JP2006016150A - Bucket type granule conveying device - Google Patents

Bucket type granule conveying device Download PDF

Info

Publication number
JP2006016150A
JP2006016150A JP2004195868A JP2004195868A JP2006016150A JP 2006016150 A JP2006016150 A JP 2006016150A JP 2004195868 A JP2004195868 A JP 2004195868A JP 2004195868 A JP2004195868 A JP 2004195868A JP 2006016150 A JP2006016150 A JP 2006016150A
Authority
JP
Japan
Prior art keywords
injection
air
time
compressed air
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004195868A
Other languages
Japanese (ja)
Inventor
Shigemitsu Nakamura
中村  慈光
Kazuto Hashimoto
和人 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2004195868A priority Critical patent/JP2006016150A/en
Publication of JP2006016150A publication Critical patent/JP2006016150A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bucket type granule conveying device capable of efficiently discharging residual granules in a short time. <P>SOLUTION: In the bucket type granule conveying device for scooping and conveying granules charged into a scooping unit 6 by a plurality of buckets 1 to be successively inverted and moved from a downward path d to an upward path u, an injection control means 17 to control the start and stop of injection of compressed air from an air nozzle 13 for discharging residual granules by opening/closing an injection valve 16 has a configuration in which the injection operation to inject compressed air A only for the set injection time Ta1 for 1-6 seconds is repeated for a plurality of set times N1 while interposing the stop operation to stop the injection of compressed air only for the set stop time Tb1 between the continuous injection operations. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、穀粒の揚送等に用いるバケット式粒体搬送装置に関し、詳しくは、掬取部に投入された粒体を前記掬取部において下降経路から上昇経路へ順次に反転移動する複数のバケットにより掬い取って搬送するバケット式粒体搬送装置に関する。   More specifically, the present invention relates to a bucket-type granule conveying apparatus used for grain lifting and the like, and more specifically, a plurality of particles that are sequentially reversed from a descending path to an ascending path in the harvesting section. The present invention relates to a bucket-type granular material conveying device that picks up and conveys the material with a bucket of the size.

上記の如きバケット式粒体搬送装置では、掬取部の底面とバケットとの間に設ける隙間の存在の為、掬取部への粒体投入が無くなって粒体の搬送を終了するとき、バケットで掬い取り切れずに掬取部の底面に残ったままとなる残粒を生じることが多いが、この残粒を排出するのに、掬取部の底面に対して圧縮空気を噴射する残粒排出用の空気ノズルを装備し、粒体搬送の終了時にバケットを駆動しつつ残粒排出用の空気ノズルから圧縮空気を繰り返し噴射させる残粒排出運転を実施するようにした装置がある。   In the bucket type granular material conveying device as described above, when there is no gap between the bottom surface of the scraping unit and the bucket and no granular material is charged into the scraping unit, In many cases, residual grains remain on the bottom surface of the harvesting part without being completely removed, but in order to discharge the residual grains, residual grains that inject compressed air onto the bottom surface of the harvesting part. There is an apparatus equipped with a discharge air nozzle and performing a residual particle discharge operation in which compressed air is repeatedly injected from a residual particle discharge air nozzle while driving a bucket at the end of particle conveyance.

すなわち、この装置では、掬取部の底面に残る粒体を空気ノズルからの圧縮空気噴射により浮上させ、この浮上させた粒体をバケットにより掬い取って搬送先へ送ることで、掬取部における残粒を排出する。   That is, in this apparatus, the particles remaining on the bottom surface of the scraping unit are floated by jetting compressed air from the air nozzle, and the floated particles are scooped by the bucket and sent to the transport destination, so that in the scraping unit Drain residual grains.

そして従来、この種の装置では、例えば共通の圧縮機に接続した第1〜第3の空気ノズル(装備位置をバケット移動方向において異ならせた3種の空気ノズル)を用いて、図10に示す如き操作形態で掬取部の底面に対して圧縮空気を繰り返し噴射させる構成を採っていた(特許文献1参照)。   Conventionally, in this type of apparatus, for example, the first to third air nozzles (three kinds of air nozzles having different equipment positions in the bucket moving direction) connected to a common compressor are shown in FIG. In such an operation form, a configuration in which compressed air is repeatedly ejected onto the bottom surface of the scraping unit has been adopted (see Patent Document 1).

特開平4−223909号公報JP-A-4-223909

しかし、上記従来装置による残粒排出運転では、残粒を掬取部から排出する残粒排出効率(すなわち、残粒を浮上させてバケットに掬い取らせる効率)が低くて、掬取部における残粒を目標量まで減少させるのに長時間を要する問題があった。   However, in the residual particle discharging operation by the above-described conventional apparatus, the residual particle discharging efficiency for discharging the residual particles from the harvesting unit (that is, the efficiency of floating the residual particles and scooping them into the bucket) is low, and the residual particles in the harvesting unit are low. There was a problem that it took a long time to reduce the grains to the target amount.

この実情に鑑み、本発明の主たる課題は、合理的な改良により上記問題を効果的に解消する点にある。   In view of this situation, the main problem of the present invention is to effectively solve the above problem by rational improvement.

〔1〕本発明の第1特徴構成はバケット式粒体搬送装置に係り、その特徴は、
掬取部に投入された粒体を前記掬取部において下降経路から上昇経路へ順次に反転移動する複数のバケットにより掬い取って搬送する構成において、
前記掬取部の底面に対して圧縮空気を噴射する残粒排出用の空気ノズルと、この空気ノズルに対する圧縮機からの空気供給路を開閉する噴射弁と、この噴射弁を開閉操作して前記空気ノズルからの圧縮空気噴射の発停制御を行う噴射制御手段とを設け、
この噴射制御手段を、残粒排出運転の開始指令が付与されたとき、
前記空気ノズルから1秒間〜6秒間の設定噴射時間だけ圧縮空気を噴射させる噴射操作を設定複数回数にわたり、各回の噴射操作どうしの間に設定休止時間だけ前記空気ノズルからの圧縮空気噴射を停止する休止操作を介在させた状態で繰り返し実行する構成にしてある点にある。
[1] A first characteristic configuration of the present invention relates to a bucket type particle conveying device,
In the configuration of scooping and transporting the granules put into the scooping section with a plurality of buckets that reversely move sequentially from the descending path to the ascending path in the scooping section,
An air nozzle for discharging residual particles for injecting compressed air to the bottom surface of the scraping unit, an injection valve for opening and closing an air supply path from the compressor to the air nozzle, and opening and closing the injection valve An injection control means for performing start / stop control of compressed air injection from the air nozzle,
When this injection control means is given a start command for residual grain discharge operation,
The injection operation for injecting compressed air from the air nozzle for a set injection time of 1 second to 6 seconds is set a plurality of times, and the compressed air injection from the air nozzle is stopped for a set pause time between each injection operation. The configuration is such that it is repeatedly executed with a pause operation interposed.

つまり、噴射弁を開弁状態にして残粒排出用の空気ノズルから圧縮空気を噴射させる噴射操作では、噴射弁を開弁したときに、それまで噴射弁の上流側に蓄積されていた高い閉切圧力(すなわち、圧縮機の運転下で噴射弁が閉弁状態にあるときに空気供給路の噴射弁上流側において立つ空気圧力)が開放されて、その開放された閉切圧力によって生じる大きな噴射力で圧縮空気が空気ノズルから噴射されるが、その後、噴射弁上流側の空気圧力は開放圧力(すなわち、圧縮機の運転下で噴射弁が開放状態にあるときの空気供給路における定常の空気圧力)に降下してしまい、これに伴い空気ノズルからの圧縮空気噴射力も一定の安定値まで低下してしまう。   In other words, in the injection operation in which the injection valve is opened and the compressed air is injected from the air nozzle for discharging residual particles, when the injection valve is opened, the high closing that has been accumulated upstream of the injection valve until then. The large pressure generated by the open cut-off pressure (that is, the air pressure that stands on the upstream side of the injection valve in the air supply path when the injection valve is closed under the operation of the compressor). Compressed air is injected from the air nozzle by force, but then the air pressure upstream of the injection valve is the open pressure (that is, steady air in the air supply path when the injection valve is open under compressor operation) Pressure), and accordingly, the compressed air injection force from the air nozzle also decreases to a certain stable value.

そして、掬取部の底面における残粒を浮上させてバケットに掬い取らせる残粒排出の効率(特に、残粒量が未だ多くて掬取部の底面で集積状態にある残粒を一気に飛散させる形態で浮上させてバケットに掬い取らせる面での残粒排出効率)については、噴射開始時の大きな噴射力により静止慣性が打破されて浮上が促された多くの残粒が後続の圧縮空気噴射を受けてバケットによる掬い取りが可能な浮上状態になっている一定の当初時間において高い残粒排出効率が得られるが、その後は圧縮空気噴射を続けても、既に開放圧力への圧力降下による噴射力の低下により残粒の静止慣性(特に残粒集積群の大きな静止慣性)を打破する効果が低減じていることで、低い残粒排出効率しか得られないことが研究により判明した。   And the efficiency of the residual grain discharge which floats the residual grain in the bottom face of the harvesting part and scoops it up in the bucket (especially, the residual grain is still large and the residual grains which are in an accumulated state on the bottom face of the harvesting part are scattered at once. As for the residual particle discharge efficiency on the surface that is lifted in the form and scooped up by the bucket), a large amount of residual particles that are encouraged to float due to the large inertial force at the start of injection are followed by compressed air injection High residual particle discharge efficiency is obtained at a certain initial time when the bucket is lifted so that it can be scooped by the bucket, but after that, even if compressed air injection is continued, injection due to pressure drop to the open pressure already Research has shown that only a low residual particle discharge efficiency can be obtained by reducing the effect of breaking down the static inertia of residual grains (especially the large static inertia of the residual grain accumulation group) by reducing the force.

