JP2004130709A - Transparent sheet - Google Patents

Transparent sheet Download PDF

Info

Publication number
JP2004130709A
JP2004130709A JP2002298658A JP2002298658A JP2004130709A JP 2004130709 A JP2004130709 A JP 2004130709A JP 2002298658 A JP2002298658 A JP 2002298658A JP 2002298658 A JP2002298658 A JP 2002298658A JP 2004130709 A JP2004130709 A JP 2004130709A
Authority
JP
Japan
Prior art keywords
transparent
roll
weight
inorganic layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002298658A
Other languages
Japanese (ja)
Other versions
JP4098056B2 (en
Inventor
Toshimasa Eguchi
江口 敏正
Hironori Maruyama
丸山 宏典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002298658A priority Critical patent/JP4098056B2/en
Publication of JP2004130709A publication Critical patent/JP2004130709A/en
Application granted granted Critical
Publication of JP4098056B2 publication Critical patent/JP4098056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent sheet which has a low coefficient of linear expansion and can be best-suitably used for substrates for a liquid crystal display element, an organic EL display element and a solar cell. <P>SOLUTION: This transparent sheet has at least a transparent inorganic layer with a thickness of 0.6 to 50 μm and transparent resin layers 1 and 2 sandwiching the former, In addition, the sheet shows the coefficient of linear expansion of not more than 40 ppm/°C in the intraplanar direction at 30-100°C; a phase difference of not more than 10 nm; and a light transmission of not less than 80 % at a wavelength of 400 nm. The transparent inorganic layer can be laminated by a physical vapor growth process and/or a chemical vapor growth process. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示素子用基板、有機EL表示素子用基板、太陽電池基板等に好適に利用できる透明なシートに関する。
【0002】
【従来の技術】
一般に、液晶表示素子用基板、有機EL表示素子用基板、太陽電池基板等には、ガラス板が多く用いられている。しかし、割れ易い、曲げられない、比重が大きく軽量化に不向き等の問題から、近年、ガラス板の代わりにプラスチックを用いる試みが数多く行われるようになってきた。例えば、脂環式構造、芳香族等を持つ特定のビス(メタ)アクリレートを含む組成物を活性エネルギー線等により硬化させ成形した透明基板を用いてなる液晶表示素子が検討されている。(例えば、特許文献1参照。)
しかしながら、プラスチックは、ガラス板に比べ線膨張係数が大きいため、表示素子用基板の中でも、特にアクティブマトリックス表示素子用基板に用いた場合、その製造時の加熱工程おいて、金属やシリコン及びそれらの酸化物などの無機薄膜にクラックが発生したり、剥離する等の不具合が生じる場合があり問題となっている。したがって、軽く、曲げることができ、軽いと同時に線膨張係数の小さいシートが望まれている。
【0003】
一方、ガラス基板を出来る限り薄くすることで、軽く、曲げることができるようにすることも検討されている。このような場合、割れやすさを回避するために樹脂を塗布することなどが提案されている。(例えば、非特許文献1参照。)しかし、ガラス基板を薄くすることは50μm程度が下限であり、プラスチックほどの軽量化は困難であるとともに、このような薄いガラスは、より厚いガラスを研磨やエッチングすることで得るために高コストになってしまう。
従来、ガスバリア層として樹脂フィルムに透明無機薄膜を成膜することが行われている。(例えば、特許文献2,3参照。)しかし、これらは線膨張係数を下げる目的で発明されたものではなく、片面に樹脂層が無い場合にも割れない厚さである0.01〜0.1μmという薄い厚さで用いられるため線膨張係数を下げるには有効ではない。また、線膨張係数が低い樹脂フィルムとしては、ポリイミドやポリエチレンナフタレート(PEN)が知られているが、前者は一般に可視光でも短波長域に吸収を持ち黄色〜褐色であり光学用途には好ましくなく、後者は大きな位相差を持つために光学等方性が必要な用途には好ましくない。
【0004】
【特許文献1】
特開平10−90667号公報(第2−3頁)
【非特許文献1】
A.Weber, Thin Glass−Polymer System as Flexible Substrate for Displays, SID INTERNATIONAL SYMPOSIUM DIGEST OFTECHNICAL PAPERS 2002 Vol.XXXIII, No.1 P.53−55
【特許文献2】
特開平9−39151号公報(第1−3頁)
【特許文献3】
特開平10−329254号公報(第2−3頁)
【0005】
【発明が解決しようとする課題】
本発明は、線膨張係数が低く、液晶表示素子用基板、有機EL表示素子用基板、太陽電池基板等に好適に利用できる透明シートを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を達成すべく鋭意検討した結果、少なくとも厚さ0.6μm以上10μm以下の透明無機層及びそれを挟む透明樹脂層を有するシートが液晶表示素子用基板や有機EL表示素子用基板、特にアクティブマトリックス表示素子用基板に好適に用いられることを見出し、本発明に至った。
すなわち本発明は、
