浄しながら粉体を空気輸送する方法を提供するもので、この方法は、
(1)第2容器の上にバッチ式吸引式空気輸送機を配置して、当該空気輸送機の吸込管の外側端部を空気輸送管を介して第1容器からの共通の吸引管に接続すると共に、空気輸送機の遮断弁を真空配管を介して真空源に接続し、
(2)空気輸送機の排出ダンパーを閉じた状態で、遮断弁とフラップ弁を開くことにより、所定時間にわたり第1容器から空気輸送機の吸引室内へと粉体を空気輸送し、
(3)次に、フラップ弁を閉じることにより吸引室への粉体の吸引を停止すると共に、真空源の真空を吸引室に印加し続けることにより吸引室内に高真空を維持し、
(4)次に、遮断弁を閉じることにより吸引室内に高真空を閉じこめ、
(5)次に、逆流洗浄機構を作動させて、高真空下の吸引室に対して圧縮空気パルスを噴射させることにより、フィルターを逆流洗浄し、
(6)次に、排出ダンパーを開くことにより吸引室内の粉体を第2容器へと排出させ、
(7)上記(2)〜(6)の工程を繰り返すことを特徴とする。圧縮空気パルスの噴射は吸引室内の圧力が大気圧になるまで繰り返すことができる。
【0027】
上記逆洗工程(5)は空気輸送機の吸引室内に高真空を閉じ込めた状態で行われるので、フィルターの内外の圧力差(△P)が高く、逆洗が効果的に行われる。
本発明の上記特徴や効果並びに他の特徴や効果は以下の実施例の記載につれて更に明らかにする。
【0028】
【発明の実施の形態】
添付図面を参照しながら、本発明の空気輸送方法および同方法を実施するための空気輸送システム並びにこのシステムに用いる空気輸送機の実施例を説明する。
空気輸送システム全体を概念的に示す図3を参照するに、この空気輸送システムは一若しくは複数の容器(第1容器)20に収容された粉体22を他の容器(第2容器)24に空気輸送するべく構成されている。第1容器20および第2容器24は任意の容器であることができ、非限定的な例として、第1容器20は粉体製造プラントに配置された粉体製造タンクであり、第2容器24は粉体切り出し機構を備えたホッパーその他の貯蔵容器であり得る。
【0029】
この空気輸送システムは、第2容器24の上に配置した本発明に基づく2台のバッチ式吸引式空気輸送機(バキュームコンベヤ)26を有する。図示した実施例では、夫々の空気輸送機26は上側の吸引モジュール28と下側のダンパーモジュール30とで構成されており、両者は適宜数のバックル装置32によって分離可能に結合されている。
夫々の空気輸送機26の吸引モジュール28はその吸引室内に延長する吸込管34を備え、各吸込管34の外側端部は分岐配管36を介して2台の空気輸送機26に共通の空気輸送管38に接続されている。空気輸送管38の上流側端部は第1容器20内に配置した吸引ノズル40に接続することができる。第1容器20がホッパーからなる場合には、空気輸送管38の上流側端部は例えば図1に示した従来のやり方でホッパーの出口に接続することができる。
【0030】
各空気輸送機26の吸引モジュール28の上蓋42には遮断弁44が設けてあり、この遮断弁44の出口ポートは真空配管46を介して真空源48に接続してある。真空源48としては、ルーツブロワーや多段リングブロワーのようなブロワー、エジェクター型真空ポンプ、又は他の形式の真空ポンプを使用することができる。
夫々の空気輸送機26のダンパーモジュール30は図5を参照にしながら後述する排出ダンパー機構を備え、排出ダンパーを開いた時に内部の粉体が第2容器24内に落下するような関係で第2容器24上に設置されている。
【0031】
図4を参照するに、各空気輸送機26の吸引モジュール28は円筒形の本体50を備え、その内部には吸引室52が画定されている。
吸込管34は本体50を貫通してその吸引室52内に突出しており、吸込管34の内側端部はエア駆動型フラップ弁機構54によって開閉されるようになっている。
フラップ弁機構54は、溶接又はボルト止めなどにより吸込管34に固定されたブラケット56と、このブラケットに固定した90度揺動型のエア駆動型ロータリアクチュエータ58と、このアクチュエータの出力軸に固定した揺動アーム60と、この揺動アームに装着したフラップ弁体62で構成することができる。フラップ弁体62の端面はゴムのライニングで被覆してあり、吸込管34の内側端部を密閉するようになっている。
エア駆動型ロータリアクチュエータ58は、エアコンプレッサのような圧縮空気源70からの圧縮空気によって駆動されるもので、圧縮空気の供給は2台の空気輸送機26に共通のプログラム可能な制御装置64により制御される電磁弁66によって制御される。
【0032】
各吸引モジュール28の上蓋42には空気出口68が設けてあり、この空気出口は遮断弁44の入口ポートに接続してある。図示した実施例では、遮断弁44はエア駆動型のもので、この遮断弁44を駆動する圧縮空気もまた制御装置64により制御される電磁弁66によって制御される。
【0033】
図4および図6を参照するに、各吸引モジュール28の吸引室52内には、吸引室52から出口68へと流出する空気を濾過するためのバッグフィルター72と、圧縮空気パルスの噴射によりこのバッグフィルター72を周期的に逆洗するための逆洗機構74が設けてある。
バッグフィルター72は吸引モジュール28の上蓋42に装着した穿孔板などからなるフレーム76によって支持されている。
逆洗機構74は従来型のもので、例えば、上蓋42に支持された圧縮空気タンク78とエアシリンダ装置80とで構成することができる。エアシリンダ装置80はシリンダに装着されたピストン82とチェック弁84を備え、ピストン82が下降した時には圧縮空気ホース86からの圧縮空気が圧縮空気タンク78に充填され、図6に示したようにピストン82が上昇した時には圧縮空気タンク78の入口が開放されて圧縮空気タンク78内の圧縮空気が矢印88で示したようにバッグフィルター72の内側に噴射され、バッグフィルター72を逆洗するようになっている。
エアシリンダ装置80への圧縮空気は制御装置64により制御される電磁弁90によって制御される。
【0034】
各空気輸送機26の吸引モジュール28の吸引室52内に吸引された粉体はダンパーモジュール30へと落下する。
図4および図5を参照するに、ダンパーモジュール30は従来型のもので、ホ
ッパー92とその下部出口開口を開閉する排出ダンパー機構94を備えている。
図5から良く分かるように、排出ダンパー機構94は、ホッパー92の出口開口を密閉可能な排出ダンパー96と、排出ダンパー96を上方に揺動させるためのローラー付き揺動アーム98と、この揺動アーム98を駆動する揺動ベーン型の空気力式アクチュエータ100を有する。ホッパー92と排出ダンパー96との間はエラストマー製のシールリング102によってシールされる。アクチュエータ100も制御装置64によ電磁弁90を介してり制御される。
【0035】
次に、この空気輸送システムの作動のシーケンスを説明する。2台の空気輸送機26の任意の一方を第1(#1)輸送機と言い、他方を第2(#2)輸送機と言う。
真空ポンプ48とエアコンプレッサ70を作動させ、#2輸送機の遮断弁44を閉、フラップ弁62を閉、排出ダンパー96を開にし、かつ、#1輸送機の排出ダンパー96を閉にした状態で、#1輸送機の遮断弁44とフラップ弁62を開く。これにより、第1容器20内の粉体は、吸引ノズル40および空気輸送管38を介して#1輸送機の吸引室52内へと吸引される(#1吸引工程、#2排出工程)。
粉体の吸引は、“プラグ輸送”又は“柱状輸送”と呼ばれる高真空・高濃度輸送が実現される高真空下、好ましくは平均約−30kPaよりも強い真空下、より好ましくは平均約−50kPaよりも強い真空下で行う。
#1輸送機へと空気輸送された粉体はダンパーモジュール30に溜まる。
【0036】
所定時間(例えば、2〜数秒)にわたり粉体を#1輸送機へと空気輸送すると、ダンパーモジュール30が粉体で一杯になる前のタイミングで、#1輸送機の排出ダンパー96を閉、遮断弁44を開、フラップ弁62を開にした状態で、#2輸送機の排出ダンパー96を閉、遮断弁44を開、フラップ弁62を開に切り換える。
従来技術のピンチバルブと異なり、エア駆動型ロータリアクチュエータ58によって駆動されるフラップ弁62は高真空下でも確実かつ迅速に開弁するので、#2輸送機のフラップ弁62を開弁させるにあたり空気輸送管38を真空破壊する必要がない。
#2輸送機のフラップ弁62を開に切り換えたことにより、#1輸送機および#2輸送機の双方の吸引室52に真空が印加され、#1輸送機および#2輸送機の双方が同時に第1容器20から粉体を吸引し始める(双方同時運転)。
真空ポンプ48は1つであるから、双方同時運転時には各輸送機の搬送量は半分になるが、輸送管38全体の流量や吸引ノズル40の流量は落ちることがない。従って、高濃度輸送のメリットは享受し続ける。
2台の輸送機26が同時に作動しているので、輸送管38内には高真空が維持され、双方の輸送機26の吸引室52内には高真空が維持される。
【0037】
次に、#1輸送機の排出ダンパー96を閉、フラップ弁62を開にした状態で、#1輸送機の遮断弁44を閉に切り換える。#1輸送機の遮断弁44を閉じると、#1輸送機の吸引室への空気輸送は停止し、吸込管34からの粉体の流入が止まる(#1吸引停止)。
しかし、この時点では既に#2輸送機が作動しており、前述したように輸送管38全体はなお高真空下にあるので、#1輸送機のフラップ弁62が開いたまゝで#1輸送機の遮断弁44を閉じても、輸送管38内の高真空は#1輸送機の吸引室52内に反映され、#1輸送機の吸引室52は高真空下に維持される。
【0038】
次に、#1輸送機の吸込管34から吸引室52への粉体の流れが止まった時点で、#1輸送機のフラップ弁62を閉じる。粉体の流れが止まっているので、フラップ弁62と吸込管34の内側端部との間に粉体が噛み込むことがなく、粉の噛み込みによるフラップ弁62の密閉不良が防止される。
こうして、#1輸送機の吸引室52内には高真空が閉じ込められる。
【0039】
このように#1輸送機の吸引室52内に高真空を閉じ込めた状態で、次に、#1輸送機の逆洗機構74を作動させて、圧縮空気タンク78内の圧縮空気を急速開放する。圧縮空気タンク78から噴出した圧縮空気はエアパルスとなってバッグフィルター72の内側に噴射され、バッグフィルター72を逆洗する(#1逆洗)。
エアパルスは高真空下の吸引室52に向かって発射されるので、バッグフィルター72の内外の圧力差(△P)が高い。従って、バッグフィルターの逆洗は極めて効果的に行われる。
【0040】