そして、圧縮機の能力、空気供給路を形成する配管の管径・管長、圧縮空気タンクの介装の有無などにより差はあるが、上記当初時間は概ね1秒間〜6秒間程度(中心的には3秒間〜4秒間)であることが同研究により判明した。   Although there are differences depending on the capacity of the compressor, the pipe diameter and length of the pipe forming the air supply path, the presence or absence of the compressed air tank, the initial time is approximately 1 second to 6 seconds (mainly From 3 to 4 seconds).

この点で、各回の噴射操作において上記当初時間よりも遥かに長時間にわたり空気ノズルから圧縮空気を噴射させる先述の従来装置では、各回の噴射操作において残粒排出効率が既に低下した状態での圧縮空気噴射(すなわち、当初時間を経過した後の圧縮空気噴射)を長時間にわたり不用意に継続する運転形態になっており、これが原因で、残粒排出運転全体としての残粒排出効率(平均効率)が低いものになって、掬取部における残粒を目標量まで減少させるのに長時間を要することになっていた。   In this regard, in the above-described conventional apparatus in which the compressed air is injected from the air nozzle in each injection operation for a much longer time than the initial time, the compression in a state where the residual particle discharge efficiency has already decreased in each injection operation. This is an operation mode in which air injection (that is, compressed air injection after the initial time elapses) is inadvertently continued over a long period of time. This is the reason why the residual particle discharge efficiency (average efficiency) of the entire residual particle discharge operation is caused. ) Is low, and it takes a long time to reduce the residual grains in the harvesting section to the target amount.

これに対し、第1特徴構成によれば、上記研究に基づき、残粒排出運転における各回の噴射操作において1秒間〜6秒間の設定噴射時間だけ空気ノズルから圧縮空気を噴射させるから、噴射開始時点からの前記当初時間において得られる高い残粒排出効率は確保しながら、残粒排出効率が既に低下した状態での不用意な圧縮空気噴射の継続を効果的に回避することができ、これにより、残粒排出運転全体としての残粒排出効率を効果的に高めることができて、掬取部における残粒を目標量まで減少させるのに要する時間を効果的に短縮することができ、また、この効率向上により圧縮機の小容量化も可能になる。   On the other hand, according to the first feature configuration, since the compressed air is injected from the air nozzle for the set injection time of 1 second to 6 seconds in each injection operation in the residual particle discharging operation based on the above research, the injection start time From the above, it is possible to effectively avoid inadvertent continuation of compressed air injection in a state where the residual particle discharge efficiency has already been reduced, while ensuring the high residual particle discharge efficiency obtained at the initial time from It is possible to effectively increase the residual particle discharge efficiency as a whole of the residual particle discharge operation, and to effectively reduce the time required to reduce the residual particles in the towing section to the target amount. Increased efficiency also makes it possible to reduce the compressor capacity.

なお、実使用装置において前記当初時間を特定し得る場合は、その特定した当初時間を設定噴射時間として各回の噴射操作を実施するのが望ましいが、一般に実使用装置において当初時間を特定するには測定作業に多大な時間と手間を要することから、第1特徴構成の実施において、設定噴射時間を1秒間〜6秒間の範囲内から適当に選定するようにすれば、当初時間の特定に要する多大な時間と手間を不要にしながら、残粒排出効率の向上面で一定の効果を確実に得ることができる。そして、望ましくは設定噴射時間を3秒間〜4秒間の範囲内から選定するのが好ましい。   In addition, when the initial time can be specified in the actual use device, it is desirable to perform each injection operation using the specified initial time as the set injection time, but in general, in order to specify the initial time in the actual use device. Since a lot of time and labor are required for the measurement work, if the set injection time is appropriately selected from the range of 1 second to 6 seconds in the implementation of the first characteristic configuration, the initial time is greatly determined. It is possible to reliably obtain a certain effect in terms of improving the residual particle discharge efficiency while eliminating unnecessary time and labor. Desirably, the set injection time is preferably selected from the range of 3 seconds to 4 seconds.

また、第1特徴構成の実施において、各回の噴射操作における設定噴射時間は必ずしも等しい時間である必要はなく、設定噴射時間が互いに異なる噴射操作を実行させるようにしてもよい。   In the implementation of the first characteristic configuration, the set injection time in each injection operation does not necessarily have to be the same time, and the injection operations with different set injection times may be executed.

〔2〕本発明の第2特徴構成はバケット式粒体搬送装置に係り、その特徴は、
掬取部に投入された粒体を前記掬取部において下降経路から上昇経路へ順次に反転移動する複数のバケットにより掬い取って搬送する構成において、
前記掬取部の底面に対して圧縮空気を噴射する残粒排出用の空気ノズルと、この空気ノズルに対する圧縮機からの空気供給路を開閉する噴射弁と、この噴射弁を開閉操作して前記空気ノズルからの圧縮空気噴射の発停制御を行う噴射制御手段とを設け、
この噴射制御手段を、
前記噴射弁の開弁状態からの閉じ操作後、前記空気供給路における前記噴射弁よりも上流側の空気圧力がそれまでの開放圧力から閉切圧力にまで上昇回復するのに要する圧力復帰時間の1倍〜3倍の時間を設定休止時間として、
残粒排出運転の開始指令が付与されたとき、前記空気ノズルから設定噴射時間だけ圧縮空気を噴射させる噴射操作を設定複数回数にわたり、各回の噴射操作どうしの間に設定休止時間だけ前記空気ノズルからの圧縮空気噴射を停止する休止操作を介在させた状態で繰り返し実行する構成にしてある点にある。
[2] A second characteristic configuration of the present invention relates to a bucket-type granule conveyance device,
In the configuration of scooping and transporting the granules put into the scooping section with a plurality of buckets that reversely move sequentially from the descending path to the ascending path in the scooping section,
An air nozzle for discharging residual particles for injecting compressed air to the bottom surface of the scraping unit, an injection valve for opening and closing an air supply path from the compressor to the air nozzle, and opening and closing the injection valve An injection control means for performing start / stop control of compressed air injection from the air nozzle,
This injection control means
After the closing operation of the injection valve from the open state, the pressure recovery time required for the air pressure upstream of the injection valve in the air supply path to recover from the open pressure up to the closing pressure is recovered. 1 to 3 times as the set pause time,
When an instruction to start the residual particle discharge operation is given, an injection operation for injecting compressed air from the air nozzle for a set injection time is set a plurality of times, and from the air nozzle for a set pause time between each injection operation. In other words, the operation is repeatedly executed in a state where a pause operation for stopping the compressed air injection is interposed.

つまり、噴射弁を閉弁状態にして残粒排出用の空気ノズルからの圧縮空気噴射を停止する休止操作において、噴射弁の開弁状態からの閉じ操作後、空気供給路における噴射弁よりも上流側の空気圧力がそれまでの開放圧力から閉切圧力にまで上昇回復するのに要する圧力回復時間は、圧縮機の能力、空気供給路を形成する配管の管径・管長、圧縮空気タンクの介装の有無などにより差もあるが、例えば2秒間程度の短い時間であることが研究により判明した。   That is, in the pause operation in which the injection valve is closed and the compressed air injection from the air nozzle for discharging the residual particles is stopped, after the closing operation from the open state of the injection valve, the upstream side of the injection valve in the air supply path The pressure recovery time required for the side air pressure to rise and recover from the previous open pressure to the closed pressure depends on the compressor capacity, the diameter and length of the pipe that forms the air supply path, Although there is a difference depending on the presence or absence of clothing, research has revealed that the time is as short as 2 seconds, for example.

この点で、各回の噴射操作どうしの間に介在させる休止操作において10秒間〜数十秒間といった長時間にわたり空気ノズルからの圧縮空気噴射を停止する先述の従来装置では、噴射弁上流側の空気圧力を次回の噴射操作に備えて閉切圧力に上昇回復させる意味からして、また、前回の噴射操作で浮上させた残粒のうちバケットで掬い取られなかった残粒が掬取部の側面部などを伝って掬取部の底面に戻るのに要する時間(すなわち、残粒が戻らないうちに次回の噴射操作を空振り的に実施するのを防止するための時間)を加味したとしても、休止操作において必要以上の長時間にわたり空気ノズルからの圧縮空気噴射を停止する運転形態になっており、この時間浪費が残粒排出運転全体としての残粒排出効率を低下させる要因の1つになって、掬取部における残粒を目標量まで減少させるのに長時間を要することになっていた。   In this regard, in the above-described conventional apparatus in which the compressed air injection from the air nozzle is stopped for a long time of 10 seconds to several tens of seconds in the pause operation interposed between the injection operations, the air pressure on the upstream side of the injection valve In order to prepare for the next injection operation to recover to the closing pressure, the residual particles that have been levitated by the previous injection operation and that have not been scooped up by the bucket are Even if the time required to return to the bottom surface of the harvesting part through the above (that is, the time to prevent the next injection operation from being performed idly before the residual grains do not return) is taken into consideration. In operation, the compressed air injection from the air nozzle is stopped for a longer time than necessary, and this waste of time becomes one of the factors that lower the residual particle discharge efficiency as a whole of the residual particle discharge operation. , Was to take a long time to reduce the residual grains in Kikuto unit to the target amount.