(1) 少なくとも厚さ0.6μm以上50μm未満の透明無機層及びこれを挟む透明樹脂層1並びに透明樹脂層2を有し、30℃から100℃における面内方向の線膨張係数が40ppm/℃以下であり、位相差が10nm以下であり、波長400nmにおける光線透過率が80%以上である透明シート。
(2) 前記透明無機層が物理気相成長法および/または化学気相成長法により成膜される(1)の透明シート、
(3) 前記物理気相成長法が真空蒸着法またはイオンプレーティング法である(2)の透明シート、
(4) 前記化学気相成長法が大気圧下で行なわれる(2)の透明シート、
(5) 前記透明樹脂層1上に透明無機層および透明樹脂層2をロールツーロール方式で積層した(1)〜(4)の透明シート、
である。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明中の透明無機層の例としては、酸化珪素,酸化窒化珪素などの可視光の透過性を有する珪素化合物や、酸化アルミニウム,酸化鉛,酸化亜鉛,酸化チタン,酸化タンタルなどの可視光の透過性を有する金属酸化物などが挙げられる。これらは、単層で用いても2層以上を用いても良い。
透明無機層の成膜は、真空蒸着,イオンプレーティング,スパッタリングなどの物理気相成長法、真空中でのプラズマCVD,触媒CVD,大気圧下でのCVDなどの化学気相成長法、ゾル−ゲル法等の湿式塗布法により行うことができる。これらのうち、物理気相成長法,化学気相成長法は低温で緻密な膜を得られやすく好ましい。更に、物理気相成長法の中でも真空蒸着とイオンプレーティングは成膜速度が速く、0.2μm以上50μm未満の膜を連続的に成膜する際に好ましい。また、化学気相成長法では、大気圧下でこれを行う方法が、真空工程を必要とせずタクトタイムを短くできる点から好ましい。
【0008】
本発明中の透明樹脂層1および透明樹脂層2に用いる透明樹脂とは、可視光線の透過性を有する樹脂を示す。本発明の透明樹脂の透明性は、シートにした際の550nmでの光線透過率が80%以上のものが好ましく、より好ましくは85%以上、最も好ましくは90%以上である。表示素子用基板として用いる場合には、85%以上が好ましい。
本発明の透明樹脂のガラス転移温度は、120℃以上であることが好ましく、より好ましくは180℃以上、さらに好ましくは200℃以上である。ガラス転移温度が120℃未満の樹脂を用いた場合、例えば液晶表示素子基板に適用すると、配向膜形成や基板はり合わせなどの加熱工程で変形やうねりが生じる恐れがある。更に透明性や位相差が小さいことから、本発明中の透明樹脂層に用いる透明樹脂は非晶質であることが好ましい。位相差が10nmを超える場合、偏光を利用する表示素子の場合にコントラストの低下や色ムラが発生する場合があるため、透明シートの位相差は10nm以下である必要がある。
【0009】
本発明の透明樹脂の例としては、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、シクロオレフィンポリマーなどの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂、アクリレートなどの反応性モノマーを活性エネルギー線で架橋させた樹脂などがあげられ、耐溶剤性に優れていることからアクリレートやエポキシ樹脂などの反応性モノマーを活性エネルギー線および/または熱によって架橋させた樹脂が好ましい。反応性モノマーとしては、熱や活性エネルギー線で架橋させることができるものであれば特に制限されないが、透明性や耐熱性の面から2つ以上の官能基を有する(メタ)アクリレートや2つ以上の官能基を有するエポキシ樹脂が好ましく、特に2つ以上の官能基を有する(メタ)アクリレートが好ましい。これら樹脂は、単独で用いても2種以上を併用しても良い。さらに各透明樹脂層は、2層以上の多層構成であってもかまわない。また、透明樹脂層1と透明樹脂層2とは、同一の樹脂構成であっても、異なるものでも良い。
【0010】
本発明の透明樹脂層1は、架橋させうる樹脂の場合は注型法,流延法などで、熱可塑性樹脂の場合は溶融押出法や溶液流延法などで成膜することができる。紫外線等の活性エネルギー線により架橋させて製造する場合は、樹脂組成物中にラジカルを発生する光重合開始剤を含有させることが好ましい。その際に用いる光重合開始剤としては、例えばベンゾフェノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジエトキシアセトフェノン、1−ヒドロキシ−シクロヘキシル−フェニルケトン、2,6−ジメチルベンゾイルジフェニルホスフィンオキシド、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシドが挙げられる。これらの光重合開始剤は2種以上を併用しても良い。
【0011】
本発明で、透明樹脂層1上に、透明無機層および透明樹脂層2を順次積層する場合は、製造工程中で透明無機層に傷や割れが発生することを防ぐことから、ベースとなるロール状の透明シート原反等である透明樹脂層1上に、ロールツーロール方式で透明無機層を成膜した後、連続してその上層に、やはりロールツーロール方式で透明樹脂層2を成膜することが好ましい。この場合、透明樹脂層2の成膜方法としては、透明無機層を物理気相成長法などにより真空チャンバー中で成膜する場合には蒸着重合法が、ゾル−ゲル法や大気圧下での化学気相成長法により成膜する場合にはグラビアコートやダイコート等の湿式塗布法を用いることができる。
【0012】
本発明の透明樹脂層中には、必要に応じて、透明性、耐熱性等の特性を損なわない範囲で、酸化防止剤、紫外線吸収剤、染顔料を含んでいても良い。
【0013】
本発明の透明シートの線膨張係数は40ppm/℃以下であることが必要である。従来の透明シートで得られているような50ppm/℃を超える線膨張係数の場合、表示素子の製造時の加熱工程おいて、金属やシリコン及びそれらの酸化物などの無機薄膜にクラックが発生したり、剥離する等の不具合が生じる場合がある。
【0014】
【実施例】
以下、本発明の内容を実施例により詳細に説明するが、本発明は、その要旨を越えない限り以下の例に限定されるものではない。
(実施例1)
溶融押出法により幅600mm厚さ10μmのポリカーボネートフィルムのロール品を作成した。このフィルム上に、グラビアコーターとUV照射装置を有するロールツーロール方式の塗工機を用いて、ノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物をグラビアコーターにより膜厚1μmで塗布した後、500mJ/cmのUV光を照射して硬化させ、透明樹脂層1を作製した。シートを300mm×400mmの大きさに切断して板状治具に固定した後、パルスDC式多層スパッタリング装置によりAlターゲットを用いた反応性スパッタリグでAl2O3を膜厚0.6μmにスパッタし、透明無機層を成膜した。治具に固定したシートをスパッタリング装置から取り出し、枚葉式ダイコーターを用いてノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚3μmに塗布し、UV照射装置により500mJ/cmのUV光を照射して硬化させ、枚葉の透明シートを得た。
【0015】
(実施例2)