なお、遮断弁44は吸引モジュール28の上蓋42に設けてあり、バッグフィルター72と遮断弁44との間の空間の容積は最小限にしてあり、かつ、逆洗機構74の後方(下流側)の容積が小さいので、圧縮空気タンク78から発射されたエアパルスは無駄なく有効にバッグフィルター72に作用し、これを効果的に逆洗する。
エアパルスの発射は複数回(例えば、5回)行うことができる。エアパルスを発射する度に、#1輸送機の吸引室52内の圧力は次第に大気圧に近づく。
【0041】
#1輸送機の吸引室52内の圧力が大気圧に近づくと、排出ダンパー96はその自重と粉体の重量により自動的に開いて粉体を第2容器24へと排出する(#1排出)。
【0042】
こうして#1輸送機について粉体吸引とフィルター逆洗と粉体排出が終わると、次に、#2輸送機について同様の操作を行い、更に、これらの一連の操作を所望量の粉体の輸送に必要なだけ反復する。
このように、本発明によれば、輸送管38内の真空を実質的に破壊することなく、従って、プラグ輸送又は柱状輸送を持続させながら2台の空気輸送機26を交互に作動させることができるので、従来のやり方に比較して輸送能力は大幅に(約4倍以上)増加する。
【0043】
以上にはツインコンベヤ方式の空気輸送について説明したが、本発明の方法は、また、単一のバッチ式吸引式空気輸送機を用いた空気輸送方式にも適用することができる。
この場合には、図3に示したシステム構成において、いづれか一方の空気輸送機を省略する。
この空気輸送システムの作動のシーケンスは以下のようにすることができる。
【0044】
−空気輸送機の排出ダンパー96を閉じた状態で、遮断弁44とフラップ弁62を開くことにより、所定時間にわたり第1容器20から空気輸送機の吸引室52内へと粉体を空気輸送する。
−次に、フラップ弁62を閉じることにより吸引室52への粉体の吸引を停止すると共に、真空源48の真空を吸引室に印加し続けることにより吸引室52内に高真空を維持する。
−次に、遮断弁44を閉じることにより吸引室52内に高真空を閉じ込める。
−次に、逆流洗浄機構74を作動させて、高真空下の吸引室52に対して圧縮空気パルスを噴射させることにより、フィルター72を逆流洗浄する。
−次に、排出ダンパー96を開くことにより粉体を第2容器24へと排出させる。
−上記の操作を繰り返す。
【0045】
単一の空気輸送機を用いたこの空気輸送方式においても、逆洗工程ではエアパルスは高真空下の吸引室52に向かって発射されるので、バッグフィルター72の内外の圧力差(△P)が高く、バッグフィルターの逆洗が効果的に行われる。
【図面の簡単な説明】
【図1】従来のツインコンベヤ方式の空気輸送システムの概念図である。
【図2】図1に示した従来のシステムで使用されているピンチバルブの断面図で、(A)は全開位置を、(B)は全閉位置を示す。
【図3】本発明のツインコンベヤ方式の空気輸送システムの概念図である。
【図4】図3に示したシステムの一方の空気輸送機とその制御装置の一部切欠き模式図で、圧縮空気系統は実線で、電気信号系統は破線で示してある。
【図5】図4に示した空気輸送機の排出ダンパー機構を示すもので、(A)は斜視図、(B)は側面図である。
【図6】図4に示した空気輸送機の吸引モジュールの上蓋に設けたフィルタと逆洗機構の断面図である。
【符号の説明】
26: バッチ式吸引式空気輸送機
34: 吸込管
38: 空気輸送管
44: 遮断弁
48: 真空源
50: 輸送機の本体
52: 吸引室
54: フラップ弁機構
68: 本体の空気出口
72: フィルター
74: 逆流洗浄機構
94: 排出ダンパー機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for continuously pneumatically transporting powder using two batch-type suction pneumatic transporters (also called vacuum conveyors) that are operated alternately. The present invention relates to a method for pneumatically conveying powder with high efficiency in a high vacuum and high concentration transportation mode called “plug transportation” or “columnar transportation” in the field. The present invention also relates to a batch suction air transport machine used for carrying out such a pneumatic transport method. The present invention further relates to a method for pneumatically transporting powder while effectively backwashing a dustproof filter of this type of pneumatic transporter.
[0002]
[Prior art]
The pneumatic transportation of powder can be broadly divided into a pumping type in which powder is pumped from behind by an air flow and a suction type in which vacuum is sucked from the front. The latter suction-type pneumatic transportation is considered to be more desirable because it has the advantage that dust does not leak even if damage such as cracks occurs in the piping path.
[0003]
The suction type pneumatic transport is performed using a suction type pneumatic transport machine (vacuum conveyor).
Suction type pneumatic transportation can be divided into batch type and continuous type according to the transport mode, and the configuration of the suction type pneumatic transport machine used is slightly depending on whether the transport mode is batch type or continuous type Different.
[0004]
Continuous suction air transportation is performed using a suction air transportation machine of a type that does not include a discharge damper mechanism that opens and closes the lower portion of the main body. This type of pneumatic transporter is directly installed on a sealed transport destination container, and has an advantage that powder can be sucked and transported continuously without interruption. However, since the powder transport destination container must be sealed, as a cutting device for quantitatively supplying powder from the transport destination container, a sealed type that can hold the vacuum of the transport destination container such as a rotary valve However, there is a difficulty that a cutting device must be used.
[0005]
On the other hand, batch-type suction pneumatic transportation is performed using a suction-type pneumatic transportation machine of a type having a discharge damper mechanism in the lower part. This type of pneumatic transporter equipped with a discharge damper mechanism can keep the suction chamber in a vacuum by sealing the lower part of the main body of the transporter with a discharge damper during pneumatic transportation. This has the advantage that it can be placed and therefore does not require a sealed cutting device such as a rotary valve.
The present invention relates to a suction-type pneumatic transport device (referred to as a batch-type suction-type pneumatic transport device) of the type provided with the discharge damper mechanism and a pneumatic transport method using the same.