これに対し、第2特徴構成によれば、上記研究に基づき、休止操作により空気ノズルからの圧縮空気噴射を停止する設定休止時間(すなわち、1回の休止操作の実施時間)を、噴射弁の開弁状態からの閉じ操作後、空気供給路における噴射弁よりも上流側の空気圧力がそれまでの開放圧力から閉切圧力にまで上昇回復するのに要する圧力復帰時間の1倍〜3倍の時間にするから、休止操作において、噴射弁上流側の空気圧力を確実に閉切圧力に上昇回復させ、また、前回の噴射操作で浮上した残粒のうちバケットで掬い取られなかった残粒が掬取部の底面に戻る時間も概ね十分に確保しながらも、必要以上の長時間にわたって空気ノズルからの圧縮空気噴射を停止する時間浪費を効果的に抑止することができ、これにより、残粒排出運転全体としての残粒排出効率を効果的に高めることができて、掬取部における残粒を目標量まで減少させるのに要する時間を効果的に短縮することができ、また、この効率向上により圧縮機の小容量化も可能になる。   On the other hand, according to the second characteristic configuration, based on the above research, the set pause time (that is, the duration of one pause operation) for stopping the compressed air injection from the air nozzle by the pause operation is set to the injection valve. After the closing operation from the open state, the pressure return time required for the air pressure upstream of the injection valve in the air supply path to recover from the previous opening pressure to the closing pressure is 1 to 3 times longer Therefore, in the pause operation, the air pressure upstream of the injection valve is reliably increased and recovered to the closing pressure, and among the residual particles that have floated in the previous injection operation, residual particles that have not been scooped up by the bucket While ensuring a sufficient time to return to the bottom surface of the scraping section, it is possible to effectively suppress the waste of time for stopping the compressed air injection from the air nozzle for a longer time than necessary. Overall discharge operation The residual grain discharge efficiency can be effectively increased, and the time required to reduce the residual grain to the target amount can be effectively shortened. The capacity of the machine can also be reduced.

そしてまた、この第2特徴構成の実施において第1特徴構成を併行実施すれば、各回の噴射操作において残粒排出効率が既に低下した状態での不用意な圧縮空気噴射の継続を効果的に回避し得る第1特徴構成による効果と、休止操作で必要以上の長時間にわたって空気ノズルからの圧縮空気噴射を停止する時間浪費を効果的に抑止し得る第2特徴構成による効果との両方により、残粒排出運転全体としての残粒排出効率をさらに一層効果的に高めることができる。   In addition, if the first feature configuration is carried out in parallel with the implementation of the second feature configuration, it is possible to effectively avoid inadvertent continuation of compressed air injection when the residual particle discharge efficiency has already been reduced in each injection operation. Both the effect of the first feature configuration that can be performed and the effect of the second feature configuration that can effectively suppress the waste of time for stopping the compressed air injection from the air nozzle for a longer time than necessary in the pause operation. The residual particle discharge efficiency as a whole of the particle discharge operation can be further effectively increased.

なお、残粒排出運転において噴射操作を3回以上繰り返す場合、第2特徴構成の実施において、各回の休止操作における設定休止時間は必ずしも等しい時間である必要はなく、設定休止時間が互いに異なる休止操作を実行させるようにしてもよい。   When the injection operation is repeated three times or more in the residual particle discharging operation, in the implementation of the second feature configuration, the set pause time in each pause operation does not necessarily have to be the same time, and the pause operations with different set pause times are different. May be executed.

〔3〕本発明の第3特徴構成はバケット式粒体搬送装置に係り、その特徴は、
掬取部に投入された粒体を前記掬取部において下降経路から上昇経路へ順次に反転移動する複数のバケットにより掬い取って搬送する構成において、
前記掬取部の底面に対して圧縮空気を噴射する残粒排出用の空気ノズルと、この空気ノズルに対する圧縮機からの空気供給路を開閉する噴射弁と、この噴射弁を開閉操作して前記空気ノズルからの圧縮空気噴射の発停制御を行う噴射制御手段とを設け、
この噴射制御手段を、
前記噴射弁の開弁状態からの閉じ操作後、前記空気供給路における前記噴射弁よりも上流側の空気圧力がそれまでの開放圧力から閉切圧力にまで上昇回復するのに要する圧力復帰時間の1倍〜3倍の時間を設定休止時間とし、かつ、前記圧力復帰時間の1/3倍〜3倍の時間を設定噴射時間として、
残粒排出運転の開始指令が付与されたとき、設定噴射時間だけ前記噴射弁を開弁状態にする噴射操作を設定複数回数にわたり、各回の噴射操作どうしの間に設定休止時間だけ前記噴射弁を閉弁状態にする休止操作を介在させた状態で繰り返し実行する構成にしてある点にある。
[3] A third characteristic configuration of the present invention relates to a bucket-type granular material conveying device,
In the configuration of scooping and transporting the granules put into the scooping section with a plurality of buckets that reversely move sequentially from the descending path to the ascending path in the scooping section,
An air nozzle for discharging residual particles for injecting compressed air to the bottom surface of the scraping unit, an injection valve for opening and closing an air supply path from the compressor to the air nozzle, and opening and closing the injection valve An injection control means for performing start / stop control of compressed air injection from the air nozzle,
This injection control means
After the closing operation of the injection valve from the open state, the pressure recovery time required for the air pressure upstream of the injection valve in the air supply path to recover from the open pressure up to the closing pressure is recovered. 1 to 3 times as the set pause time, and 1/3 to 3 times as long as the pressure return time as the set injection time,
When an instruction to start the residual particle discharge operation is given, the injection operation for opening the injection valve for the set injection time is set a plurality of times, and the injection valve is set for the set pause time between each injection operation. The configuration is such that it is repeatedly executed in a state where a pause operation for closing the valve is interposed.

つまり、前述の如く、噴射の開始後、高い残粒排出効率が得られる当初時間は概ね1秒間〜6秒間程度であるが、噴射弁の開弁後、噴射弁上流側の空気圧力が閉切圧力から開放圧力に降下するまでに要する時間(すなわち、大きな噴出力が維持される時間)が長くて当初時間が長い装置については、一般的に圧力復帰時間も長い傾向があり、この相関において、当初時間は概ね圧力復帰時間の1/3倍〜3倍程度の時間になることが研究により判明した。   That is, as described above, the initial time when high residual particle discharge efficiency is obtained after the start of injection is approximately 1 second to 6 seconds. However, after the injection valve is opened, the air pressure upstream of the injection valve is closed. For devices that take a long time to drop from the pressure to the open pressure (ie, the time during which a large jet power is maintained) and have a long initial time, the pressure recovery time generally tends to be long. Research has shown that the initial time is approximately 1/3 to 3 times the pressure recovery time.

したがって、各回の噴射操作において圧力復帰時間の1/3倍〜3倍の設定噴射時間だけ空気ノズルから圧縮空気を噴射させる第3特徴構成によれば、第1特徴構成と同様、噴射開始時点からの当初時間において得られる高い残粒排出効率は確保しながら、残粒排出効率が既に低下した状態での不用意な圧縮空気噴射の継続を効果的に回避することができ、また、当初時間と上記相関を有する圧力復帰時間との比をもって設定噴射時間を選定するから、実際の当初時間に一層即した設定噴射時間を容易に選定することができる。   Therefore, according to the third characteristic configuration in which the compressed air is injected from the air nozzle for the set injection time that is 1/3 times to 3 times the pressure return time in each injection operation, as in the first characteristic configuration, from the injection start time point. While ensuring the high residual particle discharge efficiency obtained at the initial time, it is possible to effectively avoid inadvertent continuation of compressed air injection when the residual particle discharge efficiency has already been reduced. Since the set injection time is selected based on the ratio to the pressure recovery time having the above correlation, the set injection time that further matches the actual initial time can be easily selected.

そしてまた、第3特徴構成によれば、休止操作により空気ノズルからの圧縮空気噴射を停止する設定休止時間を圧力復帰時間の1倍〜3倍の時間にするから、第2特徴構成と同様、休止操作において、噴射弁上流側の空気圧力を確実に閉切圧力に上昇回復させ、また、前回の噴射操作で浮上した残粒のうちバケットで掬い取られなかった残粒が掬取部の底面に戻る時間も概ね十分に確保しながら、必要以上の長時間にわたって空気ノズルからの圧縮空気噴射を停止する時間浪費を効果的に抑止することができ、これらのことにより、第3特徴構成によれば、第1及び第2特徴構成を併行実施した場合と同等ないしそれ以上に、残粒排出運転全体としての残粒排出効率を効果的に高めることができて、掬取部における残粒を目標量まで減少させるのに要する時間を効果的に短縮することができる。   In addition, according to the third feature configuration, since the set pause time for stopping the compressed air injection from the air nozzle by the pause operation is set to a time that is 1 to 3 times the pressure return time, In the resting operation, the air pressure upstream of the injection valve is reliably increased and recovered to the closing pressure, and the residual particles that have floated up in the previous injection operation and that have not been scooped up by the bucket are It is possible to effectively prevent time wasted for stopping the compressed air injection from the air nozzle for a longer time than necessary, while ensuring a sufficient time to return to the above. For example, it is possible to effectively increase the residual particle discharge efficiency as a whole of the residual particle discharge operation, at the same level as or more than the case where the first and second characteristic configurations are carried out in parallel. Decrease to the amount It is possible to shorten the time required for effectively.

なお、第3特徴構成の実施において、各回の噴射操作における設定噴射時間は必ずしも等しい時間である必要はなく、設定噴射時間が互いに異なる噴射操作を実行させるようにしてもよく、また、残粒排出運転において噴射操作を3回以上繰り返す場合、各回の休止操作における設定休止時間も必ずしも等しい時間である必要はなく、設定休止時間が互いに異なる休止操作を実行させるようにしてもよい。   In the implementation of the third characteristic configuration, the set injection time in each injection operation does not necessarily have to be the same time, and the injection operation with different set injection times may be executed. When the injection operation is repeated three or more times during driving, the set pause time in each pause operation does not necessarily have to be the same time, and the pause operations with different set pause times may be executed.