溶融押出法により幅600mm厚さ10μmのポリエーテルスルホンフィルムのロール品を作成した。このフィルム上に、グラビアコーターとUV照射装置を有するロールツーロール方式の塗工機を用いて、ノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物をグラビアコーターにより膜厚1μmで塗布した後、500mJ/cmのUV光を照射して硬化させ、透明樹脂層1を作製した。続いて、ロールツーロール方式の真空蒸着装置を用いてSiO2を膜厚1μmに蒸着し、透明無機層を成膜した。真空成膜から取り出した後、再度ロールツーロール方式の塗工機を用いて、ノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚3μmで塗布し、500mJ/cmのUV光を照射して硬化させ、ロール状で透明シートを得た。
【0016】
(実施例3)
溶融押出法により幅600mm厚さ10μmのポリエーテルスルホンフィルムのロール品を作成した。このフィルム上に、グラビアコーターとUV照射装置を有するロールツーロール方式の塗工機を用いて、ジシクロペンタジエニルジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物をグラビアコーターにより膜厚1μmで塗布した後、500mJ/cmのUV光を照射して硬化させ、透明樹脂層1を作製した。ロールツーロール方式の、大気圧CVD装置,グラビアコーター,UV照射装置を有する塗工機を用い、CVDによりテトラメトキシシランを原料ガスとして透明無機層であるSiO2を膜厚3μmに成膜し、続いてジシクロペンタジエニルジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚5μmにグラビアコーターで塗布し、500mJ/cmのUV光を照射して硬化させ、ロール状で透明シートを得た。
【0017】
(実施例4)
グラビアコーターとUV照射装置を有するロールツーロール方式の塗工機を用いて、離型処理した厚さ25μmのポリエステルフィルム上に、ジシクロペンタジエニルジアクリレート70重量部と平均分子量500であるエポキシアクリレート30重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚10μmに塗布し、750mJ/cmのUV光を照射して硬化させ、透明樹脂層1を得た。ロールツーロール方式のイオンプレーティング装置により透明無機層であるSiO2を厚さ2μmに成膜した。イオンプレーティング装置から取り出した後、再度ロールツーロール方式の塗工機を用いて、ジシクロペンタジエニルジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚8μmに塗布し、750mJ/cmのUV光を照射して硬化させ、ポリエステルフィルムから剥離して透明シートを得た。
【0018】
(比較例1)
ジシクロペンタジエニルジアクリレート70重量部と平均分子量500であるエポキシアクリレート30重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトンを0.5重量部を加えた樹脂組成物を、離型処理したガラス板に枚葉式ダイコーターで塗布し、両面から300mJ/cmのUV光を照射して硬化させた。さらに真空オーブン中で、約100℃で3時間加熱後、さらに約250℃で3時間加熱し、厚さ20μmの透明シートを得た。
【0019】
(比較例2)
溶融押出法により幅600mm厚さ10μmのポリエーテルスルホンフィルムのロール品を作成した。このフィルム上に、グラビアコーターとUV照射装置を有するロールツーロール方式の塗工機を用いて、ノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物をグラビアコーターにより膜厚1μmで塗布した後、500mJ/cmのUV光を照射して硬化させ、透明樹脂層を成膜した。続いて、ロールツーロール方式のパルスDC式スパッタリング装置によりSiターゲットを用いた反応性スパッタリグでガスバリア層であるSiOx(1.5<x<2.0)を膜厚0.1μmに蒸着し、透明無機層を成膜した。真空成膜から取り出した後、再度ロールツーロール方式の塗工機を用いて、ノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚3μmで塗布し、500mJ/cmのUV光を照射して硬化させ、ロール状で透明シートを得た。
【0020】
以上のようにして作製した光学シートについて、下記に示す評価方法により、各種特性を測定した。
a)線膨張係数
セイコー電子(株)製TMA/SS120C型熱応力歪測定装置を用いて、窒素雰囲気下、1分間に5℃の割合で温度を30℃から150℃まで上昇させた後、一旦0℃まで冷却し、再び1分間に5℃の割合で温度を上昇させて30℃〜100℃の時の値を測定して求めた。荷重を5gにし、引張モードで測定を行った。測定は、独自に設計した石英引張チャック(材質:石英,線膨張係数0.5ppm/℃)を用いた。一般に使われているインコネル製のチャックは、それ自体の線膨張が高いことやサンプルの支持形態に不具合があり、測定ばらつきが大きくなる問題があった。したがって、石英引張チャックを独自に設計し、それを用いて線膨張係数を測定することにした。この引張チャックを用いることにより、圧縮モードで測定した場合とほぼ同様の値で測定できることを確認している。
b)耐熱性(ガラス転移温度)
セイコー電子(株)製DMS―210型粘弾性測定装置で測定し、1Hzでのtanδの最大値をガラス転移温度(Tg)とした。
c)光線透過率
分光光度計U3200(日立製作所製)で550nmの光線透過率を測定した。
d)位相差
王子計測器(株)製自動複屈折計KOBRA−21を用いて入社角度0度の値を測定した。
評価結果を表1に示す。
【0021】
【表1】

Figure 2004130709
【0022】
実施例1〜4は低線膨張係数、高耐熱性、高透明性(高光線透過率)、低位相差であり、良好な特性を示した。
比較例1では透明無機層を有しないために線膨張係数が大きな値となってしまった。
比較例2では、透明無機層を有するものの、ガスバリア層として形成された厚さ0.6μm未満の層であるために線膨張係数が40ppm/℃を超えた大きな値となってしまった。
【発明の効果】
本発明の光学シートは、低線膨張係数、透明性、耐熱性に優れるため、アクティブマトリックスタイプの液晶表示素子用基板や有機EL素子用基板に好適に利用できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transparent sheet that can be suitably used for a liquid crystal display element substrate, an organic EL display element substrate, a solar cell substrate, and the like.
[0002]
[Prior art]