[0006]
In batch-type suction-type pneumatic transportation, the discharge damper is closed and the suction chamber is sealed, and then the powder is sucked into the suction chamber of the main body, and when the suction chamber is filled with the sucked powder, suction is stopped, Next, the discharge damper is opened to discharge the powder to the transport destination container, and a series of operations are repeated for each batch.
[0007]
The disadvantage of batch suction pneumatic transportation is that, since suction transportation is performed only intermittently for each batch, the transportation efficiency is halved or lower than that of the continuous system.
Therefore, in the prior art, the powder is continuously pneumatically transported by using two batch suction air transporters and operating them alternately. Hereinafter, for convenience, this pneumatic transportation method is referred to as a “twin conveyor method”.
In the twin conveyor system, as shown in FIG. 1, two batch type suction type air transporters 2 are installed on the transport destination container 1, and the suction pipe 3 of each transporter 2 is connected via the branch pipe 4. Are connected to a common transport pipe 5 and the upstream end of the transport pipe 5 is connected to a first container 7 containing powder to be transported.
A shutoff valve 9 is arranged in each pipe line 8 between each suction pipe 3 and the branch pipe 4, and by switching these two shutoff valves 9 alternately, the two air transporters 2 are operated alternately. It is supposed to let you.
[0008]
In the conventional twin conveyor system, a pinch valve as shown in FIG. 2 is used as the shutoff valve 9 for opening and closing the pipe line 8.
The pinch valve 9 includes a rubber sleeve 10 and a pressure chamber 11 formed around the rubber sleeve 10, and the compressed air is sent from the compressed air inlet 12 to the pressure chamber 11, so that the rubber sleeve 10 is narrowed. FIG. The internal passage 13 is closed as shown in FIG.
When the application of compressed air to the pressure chamber 11 is released, the rubber sleeve 10 is restored by its elasticity and returns to the cylindrical shape shown in FIG.
This kind of pinch valve is used as the shutoff valve for the pipe line 8 because the inner diameter of the internal passage 13 becomes equal to the inner diameter of the front and rear pipe lines 8 in the fully opened state, and thus the obstacle and resistance to the transported powder. This is because there is an advantage that there is no longer.
[0009]
[Problems to be solved by the invention]
However, several problems are associated with pinch valves. The first problem is that even if the application of compressed air to the pressure chamber 11 is released, the pinch valve does not open at all as long as the vacuum is applied to the internal passage 13, or the valve opening response is very high. It is slow.
The reason for this is that the pinch valve opens when the rubber sleeve 10 is restored to its original cylindrical shape by its own elastic restoring force, so that the pressure in the pressure chamber 11 becomes atmospheric pressure by stopping the supply of compressed air. However, a vacuum exists in the passage inside the rubber sleeve 10, and the rubber sleeve 10 expands in diameter while the force that pulls the rubber sleeve 10 radially inward by the action of the vacuum overcomes the elastic restoring force of the rubber. This is because there is no, and it remains in the closed state as shown in FIG.
[0010]
Therefore, when switching between the two pneumatic transport machines, the rubber sleeve is temporarily broken by reducing the vacuum in the transport pipe 5 by temporarily stopping the vacuum pump of the pneumatic transport machine or the like. 10 must help restore.
When the vacuum break is caused in the transport pipe temporarily or the vacuum degree is lowered in this way, the negative pressure in the transport pipe takes a momentary breath, and the flow of the powder-air mixture in the transport pipe temporarily Stop. As a result, the powder may stall and drop in the vertical pipe 5A (FIG. 1) of the transport pipe 5 and accumulate on the bottom thereof, thereby closing the vertical pipe.
In addition, there is necessarily a certain delay before the high vacuum is restored in the pipe again after the vacuum in the transport pipe is temporarily broken, so high vacuum and high concentration transport in the form of plug transport or column transport is prescribed. As a result, the transport capacity of the entire twin conveyor system is reduced.
[0011]
Another problem of the pinch valve is that the rubber sleeve 10 is severely damaged and worn, so that the life of the rubber sleeve is shortened and the wear powder of the rubber sleeve is mixed into the powder to be transported and contaminates the powder. That is. The rubber sleeve is severely damaged and worn because the rubber sleeve is ground when the powder collides with the rubber sleeve in the half-open state. As a result, the rubber sleeve is quickly opened and needs to be replaced.
Still another problem of the pinch valve is that the restoring force of the rubber sleeve 10 is affected by the pressure in the pipe, so the switching operation and timing are unstable and uncertain, the response is slow and a time lag occurs, so the switching is accurately controlled. It is difficult to do.
[0012]
Instead of using the pinch valve 9, a ball valve type or sliding valve type three-way valve is arranged at the branch portion 4 of the transport pipe 5, and two batch-type suction pneumatic transports are switched by switching the three-way valve. It is also possible to operate the machine 2 alternately.
However, due to the structure of the ball valve or sliding valve of the three-way valve, the two outlets of the three-way valve are temporarily fully closed at the time of switching, and the vacuum break in the transport pipe 5 still occurs. As in the case of the pinch valve described above, there is a problem in that the vertical pipe is blocked by the powder that has stalled and dropped in the vertical pipe 5A of the transport pipe 5, and the transport capability is lowered.
Further, the three-way valve ball valve and the sliding valve are worn early due to the biting of the powder, and the smooth rotation thereof is hindered. Furthermore, since the ball valve and the sliding valve are switched by a rotational motion, there is a problem that the opening / closing speed is slow.
[0013]
The object of the present invention is to eliminate or minimize the vacuum break (so-called breathing) in the transport pipeline when switching between two pneumatic transporters when the powder is pneumatically transported by the twin conveyor system. Another object of the present invention is to provide an air transportation method capable of substantially maintaining a high vacuum / high concentration transportation mode from plug transportation to columnar transportation even when the air transportation equipment is switched, and an air transportation equipment used in the method.
[0014]
Another object of the present invention is to provide a twin conveyor type highly efficient pneumatic transportation method that is comparable to continuous suction type pneumatic transportation in terms of transportation capacity, and an air transportation machine used in the method.
Another object of the present invention is to provide an air transportation method in which a transport pipe is not clogged with powder when a pneumatic transport machine is switched when a powder is pneumatically transported by a twin conveyor system, and an air transport machine used in the method. There is to do.
[0015]
In the air transportation suction process, the air discharged from the suction chamber of the transport machine is filtered by a dustproof filter, and in the powder discharge process by opening the discharge damper, a compressed air pulse is injected inside the filter by the backwashing mechanism. Thus, the filter is backwashed (hereinafter also referred to as backwashing for short).
Another object of the present invention is to provide a method of pneumatically transporting powder while effectively backwashing the dustproof filter of a batch suction type air transporter, regardless of whether it is a twin conveyor system or a single system. There is to do.
[0016]
[Means for Solving the Problems]
In the pneumatic transportation by the twin conveyor system of the present invention, two batch suction air transportation machines are used.
Each batch-type suction pneumatic transporter includes a body defining a sealable suction chamber, the body having an inner end (inner and outer terms refer to a positional relationship about the axis of the body) Comprises a suction pipe extending into the suction chamber and having an air transport pipe connected to the outer end thereof, an air outlet connected to a vacuum source, and a discharge damper mechanism for discharging powder in the suction chamber at a predetermined timing. Yes.
Each pneumatic transporter is further disposed in the suction chamber of the main body, and is disposed in the suction chamber on the upstream side of the outlet, with a power-driven flap valve mechanism that controls opening and closing of the opening at the inner end of the suction pipe. A filter for filtering the air flowing out from the chamber to the outlet, and a backwashing mechanism for backwashing the filter by injecting a compressed air pulse inside the filter at a predetermined timing. And a shutoff valve connected between the outlet and the vacuum source and configured to shut off a vacuum applied from the vacuum source to the suction chamber.
[0017]
One feature of the pneumatic transport device of the present invention is that a power-driven flap valve mechanism is used to control opening and closing of the suction pipe.
In a preferred embodiment, the power-driven flap valve mechanism is an air-driven flap valve mechanism and has an air actuator that swings the flap valve body.
Unlike prior art pinch valves, power driven flap valves can be reliably opened even under high vacuum, so there is no need to vacuum break the transport line for switching. Therefore, the two pneumatic transporters can be switched while maintaining the high vacuum / high concentration transport mode.
Further, since the power-driven flap valve mechanism is disposed in the suction chamber of the transport machine body, the piping operation is greatly simplified.
Unlike the pinch valve, the flap valve mechanism does not remain in a half-open state, and therefore has an advantage that it is not subjected to grinding action by the colliding powder and is not worn.
