JP2004128138A - Junction type fet and its manufacturing method - Google Patents

Junction type fet and its manufacturing method Download PDF

Info

Publication number
JP2004128138A
JP2004128138A JP2002288728A JP2002288728A JP2004128138A JP 2004128138 A JP2004128138 A JP 2004128138A JP 2002288728 A JP2002288728 A JP 2002288728A JP 2002288728 A JP2002288728 A JP 2002288728A JP 2004128138 A JP2004128138 A JP 2004128138A
Authority
JP
Japan
Prior art keywords
region
conductivity type
source
gate
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002288728A
Other languages
Japanese (ja)
Other versions
JP4623923B2 (en
Inventor
Shunsuke Kobayashi
小林 俊介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002288728A priority Critical patent/JP4623923B2/en
Publication of JP2004128138A publication Critical patent/JP2004128138A/en
Application granted granted Critical
Publication of JP4623923B2 publication Critical patent/JP4623923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve following problems that a difference in impurity concentration in the PN junction between an insulating separation region 3 and a well region 4 is large, a leakage current cannot be reduced, internal resistance is high, and noise characteristics cannot be improved in the conventional junction type FET (field effect transistor). <P>SOLUTION: A gate region is set to be at low concentration and a one-conductivity impurity diffusion region is formed on the interface between the well region and the insulating separation region by the same process as gate region formation. Concentration is low in the one-conductivity impurity diffusion region as compared with the insulating separation region, thus reducing the difference in impurity concentration in the pn junction in the portion. More specifically, the area of the pn junction having a large difference in impurity concentration can be reduced, thus reducing the leakage current. Additionally, source and drain regions are deeply formed, thus reducing the internal resistance and hence increasing the noise characteristics. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は接合型FETおよびその製造方法に係り、特にノイズ特性を向上できる接合型FETおよびその製造方法に関する。
【0002】
【従来の技術】
従来の接合型FETは、例えばP型半導体基板にN型ウェル領域を設け、N型ウェル領域にN+型ソース領域およびドレイン領域を設け、ソース領域およびドレイン領域間にゲート電極を形成している(例えば特許文献1参照。)。
【0003】
図8(A)は従来の接合型FETを示す平面図であり、図8(B)は図8(A)のB−B線の断面図である。
【0004】
P型基板21上に膜厚3μm程度のP型エピタキシャル層22を成長させた後、N型エピタキシャル層を形成して、P型基板21に達するP+型絶縁分離領域23を形成して接合型FETを形成するN型ウェル領域24を区画し取り囲む。
【0005】
ウェル領域24の表面から内部にN+型ソース領域25およびN+型ドレイン領域26が形成され、ソース電極29およびドレイン電極30が絶縁膜40に設けられたコンタクト孔を通してソース領域25およびドレイン領域26にそれぞれ接続形成されている。また、ソース領域25とドレイン領域26の間にゲート電極31に接続するゲート領域27が表面から内部に形成されている。