In general, glass plates are often used for substrates for liquid crystal display elements, substrates for organic EL display elements, solar cell substrates, and the like. However, in recent years, many attempts have been made to use plastic instead of a glass plate because of problems such as being easily broken, being not bendable, having a large specific gravity, and being unsuitable for weight reduction. For example, a liquid crystal display element using a transparent substrate formed by curing a composition containing a specific bis (meth) acrylate having an alicyclic structure, an aromatic or the like with an active energy ray or the like has been studied. (For example, refer to Patent Document 1.)
However, since plastic has a larger linear expansion coefficient than a glass plate, among plastics for a display element, particularly when used for a substrate for an active matrix display element, in the heating step at the time of its manufacture, metal and silicon and their metals are used. Problems such as cracks and peeling may occur in the inorganic thin film such as an oxide, which is a problem. Therefore, a sheet that is light and can be bent and is light and has a small linear expansion coefficient is desired.
[0003]
On the other hand, it has been studied to make the glass substrate as thin as possible so that it can be bent lightly. In such a case, it has been proposed to apply a resin in order to avoid fragility. (For example, see Non-Patent Document 1.) However, the lower limit of the thickness of a glass substrate is about 50 μm, and it is difficult to reduce the weight as much as plastic. The cost is high because it is obtained by etching.
Conventionally, a transparent inorganic thin film is formed on a resin film as a gas barrier layer. (See, for example, Patent Documents 2 and 3.) However, these are not invented for the purpose of lowering the coefficient of linear expansion, and have a thickness of 0.01 to 0.2 mm which does not crack even when there is no resin layer on one surface. Since it is used with a thin thickness of 1 μm, it is not effective in lowering the linear expansion coefficient. As resin films having a low linear expansion coefficient, polyimide and polyethylene naphthalate (PEN) are known, and the former generally has absorption in a short wavelength region even in visible light and has a yellow to brown color, and is preferable for optical use. On the other hand, the latter has a large phase difference and is not preferable for applications requiring optical isotropy.
[0004]
[Patent Document 1]
JP-A-10-90667 (pages 2-3)
[Non-patent document 1]
A. Weber, Thin Glass-Polymer System as Flexible Substrate for Displays, SID INTERNATIONAL SYMPOSIMUM DIGEST OFTECHNICAL PAPERS 2002 Vol. XXXIII, No. 1P. 53-55
[Patent Document 2]
JP-A-9-39151 (pages 1-3)
[Patent Document 3]
JP-A-10-329254 (pages 2-3)
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a transparent sheet which has a low linear expansion coefficient and can be suitably used for a liquid crystal display element substrate, an organic EL display element substrate, a solar cell substrate, and the like.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, a sheet having a transparent inorganic layer having a thickness of at least 0.6 μm or more and 10 μm or less and a transparent resin layer sandwiching the transparent inorganic layer has a substrate for a liquid crystal display element or an organic EL display. The present inventors have found that they can be suitably used for element substrates, particularly substrates for active matrix display elements, and have reached the present invention.