[0018]
When pneumatically transporting powder from the first container to the second container,
(1) The first and second batch suction air transporters are arranged on the second container, and the outer end of the suction pipe of each air transporter is attached to the first container. Connected to the suction pipe of the air through the pneumatic transport pipe, and the shut-off valve of each pneumatic transport machine is connected to a high vacuum source such as an ejector or a blower through the vacuum pipe,
(2) The shut-off valve of the first air transporter with the shut-off valve of the second air transporter closed, the flap valve closed, the discharge damper opened, and the discharge damper of the first air transporter closed. And by opening the flap valve, the powder is pneumatically transported from the first container into the suction chamber of the first pneumatic transporter over a predetermined time,
(3) Next, the conduit is substantially closed while the first air transporter is operated under high vacuum by closing the discharge damper of the first air transporter, opening the shut-off valve, and keeping the flap valve open. By closing the discharge damper of the second air transporter, opening the shut-off valve, and opening the flap valve without breaking the vacuum, both the first air transporter and the second air transporter are simultaneously high vacuum. (Simultaneous operation on both sides).
Since the flap valve mechanism that opens even under high vacuum is used, at this stage, the flap valve can be switched to open while maintaining a high vacuum without breaking the vacuum inside the pneumatic transport pipe. As a result, the air flow in the high vacuum / high concentration transport mode in the state of plug transport or column transport is maintained in the air transport pipe during the simultaneous operation transition.
[0019]
(4) Next, while continuing the operation of the second pneumatic transport device, the suction valve of the first pneumatic transport device is switched by closing the shut-off valve of the first pneumatic transport device, closing the flap valve, and opening the discharge damper. Stop the air transport to and discharge the powder in the suction chamber to the second container,
(5) Next, the duct is substantially closed while the second air transporter is operated under high vacuum by closing the discharge damper of the second air transporter, opening the shut-off valve and keeping the flap valve open. The vacuum damper of the first air transporter is closed, the shutoff valve is opened, and the flap valve is switched to open without breaking the vacuum of the first air transporter. And move to simultaneous operation on both sides. Pneumatic transportation is performed by repeating the steps (2) to (5) as necessary.
[0020]
According to the method of the present invention, a high concentration transport mode can be secured by applying as high a vacuum as possible in the transport pipe, and this high vacuum is substantially maintained even during the transition to simultaneous operation. The transportation efficiency of transportation is significantly improved.
According to the method of the present invention, the transportation capacity is about 4 times or more (4 to 6 tons) compared to the case of switching between two pneumatic transporters while breaking the vacuum in the transportation pipe (for example, 1 ton / hour). / Hour).
[0021]
Preferably, the pneumatic transport steps (2) and (4) are performed under a high vacuum stronger than an average of about -30 kPa, more preferably under a high vacuum stronger than an average of about -50 kPa.
[0022]
In a preferred embodiment of pneumatic transportation by twin conveyor system,
(1) The first and second batch type suction air transporters according to any one of claims 1 to 3 are arranged on the second container, and the outer ends of the suction pipes of the respective air transporters are arranged. Connect to a common suction pipe from the first container via an air transport pipe, and connect the shut-off valve of each air transport machine to a vacuum source via a vacuum pipe,
(2) With the shut-off valve of the second air transporter closed, the discharge damper opened, and the discharge damper of the first air transporter closed, the shut-off valve and flap valve of the first air transporter opened. Thus, the powder is pneumatically transported from the first container into the suction chamber of the first pneumatic transporter over a predetermined time,
(3) Next, with the discharge damper of the first air transporter closed, the shutoff valve opened, and the flap valve opened, the exhaust air damper of the second air transporter closed, the shutoff valve opened, and the flap valve Switching to open and applying vacuum to the suction chambers of both the first and second pneumatic transporters to operate both the first and second pneumatic transports simultaneously;
(4) Next, with the discharge damper of the first air transporter closed and the flap valve opened, the shut-off valve of the first air transporter is switched to the closed state to the suction chamber of the first air transporter. While the air transport of the second air transporter is stopped, the vacuum in the suction chamber of the second air transporter is transmitted to the suction chamber of the first air transporter via the air transport pipe and reflected to reflect the vacuum in the suction chamber of the first air transporter. Maintain the vacuum,
(5) Next, a high vacuum is confined in the suction chamber of the first pneumatic transporter by closing the flap valve of the first pneumatic transporter.
[0023]
(6) With the high vacuum confined in the suction chamber of the first air transporter in this way, the backwashing mechanism of the first air transporter is then operated to compress the suction chamber under the high vacuum. The filter of the 1st air transport machine is backwashed by injecting an air pulse.
In this backwashing process, a compressed air pulse (positive pressure) is injected into the suction chamber maintained under high vacuum, so that the pressure difference (ΔP) between the inside and outside of the filter is high and backwashing is performed effectively. Is called.
[0024]
(7) Next, by opening the discharge damper of the first pneumatic transport device, the powder in the suction chamber of the first pneumatic transport device is discharged to the second container,
(8) Next, the steps (2) to (7) are executed while the relationship between the first pneumatic transporter and the second pneumatic transporter is reversed. The steps (2) to (8) are repeated as necessary.
[0025]
Preferably, in the backwashing step, the injection of the compressed air pulse is repeated until the pressure in the suction chamber of the pneumatic transporter becomes atmospheric pressure. In this way, when the pressure in the suction chamber recovers to atmospheric pressure, the discharge damper opens automatically by its own weight and the weight of the powder, and discharges the powder.
[0026]
The present invention also provides a method for pneumatically transporting powder while effectively back-washing the dustproof filter of a batch suction air transporter that is batch operated independently,
(1) A batch suction air transporter is placed on the second container, and the outer end of the suction pipe of the air transporter is connected to a common suction pipe from the first container via the air transport pipe. At the same time, connect the shutoff valve of the pneumatic transporter to the vacuum source via the vacuum pipe,
(2) With the discharge damper of the pneumatic transporter closed, by opening the shutoff valve and flap valve, the powder is pneumatically transported from the first container into the suction chamber of the pneumatic transporter over a predetermined time period.
(3) Next, the suction of the powder into the suction chamber is stopped by closing the flap valve, and a high vacuum is maintained in the suction chamber by continuing to apply the vacuum of the vacuum source to the suction chamber.
(4) Next, a high vacuum is closed in the suction chamber by closing the shut-off valve,
(5) Next, the backwashing mechanism is operated to inject the compressed air pulse into the suction chamber under high vacuum, thereby backwashing the filter.
(6) Next, the powder in the suction chamber is discharged to the second container by opening the discharge damper,
(7) The steps (2) to (6) are repeated. The jet of compressed air pulses can be repeated until the pressure in the suction chamber reaches atmospheric pressure.
[0027]
Since the backwashing step (5) is performed in a state where a high vacuum is confined in the suction chamber of the pneumatic transporter, the pressure difference (ΔP) between the inside and outside of the filter is high and backwashing is performed effectively.
The above-described features and effects of the present invention as well as other features and effects will be further clarified as the following examples are described.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
With reference to the accompanying drawings, embodiments of the pneumatic transportation method of the present invention, the pneumatic transportation system for carrying out the method, and the pneumatic transportation machine used in the system will be described.
Referring to FIG. 3 conceptually showing the entire pneumatic transportation system, this pneumatic transportation system transfers powder 22 contained in one or a plurality of containers (first containers) 20 to another container (second container) 24. It is configured for pneumatic transportation. The first container 20 and the second container 24 can be any container, and as a non-limiting example, the first container 20 is a powder production tank disposed in a powder production plant, and the second container 24. Can be a hopper or other storage container with a powder cutting mechanism.
[0029]
This pneumatic transport system has two batch suction air transporters (vacuum conveyors) 26 according to the invention arranged on a second container 24. In the illustrated embodiment, each pneumatic transport device 26 is composed of an upper suction module 28 and a lower damper module 30, which are detachably coupled by an appropriate number of buckle devices 32.
The suction module 28 of each air transporter 26 includes a suction pipe 34 extending into the suction chamber, and the outer end of each suction pipe 34 is common air transport to the two air transporters 26 via the branch pipe 36. Connected to tube 38. The upstream end of the air transport pipe 38 can be connected to a suction nozzle 40 disposed in the first container 20. If the first container 20 comprises a hopper, the upstream end of the pneumatic transport tube 38 can be connected to the hopper outlet, for example, in the conventional manner shown in FIG.