【0006】
ソースおよびドレイン領域25、26はこの接合型FETの要求される耐圧(例えば10V)を満たすように、P+型絶縁絶縁分離領域23、P+型ゲート領域27およびP型基板21からのそれぞれの距離が決められている。
【0007】
ソース領域25とドレイン領域26とを分離するように両者間に形成されたゲート領域27の深さは、この接合型FETの性能を左右する重要なファクターであり、深くすればN型ウェル領域24に形成されるチャネル領域の幅が狭くなり、IDSS(ドレイン電極−ソース電極間に一定電圧を印加したときにドレインに流れる電流)は小さくなり、VGS(off)(接合型FETをオフするのに必要なゲート電圧)は小さくなる。
【0008】
図9を参照して、従来の接合型FETの製造方法を説明する。
【0009】
第1工程:まず、P型基板21にP型エピタキシャル層22とN型エピタキシャル層を積層し、P+型絶縁分離領域23によりN型ウェル領域4を分離形成する(図9(A))。
【0010】
第2工程:ゲート領域27形成のために酸化膜40の所定の位置を開口し、P+型不純物を注入・拡散する。この不純物濃度は1016オーダーであり、ゲート領域27深さによりVpをコントロールする(図9(B))。
【0011】
第3工程:ソース領域25およびドレイン領域26となる所定の位置の酸化膜40を開口して、N+型不純物(例えばP)を注入・拡散してソース領域25およびドレイン領域26を形成する(図9(C))。
【0012】
第4工程:ソース領域25およびドレイン領域26にコンタクトするソース電極29およびドレイン電極30を形成し、裏面にゲート領域27と接続するゲート電極31を形成する(図9(D))。
【0013】
【特許文献1】
特開平08−227900号公報 (第2頁 第6図)
【0014】
【発明が解決しようとする課題】
例えばセンサ用に採用される接合型FETでは、ノイズ特性が重要である。ノイズ特性の改善にはリーク電流の低減や、動作部の内部抵抗の低減が必要であるが、接合型FETでは、動作領域となるNウェル領域24と、周囲のP型領域で形成されるPN接合部分のリーク電流の発生が避けられない。特に、図8の構造においては、各ウェル領域24に設けられるゲート領域27は絶縁分離領域23を介して基板裏面のゲート電極31と接続する。つまり、装置の入力抵抗を低くするため、このP型基板21、P型エピタキシャル層22および絶縁分離領域23は不純物濃度が高濃度になっている。つまり、N型ウェル領域24との濃度差が大きいため、リーク電流も大きくなってしまう。例えばN型ウェル領域24の不純物濃度を高くするとリーク電流の低減は抑えられるが、電流経路となるウェル領域の特性が変動してしまう。
【0015】
このように従来では、リーク電流および動作部の内部抵抗により、特に、接合型FETをセンサにセットした場合、そのノイズ特性が劣化する問題があった。
【0016】
【課題を解決するための手段】
本発明はかかる課題に鑑みてなされ、第1に、一導電型の半導体層と、該半導体層に設けられ一導電型絶縁分離領域で分離された逆導電型のウェル領域と、前記ウェル領域に設けられた逆導電型のソース領域およびドレイン領域と、前記ソース領域およびドレイン領域の間の前記ウェル領域に設けられた一導電型のゲート領域とを具備する接合型FETにおいて、前記絶縁分離領域および前記ウェル領域の界面に一導電型不純物拡散領域を設けることにより、解決するものである。
【0017】
第2に、一導電型の半導体基板と、該基板上に設けられた一導電型エエピタキシャル層と、該エピタキシャル層上に設けられ一導電型絶縁分離領域で分離された逆導電型のウェル領域と、前記ウェル領域に設けられた逆導電型のソース領域およびドレイン領域と、前記ソース領域およびドレイン領域の間の前記ウェル領域に設けられ一導電型のゲート領域と、前記ソース領域およびドレイン領域とコンタクトするソース電極およびドレイン電極と、前記半導体基板に設けられ前記ゲート領域と接続するゲート電極とを具備する接合型FETにおいて、前記絶縁分離領域および前記ウェル領域の界面に一導電型不純物拡散領域を設けることにより、解決するものである。
【0018】
また、前記ゲート領域と前記一導電型不純物拡散領域は、同一不純物濃度であり、ほぼ同一の深さに設けられることを特徴とするものである。
【0019】
また、前記一導電型不純物拡散領域の不純物濃度は、前記絶縁分離領域の不純物濃度よりも低いことを特徴とするものである。
【0020】
また、前記ゲート領域と前記ウェル領域の不純物濃度は、同程度に設けることを特徴とするものである。
【0021】
また、前記ソースおよびドレイン領域を所定の耐圧が確保できる限界まで深く設けることを特徴とするものである。
【0022】
また、前記ソースおよびドレイン領域は、第1の逆導電型不純物を深く拡散した領域の表面に第2の逆導電型不純物を拡散してなることを特徴とするものである。
【0023】
第3に、一導電型半導体層に一導電型絶縁分離領域で分離された逆導電型のウェル領域を形成する工程と、前記ウェル領域に逆導電型のソース領域およびドレイン領域を形成する工程と、前記ウェル領域の前記ソース領域およびドレイン領域の間に一導電型のゲート領域を形成し、同時に前記絶縁分離領域と前記ウェル領域界面に一導電型不純物拡散領域を形成する工程とを具備することにより、解決するものである。
【0024】
第4に、一導電型半導体基板上に一導電型エピタキシャル層と逆導電型エピタキシャル層を積層し、前記一導電型エピタキシャル層まで達する一導電型絶縁分離領域を形成して逆導電型のウェル領域を形成する工程と、前記ウェル領域に高濃度の逆導電型不純物を拡散してソース領域およびドレイン領域を形成する工程と、前記ウェル領域の前記ソース領域およびドレイン領域の間に一導電型不純物を拡散してゲート領域を形成し、同時に前記絶縁分離領域と前記ウェル領域界面に一導電型不純物拡散領域を形成する工程と、前記ソース領域およびドレイン領域にコンタクトするソース電極及びドレイン電極を形成し、前記基板裏面に前記ゲート領域に接続するゲート電極を形成する工程とを具備することにより、解決するものである。