That is, the present invention
(1) A transparent inorganic layer having a thickness of at least 0.6 μm or more and less than 50 μm, a transparent resin layer 1 and a transparent resin layer 2 sandwiching the transparent inorganic layer, and a linear expansion coefficient in the in-plane direction at 30 ° C. to 100 ° C. of 40 ppm / ° C. A transparent sheet having a phase difference of 10 nm or less and a light transmittance at a wavelength of 400 nm of 80% or more.
(2) The transparent sheet according to (1), wherein the transparent inorganic layer is formed by physical vapor deposition and / or chemical vapor deposition.
(3) The transparent sheet according to (2), wherein the physical vapor deposition is a vacuum deposition method or an ion plating method.
(4) The transparent sheet according to (2), wherein the chemical vapor deposition is performed under atmospheric pressure.
(5) The transparent sheets (1) to (4) in which a transparent inorganic layer and a transparent resin layer 2 are laminated on the transparent resin layer 1 by a roll-to-roll method.
It is.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
Examples of the transparent inorganic layer in the present invention include a silicon compound having a visible light transmittance such as silicon oxide and silicon oxynitride, and a visible light such as aluminum oxide, lead oxide, zinc oxide, titanium oxide and tantalum oxide. Examples thereof include a metal oxide having transparency. These may be used as a single layer or two or more layers.
The transparent inorganic layer may be formed by physical vapor deposition such as vacuum deposition, ion plating, and sputtering; chemical vapor deposition such as plasma CVD in vacuum, catalytic CVD, and CVD under atmospheric pressure; It can be performed by a wet coating method such as a gel method. Of these, physical vapor deposition and chemical vapor deposition are preferred because a dense film can be obtained at a low temperature. Further, among the physical vapor deposition methods, vacuum deposition and ion plating have a high film formation rate and are preferable when a film having a thickness of 0.2 μm or more and less than 50 μm is continuously formed. Further, in the chemical vapor deposition method, a method in which this is performed under atmospheric pressure is preferable because a tact time can be shortened without requiring a vacuum step.
[0008]
The transparent resin used for the transparent resin layer 1 and the transparent resin layer 2 in the present invention refers to a resin having visible light transmittance. The transparency of the transparent resin of the present invention is preferably such that the light transmittance at 550 nm when formed into a sheet is 80% or more, more preferably 85% or more, and most preferably 90% or more. When used as a display element substrate, the content is preferably 85% or more.
The glass transition temperature of the transparent resin of the present invention is preferably 120 ° C. or higher, more preferably 180 ° C. or higher, and further preferably 200 ° C. or higher. When a resin having a glass transition temperature of less than 120 ° C. is used, for example, when the resin is applied to a liquid crystal display element substrate, deformation or undulation may occur in a heating step such as formation of an alignment film or bonding of substrates. Further, since the transparency and the phase difference are small, the transparent resin used for the transparent resin layer in the present invention is preferably amorphous. When the phase difference exceeds 10 nm, the contrast may decrease or color unevenness may occur in the case of a display element using polarized light. Therefore, the phase difference of the transparent sheet needs to be 10 nm or less.
[0009]
Examples of the transparent resin of the present invention include thermoplastic resins such as polycarbonate, polyarylate, polysulfone, polyethersulfone, and cycloolefin polymers, thermosetting resins such as epoxy resins, and reactive monomers such as acrylate with active energy rays. Crosslinked resins and the like are mentioned, and a resin obtained by crosslinking a reactive monomer such as an acrylate or an epoxy resin with active energy rays and / or heat is preferred because of its excellent solvent resistance. The reactive monomer is not particularly limited as long as it can be cross-linked by heat or active energy rays. From the viewpoint of transparency and heat resistance, (meth) acrylate having two or more functional groups and two or more Are preferred, and (meth) acrylates having two or more functional groups are particularly preferred. These resins may be used alone or in combination of two or more. Further, each transparent resin layer may have a multilayer structure of two or more layers. Further, the transparent resin layer 1 and the transparent resin layer 2 may have the same resin configuration or may be different.
[0010]
The transparent resin layer 1 of the present invention can be formed by a casting method or a casting method in the case of a crosslinkable resin, or by a melt extrusion method or a solution casting method in the case of a thermoplastic resin. In the case of producing by crosslinking with active energy rays such as ultraviolet rays, it is preferable to include a photopolymerization initiator that generates radicals in the resin composition. Examples of the photopolymerization initiator used at that time include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxy-cyclohexyl-phenyl ketone, 2,6-dimethylbenzoyldiphenylphosphine oxide, 2,4,6 -Trimethylbenzoyldiphenylphosphine oxide. Two or more of these photopolymerization initiators may be used in combination.
[0011]
In the present invention, when the transparent inorganic layer and the transparent resin layer 2 are sequentially laminated on the transparent resin layer 1, a roll serving as a base is prevented because the transparent inorganic layer is prevented from being damaged or cracked during the manufacturing process. A transparent inorganic layer is formed by a roll-to-roll method on a transparent resin layer 1 which is a raw sheet of a transparent sheet or the like, and then a transparent resin layer 2 is also formed thereon by a roll-to-roll method. Is preferred. In this case, as a method for forming the transparent resin layer 2, when a transparent inorganic layer is formed in a vacuum chamber by a physical vapor deposition method or the like, a vapor deposition polymerization method is used, and a sol-gel method or a method under atmospheric pressure is used. When a film is formed by a chemical vapor deposition method, a wet coating method such as a gravure coat or a die coat can be used.