[0030]
A shutoff valve 44 is provided on the upper cover 42 of the suction module 28 of each pneumatic transport device 26, and an outlet port of the shutoff valve 44 is connected to a vacuum source 48 via a vacuum pipe 46. As the vacuum source 48, a blower such as a Roots blower or a multistage ring blower, an ejector type vacuum pump, or another type of vacuum pump can be used.
The damper module 30 of each pneumatic transport device 26 includes a discharge damper mechanism, which will be described later with reference to FIG. 5, and the second powder 24 has a relationship such that the internal powder falls into the second container 24 when the discharge damper is opened. It is installed on the container 24.
[0031]
Referring to FIG. 4, the suction module 28 of each pneumatic transporter 26 includes a cylindrical main body 50 in which a suction chamber 52 is defined.
The suction pipe 34 penetrates through the main body 50 and projects into the suction chamber 52, and the inner end of the suction pipe 34 is opened and closed by an air driven flap valve mechanism 54.
The flap valve mechanism 54 is fixed to a bracket 56 fixed to the suction pipe 34 by welding or bolting, a 90-degree swinging air-driven rotary actuator 58 fixed to the bracket, and an output shaft of the actuator. The swing arm 60 and a flap valve body 62 attached to the swing arm can be used. The end face of the flap valve body 62 is covered with a rubber lining so that the inner end of the suction pipe 34 is sealed.
The air-driven rotary actuator 58 is driven by compressed air from a compressed air source 70 such as an air compressor, and the supply of compressed air is performed by a programmable control device 64 common to the two air transporters 26. Controlled by a controlled solenoid valve 66.
[0032]
An air outlet 68 is provided in the upper cover 42 of each suction module 28, and this air outlet is connected to the inlet port of the shut-off valve 44. In the illustrated embodiment, the shut-off valve 44 is of an air drive type, and the compressed air that drives the shut-off valve 44 is also controlled by an electromagnetic valve 66 that is controlled by a control device 64.
[0033]
4 and 6, in the suction chamber 52 of each suction module 28, a bag filter 72 for filtering the air flowing out from the suction chamber 52 to the outlet 68, and this is injected by compressed air pulses. A backwashing mechanism 74 for periodically backwashing the bag filter 72 is provided.
The bag filter 72 is supported by a frame 76 made of a perforated plate or the like attached to the upper lid 42 of the suction module 28.
The backwashing mechanism 74 is of a conventional type, and can be composed of, for example, a compressed air tank 78 supported by the upper lid 42 and an air cylinder device 80. The air cylinder device 80 includes a piston 82 mounted on the cylinder and a check valve 84. When the piston 82 descends, the compressed air from the compressed air hose 86 is filled in the compressed air tank 78, and as shown in FIG. When 82 rises, the inlet of the compressed air tank 78 is opened, and the compressed air in the compressed air tank 78 is jetted into the bag filter 72 as indicated by an arrow 88 to backwash the bag filter 72. ing.
Compressed air to the air cylinder device 80 is controlled by a solenoid valve 90 controlled by a control device 64.
[0034]
The powder sucked into the suction chamber 52 of the suction module 28 of each pneumatic transport device 26 falls into the damper module 30.
4 and 5, the damper module 30 is of a conventional type and
A discharge damper mechanism 94 for opening and closing the upper opening and the lower outlet opening thereof is provided.
As can be clearly seen from FIG. 5, the discharge damper mechanism 94 includes a discharge damper 96 that can seal the outlet opening of the hopper 92, a swing arm 98 with a roller for swinging the discharge damper 96 upward, An oscillating vane type aerodynamic actuator 100 for driving the arm 98 is provided. The gap between the hopper 92 and the discharge damper 96 is sealed by an elastomer seal ring 102. The actuator 100 is also controlled by the control device 64 via the electromagnetic valve 90.
[0035]
Next, the operation sequence of the pneumatic transportation system will be described. Any one of the two pneumatic transporters 26 is referred to as a first (# 1) transporter, and the other is referred to as a second (# 2) transporter.
The vacuum pump 48 and the air compressor 70 are operated, the shut-off valve 44 of the # 2 transport machine is closed, the flap valve 62 is closed, the discharge damper 96 is opened, and the discharge damper 96 of the # 1 transport machine is closed Then, the shut-off valve 44 and the flap valve 62 of the # 1 transport aircraft are opened. Thereby, the powder in the first container 20 is sucked into the suction chamber 52 of the # 1 transport machine via the suction nozzle 40 and the air transport pipe 38 (# 1 suction process, # 2 discharge process).
The suction of the powder is performed under high vacuum, which is called “plug transport” or “columnar transport”, and preferably under a vacuum higher than the average of about −30 kPa, more preferably about −50 kPa. Under a stronger vacuum.
The powder that has been pneumatically transported to the # 1 transport machine is accumulated in the damper module 30.
[0036]
When the powder is pneumatically transported to the # 1 transporter for a predetermined time (for example, 2 to several seconds), the discharge damper 96 of the # 1 transporter is closed and shut off at the timing before the damper module 30 is filled with powder. With the valve 44 opened and the flap valve 62 opened, the discharge damper 96 of the # 2 transport machine is closed, the shutoff valve 44 is opened, and the flap valve 62 is switched to open.
Unlike the pinch valve of the prior art, the flap valve 62 driven by the air driven rotary actuator 58 opens reliably and quickly even under high vacuum. Therefore, pneumatic transport is required to open the flap valve 62 of the # 2 transport aircraft. There is no need to vacuum break the tube 38.
By switching the flap valve 62 of the # 2 transporter to open, a vacuum is applied to the suction chambers 52 of both the # 1 transporter and the # 2 transporter, and both the # 1 transporter and the # 2 transporter are simultaneously The suction of powder from the first container 20 is started (both simultaneous operation).
Since the number of vacuum pumps 48 is one, the transport amount of each transport device is halved during simultaneous operation of both, but the flow rate of the entire transport pipe 38 and the flow rate of the suction nozzle 40 do not drop. Therefore, the advantages of high concentration transportation continue to be enjoyed.
Since the two transport machines 26 are operating simultaneously, a high vacuum is maintained in the transport pipe 38 and a high vacuum is maintained in the suction chambers 52 of both transport machines 26.
[0037]
Next, with the discharge damper 96 of the # 1 transporter closed and the flap valve 62 opened, the shut-off valve 44 of the # 1 transporter is switched to the closed state. When the shut-off valve 44 of the # 1 transport machine is closed, the air transport to the suction chamber of the # 1 transport machine stops and the inflow of powder from the suction pipe 34 stops (# 1 suction stop).
However, at this point, the # 2 transport machine is already operating, and the entire transport pipe 38 is still under a high vacuum as described above, so that the # 1 transport machine remains open with the flap valve 62 of the # 1 transport machine open. Even if the shutoff valve 44 is closed, the high vacuum in the transport pipe 38 is reflected in the suction chamber 52 of the # 1 transport aircraft, and the suction chamber 52 of the # 1 transport aircraft is maintained under a high vacuum.
[0038]
Next, when the powder flow from the suction pipe 34 of the # 1 transport machine to the suction chamber 52 stops, the flap valve 62 of the # 1 transport machine is closed. Since the flow of the powder is stopped, the powder does not bite between the flap valve 62 and the inner end of the suction pipe 34, and sealing failure of the flap valve 62 due to the biting of the powder is prevented.
Thus, a high vacuum is confined in the suction chamber 52 of the # 1 transport machine.
[0039]
With the high vacuum confined in the suction chamber 52 of the # 1 transport machine in this way, the backwash mechanism 74 of the # 1 transport machine is then operated to quickly release the compressed air in the compressed air tank 78. . The compressed air ejected from the compressed air tank 78 is jetted into the bag filter 72 as an air pulse, and the bag filter 72 is backwashed (# 1 backwashing).
Since the air pulse is emitted toward the suction chamber 52 under high vacuum, the pressure difference (ΔP) inside and outside the bag filter 72 is high. Therefore, the backwashing of the bag filter is performed very effectively.
[0040]
The shut-off valve 44 is provided on the upper cover 42 of the suction module 28, the volume of the space between the bag filter 72 and the shut-off valve 44 is minimized, and the rear (downstream side) of the backwash mechanism 74. Therefore, the air pulse emitted from the compressed air tank 78 effectively acts on the bag filter 72 without waste and effectively backwashes it.
The air pulse can be emitted a plurality of times (for example, five times). Each time an air pulse is emitted, the pressure in the suction chamber 52 of the # 1 transporter gradually approaches atmospheric pressure.