第1ないし第3特徴構成の実施において、空気ノズルは、バケット下降経路の側から圧縮空気を噴射するもの、バケット上昇経路の側から圧縮空気を噴射するもの、あるいは、バケット移動経路の側方から圧縮空気を噴射するもののいずれであってもよく、また、その噴射向きも、掬取部の底面に対して斜交する向き、又は直交する向き、あるいは、掬取部の底面に沿う向きのいずれであってもよいが、望ましくは、バケット下降経路の側から掬取部の底面に沿わせる状態で掬取部底面の最下部に向けて圧縮空気を噴射させるノズル配置にするのがよい。   In the implementation of the first to third characteristic configurations, the air nozzle is one that injects compressed air from the bucket descending path side, one that injects compressed air from the bucket ascending path side, or from the side of the bucket moving path It may be any one that injects compressed air, and the injection direction may be either a direction that is oblique to the bottom surface of the torsion part, a direction that is orthogonal, or a direction along the bottom surface of the torsion part. However, it is desirable to arrange a nozzle that injects compressed air toward the bottom of the bottom surface of the scooping portion in a state of being along the bottom surface of the scooping portion from the bucket lowering path side.

また、第1ないし第3特徴構成の実施において、空気ノズルの装備数は単数又は複数のいずれであってもよい。   In the implementation of the first to third characteristic configurations, the number of air nozzles may be either singular or plural.

〔4〕本発明の第4特徴構成は、第1〜第3特徴構成のいずれかの実施において好適な実施形態を特定するものであり、その特徴は、
前記掬取部の底面における異なる部位に対して圧縮空気を噴射する複数の前記空気ノズルを設け、
これら複数の空気ノズルの夫々に対する共通圧縮機からの空気供給路を各別に開閉して複数の前記空気ノズルを圧縮空気の噴射状態と噴射停止状態とに各別に切り換える複数の前記噴射弁を設け、
前記噴射制御手段を、これら複数の噴射弁のうちで、一回の前記噴射操作とそれに続く一回の前記休止操作との一組の操作の操作対象とする噴射弁を順次に又は交互に変更する形態で、前記噴射操作を設定複数回数にわたって繰り返し実行する構成にしてある点にある。
[4] The fourth characteristic configuration of the present invention specifies a preferred embodiment in the implementation of any of the first to third characteristic configurations.
A plurality of the air nozzles for injecting compressed air to different parts of the bottom surface of the scraping unit are provided,
A plurality of the injection valves for switching the plurality of air nozzles separately between a compressed air injection state and an injection stop state by separately opening and closing an air supply path from a common compressor for each of the plurality of air nozzles,
Of the plurality of injection valves, the injection control means sequentially or alternately changes an injection valve that is a target of a set of operations of one injection operation and a subsequent pause operation. In this form, the injection operation is repeatedly executed over a set number of times.

つまり、残粒排出用の空気ノズルとして、圧縮機を共通にした複数の空気ノズルを装備する場合、それら複数の空気ノズルに対する噴射操作を同時に行うと、共通圧縮機から供給される圧縮空気が複数の空気ノズルから分散して噴射されることで、空気ノズルからの圧縮空気噴射力が低減し、このことで残粒排出効率の低下を招いてしまう。   In other words, when equipped with a plurality of air nozzles that share a compressor as air nozzles for discharging residual particles, if a plurality of air nozzles are simultaneously injected, a plurality of compressed air supplied from the common compressor is provided. By being dispersed and jetted from the air nozzles, the compressed air jetting force from the air nozzles is reduced, and this causes a drop in residual particle discharge efficiency.

これに対し、第4特徴構成によれば、一回の噴射操作とそれに続く一回の休止操作との一組の操作の操作対象とする噴射弁を、複数の噴射弁(すなわち、複数の空気ノズルに対する各別の噴射弁)のうちで順次に又は交互に変更する形態で噴射操作を繰り返すから、複数の空気ノズルに対し共通の圧縮機から圧縮空気を供給する形態を採りながらも、また、残粒排出運転の全体としては複数の空気ノズルを有効に稼動しながらも、複数の空気ノズルに対する圧縮空気の分散による噴射力の低下を回避することができ、これにより、所期目的である残粒排出効率の向上を一層効果的に達成することができる。   On the other hand, according to the fourth characteristic configuration, an injection valve that is an operation target of a set of operations of one injection operation and a subsequent pause operation is set to a plurality of injection valves (that is, a plurality of air valves). The injection operation is repeated in a form that is changed sequentially or alternately among the different injection valves for the nozzles), and while adopting a form in which compressed air is supplied from a common compressor to a plurality of air nozzles, As a whole of the residual particle discharge operation, while a plurality of air nozzles are effectively operated, it is possible to avoid a decrease in injection force due to the dispersion of compressed air to the plurality of air nozzles. Improvement of grain discharge efficiency can be achieved more effectively.

〔第1実施形態〕
図1は米の揚送に用いるバケット式粒体搬送装置を示し、多数のバケット1を並べて外周に取り付けた無端回動ベルト2を、縦長のケース3の内部においてケース上端部の上側プーリ4とケース下端部の下側プーリ5とにわたって巻き掛け、ケース3の下端部にはケース内の底部の掬取部6に米を投入する投入ホッパ7を設け、ケース3の上端部には揚送した米を排出する排出ホッパ8を設けてある。
[First Embodiment]
FIG. 1 shows a bucket-type granular material conveying device used for rice lifting. An endless rotating belt 2 in which a large number of buckets 1 are arranged and attached to the outer periphery is connected to an upper pulley 4 at the upper end of the case inside a vertically long case 3. The case 3 is wound around the lower pulley 5 at the lower end of the case, and a lower end portion of the case 3 is provided with a feeding hopper 7 for putting rice into the scraping portion 6 at the bottom of the case. A discharge hopper 8 for discharging rice is provided.

つまり、モータ9によりベルト2を回転駆動することにより、投入ホッパ7からケース内に投入された米を掬取部6において下降経路dから上昇経路uへ順次に反転移動するバケット1により掬い取って揚送し、この揚送した米をケース上端部においてバケット1の上昇経路uから下降経路dへの反転移動に伴い投擲する形態で排出ホッパ8へ排出する構造にしてある。   That is, by rotating the belt 2 by the motor 9, the rice put into the case from the making hopper 7 is scooped up by the bucket 1 which reversely moves in the reverse direction from the descending path d to the ascending path u in the towing unit 6. The lifted rice is discharged and discharged to the discharge hopper 8 in the form of being thrown along with the reverse movement of the bucket 1 from the rising path u to the lowering path d at the upper end of the case.

図2、図3に示す如く、ケース3の下端部には、投入ホッパ8を選択的に取り付けるホッパ取付開口10,11がバケット1の下降経路d側と上昇経路u側との夫々に形成されているが、本装置ではバケット上昇経路uの側のホッパー取付開口10に投入ホッパ8を取り付けて、いわゆる背入れタイプの装置にし、バケット下降経路dの側のホッパー取付開口11は蓋12により閉塞するとともに、この蓋12に残粒排出用の空気ノズル13を取り付けてある。   As shown in FIGS. 2 and 3, hopper mounting openings 10 and 11 for selectively mounting the charging hopper 8 are formed at the lower end portion of the case 3 on the lowering path d side and the rising path u side of the bucket 1, respectively. However, in the present apparatus, a charging hopper 8 is attached to the hopper mounting opening 10 on the bucket ascending path u side to make a so-called back-in type apparatus, and the hopper mounting opening 11 on the bucket descending path d side is closed by a lid 12. In addition, an air nozzle 13 for discharging residual particles is attached to the lid 12.

すなわち、一方のホッパ取付開口11を閉塞する着脱自在な蓋12に残粒排出用の空気ノズル13を取り付けることで、専用の新たなノズル取付用開口を設けることなく、既設装置にも残粒排出用の空気ノズル13を容易に装備し得る方式を採っている。   That is, by attaching an air nozzle 13 for discharging residual particles to a detachable lid 12 that closes one hopper mounting opening 11, residual particles can be discharged to an existing apparatus without providing a dedicated new nozzle mounting opening. The air nozzle 13 can be easily equipped with a method.

掬取部6の底面6a(すなわち、ケース3内部の底面)は、下降経路dから上昇経路uへ反転移動するバケット1の回動軌跡に沿う弧状の断面形状で、バケット1が掬取部6の底面6aとの間に若干の隙間が存在する状態で回動する半径の弧状形状になっており、これに対し、空気ノズル13は、バケット移動経路の幅方向(プ−リ5の回転軸芯方向)におけるケース中央部で噴射管13aをケース外部からケース内部へ貫通させる状態にして、また、蓋12をケース3に装着した状態において噴射管13aが掬取部6の弧状底面6aの傾斜部分に沿う斜め下向き姿勢になるように蓋12に取り付けてある。   The bottom surface 6a (that is, the bottom surface inside the case 3) of the take-up portion 6 has an arcuate cross-sectional shape along the rotation trajectory of the bucket 1 that reversely moves from the descending path d to the ascending path u. The air nozzle 13 is formed in the width direction of the bucket movement path (the rotational axis of the pulley 5). In the state where the injection tube 13a is penetrated from the outside of the case to the inside of the case at the center of the case (in the core direction), and when the lid 12 is attached to the case 3, the injection tube 13a is inclined to the arc-shaped bottom surface 6a of the scraping portion 6 The lid 12 is attached so as to be in an obliquely downward posture along the portion.

すなわち、このノズル配置により、空気ノズル13の先端噴射口13bから掬取部6の底面6aに対しその底面6aの傾斜部分に沿わせる状態でバケット下降経路dの側から底面6aの最下部に向けて圧縮空気Aを噴射する構造にしてある。   That is, by this nozzle arrangement, from the tip injection port 13b of the air nozzle 13 toward the bottom surface 6a of the scraping portion 6 along the inclined portion of the bottom surface 6a, from the bucket descending path d side toward the bottom of the bottom surface 6a. Thus, the compressed air A is injected.