[0012]
If necessary, the transparent resin layer of the present invention may contain an antioxidant, an ultraviolet absorber, and a dye / pigment as long as properties such as transparency and heat resistance are not impaired.
[0013]
The linear expansion coefficient of the transparent sheet of the present invention needs to be 40 ppm / ° C. or less. In the case of a linear expansion coefficient exceeding 50 ppm / ° C. as obtained with a conventional transparent sheet, cracks occur in inorganic thin films such as metals, silicon, and oxides thereof in a heating step at the time of manufacturing a display element. In some cases, problems such as peeling and peeling may occur.
[0014]
【Example】
EXAMPLES Hereinafter, the content of the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
(Example 1)
A roll of a polycarbonate film having a width of 600 mm and a thickness of 10 μm was prepared by a melt extrusion method. On this film, using a roll-to-roll coating machine having a gravure coater and a UV irradiation device, photopolymerization was started to a mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of an epoxy acrylate having an average molecular weight of 500. A resin composition to which 0.5 part by weight of 1-hydroxy-cyclohexyl-phenyl-ketone was added as an agent was applied with a gravure coater to a film thickness of 1 μm, and then cured by irradiating with UV light of 500 mJ / cm 2 to obtain a transparent resin. Layer 1 was prepared. After cutting the sheet to a size of 300 mm x 400 mm and fixing it to a plate-shaped jig, Al2O3 is sputtered to a thickness of 0.6 µm by a reactive sputtering rig using an Al target by a pulse DC type multilayer sputtering apparatus to form a transparent inorganic material. A layer was deposited. The sheet fixed to the jig was taken out of the sputtering apparatus, and a mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of an epoxy acrylate having an average molecular weight of 500 was added to a mixture of 90 parts by weight using a single-wafer die coater as a photopolymerization initiator. -A resin composition containing 0.5 parts by weight of cyclohexyl-phenyl-ketone is applied to a thickness of 3 µm, and cured by irradiating it with UV light of 500 mJ / cm 2 by a UV irradiation device to obtain a sheet-like transparent sheet. Was.
[0015]
(Example 2)
A roll of a polyethersulfone film having a width of 600 mm and a thickness of 10 μm was prepared by a melt extrusion method. On this film, using a roll-to-roll coating machine having a gravure coater and a UV irradiation device, photopolymerization was started to a mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of an epoxy acrylate having an average molecular weight of 500. A resin composition to which 0.5 part by weight of 1-hydroxy-cyclohexyl-phenyl-ketone was added as an agent was applied with a gravure coater to a film thickness of 1 μm, and then cured by irradiating with UV light of 500 mJ / cm 2 to obtain a transparent resin. Layer 1 was prepared. Subsequently, SiO 2 was deposited to a thickness of 1 μm using a roll-to-roll vacuum deposition apparatus to form a transparent inorganic layer. After taking out from the vacuum film formation, the mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of epoxy acrylate having an average molecular weight of 500 was added again as a photopolymerization initiator using a roll-to-roll type coating machine. A resin composition to which 0.5 part by weight of hydroxy-cyclohexyl-phenyl-ketone was added was applied in a thickness of 3 μm, and was cured by irradiating it with UV light of 500 mJ / cm 2 to obtain a roll-shaped transparent sheet.
[0016]
(Example 3)
A roll of a polyethersulfone film having a width of 600 mm and a thickness of 10 μm was prepared by a melt extrusion method. A mixture of 90 parts by weight of dicyclopentadienyl diacrylate and 10 parts by weight of an epoxy acrylate having an average molecular weight of 500 was applied to this film using a roll-to-roll type coating machine having a gravure coater and a UV irradiation device. A resin composition to which 0.5 part by weight of 1-hydroxy-cyclohexyl-phenyl-ketone was added as a polymerization initiator was applied with a gravure coater to a film thickness of 1 μm, and then cured by irradiation with 500 mJ / cm 2 UV light, A transparent resin layer 1 was produced. Using a roll-to-roll type coating machine having an atmospheric pressure CVD apparatus, a gravure coater, and a UV irradiation apparatus, a transparent inorganic layer of SiO2 is formed to a thickness of 3 μm by CVD using tetramethoxysilane as a raw material gas. Resin composition obtained by adding 0.5 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone as a photopolymerization initiator to a mixture of 90 parts by weight of dicyclopentadienyl diacrylate and 10 parts by weight of an epoxy acrylate having an average molecular weight of 500 Was applied with a gravure coater to a film thickness of 5 μm, and cured by irradiating UV light of 500 mJ / cm 2 to obtain a roll-shaped transparent sheet.