【0025】
また、前記ゲート領域および一導電型不純物拡散領域は、同一濃度の不純物を注入し、同一の拡散条件で形成されることを特徴とするものである。
【0026】
また、前記一導電型不純物拡散領域の不純物濃度は、前記絶縁分離領域の不純物濃度よりも低く形成することを特徴とするものである。
【0027】
また、前記ソース領域及びドレイン領域は前記ゲート領域の形成工程より前に形成されることを特徴とするものである。
【0028】
また、前記ソース領域及びドレイン領域は、第1の逆導電型不純物を所定の耐圧が確保できる限界の深さまで拡散し、更に表面に第2の逆導電型不純物を拡散して形成することを特徴とするものである。
【0029】
【発明の実施の形態】
本発明による接合型FETを、図1から図7を用いて詳細に説明する。
【0030】
図1(A)は、接合型FETの平面図であり、図1(B)は図1(A)のA−A線断面図である。
【0031】
このように、本発明の接合型FETは、半導体基板1と、エピタキシャル層2と、絶縁分離領域3と、ウェル領域4と、ソース領域5と、ドレイン領域6と、ゲート領域7と、一導電型不純物拡散領域8と、ソース電極9と、ドレイン電極10と、ゲート電極11とから構成される。
【0032】
半導体基板1は、P型基板であり、その上にP型エピタキシャル層2が積層される。ウェル領域4は、P型エピタキシャル層に積層したN型エピタキシャル層を、絶縁分離領域3にて分離した領域であり、基板上に複数設けられる。
【0033】
絶縁分離領域3は、高濃度のP+型領域であり、N型エピタキシャル層を貫通しP型エピタキシャル層2まで到達させることにより、N型ウェル領域4を分離形成する。
【0034】
ソース領域5は、ウェル領域4にN+型不純物を注入・拡散して形成した領域である。ソース領域5は、この接合型FETの要求される耐圧(例えば10V)を満たすように、絶縁分離領域3、ゲート領域7からのそれぞれの距離が決められており、従来のソース領域25よりも深く設ける。この深さは、耐圧を確保できる限界の深さであり、例えば、2.0μm程度である。
【0035】
ドレイン領域6は、ウェル領域4にN+型不純物を注入・拡散して形成した領域である。ドレイン領域6は、この接合型FETの要求される耐圧(例えば10V)を満たすように、絶縁分離領域3、ゲート領域7からのそれぞれの距離が決められており、従来のドレイン領域26よりも深く設ける。この深さは、耐圧を確保できる限界の深さであり、例えば、2.0μm程度である。
【0036】
ソース領域5とドレイン領域6を深く設けることにより、ウェル層4(動作領域)の抵抗を低減できる。すなわち動作部の内部抵抗を低減できるので、ノイズ特性の向上に寄与できる。
【0037】
また、ソース領域5およびドレイン領域6を形成する不純物は例えば第1のN+型不純物であるP(リン)と第2のN+型不純物であるAs(ヒ素)である。第1のN+型不純物(P)の注入・拡散によりして所定の耐圧が確保できる限界の深さ(例えば2.0μm程度)に設け、第2のN+型不純物(As)をその表面から例えば0.1μm程度の深さにに注入・拡散して表面の不純物濃度を高くする。これにより、ソース電極9およびドレイン電極10となる金属層と、ソース領域5およびドレイン領域6とが形成するオーミック接合の抵抗を低減することができる。
【0038】
ゲート領域7は、ウェル領域4のソース領域5とドレイン領域6間に設けられたP+型不純物拡散領域である。ゲート領域7の不純物濃度は、従来より低濃度とし、ウェル領域4とほぼ同程度に設ける。具体的には、4×1014cm−3から1×1015cm―3程度が好適である。これにより後述するが、IGSSの電圧依存性を安定化することができる。すなわち、電圧が高い領域でもリーク電流を抑制でき、ノイズ特性が向上する。
【0039】
また、ゲート領域7の深さは、この接合型FETの性能を左右する重要なファクターであり、深くすればチャネル領域となるウェル領域4底部までの幅が狭くなり、IDSS(ドレイン電極−ソース電極間に一定電圧を印加したときにドレインに流れる電流)は小さくなり、VGS(off)(接合型FETをオフするのに必要なゲート電圧)は小さくなる。
【0040】
一導電型不純物拡散領域8は、絶縁分離領域3とウェル領域4の界面に設けられたP+型不純物拡散領域である。ゲート領域7と同濃度のP+型不純物領域であり、絶縁分離領域3よりも不純物濃度が1桁低い。不純物濃度差の大きいPN接合となるウェル領域4と絶縁分離領域3の界面に不純物濃度の低い一導電型不純物拡散領域8を設けることにより、濃度差の大きいPN接合面積がこの一導電型不純物拡散領域8の分だけ低減できるので、リーク電流が抑制できる。一導電型不純物拡散領域8の一部はウェル領域4と重畳するか当接するように形成する。
【0041】
ソース電極9およびドレイン電極10は、それぞれソース領域5およびドレイン領域6にコンタクトして基板表面に設けられ、ゲート電極11は基板裏面に設けられ、ゲート領域7と絶縁分離領域3を介して接続する。
【0042】
本発明の第1の特徴は、ゲート領域7の不純物濃度を低減することにある。これにより、図2の如く、リーク電流を低減できる。
【0043】
図2は、ゲート領域7の不純物ドーズ量と、IGSS(リーク電流)の関係を示す特性図である。
【0044】
まず、図2(A)は、ゲート領域7形成時の不純物ドーズ量によるIGSS−VGS依存性を示す図である。破線が従来構造の特性であり、ゲート領域27のドーズ量は1016オーダーである。一方、本発明の実施形態においては、ドーズ量が1×1014cm−3(丸)と4×1014cm−3(四角)について測定したものである。このように、破線で示す従来構造と比較して、ゲート領域7の不純物濃度の低い本実施形態の構造によればIGSS、すなわちリーク電流を低減することができる。特に、初期リーク電流は、不純物濃度によらず、従来と比較して低減している。
【0045】