また、空気ノズル13における噴射管13aの途中には先端側を低位にする屈折部分13cを形成し、これにより、空気ノズル13をホッパ取付開口11の蓋12に取り付ける構造を採りながらも、掬取部6における底面6aの傾斜部分に対して一層密接に沿わせる状態に圧縮空気Aを噴射させるようにしてある。   In addition, a bending portion 13c that lowers the tip side is formed in the middle of the injection pipe 13a in the air nozzle 13, so that the air nozzle 13 is attached to the lid 12 of the hopper mounting opening 11 while taking a structure. The compressed air A is jetted so as to be more closely aligned with the inclined portion of the bottom surface 6a in the portion 6.

この空気ノズル13は、掬取部6への米の投入が無くなって米の揚送を終了するとき、バケット1で掬い取り切れずに掬取部6の底面6aに残ったままとなる米の残粒を排出する為のものであり、米揚送の終了時にバケット1を駆動しつつ、圧縮機14からの供給圧縮空気Aを空気ノズル13から噴射させることにより、掬取部6の底面6aに残る米の残粒を浮上させ、この浮上させた残粒をバケット1により掬い取って排出ホッパ8へ送ることで掬取部6における米の残粒を排出し、これにより、米の残粒が次回に揚送する米(特に異種の米)に混入するのを防ぐ。   The air nozzle 13 is used to remove rice that has remained on the bottom surface 6a of the harvesting unit 6 without being removed by the bucket 1 when rice is no longer being fed into the harvesting unit 6 and the rice feed is finished. This is for discharging residual grains. By driving the bucket 1 at the end of the rice lifting, the supplied compressed air A from the compressor 14 is injected from the air nozzle 13, thereby allowing the bottom surface 6 a of the scraping unit 6 to be ejected. The remaining grains of the rice remaining on the surface are lifted up, and the lifted residual grains are picked up by the bucket 1 and sent to the discharge hopper 8 to discharge the residual grains of the rice in the harvesting section 6, thereby Will be mixed into the next rice to be pumped (especially different types of rice).

空気ノズル13の噴射管13aの基端部には、空気ノズル13に対する圧縮機14からの空気供給路15を開閉して空気ノズル13からの圧縮空気噴射を発停する噴射弁16(電磁弁)を装備してあり、また、ケース3には、噴射弁16を開閉操作して空気ノズル13からの圧縮空気噴射の発停制御を行う噴射制御器17を設けてある。   An injection valve 16 (solenoid valve) that opens and closes an air supply path 15 from the compressor 14 to the air nozzle 13 to start and stop the compressed air injection from the air nozzle 13 at the base end portion of the injection pipe 13a of the air nozzle 13. The case 3 is provided with an injection controller 17 that opens and closes the injection valve 16 to control the start and stop of the compressed air injection from the air nozzle 13.

この噴射制御器17は、米揚送の終了時において残粒排出運転の開始指令が付与されると所定の噴射パターンで空気ノズル13から圧縮空気Aを噴射させるものであり、本第1実施形態の装置では、図4に示す如く、残粒排出運転の開始指令が付与されたとき、空気ノズル13から1秒間〜6秒間の設定噴射時間Ta1だけ圧縮空気Aを噴射させる噴射操作を設定複数回数N1にわたり、各回の噴射操作どうしの間に設定休止時間Tb1だけ空気ノズル13からの圧縮空気噴射を停止する休止操作を介在させた状態で繰り返し実行する構成にしてある。   The injection controller 17 is configured to inject the compressed air A from the air nozzle 13 in a predetermined injection pattern when a start command for the residual grain discharge operation is given at the end of rice lifting. In this apparatus, as shown in FIG. 4, when an instruction to start residual particle discharge operation is given, an injection operation for injecting compressed air A from the air nozzle 13 for a set injection time Ta1 of 1 second to 6 seconds is set a plurality of times. Over N1, it is configured to repeatedly execute a pause operation for stopping the compressed air injection from the air nozzle 13 for a set pause time Tb1 between each injection operation.

そして、設定噴射時間Ta1は、1秒間〜6秒間の範囲内の時間、又は、噴射弁16の閉じ操作後、空気供給路15における噴射弁16よりも上流側の空気圧力がそれまでの開放圧力から閉切圧力にまで上昇回復するのに要する圧力復帰時間の1/3倍〜3倍の範囲内の時間にし、設定休止時間Tb1は圧力回復時間の1倍〜3倍の範囲内の時間にしてある。   The set injection time Ta1 is a time within a range of 1 second to 6 seconds, or after the closing operation of the injection valve 16, the air pressure upstream of the injection valve 16 in the air supply path 15 is the open pressure until then. The pressure recovery time required for recovery from rising to the closing pressure is set to a time within a range of 1/3 to 3 times, and the set pause time Tb1 is set to a time within a range of 1 to 3 times the pressure recovery time. It is.

なお、本第1実施形態の装置において上記の如き残粒排出運転を実施するにあたり、各設定値の具体的な一例としては、例えば、空気ノズル13の噴出管13aの口径10mm、圧縮空気Aの定格圧力0.6〜0.7MPaの仕様において、設定噴射時間Ta1=4秒間、設定休止時間Tb1=2秒間、設定複数回数N1=9回を挙げることができる。   In addition, in carrying out the residual particle discharging operation as described above in the apparatus of the first embodiment, as a specific example of each set value, for example, the diameter of the ejection pipe 13a of the air nozzle 13 is 10 mm, the compressed air A In the specification of the rated pressure of 0.6 to 0.7 MPa, the set injection time Ta1 = 4 seconds, the set pause time Tb1 = 2 seconds, and the set multiple times N1 = 9 can be mentioned.

また、装置が比較的大型で、1秒間〜6秒間又は圧力復帰時間の1/3倍〜3倍の設定噴射時間Ta1だけ圧縮空気Aを噴射させる上記形態の噴射操作のみでは、米の残粒を早期に目標量まで減少させるのが難しい場合には、図5に示す如く、空気ノズル13から設定噴射時間Ta1だけ圧縮空気Aを噴射させる噴射操作を設定複数回数N1にわたり、各回の噴射操作どうしの間に設定休止時間Tb1だけ空気ノズル13からの圧縮空気噴射を停止する休止操作を介在させた状態で繰り返し実行させるのに続き、空気ノズル13から設定噴射時間Ta1よりも長い第2設定噴射時間Ta2だけ圧縮空気Aを噴射させる第2噴射操作を第2設定複数回数N2にわたり、各回の第2噴射操作どうしの間に第2設定休止時間Tb2だけ空気ノズル13Aからの圧縮空気噴射を停止する第2休止操作を介在させた状態で繰り返し実行する構成にしてもよい。   Further, the apparatus is relatively large, and only the injection operation of the above-described form in which the compressed air A is injected for the set injection time Ta1 of 1 to 6 seconds or 1/3 to 3 times the pressure recovery time, the remaining rice grains When it is difficult to reduce the air amount to the target amount at an early stage, as shown in FIG. 5, the injection operation for injecting the compressed air A from the air nozzle 13 for the set injection time Ta1 is performed for a set number of times N1, and the injection operations are performed each time. The second set injection time that is longer than the set injection time Ta1 from the air nozzle 13 is repeatedly executed while the stop operation for stopping the compressed air injection from the air nozzle 13 is interposed for the set stop time Tb1. The second injection operation for injecting the compressed air A by Ta2 is performed for a second set number of times N2, and the air nozzle 1 for the second set pause time Tb2 between the second injection operations of each time. It may be configured to repeatedly execute while interposing a second pause operation to stop the compressed air injection from A.

すなわち、この場合、残粒量が少なくなった運転後半において、設定噴射時間Ta1よりも長い第2設定噴射時間Ta2(>Ta1)だけ圧縮空気Aを空気ノズル13から噴射させる第2噴射操作を繰り返すことで、それら各回の第2噴射操作では、開放圧力への圧力降下により噴射力が低下した後の圧縮空気噴射により少量の残粒をバケット上昇経路u側の掬取部壁に沿わせ押し上げる状態で浮上させて確率の高くバケット1に掬い取らせる形態の残粒排出機能を高く得るようにし、これにより運転後半の残粒排出効率を高く確保する。   That is, in this case, the second injection operation of injecting the compressed air A from the air nozzle 13 for the second set injection time Ta2 (> Ta1) longer than the set injection time Ta1 is repeated in the second half of the operation when the amount of residual particles is reduced. Thus, in each of the second injection operations, a small amount of residual particles are pushed up along the scraping wall on the bucket ascending path u side by compressed air injection after the injection force is reduced due to the pressure drop to the release pressure. As a result, the residual particle discharging function of the form that is caused to rise and scoop into the bucket 1 with high probability is obtained, thereby ensuring high residual particle discharging efficiency in the latter half of the operation.

そして、この場合の各設定値の一例としては、例えば、空気ノズル13の噴出管13aの口径10mm、圧縮空気Aの定格圧力0.6〜0.7MPaの仕様において、設定噴射時間Ta1=3秒間、設定休止時間Tb1=2秒間、設定複数回数N1=5回、第2設定噴射時間Ta2=7秒間、第2設定休止時間Tb2=3秒間、第2設定複数回数N2=3回を挙げることができる。   As an example of each set value in this case, for example, in the specification of the diameter 10 mm of the ejection pipe 13a of the air nozzle 13 and the rated pressure of the compressed air A of 0.6 to 0.7 MPa, the set injection time Ta1 = 3 seconds The set pause time Tb1 = 2 seconds, the set multiple times N1 = 5 times, the second set injection time Ta2 = 7 seconds, the second set pause time Tb2 = 3 seconds, and the second set multiple times N2 = 3. it can.