[0041]
When the pressure in the suction chamber 52 of the # 1 transporter approaches atmospheric pressure, the discharge damper 96 automatically opens due to its own weight and the weight of the powder and discharges the powder to the second container 24 (# 1 discharge) ).
[0042]
When powder suction, filter backwashing, and powder discharge are completed for the # 1 transport machine, the same operation is performed for the # 2 transport machine, and further, a series of these operations are performed to transport a desired amount of powder. Repeat as necessary.
Thus, according to the present invention, the two pneumatic transporters 26 can be operated alternately without substantially breaking the vacuum in the transport pipe 38 and thus maintaining the plug transport or the column transport. As a result, the transport capacity is greatly increased (about 4 times or more) compared to the conventional method.
[0043]
Although the twin conveyor type pneumatic transport has been described above, the method of the present invention can also be applied to a pneumatic transport system using a single batch suction air transporter.
In this case, in the system configuration shown in FIG. 3, one of the pneumatic transporters is omitted.
The sequence of operation of this pneumatic transport system can be as follows.
[0044]
-Pneumatically transport powder from the first container 20 into the suction chamber 52 of the pneumatic transporter over a predetermined time by opening the shutoff valve 44 and flap valve 62 with the exhaust damper 96 of the pneumatic transporter closed. .
-Next, the suction of the powder into the suction chamber 52 is stopped by closing the flap valve 62 and a high vacuum is maintained in the suction chamber 52 by continuing to apply the vacuum of the vacuum source 48 to the suction chamber.
Next, a high vacuum is confined in the suction chamber 52 by closing the shut-off valve 44.
-Next, the backwashing mechanism 74 is activated to jet the compressed air pulse into the suction chamber 52 under high vacuum, thereby washing the filter 72 backwashing.
-The powder is then discharged into the second container 24 by opening the discharge damper 96.
-Repeat the above operation.
[0045]
Even in this air transport system using a single air transporter, the air pulse is emitted toward the suction chamber 52 under high vacuum in the backwash process, so that the pressure difference (ΔP) inside and outside the bag filter 72 is reduced. The back filter is effectively washed back.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a conventional twin conveyor type pneumatic transportation system.
2 is a cross-sectional view of a pinch valve used in the conventional system shown in FIG. 1, in which (A) shows a fully open position and (B) shows a fully closed position.
FIG. 3 is a conceptual diagram of a twin conveyor type pneumatic transportation system of the present invention.
4 is a partially cutaway schematic view of one pneumatic transport device and its control device of the system shown in FIG. 3, in which the compressed air system is indicated by a solid line, and the electrical signal system is indicated by a broken line.
FIGS. 5A and 5B show a discharge damper mechanism of the pneumatic transport device shown in FIG. 4, in which FIG. 5A is a perspective view and FIG. 5B is a side view.
6 is a cross-sectional view of a filter and a backwashing mechanism provided on the upper cover of the suction module of the pneumatic transport device shown in FIG. 4;
[Explanation of symbols]
26: Batch suction air transporter
34: Suction pipe
38: Pneumatic transport pipe
44: Shut-off valve
48: Vacuum source
50: Main body of transport aircraft
52: Suction chamber
54: Flap valve mechanism
68: Air outlet of the body
72: Filter
74: Backwash mechanism
94: Discharge damper mechanism

Claims (12)

吸引室を画成する本体であって、内側端部が前記吸引室内に延び外側端部に空気輸送管が接続される吸込管と、真空源に接続される空気出口と、吸引室内の粉体を所定のタイミングで排出する排出ダンパー機構とを備えた本体と、
本体の前記吸引室内に配置され、前記吸込管の内側端部の開口を開閉制御する動力駆動フラップ弁機構と、
前記出口の上流側において吸引室内に配置され、吸引室から出口へと流出する空気を濾過するためのフィルターと、
前記フィルターの内側に配置され、所定のタイミングでフィルターの内側に圧縮空気パルスを噴射してフィルターを逆流洗浄するための逆流洗浄機構と、
前記出口と真空源との間に接続され、真空源から吸引室へ印加される真空を遮断する遮断弁、
とを備えたバッチ式吸引式空気輸送機。
A main body defining a suction chamber, wherein an inner end extends into the suction chamber and an air transport tube is connected to the outer end, an air outlet connected to a vacuum source, and powder in the suction chamber A main body equipped with a discharge damper mechanism that discharges at a predetermined timing;
A power-driven flap valve mechanism that is disposed in the suction chamber of the main body and controls opening and closing of the opening of the inner end of the suction pipe;
A filter disposed in the suction chamber upstream of the outlet, for filtering air flowing out from the suction chamber to the outlet;
A backwashing mechanism that is disposed inside the filter and injects a compressed air pulse inside the filter at a predetermined timing to backwash the filter;
A shutoff valve that is connected between the outlet and a vacuum source and shuts off a vacuum applied from the vacuum source to the suction chamber;
And a batch suction air transport machine.
前記動力駆動フラップ弁機構はエア駆動型フラップ弁機構であり、フラップ弁体を揺動させるエアアクチュエータを有することを特徴とする請求項1に基づく空気輸送機。2. The pneumatic transport device according to claim 1, wherein the power-driven flap valve mechanism is an air-driven flap valve mechanism and has an air actuator that swings a flap valve body. 前記フィルターと遮断弁との間の空間の容積を最小限にするため、前記遮断弁は前記空気出口の近傍において本体上部に配置したことを特徴とする請求項1又は2に基づく空気輸送機。3. An air transporter according to claim 1 or 2, wherein the shut-off valve is arranged in the upper part of the main body in the vicinity of the air outlet in order to minimize the volume of the space between the filter and the shut-off valve. 第1容器に収容された粉体を交互に運転する2つのバッチ式吸引式空気輸送機を用いて第2容器へと連続的に空気輸送するにあたり、
(1)第2容器の上に請求項1から3のいづれかに基づく第1および第2の2つのバッチ式吸引式空気輸送機を配置して、各空気輸送機の吸込管の外側端部を空気輸送管を介して第1容器からの共通の吸引管に接続すると共に、各空気輸送機の前記遮断弁を真空配管を介して高真空源に接続し、
(2)第2空気輸送機の遮断弁を閉、フラップ弁を閉、排出ダンパーを開にし、かつ、第1空気輸送機の排出ダンパーを閉にした状態で、第1空気輸送機の遮断弁とフラップ弁を開くことにより、所定時間にわたり第1容器から第1空気輸送機の吸引室内へと粉体を空気輸送し、
(3)次に、第1空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開に維持することにより第1空気輸送機を高真空下で作動させながら、実質的に管路の真空破壊をすることなく、第2空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開に切り換えることにより、第1空気輸送機と第2空気輸送機の双方を同時に高真空で作動させ、
(4)次に、第2空気輸送機の作動を継続しながら、第1空気輸送機の遮断弁を閉、フラップ弁を閉、排出ダンパーを開に切り換えることにより第1空気輸送機の吸引室への空気輸送を停止すると共に吸引室内の粉体を第2容器へと排出させ、
(5)次に、第2空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開に維持することにより第2空気輸送機を高真空下で作動させながら、実質的に管路の真空破壊をすることなく、第1空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開に切り換えることにより、第1空気輸送機と第2空気輸送機の双方を同時に高真空で作動させ、
(6)上記(2)〜(5)の工程を必要に応じて繰り返すことを特徴とする空気輸送方法。
In continuous pneumatic transportation to the second container using two batch suction air transport machines that alternately operate the powder contained in the first container,
(1) The first and second batch type suction air transporters according to any one of claims 1 to 3 are arranged on the second container, and the outer ends of the suction pipes of the respective air transporters are arranged. Connect to a common suction pipe from the first container via an air transport pipe, and connect the shut-off valve of each air transport machine to a high vacuum source via a vacuum pipe,
(2) The shut-off valve of the first air transporter with the shut-off valve of the second air transporter closed, the flap valve closed, the discharge damper opened, and the discharge damper of the first air transporter closed. And by opening the flap valve, the powder is pneumatically transported from the first container into the suction chamber of the first pneumatic transporter over a predetermined time,
(3) Next, the conduit is substantially closed while the first air transporter is operated under high vacuum by closing the discharge damper of the first air transporter, opening the shut-off valve, and keeping the flap valve open. By closing the discharge damper of the second air transporter, opening the shut-off valve, and opening the flap valve without breaking the vacuum, both the first air transporter and the second air transporter are simultaneously high vacuum. Operated with
(4) Next, while continuing the operation of the second pneumatic transport device, the suction valve of the first pneumatic transport device is switched by closing the shut-off valve of the first pneumatic transport device, closing the flap valve, and opening the discharge damper. Stop the air transport to and discharge the powder in the suction chamber to the second container,
(5) Next, the duct is substantially closed while the second air transporter is operated under high vacuum by closing the discharge damper of the second air transporter, opening the shut-off valve and keeping the flap valve open. The vacuum damper of the first air transporter is closed, the shutoff valve is opened, and the flap valve is switched to open without breaking the vacuum of the first air transporter. Operated with
(6) A pneumatic transportation method characterized by repeating the steps (2) to (5) as necessary.