また、図2(B)は、IGSS−ゲート領域7の不純物ドーズ量相関図であり、ゲート領域7形成の不純物濃度を変化させ、それぞれ複数回IGSSを測定した上限(四角)と下限(丸)をプロットしたものである。
【0046】
ゲート領域7の不純物濃度は、高すぎるとリーク電流の増加となる。また低濃度にしすぎてもウェル領域4との濃度差が大きくなってしまい、やはりリーク電流を大きくする原因となる。これは、図2(B)のドーズ量が低い場合にIGSSが増加していることからも明らかである。すなわち、ゲート領域7は、従来の不純物濃度よりも低く、かつ、Nウェル領域4との濃度差が大きくならない、4×1014cm−3から1×1015cm―3程度の濃度が好適である。
【0047】
このように、ゲート領域7の不純物濃度を低く、Nウェル領域4と同程度にすることにより、IGSSの電圧依存性を安定化し、従来と比較してリーク電流を低減することができる。
【0048】
ゲート領域7の不純物濃度を従来よりも低減すると、ゲート抵抗は従来より高くなるが、ノイズ特性の改善にはゲート抵抗はほとんど影響せず、問題はない。
【0049】
第2の特徴は、ウェル領域4と絶縁分離領域3の界面に設けた一導電型高濃度不純物拡散領域8にある。ゲート領域7と同濃度で、絶縁分離領域3よりも充分不純物濃度が低い一導電型高濃度不純物拡散領域8を界面に設けることにより、濃度差の大きいPN接合となる絶縁分離領域3とウェル領域4のPN接合面積がこの一導電型不純物拡散領域8の分だけ低減できるので、リーク電流が抑制できる。
【0050】
第3の特徴は、ソース領域5およびドレイン領域6をそれぞれ耐圧を確保できる限界まで深く設けることにある。これにより、動作部の内部抵抗が低減するので、この点からもノイズ特性が向上する。
【0051】
第4に、ソース領域5およびドレイン領域6は、第1のN+型不純物(P)による深い拡散領域の表面に第2のN+型不純物(As)の拡散領域を設けて、表面を高濃度化することにある。これにより、動作部の内部抵抗を低減し、且つ、ソース電極9およびドレイン電極10とのオーミック接合の抵抗を低減することができる。
【0052】
図3は、従来構造と本発明の実施形態によるノイズ特性の比較を示す。尚、この図は接合型FETをセンサ用としてセットした場合の特性であり、図3(A)はf=0〜100KHzのノイズを示し、図3(B)はf=0〜10KHzまでの拡大図である。また、破線が従来品の特性であり、実線が本発明のゲート領域7のドーズ量1×1015cm−3の場合の特性である。上記の如く、本発明の実施形態によれば、リーク電流の低減と、内部抵抗の低減を実現できるので、図3の如くノイズ特性を改善することができる。
【0053】
次に、図4から図7に、本発明の接合型FETの製造方法を説明する。
【0054】
本発明の接合型FETの製造方法は、一導電型半導体基板上に一導電型エピタキシャル層と逆導電型エピタキシャル層を積層し、前記一導電型エピタキシャル層まで達する一導電型絶縁分離領域を形成して逆導電型のウェル領域を形成する工程と、前記ウェル領域に高濃度の逆導電型不純物を拡散してソース領域およびドレイン領域を形成する工程と、前記ウェル領域の前記ソース領域およびドレイン領域の間に一導電型不純物を拡散してゲート領域を形成し、同時に前記絶縁分離領域と前記ウェル領域界面に一導電型不純物拡散領域を形成する工程と、前記ソース領域およびドレイン領域にコンタクトするソース電極及びドレイン電極を形成し、前記基板裏面に前記ゲート領域に接続するゲート電極を形成する工程とから構成される。
【0055】
本発明の第1の工程は、図4に示す如く、一導電型半導体基板1上に一導電型エピタキシャル層2と逆導電型エピタキシャル層を積層し、前記一導電型エピタキシャル層2まで達する一導電型絶縁分離領域3を形成して逆導電型のウェル領域4を形成することにある。
【0056】
P型半導体基板1にP型エピタキシャル層2と、N型エピタキシャル層を積層する。絶縁分離領域3を形成するため、全面に形成された酸化膜20の所定の位置を開口して、高濃度(程度)のP+型不純物を注入・拡散し、P型エピタキシャル層2まで達する高濃度P+型不純物領域からなる絶縁分離領域3を形成する。これによりN型エピタキシャル層は分離され、N型ウェル領域4が形成される。
【0057】
本発明の第2の工程は、図5に示す如く、前記ウェル領域4に高濃度の逆導電型不純物を拡散してソース領域5およびドレイン領域6を形成することにある。
【0058】
本工程は、本発明の第1の特徴となる工程である。まず、全面に再度酸化膜20を形成し、ソース領域5およびドレイン領域6を形成する所定の位置を開口して、P+型不純物をイオン注入する。次に熱処理により拡散し、従来より深く、耐圧を確保できる限界の深さ(例えば2.0μm程度)のソース領域5およびドレイン領域6を形成する。
【0059】
ソース領域5およびドレイン領域6を深くすることにより、ウェル領域4(動作領域)の抵抗を低減することができ、ノイズ特性を向上することができる。
【0060】
ここで、まず第1のN+型不純物(例えばP)を注入・拡散して所定の深さ、例えば2.0μm程度に形成し、さらにその表面から0.1μm程度の深さに第2のN+型不純物(例えばAs)を注入・拡散して表面の不純物濃度を高くする。これにより、後の工程でソース電極9およびドレイン電極10となる金属層と、ソース領域5およびドレイン領域6とのオーミック接合の抵抗を低減することができる。
【0061】
また、第1のN+型不純物としてPを、第2のN+型不純物としてAsを用いて、両不純物を注入後、同時に拡散しても良い。Asは原子サイズが大きくSi中の拡散が進まないため、同様に表面の高濃度化がはかれる。
【0062】
ゲート領域7はその深さがFETの特性を決める要因となるが、ゲート領域7形成前にソースおよびドレイン領域5、6を形成することでゲート深さを考慮せずに深いソース領域5およびドレイン領域6が形成できる。これにより、深いソース領域5およびドレイン領域6が電流経路の一部となるため、動作部の内部抵抗を低減し、リーク電流を抑制することができる。
【0063】