〔第2実施形態〕
図6,図7は第1実施形態で示した装置よりも大型でバケット移動経路の幅方向におけるケース幅が大きな米揚送用のバケット式粒体搬送装置に対して残粒排出用の空気ノズル13を装備した例を示し、この装置では、2本の空気ノズル13A,13Bをホッパ取付開口11の蓋12に対しその両横端部に振り分け配置(すなわち、バケット移動経路の幅方向に分散させた状態に配置)して平行姿勢で取り付けてあり、各空気ノズル13A,13Bは、第1実施形態の場合と同様、噴射管13aをケース外部からケース内部へ貫通させる状態に、かつ、蓋12をケース3に装着した状態において各空気ノズル13A、13Bの噴射管13aが掬取部6の弧状底面6aの傾斜部分に沿う斜め下向き姿勢になるように蓋12に取り付けてある。
[Second Embodiment]
6 and 7 are air nozzles for discharging residual grains with respect to the bucket-type granular conveying apparatus for lifting rice, which is larger than the apparatus shown in the first embodiment and has a large case width in the width direction of the bucket moving path. In this apparatus, two air nozzles 13A and 13B are distributed and arranged at both lateral ends of the lid 12 of the hopper mounting opening 11 (that is, dispersed in the width direction of the bucket moving path). The air nozzles 13A and 13B are in a state of penetrating the injection pipe 13a from the outside of the case to the inside of the case and the lid 12 as in the case of the first embodiment. Are attached to the lid 12 so that the injection pipes 13a of the air nozzles 13A and 13B are in an obliquely downward posture along the inclined portion of the arc-shaped bottom surface 6a of the scraping portion 6.

すなわち、このノズル配置により、両空気ノズル13A,13Bの先端噴射口13bから掬取部6の底面6aに対しその底面6aの傾斜部分に沿わせる状態でバケット下降経路dの側から底面6aの最下部に向けて圧縮空気Aを噴射するが、一方の空気ノズル13Aからは、掬取部6の底面6aのうち主にバケット移動経路の幅方向における一側寄り半部に対して圧縮空気Aを噴射し、他方の空気ノズル13Bからは、掬取部6の底面6aのうち主にバケット移動経路の幅方向における他側寄り半部に対して圧縮空気Aを噴射する構造にしてある。   That is, by this nozzle arrangement, the bottom surface 6a from the side of the bucket descending path d to the bottom surface 6a in the state where it is along the inclined portion of the bottom surface 6a with respect to the bottom surface 6a of the scooping portion 6 from the tip injection ports 13b of the air nozzles 13A and 13B. Compressed air A is jetted toward the lower part. From one air nozzle 13A, the compressed air A is mainly applied to the half of the bottom surface 6a of the scraper 6 in the width direction of the bucket moving path. The other air nozzle 13B is configured to inject compressed air A mainly to the other half of the bottom surface 6a of the scraper 6 in the width direction of the bucket moving path.

各空気ノズル13A,13Bの噴射管13aの基端部には、それら空気ノズル13A,13Bに対する共通圧縮機14からの分岐空気供給路15a,15bを各別に開閉して各空気ノズル13A,13Bからの圧縮空気噴射を各別に発停する噴射弁16a,16b(電磁弁)を装備してあり、ケース3には、これら噴射弁16a,16bを開閉操作して2本の空気ノズル13A,13B夫々からの圧縮空気噴射の発停制御を行う噴射制御器17を設けてある。   At the base end portion of the injection pipe 13a of each air nozzle 13A, 13B, branch air supply paths 15a, 15b from the common compressor 14 to the air nozzles 13A, 13B are individually opened and closed to open the air nozzles 13A, 13B. Are provided with injection valves 16a and 16b (solenoid valves) that respectively start and stop the compressed air injection, and the case 3 is operated by opening and closing these injection valves 16a and 16b, respectively, and the two air nozzles 13A and 13B, respectively. There is provided an injection controller 17 for performing start / stop control of the compressed air injection from.

そして、本第2実施形態の装置では、この噴射制御器17を、図8に示す如く、残粒排出運転の開始指令が付与されたとき、空気ノズル13A又は13Bから設定噴射時間Ta1だけ圧縮空気Aを噴射させる噴射操作を設定複数回数N1にわたり、各回の噴射操作どうしの間に設定休止時間Tb1だけ空気ノズル13A又は13Bからの圧縮空気噴射を停止する休止操作を介在させた状態で、かつ、一回の噴射操作とそれに続く一回の休止操作との一組の操作の操作対象とする噴射弁を2個の噴射弁16a,16bのうちで交互に変更する形態で繰り返し実行する構成にしてあり、設定噴射時間Ta1は、1秒間〜6秒間の範囲内の時間、又は、前述した圧力復帰時間の1/3倍〜3倍の範囲内の時間にし、設定休止時間Tb1は圧力回復時間の1倍〜3倍の範囲内の時間にしてある。   In the apparatus of the second embodiment, as shown in FIG. 8, the injection controller 17 is supplied with compressed air for the set injection time Ta1 from the air nozzle 13A or 13B when a start command for the residual particle discharge operation is given. An injection operation for injecting A over a set number of times N1, with a pause operation for stopping the compressed air injection from the air nozzle 13A or 13B for a set pause time Tb1 between each injection operation, and It is configured to repeatedly execute an injection valve to be an operation target of a set of operations of one injection operation and a subsequent pause operation by alternately changing between the two injection valves 16a and 16b. Yes, the set injection time Ta1 is set to a time within a range of 1 second to 6 seconds, or a time within a range of 1/3 to 3 times the pressure return time described above, and the set pause time Tb1 is set to a pressure recovery time. It is the time of the 1 to 3 times the range of.

また、この噴射操作の設定複数回数N1にわたる繰り返しに続き、空気ノズル13A,13Bから第2設定噴射時間Ta2だけ圧縮空気Aを噴射させる第2噴射操作を第2設定複数回数N2にわたり、各回の第2噴射操作どうしの間に第2設定休止時間Tb2だけ空気ノズル13A,13Bからの圧縮空気噴射を停止する第2休止操作を介在させた状態で、かつ、2個の噴射弁16a,16bを同期させて開閉する形態で繰り返し実行する構成にしてある。   Further, following the repetition over the set number of times N1 of the injection operation, the second injection operation for injecting the compressed air A from the air nozzles 13A, 13B for the second set injection time Ta2 over the second set number of times N2 The two injection valves 16a and 16b are synchronized with each other while the second pause operation for stopping the compressed air injection from the air nozzles 13A and 13B is interposed between the two injection operations for the second set pause time Tb2. It is configured to execute repeatedly in the form of opening and closing.

つまり、残粒量が未だ多い運転前半では、2つの空気ノズル13A,13Bから交互に圧縮空気Aを噴射させる噴射形態を採り、これにより各空気ノズル13A,13Bからの圧縮空気噴射力を大きく確保するのに対し、残粒量が少なくなってある程度小さな噴射力でも残粒を効率的に排出し得る運転後半については、2つの空気ノズル13A,13Bから同時に圧縮空気Aを噴射させる形態を採り、これにより掬取部6の底面6aに分散して残る残粒を漏れなく排出するようにしてある。   That is, in the first half of the operation in which the amount of residual particles is still large, an injection mode is adopted in which compressed air A is alternately injected from the two air nozzles 13A and 13B, thereby ensuring a large compressed air injection force from each air nozzle 13A and 13B. On the other hand, for the latter half of the operation in which the amount of residual particles is reduced and the residual particles can be discharged efficiently even with a small amount of injection force, a form in which compressed air A is simultaneously injected from the two air nozzles 13A, 13B is adopted. As a result, the residual grains remaining on the bottom surface 6a of the scraping section 6 are discharged without leakage.

なお、本第2実施形態の装置において上記の如き残粒排出運転を実施するにあたり、各設定値の具体的な一例としては、例えば、空気ノズル13A,13Bの噴出管13aの口径10mm、圧縮空気Aの定格圧力0.6〜0.7MPaの仕様において、設定噴射時間Ta1=3秒間、設定休止時間Tb1=2秒間、設定複数回数N1=8回(すなわち、各空気ノズル13A,13Bについて4回の噴射操作)、第2設定噴射時間Ta2=7秒間、第2設定休止時間Tb2=3秒間、第2設定複数回数N2=3回を挙げることができる。   In addition, in carrying out the residual particle discharging operation as described above in the apparatus of the second embodiment, as specific examples of each set value, for example, the diameter of the ejection pipe 13a of the air nozzles 13A and 13B, 10 mm, compressed air In the specification of the rated pressure 0.6 to 0.7 MPa of A, the set injection time Ta1 = 3 seconds, the set pause time Tb1 = 2 seconds, the set multiple times N1 = 8 times (that is, four times for each of the air nozzles 13A and 13B) Injection operation), the second set injection time Ta2 = 7 seconds, the second set pause time Tb2 = 3 seconds, and the second set multiple times N2 = 3.

〔別の実施形態〕
本発明の第1特徴構成の実施において、設定噴射時間Ta1を1秒間〜6秒間(好ましくは3秒間〜4秒間)の範囲内の時間にするのに対し、設定休止時間Tb1、及び、設定複数回数N1の各設定値には、第1,第2実施形態で示した例値に限らず、装置条件などに応じて適当な値を選定できるが、一般的に、設定休止時間Tb1は2秒間〜6秒間の範囲内で選定するのが好ましい。
[Another embodiment]
In the implementation of the first characteristic configuration of the present invention, the set injection time Ta1 is set to a time within the range of 1 second to 6 seconds (preferably 3 seconds to 4 seconds), while the set pause time Tb1 and the set plural times The set value of the number of times N1 is not limited to the example values shown in the first and second embodiments, but an appropriate value can be selected according to the apparatus conditions. Generally, the set pause time Tb1 is 2 seconds. It is preferable to select within a range of ˜6 seconds.