前記空気輸送工程は粉体のプラグ輸送ないし柱状輸送を可能にする高真空下で行うことを特徴とする請求項4に基づく空気輸送方法。5. The pneumatic transportation method according to claim 4, wherein the pneumatic transportation process is performed under a high vacuum that enables plug transportation or columnar transportation of powder. 前記空気輸送工程は平均約−30kPaよりも強い高真空下で行うことを特徴とする請求項5に基づく空気輸送方法。6. The pneumatic transportation method according to claim 5, wherein the pneumatic transportation step is performed under a high vacuum stronger than an average of about -30 kPa. 第1容器に収容された粉体を交互に運転する2つのバッチ式吸引式空気輸送機を用いて第2容器へと連続的に空気輸送するにあたり、
(1)第2容器の上に請求項1から3のいづれかに基づく第1および第2の2つのバッチ式吸引式空気輸送機を配置して、各空気輸送機の吸込管の外側端部を空気輸送管を介して第1容器からの共通の吸引管に接続すると共に、各空気輸送機の前記遮断弁を真空配管を介して真空源に接続し、
(2)第2空気輸送機の遮断弁を閉、排出ダンパーを開にし、かつ、第1空気輸送機の排出ダンパーを閉にした状態で、第1空気輸送機の遮断弁とフラップ弁を開くことにより、所定時間にわたり第1容器から第1空気輸送機の吸引室内へと粉体を空気輸送し、
(3)次に、第1空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開にした状態で、第2空気輸送機の排出ダンパーを閉、遮断弁を開、フラップ弁を開に切り換え、第1空気輸送機および第2空気輸送機の双方の吸引室に真空を印加することにより、第1空気輸送機および第2空気輸送機の双方を同時に作動させ、
(4)次に、第1空気輸送機の排出ダンパーを閉、フラップ弁を開にした状態で、第1空気輸送機の遮断弁を閉に切り換えることにより、第1空気輸送機の吸引室への空気輸送を停止する一方、第2空気輸送機の吸引室内の真空を空気輸送管を介して第1空気輸送機の吸引室内に伝達させ反映させることにより第1空気輸送機の吸引室内に高真空を維持し、
(5)次に、第1空気輸送機のフラップ弁を閉じることにより第1空気輸送機の吸引室内に高真空を閉じこめ、
(6)次に、第1空気輸送機の逆流洗浄機構を作動させて、高真空下の吸引室に対して圧縮空気パルスを噴射させることにより、第1空気輸送機のフィルターを逆流洗浄し、
(7)次に、第1空気輸送機の排出ダンパーを開くことにより第1空気輸送機の吸引室内の粉体を第2容器へと排出させ、
(8)次に、第1空気輸送機と第2空気輸送機との関係を上記とは逆にしながら上記(2)〜(7)の工程を実行し、
(9)上記(2)〜(8)の工程を必要に応じて繰り返すことを特徴とする空気輸送方法。
In continuous pneumatic transportation to the second container using two batch suction air transport machines that alternately operate the powder contained in the first container,
(1) The first and second batch type suction air transporters according to any one of claims 1 to 3 are arranged on the second container, and the outer ends of the suction pipes of the respective air transporters are arranged. Connect to a common suction pipe from the first container via an air transport pipe, and connect the shut-off valve of each air transport machine to a vacuum source via a vacuum pipe,
(2) With the shut-off valve of the second air transporter closed, the discharge damper opened, and the discharge damper of the first air transporter closed, the shut-off valve and flap valve of the first air transporter opened. Thus, the powder is pneumatically transported from the first container into the suction chamber of the first pneumatic transporter over a predetermined time,
(3) Next, with the discharge damper of the first air transporter closed, the shutoff valve opened, and the flap valve opened, the exhaust air damper of the second air transporter closed, the shutoff valve opened, and the flap valve Switching to open and applying vacuum to the suction chambers of both the first and second pneumatic transporters to operate both the first and second pneumatic transports simultaneously;
(4) Next, with the discharge damper of the first air transporter closed and the flap valve opened, the shut-off valve of the first air transporter is switched to the closed state to the suction chamber of the first air transporter. While the air transport of the second air transporter is stopped, the vacuum in the suction chamber of the second air transporter is transmitted to the suction chamber of the first air transporter via the air transport pipe and reflected to reflect the vacuum in the suction chamber of the first air transporter. Maintain the vacuum,
(5) Next, a high vacuum is confined in the suction chamber of the first pneumatic transporter by closing the flap valve of the first pneumatic transporter,
(6) Next, the backwashing mechanism of the first air transporter is operated to inject the compressed air pulse into the suction chamber under high vacuum, thereby backwashing the filter of the first air transporter,
(7) Next, by opening the discharge damper of the first pneumatic transport device, the powder in the suction chamber of the first pneumatic transport device is discharged to the second container,
(8) Next, the steps (2) to (7) are executed while reversing the relationship between the first pneumatic transporter and the second pneumatic transporter.
(9) A pneumatic transportation method characterized by repeating the steps (2) to (8) as necessary.
前記空気輸送工程は粉体のプラグ輸送ないし柱状輸送を可能にする高真空下で行うことを特徴とする請求項7に基づく空気輸送方法。8. The pneumatic transportation method according to claim 7, wherein the pneumatic transportation step is performed under a high vacuum that enables plug transportation or columnar transportation of powder. 前記空気輸送工程は平均約−30kPaよりも強い高真空下で行うことを特徴とする請求項8に基づく空気輸送方法。9. The pneumatic transportation method according to claim 8, wherein the pneumatic transportation step is performed under a high vacuum stronger than an average of about -30 kPa. 前記逆流洗浄工程において圧縮空気パルスの噴射は空気輸送機の吸引室内の圧力が大気圧になるまで繰り返すことを特徴とする請求項7から9のいづれかに基づく空気輸送方法。10. The pneumatic transport method according to claim 7, wherein the jet of compressed air pulses is repeated in the backwashing step until the pressure in the suction chamber of the pneumatic transporter reaches atmospheric pressure. 請求項1から3のいづれかに基づくバッチ式吸引式空気輸送機を用いて第1容器に収容された粉体を第2容器へと空気輸送するにあたり、
(1)第2容器の上に前記バッチ式吸引式空気輸送機を配置して、当該空気輸送機の吸込管の外側端部を空気輸送管を介して第1容器からの共通の吸引管に接続すると共に、空気輸送機の遮断弁を真空配管を介して真空源に接続し、
(2)空気輸送機の排出ダンパーを閉じた状態で、遮断弁とフラップ弁を開くことにより、所定時間にわたり第1容器から空気輸送機の吸引室内へと粉体を空気輸送し、
(3)次に、フラップ弁を閉じることにより吸引室への粉体の吸引を停止すると共に、真空源の真空を吸引室に印加し続けることにより吸引室内に高真空を維持し、
(4)次に、遮断弁を閉じることにより吸引室内に高真空を閉じこめ、
(5)次に、逆流洗浄機構を作動させて、高真空下の吸引室に対して圧縮空気パルスを噴射させることにより、フィルターを逆流洗浄し、
(6)次に、排出ダンパーを開くことにより吸引室内の粉体を第2容器へと排出させ、
(7)上記(2)〜(6)の工程を繰り返すことを特徴とする空気輸送方法。
When pneumatically transporting the powder contained in the first container to the second container using the batch suction air transporter based on any one of claims 1 to 3,
(1) The batch suction air transporter is disposed on the second container, and the outer end of the suction pipe of the air transporter is connected to the common suction pipe from the first container through the air transport pipe. Connect the shut-off valve of the pneumatic transporter to the vacuum source via the vacuum pipe,
(2) With the discharge damper of the pneumatic transporter closed, by opening the shutoff valve and flap valve, the powder is pneumatically transported from the first container into the suction chamber of the pneumatic transporter over a predetermined time period.
(3) Next, the suction of the powder into the suction chamber is stopped by closing the flap valve, and a high vacuum is maintained in the suction chamber by continuing to apply the vacuum of the vacuum source to the suction chamber.