本発明の第3の工程は、図6に示す如く、前記ソース領域5およびドレイン領域6間の前記ウェル領域4に一導電型不純物を拡散してゲート領域7を形成し、同時に前記絶縁分離領域3と前記ウェル領域4界面に一導電型不純物拡散領域8を形成することにある。
【0064】
本工程は、本発明の第2の特徴となる工程である。再度全面に酸化膜20を形成し、ゲート領域7および一導電型不純物拡散領域8を形成する所定の位置の酸化膜20を開口する。ゲート領域7はソース領域5およびドレイン領域6の間で、両領域5、6から等距離に形成する。また、一導電型不純物拡散領域8は、絶縁分離領域3とウェル領域4の界面で、その一部がウェル領域4と重畳するか当接するように形成する。
【0065】
次に、ドーズ量が4×1014cm−3から1×1015cm―3程度のP+型不純物を注入・拡散してゲート領域7および一導電型不純物拡散領域8を同時に形成する。ゲート領域7を従来よりも低い不純物濃度で形成することにより、IGSSの電圧依存性を安定化することができる。すなわち、電圧が高い領域でもリーク電流を抑制でき、ノイズ特性が向上する。
【0066】
また、絶縁分離領域3の一部で、一導電型不純物拡散領域8がウェル領域4とPN接合を形成する。従来は高濃度のP型不純物領域である絶縁分離領域3とウェル領域4がPN接合を形成しており、不純物濃度の差が大きいためリーク電流も多くなっていたが、本発明によれば、一導電型不純物拡散領域8部分において、PN接合の不純物濃度差を従来より低減できる。つまり、不純物濃度差の大きいPN接合面積を低減できるので、リーク電流を抑制できる。
【0067】
ここで、ゲート領域7の深さにより、Vpをコントロールする。ゲート領域7を深くすればチャネル領域となるウェル領域4底部までの幅が狭くなり、IDSS(ドレイン電極−ソース電極間に一定電圧を印加したときにドレインに流れる電流)は小さくなり、VGS(off)(接合型FETをオフするのに必要なゲート電圧)は小さくなる。
【0068】
従来は、ゲート領域7形成後にソース領域5およびドレイン領域7を形成していたが、本実施形態ではゲート領域7形成後に拡散工程がない。つまり、深いソース領域5およびドレイン領域6を形成しても、その後のゲート領域7形成で所定のVpが得られるようにコントロールすればよく、特性が変動することはない。
【0069】
また、一導電型不純物拡散領域8は、ゲート領域7形成のパターンを変更するだけでよく、ゲート領域7と同時に形成できる。つまり、同一工程において、低濃度のゲート領域7と、PN接合の濃度差の小さくなる一導電型不純物拡散領域8を形成できるので、製造工程を増やさずに、リーク電流を低減することができる。
【0070】
本発明の第4の工程は、図7に示す如く、前記ソース領域5およびドレイン領域6にコンタクトするソース電極9及びドレイン電極10を形成し、前記基板裏面に前記ゲート領域7に接続するゲート電極11を形成することにある。
【0071】
基板表面の酸化膜20を開口して、ソース領域5およびドレイン領域6表面を露出し、Al等の金属を蒸着し、所定の電極構造にパターニングし、ソース電極9およびドレイン電極10を形成する。また、基板裏面には絶縁分離領域3を介してゲート領域7に接続するゲート電極11を形成する。
【0072】
【発明の効果】
本発明によれば、以下の効果が得られる。
【0073】
第1に、ゲート領域7の不純物濃度を低減することにより、リーク電流を低減し、ノイズ特性を向上させることができる。
【0074】
第2に、低濃度化したゲート領域7と同じ不純物濃度の一導電型不純物拡散領域8を、ウェル領域4と絶縁分離領域3の界面に設けることにより、その部分において、従来よりもPN接合の不純物濃度差を小さくできる。ウェル領域4と絶縁分離領域3とからなる不純物濃度差の大きいPN接合面積を低減できるため、リーク電流の抑制に寄与できる。
【0075】
第3に、ソース領域5およびドレイン領域6を耐圧を確保できる限界まで深くすることにより、動作部の内部抵抗を低減し、これによっても、リーク電流を低減することができる。
【0076】
第4に、ソース領域5およびドレイン領域6表面にAsの拡散領域を更に設け、表面の不純物濃度を高くすることにより、ソース電極9およびドレイン電極10となる金属層とソース領域5およびドレイン領域6とのオーミック接合の抵抗を低減することができる。
【0077】
第5に、一導電型不純物拡散領域8は、ゲート領域7形成のパターンを変更するだけでよく、ゲート領域7と同時に形成できるので、従来と比較して製造工程を増やさずに、リーク電流を低減する製造方法を提供できる。
【0078】
第6に、ゲート領域7形成前に、ソース領域5およびドレイン領域6を形成することで、ゲート領域7の深さを変動せずに深いソース領域5およびドレイン領域6が形成でき、Vp特性を変動させずに内部抵抗を低減できる。
【0079】
このように、リーク電流の低減と、動作部の内部抵抗を低減できるので、ノイズ特性を大幅に向上させることができる。
【図面の簡単な説明】
【図1】本発明の半導体装置の(A)平面図、(B)断面図である。
【図2】本発明の半導体装置の特性図である。
【図3】本発明の半導体装置の特性図である。
【図4】本発明の半導体装置の製造方法を説明する断面図である。
【図5】本発明の半導体装置の製造方法を説明する断面図である。
【図6】本発明の半導体装置の製造方法を説明する断面図である。
【図7】本発明の半導体装置の製造方法を説明する断面図である。
【図8】従来の半導体装置の(A)平面図、(B)断面図である。
【図9】従来の半導体装置の製造方法を説明する断面図である。
【符号の説明】
1  P+型半導体基板
2  P+型エピタキシャル層
3  絶縁分離領域
4  ウェル領域
5  ソース領域
6  ドレイン領域
7  ゲート領域
8  一導電型不純物拡散領域
9  ソース電極
10 ドレイン電極
11 ゲート電極
20 酸化膜
21  P+型半導体基板
22  P+型エピタキシャル層
23  絶縁分離領域
24  ウェル領域
25  ソース領域
26  ドレイン領域