[0017]
(Example 4)
Using a roll-to-roll type coating machine having a gravure coater and a UV irradiation device, 70 parts by weight of dicyclopentadienyl diacrylate and an epoxy having an average molecular weight of 500 were formed on a release-treated polyester film having a thickness of 25 μm. A resin composition obtained by adding 0.5 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone as a photopolymerization initiator to a mixture of 30 parts by weight of acrylate is applied to a film thickness of 10 μm, and irradiated with UV light of 750 mJ / cm 2. And cured to obtain a transparent resin layer 1. A transparent inorganic layer of SiO2 was formed to a thickness of 2 μm by a roll-to-roll type ion plating apparatus. After being taken out of the ion plating apparatus, a photopolymerization initiator was again added to a mixture of 90 parts by weight of dicyclopentadienyl diacrylate and 10 parts by weight of an epoxy acrylate having an average molecular weight of 500 by using a roll-to-roll coating machine again. A resin composition to which 0.5 part by weight of 1-hydroxy-cyclohexyl-phenyl-ketone was added was applied to a thickness of 8 μm, cured by irradiating 750 mJ / cm 2 of UV light, and peeled from the polyester film to be transparent. I got a sheet.
[0018]
(Comparative Example 1)
Resin composition obtained by adding 0.5 part by weight of 1-hydroxy-cyclohexyl-phenyl-ketone as a photopolymerization initiator to a mixture of 70 parts by weight of dicyclopentadienyl diacrylate and 30 parts by weight of epoxy acrylate having an average molecular weight of 500 Was applied to a release-treated glass plate by a single-wafer die coater, and cured by irradiating UV light of 300 mJ / cm 2 from both sides. Furthermore, after heating at about 100 ° C. for 3 hours in a vacuum oven, further heating at about 250 ° C. for 3 hours, a transparent sheet having a thickness of 20 μm was obtained.
[0019]
(Comparative Example 2)
A roll of a polyethersulfone film having a width of 600 mm and a thickness of 10 μm was prepared by a melt extrusion method. On this film, using a roll-to-roll coating machine having a gravure coater and a UV irradiation device, photopolymerization was started to a mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of an epoxy acrylate having an average molecular weight of 500. A resin composition to which 0.5 part by weight of 1-hydroxy-cyclohexyl-phenyl-ketone was added as an agent was applied with a gravure coater to a film thickness of 1 μm, and then cured by irradiating with UV light of 500 mJ / cm 2 to obtain a transparent resin. A layer was deposited. Subsequently, SiOx (1.5 <x <2.0), which is a gas barrier layer, was deposited to a film thickness of 0.1 μm by a reactive sputter rig using a Si target by a pulse DC type sputtering apparatus of a roll-to-roll method, and was transparent. An inorganic layer was formed. After taking out from the vacuum film formation, the mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of epoxy acrylate having an average molecular weight of 500 was added again as a photopolymerization initiator using a roll-to-roll type coating machine. A resin composition to which 0.5 part by weight of hydroxy-cyclohexyl-phenyl-ketone was added was applied in a thickness of 3 μm, and was cured by irradiating it with UV light of 500 mJ / cm 2 to obtain a roll-shaped transparent sheet.
[0020]
Various characteristics of the optical sheet prepared as described above were measured by the following evaluation methods.
a) Linear expansion coefficient Using a TMA / SS120C type thermal stress strain measuring device manufactured by Seiko Denshi Co., Ltd., the temperature was increased from 30 ° C. to 150 ° C. in a nitrogen atmosphere at a rate of 5 ° C. per minute, and then once. After cooling to 0 ° C., the temperature was raised again at a rate of 5 ° C. per minute, and the value at 30 ° C. to 100 ° C. was measured and determined. The measurement was performed in a tensile mode with a load of 5 g. For the measurement, a quartz tension chuck (material: quartz, linear expansion coefficient: 0.5 ppm / ° C.) uniquely designed was used. Inconel chucks, which are generally used, have a problem in that the linear expansion of the chuck itself is high, the sample support form is inconvenient, and the measurement dispersion is large. Therefore, we decided to design the quartz tension chuck independently and use it to measure the linear expansion coefficient. It has been confirmed that by using this tension chuck, it is possible to measure with substantially the same value as when measuring in the compression mode.
b) Heat resistance (glass transition temperature)
The maximum value of tan δ at 1 Hz was measured with a DMS-210 type viscoelasticity measuring device manufactured by Seiko Electronics Co., Ltd., and was taken as the glass transition temperature (Tg).
c) Light transmittance The light transmittance at 550 nm was measured with a spectrophotometer U3200 (manufactured by Hitachi, Ltd.).
d) The value of the joining angle of 0 ° was measured using an automatic birefringence meter KOBRA-21 manufactured by Oji Scientific Instruments.
Table 1 shows the evaluation results.
[0021]
[Table 1]
Figure 2004130709
[0022]
Examples 1 to 4 exhibited low linear expansion coefficient, high heat resistance, high transparency (high light transmittance), and low retardation, and exhibited good characteristics.
In Comparative Example 1, the linear expansion coefficient was large because the transparent inorganic layer was not provided.
In Comparative Example 2, although having a transparent inorganic layer, since the layer was formed as a gas barrier layer and had a thickness of less than 0.6 μm, the coefficient of linear expansion was a large value exceeding 40 ppm / ° C.