(4) Next, a high vacuum is closed in the suction chamber by closing the shut-off valve,
(5) Next, the backwashing mechanism is operated to inject the compressed air pulse into the suction chamber under high vacuum, thereby backwashing the filter.
(6) Next, the powder in the suction chamber is discharged to the second container by opening the discharge damper,
(7) A pneumatic transportation method characterized by repeating the steps (2) to (6).
前記逆流洗浄工程において圧縮空気パルスの噴射は吸引室内の圧力が大気圧になるまで繰り返すことを特徴とする請求項11に基づく空気輸送方法。12. The pneumatic transportation method according to claim 11, wherein the jet of compressed air pulses is repeated until the pressure in the suction chamber reaches atmospheric pressure in the backwashing step.
JP2000146088A 2000-05-18 2000-05-18 Method and apparatus for pneumatic transport of powder Expired - Lifetime JP4066062B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000146088A JP4066062B2 (en) 2000-05-18 2000-05-18 Method and apparatus for pneumatic transport of powder
AU2001256725A AU2001256725A1 (en) 2000-05-18 2001-05-14 Method and device for pneumatic transportation of powder
PCT/JP2001/003996 WO2001087746A1 (en) 2000-05-18 2001-05-14 Method and device for pneumatic transportation of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000146088A JP4066062B2 (en) 2000-05-18 2000-05-18 Method and apparatus for pneumatic transport of powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006223418A Division JP4759471B2 (en) 2006-08-18 2006-08-18 Pneumatic transportation method of powder

Publications (2)

Publication Number Publication Date
JP2004131189A true JP2004131189A (en) 2004-04-30
JP4066062B2 JP4066062B2 (en) 2008-03-26

Family

ID=18652500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000146088A Expired - Lifetime JP4066062B2 (en) 2000-05-18 2000-05-18 Method and apparatus for pneumatic transport of powder

Country Status (3)

Country Link
JP (1) JP4066062B2 (en)
AU (1) AU2001256725A1 (en)
WO (1) WO2001087746A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434348A (en) * 2008-12-09 2009-05-20 张家港市繁昌机械有限公司 Mobile pneumatic suction desulfurizer distributing and discharge device
JP2009249172A (en) * 2008-04-10 2009-10-29 Yms:Kk Double damper type continuous-suction pneumatic transport device
JP2009298535A (en) * 2008-06-12 2009-12-24 Yms:Kk Continuous suction type pneumatic transport apparatus
JP2010083673A (en) * 2008-10-03 2010-04-15 Yms:Kk Double damper type continuous-suction pneumatic transport device
JP2011173648A (en) * 2010-02-01 2011-09-08 Toyo Jidoki Co Ltd Filling route opening/closing device of liquid material filling machine
JP2015526363A (en) * 2012-08-27 2015-09-10 ザクルイトエ・アクツィオネルノエ・オブスチェストヴォ“ツイン・トレーディング・カンパニー”Zakrytoe Akcionernoe Obschestvo ‘Twin Trading Company’ Method of vacuum-pneumatic transport of bulk material with high mass concentration
JP2019077515A (en) * 2017-10-20 2019-05-23 株式会社サタケ Suction type conveying device
JP2021500557A (en) * 2017-10-23 2021-01-07 エイヴィエル エミッション テスト システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツングAVL Emission Test Systems GmbH Exhaust gas sampling system
JP2021041305A (en) * 2019-09-06 2021-03-18 株式会社松井製作所 Collection device of granular material
JP7361562B2 (en) 2019-10-09 2023-10-16 住友化学株式会社 Powder transportation method, resin composition manufacturing method, and plug transportation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109896298A (en) * 2017-12-11 2019-06-18 上海嘉园环保科技有限公司 Active carbon handler
KR20200107146A (en) * 2019-03-06 2020-09-16 에스케이이노베이션 주식회사 Automatic Powder Transfer System Using Vacuum Conveyor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115089U (en) * 1976-02-27 1977-09-01
JPS5643129A (en) * 1979-09-18 1981-04-21 Color Toronitsuku Kk Transportation of powder in suction system and apparatus thereof
JPS6330738U (en) * 1986-08-11 1988-02-29
EP0394945A3 (en) * 1989-04-25 1992-06-17 Vacuum Engineering Corp. System for removal of asbestos material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249172A (en) * 2008-04-10 2009-10-29 Yms:Kk Double damper type continuous-suction pneumatic transport device
JP2009298535A (en) * 2008-06-12 2009-12-24 Yms:Kk Continuous suction type pneumatic transport apparatus
JP2010083673A (en) * 2008-10-03 2010-04-15 Yms:Kk Double damper type continuous-suction pneumatic transport device
CN101434348A (en) * 2008-12-09 2009-05-20 张家港市繁昌机械有限公司 Mobile pneumatic suction desulfurizer distributing and discharge device
JP2011173648A (en) * 2010-02-01 2011-09-08 Toyo Jidoki Co Ltd Filling route opening/closing device of liquid material filling machine
EP2889239A4 (en) * 2012-08-27 2016-04-27 Twin Technology Company Ooo Method for the vacuum-pneumatic transporting of bulk materials with a high mass concentration
JP2015526363A (en) * 2012-08-27 2015-09-10 ザクルイトエ・アクツィオネルノエ・オブスチェストヴォ“ツイン・トレーディング・カンパニー”Zakrytoe Akcionernoe Obschestvo ‘Twin Trading Company’ Method of vacuum-pneumatic transport of bulk material with high mass concentration
JP2019077515A (en) * 2017-10-20 2019-05-23 株式会社サタケ Suction type conveying device
JP7027799B2 (en) 2017-10-20 2022-03-02 株式会社サタケ Suction type conveyor
JP2021500557A (en) * 2017-10-23 2021-01-07 エイヴィエル エミッション テスト システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツングAVL Emission Test Systems GmbH Exhaust gas sampling system
JP7050913B2 (en) 2017-10-23 2022-04-08 エイヴィエル エミッション テスト システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Exhaust gas sampling system
US11402302B2 (en) 2017-10-23 2022-08-02 Avl Emission Test Systems Gmbh Exhaust gas sample taking system
JP2021041305A (en) * 2019-09-06 2021-03-18 株式会社松井製作所 Collection device of granular material
JP7389990B2 (en) 2019-09-06 2023-12-01 株式会社松井製作所 Powder material collection device
JP7361562B2 (en) 2019-10-09 2023-10-16 住友化学株式会社 Powder transportation method, resin composition manufacturing method, and plug transportation device

Also Published As

Publication number Publication date
AU2001256725A1 (en) 2001-11-26
JP4066062B2 (en) 2008-03-26
WO2001087746A1 (en) 2001-11-22

Similar Documents

Publication Publication Date Title
JP4066062B2 (en) Method and apparatus for pneumatic transport of powder
US5033914A (en) High efficiency feeder apparatus for pneumatic conveying lines
US5020858A (en) Method of and apparatus for forming and transporting mud clogs
US9745149B2 (en) Material delivery system
JP2004527430A (en) Method for pumping cut glass fiber and apparatus therefor
JPS6348774B2 (en)
JP4990086B2 (en) Powder and particle feeder
CN109592332A (en) A kind of hoisting mechanism for fine materials
EA020068B1 (en) Pneumatic evacuation pump
JP4759471B2 (en) Pneumatic transportation method of powder
JP5420220B2 (en) Double damper type continuous suction type pneumatic transport device
CN106239380A (en) A kind of dry grinding material feeding device
CN203428534U (en) Blast furnace dry dedusting dense phase pneumatic conveying system
CN106272108A (en) A kind of water sand compound abrasive distance supply induction system
JP2009249172A (en) Double damper type continuous-suction pneumatic transport device
US3297370A (en) Filter cleaner mechanism for pneumatic material conveying system
JP3632526B2 (en) Separator tank cleaning device for inert gas exhaust system of single crystal puller
JP4330061B2 (en) Continuous suction pneumatic transport method and apparatus
JP2006016150A (en) Bucket type granule conveying device
JP2004189475A (en) Method and device for continuous suction type pneumatic transportation
CN110280524A (en) Raw material cleaning device is used in a kind of processing of meal replacement powder
JP3367033B2 (en) Pneumatic device for powder
CN216037343U (en) Continuous vacuum feeding machine
JP2001287701A (en) Method for filling powder into container
CN210064494U (en) Vacuum conveyor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term