27  ゲート領域
29  ソース電極
30 ドレイン電極
31 ゲート電極
40 酸化膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a junction FET and a method for manufacturing the same, and more particularly, to a junction FET that can improve noise characteristics and a method for manufacturing the same.
[0002]
[Prior art]
In a conventional junction type FET, for example, an N-type well region is provided in a P-type semiconductor substrate, an N + type source region and a drain region are provided in the N-type well region, and a gate electrode is formed between the source region and the drain region ( For example, see Patent Document 1.)
[0003]
FIG. 8A is a plan view showing a conventional junction FET, and FIG. 8B is a cross-sectional view taken along line BB of FIG. 8A.
[0004]
After growing a P-type epitaxial layer 22 having a thickness of about 3 μm on a P-type substrate 21, an N-type epitaxial layer is formed, and a P + -type insulating isolation region 23 reaching the P-type substrate 21 is formed. Are defined and surrounded.
[0005]
An N + type source region 25 and an N + type drain region 26 are formed inside from the surface of the well region 24, and the source electrode 29 and the drain electrode 30 are respectively connected to the source region 25 and the drain region 26 through the contact holes provided in the insulating film 40. The connection is formed. Further, a gate region 27 connected to the gate electrode 31 is formed between the source region 25 and the drain region 26 from the surface to the inside.
[0006]
The source and drain regions 25 and 26 have respective distances from the P + -type insulating / isolating region 23, the P + -type gate region 27, and the P-type substrate 21 so as to satisfy the withstand voltage (for example, 10 V) required for the junction FET. It is decided.
[0007]
The depth of the gate region 27 formed between the source region 25 and the drain region 26 so as to separate them is an important factor influencing the performance of the junction type FET. , The width of the channel region formed at the gate electrode becomes smaller, the IDSS (current flowing to the drain when a constant voltage is applied between the drain electrode and the source electrode) becomes smaller, and V GS (off) (The gate voltage required to turn off the junction FET) is reduced.
[0008]
With reference to FIG. 9, a method for manufacturing a conventional junction FET will be described.
[0009]
First step: First, a P-type epitaxial layer 22 and an N-type epitaxial layer are stacked on a P-type substrate 21, and an N-type well region 4 is separated and formed by a P + -type insulating separation region 23 (FIG. 9A).