本発明の第2特徴構成の実施において、設定休止時間Tb1を噴射弁16の閉じ操作後、空気供給路15における噴射弁16よりも上流側の空気圧力がそれまでの開放圧力から閉切圧力にまで上昇回復するのに要する圧力復帰時間の1倍〜3倍の範囲内の時間とするのに対し、設定噴射時間Ta1、及び、設定複数回数N1の各設定値には、第1,第2実施形態で示した例値に限らず、装置条件などに応じて適当な値を選定できる。   In the implementation of the second characteristic configuration of the present invention, the air pressure on the upstream side of the injection valve 16 in the air supply path 15 is changed from the open pressure so far to the closing pressure after the closing operation of the injection valve 16 for the set pause time Tb1. In contrast, the set injection time Ta1 and the set multiple times N1 include the first and second set values for the set injection time Ta1 and the set multiple times N1, respectively. Not only the example values shown in the embodiment but also appropriate values can be selected according to the apparatus conditions.

本発明の第3特徴構成の実施において、設定噴射時間Ta1を上記圧力回復時間の1/3倍〜3倍の範囲内の時間にし、かつ、設定休止時間Tb1を上記圧力復帰時間の1倍〜3倍の範囲内の時間とするのに対し、設定複数回数N1には、第1,第2実施形態で示した例値に限らず、装置条件などに応じて適当な値を選定できる。   In the implementation of the third characteristic configuration of the present invention, the set injection time Ta1 is set to a time within a range of 1/3 to 3 times the pressure recovery time, and the set pause time Tb1 is set to 1 time to the pressure return time. While the time is within the range of three times, the set multiple times N1 is not limited to the example values shown in the first and second embodiments, and an appropriate value can be selected according to the apparatus conditions and the like.

本発明の第4特徴構成の実施において、掬取部6の底面6aにおける異なる部位に対して圧縮空気Aを噴射させる複数の空気ノズル13A、13Bの装備数は2個に限らず、3個以上の複数であってもよく、また、その場合、噴射操作の繰り返しについては、図9に示す如く、空気ノズル13A又は13B又は13Cから設定噴射時間Ta1だけ圧縮空気Aを噴射させる噴射操作を設定複数回数N1にわたり、各回の噴射操作どうしの間に設定休止時間Tb1だけ空気ノズル13A又は13B又は13Cからの圧縮空気噴射を停止する休止操作を介在させた状態で、かつ、一回の噴射操作とそれに続く一回の休止操作との一組の操作の操作対象とする噴射弁を3個以上の噴射弁16a〜16c(各空気ノズル13A〜13Cに対する噴射弁)のうちで順次に変更する形態で繰り返し実行させるようにするのが望ましい。   In the implementation of the fourth characteristic configuration of the present invention, the number of equipment of the plurality of air nozzles 13A and 13B for injecting the compressed air A to different parts in the bottom surface 6a of the towing unit 6 is not limited to two, but three or more. In this case, as for the repetition of the injection operation, as shown in FIG. 9, a plurality of injection operations for injecting the compressed air A from the air nozzle 13A, 13B or 13C for the set injection time Ta1 are set. In the state where the pause operation for stopping the compressed air injection from the air nozzles 13A, 13B or 13C is interposed for the set pause time Tb1 between each injection operation over the number N1, and one injection operation and Three or more injection valves 16a to 16c (injection valves for the respective air nozzles 13A to 13C) are set as the operation target of a set of operations with the following one pause operation. Sequentially it is desirable to cause repeatedly executed in the form of change out.

前述の第1,第2実施形態では、掬取部6に対しバケット上昇経路uの側から米を投入する装置構造を示したが、これに代え、掬取部6に対しバケット下降経路dの側から米を投入する構造にしてもよい。   In the first and second embodiments described above, the device structure in which rice is introduced from the side of the bucket lifting path u to the harvesting unit 6 is shown. You may make it the structure which throws in rice from the side.

本発明の第1又は第2特徴構成の実施において、搬送対象の粒体は米などの穀粒に限られるものではなく、掬取部6において下降経路dから上昇経路dへ順次に反転移動する複数のバケット1により掬い取って搬送し得るものであれば、どのような粒体であってもよい。   In implementation of the 1st or 2nd characteristic structure of this invention, the granule of conveyance object is not restricted to grains, such as rice, and reversely moves sequentially from the descending path d to the ascending path d in the harvesting part 6. Any granule may be used as long as it can be picked up and transported by a plurality of buckets 1.

本発明によるバケット式粒体搬送装置は、穀粒を始めとする各種の粒体の搬送に利用できる。   The bucket type particle conveying device according to the present invention can be used for conveying various types of particles including grains.

第1実施形態に係る一部を省略した装置全体側面図The whole apparatus side view which omitted a part concerning a 1st embodiment 第1実施形態に係る装置下部の拡大側面図The expanded side view of the apparatus lower part which concerns on 1st Embodiment 第1実施形態に係る装置下部の拡大後面図Enlarged rear view of the lower part of the apparatus according to the first embodiment 第1実施形態に係る残粒排出運転の操作形態を示す図The figure which shows the operation form of the residual grain discharge driving | operation which concerns on 1st Embodiment. 第1実施形態に係る残粒排出運転の別の操作形態を示す図The figure which shows another operation form of the residual grain discharge driving | operation which concerns on 1st Embodiment. 第2実施形態に係る装置下部の拡大側面図Enlarged side view of the lower part of the apparatus according to the second embodiment 第2実施形態に係る装置下部の拡大後面図Enlarged rear view of the lower part of the apparatus according to the second embodiment 第2実施形態に係る残粒排出運転の操作形態を示す図The figure which shows the operation form of the residual grain discharge driving | operation which concerns on 2nd Embodiment. 別の実施形態に係る残粒排出運転の操作形態を示す図The figure which shows the operation form of the residual grain discharge driving | operation which concerns on another embodiment. 従来装置における残粒排出運転の操作形態を示す図The figure which shows the operation form of the residual grain discharge driving | operation in a conventional apparatus

符号の説明Explanation of symbols

1 バケット
6 掬取部
6a 底面
13 空気ノズル
13A,13B 空気ノズル
14 圧縮機
15 空気供給路
15a,15b 空気供給路
16 噴射弁
16a,16b 噴射弁
17 噴射制御手段
A 圧縮空気
d 下降経路
u 上昇経路
Ta1 設定噴射時間
N1 設定複数回数
Tb1 設定休止時間
DESCRIPTION OF SYMBOLS 1 Bucket 6 Sawing part 6a Bottom surface 13 Air nozzle 13A, 13B Air nozzle 14 Compressor 15 Air supply path 15a, 15b Air supply path 16 Injection valve 16a, 16b Injection valve 17 Injection control means A Compressed air d Down path u Ascending path Ta1 set injection time N1 set multiple times Tb1 set pause time

Claims (4)

掬取部に投入された粒体を前記掬取部において下降経路から上昇経路へ順次に反転移動する複数のバケットにより掬い取って搬送するバケット式粒体搬送装置であって、
前記掬取部の底面に対して圧縮空気を噴射する残粒排出用の空気ノズルと、この空気ノズルに対する圧縮機からの空気供給路を開閉する噴射弁と、この噴射弁を開閉操作して前記空気ノズルからの圧縮空気噴射の発停制御を行う噴射制御手段とを設け、
この噴射制御手段を、残粒排出運転の開始指令が付与されたとき、
前記空気ノズルから1秒間〜6秒間の設定噴射時間だけ圧縮空気を噴射させる噴射操作を設定複数回数にわたり、各回の噴射操作どうしの間に設定休止時間だけ前記空気ノズルからの圧縮空気噴射を停止する休止操作を介在させた状態で繰り返し実行する構成にしてあるバケット式粒体搬送装置。
A bucket-type granular material conveying apparatus that scoops and conveys the granular material charged into the towing unit by a plurality of buckets that are sequentially reversed and moved from the descending path to the ascending path in the toning unit,
An air nozzle for discharging residual particles for injecting compressed air to the bottom surface of the scraping unit, an injection valve for opening and closing an air supply path from the compressor to the air nozzle, and opening and closing the injection valve An injection control means for performing start / stop control of compressed air injection from the air nozzle,
When this injection control means is given a start command for residual grain discharge operation,
The injection operation for injecting compressed air from the air nozzle for a set injection time of 1 second to 6 seconds is set a plurality of times, and the compressed air injection from the air nozzle is stopped for a set pause time between each injection operation. A bucket-type granule conveying apparatus configured to repeatedly execute a pause operation.
掬取部に投入された粒体を前記掬取部において下降経路から上昇経路へ順次に反転移動する複数のバケットにより掬い取って搬送するバケット式粒体搬送装置であって、
前記掬取部の底面に対して圧縮空気を噴射する残粒排出用の空気ノズルと、この空気ノズルに対する圧縮機からの空気供給路を開閉する噴射弁と、この噴射弁を開閉操作して前記空気ノズルからの圧縮空気噴射の発停制御を行う噴射制御手段とを設け、
この噴射制御手段を、
前記噴射弁の開弁状態からの閉じ操作後、前記空気供給路における前記噴射弁よりも上流側の空気圧力がそれまでの開放圧力から閉切圧力にまで上昇回復するのに要する圧力復帰時間の1倍〜3倍の時間を設定休止時間として、
残粒排出運転の開始指令が付与されたとき、前記空気ノズルから設定噴射時間だけ圧縮空気を噴射させる噴射操作を設定複数回数にわたり、各回の噴射操作どうしの間に設定休止時間だけ前記空気ノズルからの圧縮空気噴射を停止する休止操作を介在させた状態で繰り返し実行する構成にしてあるバケット式粒体搬送装置。
A bucket-type granular material conveying apparatus that scoops and conveys the granular material charged into the towing unit by a plurality of buckets that are sequentially reversed and moved from the descending path to the ascending path in the toning unit,
An air nozzle for discharging residual particles for injecting compressed air to the bottom surface of the scraping unit, an injection valve for opening and closing an air supply path from the compressor to the air nozzle, and opening and closing the injection valve An injection control means for performing start / stop control of compressed air injection from the air nozzle,
This injection control means
After the closing operation of the injection valve from the open state, the pressure recovery time required for the air pressure upstream of the injection valve in the air supply path to recover from the open pressure up to the closing pressure is recovered. 1 to 3 times as the set pause time,
When an instruction to start the residual particle discharge operation is given, an injection operation for injecting compressed air from the air nozzle for a set injection time is set a plurality of times, and from the air nozzle for a set pause time between each injection operation. A bucket-type granule conveying apparatus configured to repeatedly execute a pause operation for stopping the compressed air injection.
掬取部に投入された粒体を前記掬取部において下降経路から上昇経路へ順次に反転移動する複数のバケットにより掬い取って搬送するバケット式粒体搬送装置であって、
前記掬取部の底面に対して圧縮空気を噴射する残粒排出用の空気ノズルと、この空気ノズルに対する圧縮機からの空気供給路を開閉する噴射弁と、この噴射弁を開閉操作して前記空気ノズルからの圧縮空気噴射の発停制御を行う噴射制御手段とを設け、
この噴射制御手段を、
前記噴射弁の開弁状態からの閉じ操作後、前記空気供給路における前記噴射弁よりも上流側の空気圧力がそれまでの開放圧力から閉切圧力にまで上昇回復するのに要する圧力復帰時間の1倍〜3倍の時間を設定休止時間とし、かつ、前記圧力復帰時間の1/3倍〜3倍の時間を設定噴射時間として、
残粒排出運転の開始指令が付与されたとき、設定噴射時間だけ前記噴射弁を開弁状態にする噴射操作を設定複数回数にわたり、各回の噴射操作どうしの間に設定休止時間だけ前記噴射弁を閉弁状態にする休止操作を介在させた状態で繰り返し実行する構成にしてあるバケット式粒体搬送装置。
A bucket-type granular material conveying apparatus that scoops and conveys the granular material charged into the towing unit by a plurality of buckets that are sequentially reversed and moved from the descending path to the ascending path in the toning unit,
An air nozzle for discharging residual particles for injecting compressed air to the bottom surface of the scraping unit, an injection valve for opening and closing an air supply path from the compressor to the air nozzle, and opening and closing the injection valve An injection control means for performing start / stop control of compressed air injection from the air nozzle,
This injection control means
After the closing operation of the injection valve from the open state, the pressure recovery time required for the air pressure upstream of the injection valve in the air supply path to recover from the open pressure up to the closing pressure is recovered. 1 to 3 times as the set pause time, and 1/3 to 3 times as long as the pressure return time as the set injection time,
When an instruction to start the residual particle discharge operation is given, the injection operation for opening the injection valve for the set injection time is set a plurality of times, and the injection valve is set for the set pause time between each injection operation. A bucket-type granule conveying apparatus configured to repeatedly execute a pause operation for closing a valve.
前記掬取部の底面における異なる部位に対して圧縮空気を噴射する複数の前記空気ノズルを設け、
これら複数の空気ノズルの夫々に対する共通圧縮機からの分岐空気供給路を各別に開閉して複数の前記空気ノズルを圧縮空気の噴射状態と噴射停止状態とに各別に切り換える複数の前記噴射弁を設け、
前記噴射制御手段を、これら複数の噴射弁のうちで、一回の前記噴射操作とそれに続く一回の前記休止操作との一組の操作の操作対象とする噴射弁を順次に又は交互に変更する形態で、前記噴射操作を設定複数回数にわたって繰り返し実行する構成にしてある請求項1〜3のいずれか1項に記載のバケット式粒体搬送装置。