【The invention's effect】
INDUSTRIAL APPLICABILITY The optical sheet of the present invention has excellent low linear expansion coefficient, transparency, and heat resistance, and thus can be suitably used as a substrate for an active matrix type liquid crystal display device or a substrate for an organic EL device.

Claims (5)

少なくとも厚さ0.6μm以上50μm未満の透明無機層及びこれを挟む透明樹脂層1並びに透明樹脂層2を有し、30℃から100℃における面内方向の線膨張係数が40ppm/℃以下であり、位相差が10nm以下であり、波長400nmにおける光線透過率が80%以上である透明シート。It has a transparent inorganic layer having a thickness of at least 0.6 μm or more and less than 50 μm and a transparent resin layer 1 and a transparent resin layer 2 sandwiching the transparent inorganic layer. A transparent sheet having a phase difference of 10 nm or less and a light transmittance at a wavelength of 400 nm of 80% or more. 前記透明無機層が物理気相成長法および/または化学気相成長法により積層される請求項1記載の透明シート。The transparent sheet according to claim 1, wherein the transparent inorganic layer is laminated by physical vapor deposition and / or chemical vapor deposition. 前記物理気相成長法が真空蒸着法またはイオンプレーティング法である請求項2記載の透明シート。The transparent sheet according to claim 2, wherein the physical vapor deposition method is a vacuum deposition method or an ion plating method. 前記化学気相成長法が大気圧下で行なわれる請求項2記載の透明シート。The transparent sheet according to claim 2, wherein the chemical vapor deposition is performed under atmospheric pressure. 前記透明樹脂層1上に透明無機層および透明樹脂層2をロールツーロール方式で積層した請求項1〜4何れか一項記載の透明シート。The transparent sheet according to any one of claims 1 to 4, wherein a transparent inorganic layer and a transparent resin layer 2 are laminated on the transparent resin layer 1 by a roll-to-roll method.
JP2002298658A 2002-10-11 2002-10-11 Transparent sheet Expired - Lifetime JP4098056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298658A JP4098056B2 (en) 2002-10-11 2002-10-11 Transparent sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298658A JP4098056B2 (en) 2002-10-11 2002-10-11 Transparent sheet

Publications (2)

Publication Number Publication Date
JP2004130709A true JP2004130709A (en) 2004-04-30
JP4098056B2 JP4098056B2 (en) 2008-06-11

Family

ID=32287997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298658A Expired - Lifetime JP4098056B2 (en) 2002-10-11 2002-10-11 Transparent sheet

Country Status (1)

Country Link
JP (1) JP4098056B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062481A (en) * 2006-09-06 2008-03-21 Jsr Corp Laminated film
US7579054B2 (en) 2004-06-25 2009-08-25 Sumitomo Chemical Company, Limited Substrate for flexible displays
JP2011116054A (en) * 2009-12-04 2011-06-16 Tosoh Corp Transparent laminated film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579054B2 (en) 2004-06-25 2009-08-25 Sumitomo Chemical Company, Limited Substrate for flexible displays
JP2008062481A (en) * 2006-09-06 2008-03-21 Jsr Corp Laminated film
JP2011116054A (en) * 2009-12-04 2011-06-16 Tosoh Corp Transparent laminated film

Also Published As

Publication number Publication date
JP4098056B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
EP0726579B1 (en) Transparent conductive sheet
KR101659093B1 (en) Transparent conductive laminate and transparent touch panel
WO2006019184A1 (en) Transparent conductive multilayer body and transparent touch panel
JP2007134293A (en) Transparent conductive film and manufacturing method of the same
KR20140046057A (en) Transparent laminated film
JP7401463B2 (en) Gas barrier laminate
JP5181539B2 (en) Method for producing transparent conductive film, touch panel having film obtained by the method, and display device having the touch panel
WO2004088370A1 (en) Protective film for polarizing plate, method for preparation thereof, polarizing plate with antireflection function, and optical article
JP2005289052A (en) Gas barrier laminated film, manufacturing method of it and image displaying element using the film
JP2004122429A (en) Multi-layered film
JP4098056B2 (en) Transparent sheet
TW201026826A (en) Retardation element
JP2009187687A (en) Method of manufacturing transparent conductive film, touch panel which has film obtained by the method, and display device which has the touch panel
JP2007269957A (en) Gas-barrier film, method for producing the same, and image display element using the same
JP3403882B2 (en) Transparent conductive film
WO2021261195A1 (en) Optical film, optical film manufacturing method, transparent conductive film, and gas barrier film
JP2005018551A (en) Touch panel having electromagnetic wave shielding function and transparent lamination film to be used for touch panel
JPH09254303A (en) Transparent electrically conductive film
JP4137222B2 (en) Transparent conductive substrate
JPH1166969A (en) Transparent conductive film
JP2004103292A (en) Multi-layer film
JP6179211B2 (en) Laminated film for transparent substrate and display panel using the same
JPH08224823A (en) Optical plastic laminated sheet and its manufacture
JP3738853B2 (en) Antireflection sheet and method for manufacturing the same
WO2023063128A1 (en) Retardation layer–equipped polarizing plate and image display device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5