[0010]
Second step: A predetermined position of the oxide film 40 is opened for forming the gate region 27, and P + type impurities are implanted and diffused. This impurity concentration is 10 16 This is an order, and Vp is controlled by the depth of the gate region 27 (FIG. 9B).
[0011]
Third step: An opening is formed in the oxide film 40 at predetermined positions to be the source region 25 and the drain region 26, and an N + type impurity (for example, P) is implanted and diffused to form the source region 25 and the drain region 26 (FIG. 9 (C)).
[0012]
Fourth step: A source electrode 29 and a drain electrode 30 that are in contact with the source region 25 and the drain region 26 are formed, and a gate electrode 31 that is connected to the gate region 27 is formed on the back surface (FIG. 9D).
[0013]
[Patent Document 1]
JP 08-227900 A (Page 2 FIG. 6)
[0014]
[Problems to be solved by the invention]
For example, in a junction FET used for a sensor, noise characteristics are important. In order to improve the noise characteristics, it is necessary to reduce the leak current and the internal resistance of the operating section. In the case of the junction FET, the N-well region 24 serving as the operating region and the PN formed by the surrounding P-type region are used. Leakage current at the junction is inevitable. In particular, in the structure of FIG. 8, the gate region 27 provided in each well region 24 is connected to the gate electrode 31 on the back surface of the substrate via the insulating separation region 23. That is, in order to reduce the input resistance of the device, the P-type substrate 21, the P-type epitaxial layer 22, and the insulating isolation region 23 have a high impurity concentration. That is, since the concentration difference from the N-type well region 24 is large, the leak current also increases. For example, if the impurity concentration of the N-type well region 24 is increased, the reduction of the leak current can be suppressed, but the characteristics of the well region serving as a current path will be changed.
[0015]
As described above, in the related art, there has been a problem that the noise characteristics are deteriorated due to the leak current and the internal resistance of the operation unit, particularly when a junction FET is set in the sensor.
[0016]
[Means for Solving the Problems]
The present invention has been made in view of such a problem, and first, a semiconductor layer of one conductivity type, a well region of the opposite conductivity type provided in the semiconductor layer and separated by an insulating isolation region of one conductivity type, and In a junction type FET comprising: a provided reverse conductivity type source region and a drain region; and a one conductivity type gate region provided in the well region between the source region and the drain region. This problem is solved by providing an impurity diffusion region of one conductivity type at the interface of the well region.
[0017]
Second, a semiconductor substrate of one conductivity type, an epitaxial layer of one conductivity type provided on the substrate, and a well region of the opposite conductivity type provided on the epitaxial layer and separated by an insulating isolation region of one conductivity type A source region and a drain region of opposite conductivity type provided in the well region, a gate region of one conductivity type provided in the well region between the source region and the drain region, and the source region and the drain region. In a junction FET including a source electrode and a drain electrode to be contacted, and a gate electrode provided on the semiconductor substrate and connected to the gate region, a one conductivity type impurity diffusion region is provided at an interface between the insulating isolation region and the well region. This will solve the problem.
[0018]
Further, the gate region and the one conductivity type impurity diffusion region have the same impurity concentration and are provided at substantially the same depth.
[0019]
Further, the impurity concentration of the one conductivity type impurity diffusion region is lower than the impurity concentration of the insulating isolation region.
[0020]
Further, the impurity concentration of the gate region and the impurity concentration of the well region are set to be substantially the same.
[0021]
Further, the invention is characterized in that the source and drain regions are provided deeply to a limit at which a predetermined withstand voltage can be secured.
[0022]
Further, the source and drain regions are formed by diffusing a second reverse conductivity type impurity into a surface of a region in which a first reverse conductivity type impurity is deeply diffused.
[0023]
Third, a step of forming a well region of a reverse conductivity type separated by a one-conductivity-type insulating isolation region in a semiconductor layer of one conductivity type, and a step of forming a source region and a drain region of a reverse conductivity type in the well region Forming a one conductivity type gate region between the source region and the drain region of the well region, and simultaneously forming a one conductivity type impurity diffusion region at the interface between the insulating isolation region and the well region. Is to be solved.
[0024]
Fourthly, a one conductivity type epitaxial layer and a reverse conductivity type epitaxial layer are stacked on a one conductivity type semiconductor substrate, and a one conductivity type insulating isolation region reaching the one conductivity type epitaxial layer is formed to form a reverse conductivity type well region. Forming a source region and a drain region by diffusing a high-concentration impurity of the opposite conductivity type into the well region; and forming one conductivity type impurity between the source region and the drain region of the well region. Diffusion to form a gate region, simultaneously forming a one conductivity type impurity diffusion region at the interface between the insulating isolation region and the well region, and forming a source electrode and a drain electrode contacting the source region and the drain region, Forming a gate electrode connected to the gate region on the back surface of the substrate.
[0025]
Further, the gate region and the one-conductivity-type impurity diffusion region are formed by injecting impurities of the same concentration and under the same diffusion conditions.