A plurality of the air nozzles for injecting compressed air to different parts of the bottom surface of the scraping unit are provided,
A plurality of injection valves are provided for switching the plurality of air nozzles between a compressed air injection state and an injection stop state by separately opening and closing a branch air supply path from the common compressor to each of the plurality of air nozzles. ,
Of the plurality of injection valves, the injection control means sequentially or alternately changes an injection valve that is a target of a set of operations of one injection operation and a subsequent pause operation. The bucket type particle conveying apparatus according to any one of claims 1 to 3, wherein the injection operation is repeatedly executed over a set number of times.

JP2004195868A 2004-07-01 2004-07-01 Bucket type granule conveying device Pending JP2006016150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004195868A JP2006016150A (en) 2004-07-01 2004-07-01 Bucket type granule conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195868A JP2006016150A (en) 2004-07-01 2004-07-01 Bucket type granule conveying device

Publications (1)

Publication Number Publication Date
JP2006016150A true JP2006016150A (en) 2006-01-19

Family

ID=35790741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195868A Pending JP2006016150A (en) 2004-07-01 2004-07-01 Bucket type granule conveying device

Country Status (1)

Country Link
JP (1) JP2006016150A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055279A (en) * 2006-08-30 2008-03-13 Yanmar Co Ltd Removal of residual grains in hulling apparatus equipped with oscillation separator
JP2008055280A (en) * 2006-08-30 2008-03-13 Yanmar Co Ltd Removal of residual grains in hulling apparatus equipped with oscillation separator
KR100921660B1 (en) 2007-11-28 2009-10-16 한국콘베어공업주식회사 Airtight conveyor
JP2009249151A (en) * 2008-04-09 2009-10-29 Onoe Kikai:Kk Bucket type elevator
RU2493086C1 (en) * 2012-02-17 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный аграрный университет имени императора Петра 1" (ФГБОУ ВПО Воронежский ГАУ) Bucket elevator
JP2020089859A (en) * 2018-12-07 2020-06-11 井関農機株式会社 Rice husk separator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595509U (en) * 1982-07-05 1984-01-13 財団法人 雑賀技術研究所 bucket elevator
JPS63282016A (en) * 1987-05-11 1988-11-18 Yamamoto Mfg Co Ltd Device for removing rice remained in lift
JPS6412009U (en) * 1987-07-09 1989-01-23
JPH04223909A (en) * 1990-08-10 1992-08-13 Hitachi Metals Ltd Bucket elevator and driving method thereof
JPH0577884A (en) * 1991-09-17 1993-03-30 Sumitomo Rubber Ind Ltd Method and device for preventing bridging of ground material
JPH061416A (en) * 1992-06-18 1994-01-11 Seimai Giken Kk Bucket elevator
JPH07215434A (en) * 1994-02-03 1995-08-15 Kamaishi Gureen Center Kk Bucket elevator and operation method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595509U (en) * 1982-07-05 1984-01-13 財団法人 雑賀技術研究所 bucket elevator
JPS63282016A (en) * 1987-05-11 1988-11-18 Yamamoto Mfg Co Ltd Device for removing rice remained in lift
JPS6412009U (en) * 1987-07-09 1989-01-23
JPH04223909A (en) * 1990-08-10 1992-08-13 Hitachi Metals Ltd Bucket elevator and driving method thereof
JPH0577884A (en) * 1991-09-17 1993-03-30 Sumitomo Rubber Ind Ltd Method and device for preventing bridging of ground material
JPH061416A (en) * 1992-06-18 1994-01-11 Seimai Giken Kk Bucket elevator
JPH07215434A (en) * 1994-02-03 1995-08-15 Kamaishi Gureen Center Kk Bucket elevator and operation method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055279A (en) * 2006-08-30 2008-03-13 Yanmar Co Ltd Removal of residual grains in hulling apparatus equipped with oscillation separator
JP2008055280A (en) * 2006-08-30 2008-03-13 Yanmar Co Ltd Removal of residual grains in hulling apparatus equipped with oscillation separator
JP4676936B2 (en) * 2006-08-30 2011-04-27 ヤンマー株式会社 Residual grain removal of swing sorting type hulling device
KR100921660B1 (en) 2007-11-28 2009-10-16 한국콘베어공업주식회사 Airtight conveyor
JP2009249151A (en) * 2008-04-09 2009-10-29 Onoe Kikai:Kk Bucket type elevator
RU2493086C1 (en) * 2012-02-17 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный аграрный университет имени императора Петра 1" (ФГБОУ ВПО Воронежский ГАУ) Bucket elevator
JP2020089859A (en) * 2018-12-07 2020-06-11 井関農機株式会社 Rice husk separator
JP7192457B2 (en) 2018-12-07 2022-12-20 井関農機株式会社 Rice husk sorter

Similar Documents

Publication Publication Date Title
WO2021157326A1 (en) Ash extrusion device and method for modifying ash extrusion device
JP4226587B2 (en) Food cleaning equipment
JP6752988B1 (en) How to modify the ash extruder and ash extruder
WO2021157323A1 (en) Ash extrusion device and method for remodeling ash extrusion device
JP2006016150A (en) Bucket type granule conveying device
CN106882563A (en) Preventing plug dredging device, preventing plug dredging system and its control method
JP6195751B2 (en) Automatic roller tilting water cleaning device for falling object receiving plate of endless belt conveyor
JP2009249151A (en) Bucket type elevator
CN107932342B (en) Crawler-type shot blasting machine
JP4066062B2 (en) Method and apparatus for pneumatic transport of powder
JP2006016151A (en) Bucket type granule conveying device
CN108101190A (en) A kind of bio-ceramic filter backwash cutting module and its three-dimensional backwashing technology
KR20180040042A (en) Deposit transfer apparatus for dredging
CN103596728A (en) Blasting device and blasting method
KR200451727Y1 (en) Compound Type Blast M/C
JPH09229567A (en) Loading apparatus for sintered stock material and loading method
CN207375177U (en) Hopper and scrapper conveyor
JP2005118011A (en) Method and system for transporting forest biomass
CN205777547U (en) Appts. for transferring ready-mixed concrete
JP2604085B2 (en) Dry concrete spraying equipment
JP3964232B2 (en) Powder transport system for powder jet agitator
KR200393300Y1 (en) cereal conveyance device of elevator type
JP2004168536A (en) Discharge amount control method for powder and granular material, and powder and granular material receiving hopper
JP2814228B2 (en) Abrasive material supply device for blast cleaning
CN108263833B (en) Bucket elevator and method for controlling dust raising of bucket elevator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A521 Written amendment

Effective date: 20091221

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100624