[0026]
Further, the impurity concentration of the one conductivity type impurity diffusion region is formed to be lower than the impurity concentration of the insulating isolation region.
[0027]
Further, the source region and the drain region are formed before the step of forming the gate region.
[0028]
Further, the source region and the drain region are formed by diffusing a first reverse conductivity type impurity to a limit depth at which a predetermined withstand voltage can be secured, and further diffusing a second reverse conductivity type impurity to the surface. It is assumed that.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
A junction type FET according to the present invention will be described in detail with reference to FIGS.
[0030]
FIG. 1A is a plan view of a junction type FET, and FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A.
[0031]
As described above, the junction type FET of the present invention includes the semiconductor substrate 1, the epitaxial layer 2, the isolation region 3, the well region 4, the source region 5, the drain region 6, the gate region 7, It comprises a type impurity diffusion region 8, a source electrode 9, a drain electrode 10, and a gate electrode 11.
[0032]
The semiconductor substrate 1 is a P-type substrate, on which a P-type epitaxial layer 2 is laminated. The well region 4 is a region in which the N-type epitaxial layer laminated on the P-type epitaxial layer is separated by the insulating separation region 3, and a plurality of well regions are provided on the substrate.
[0033]
The insulating isolation region 3 is a high-concentration P + type region, and penetrates through the N-type epitaxial layer to reach the P-type epitaxial layer 2 to separate and form the N-type well region 4.
[0034]
The source region 5 is a region formed by injecting and diffusing an N + type impurity into the well region 4. In the source region 5, the respective distances from the insulating isolation region 3 and the gate region 7 are determined so as to satisfy the withstand voltage (for example, 10 V) required of the junction FET, and the source region 5 is deeper than the conventional source region 25. Provide. This depth is a limit depth at which the withstand voltage can be ensured, and is, for example, about 2.0 μm.
[0035]
The drain region 6 is a region formed by injecting and diffusing an N + type impurity into the well region 4. The distance between the insulating region 3 and the gate region 7 is determined so that the drain region 6 satisfies the withstand voltage (for example, 10 V) required of the junction FET, and is deeper than the conventional drain region 26. Provide. This depth is a limit depth at which the withstand voltage can be ensured, and is, for example, about 2.0 μm.
[0036]
By providing the source region 5 and the drain region 6 deeply, the resistance of the well layer 4 (operation region) can be reduced. That is, since the internal resistance of the operation unit can be reduced, it is possible to contribute to improvement in noise characteristics.
[0037]
The impurities forming the source region 5 and the drain region 6 are, for example, P (phosphorus) which is a first N + type impurity and As (arsenic) which is a second N + type impurity. A first N + type impurity (P) is implanted and diffused to provide a predetermined depth (for example, about 2.0 μm) at which a predetermined breakdown voltage can be secured. It is implanted and diffused to a depth of about 0.1 μm to increase the impurity concentration on the surface. Thereby, the resistance of the ohmic junction formed by the metal layer serving as the source electrode 9 and the drain electrode 10 and the source region 5 and the drain region 6 can be reduced.
[0038]
Gate region 7 is a P + type impurity diffusion region provided between source region 5 and drain region 6 of well region 4. The impurity concentration of the gate region 7 is lower than that of the conventional one, and is provided to be substantially the same as that of the well region 4. Specifically, 4 × 10 14 cm -3 From 1 × 10 Fifteen cm ―3 The degree is preferred. As described later, the voltage dependency of the IGSS can be stabilized. That is, the leak current can be suppressed even in the region where the voltage is high, and the noise characteristics are improved.
[0039]
The depth of the gate region 7 is an important factor that affects the performance of the junction type FET. When the depth is increased, the width up to the bottom of the well region 4 serving as a channel region is reduced, and the IDSS (drain electrode-source electrode) is reduced. (A current flowing to the drain when a constant voltage is applied during GS (off) (The gate voltage required to turn off the junction FET) is reduced.
[0040]
One conductivity type impurity diffusion region 8 is a P + type impurity diffusion region provided at the interface between insulating isolation region 3 and well region 4. This is a P + type impurity region having the same concentration as the gate region 7, and has an impurity concentration one digit lower than that of the insulating isolation region 3. By providing the one-conductivity-type impurity diffusion region 8 having a low impurity concentration at the interface between the well region 4 and the insulating isolation region 3 which form a PN junction having a large impurity concentration difference, the PN junction area having a large concentration difference can be reduced by the one-conductivity impurity diffusion Since the current can be reduced by the area 8, the leakage current can be suppressed. Part of the one conductivity type impurity diffusion region 8 is formed so as to overlap or abut the well region 4.
[0041]
The source electrode 9 and the drain electrode 10 are provided on the substrate surface in contact with the source region 5 and the drain region 6, respectively. The gate electrode 11 is provided on the back surface of the substrate, and is connected to the gate region 7 via the insulating isolation region 3. .
[0042]
The first feature of the present invention is to reduce the impurity concentration of the gate region 7. Thereby, the leak current can be reduced as shown in FIG.
[0043]
FIG. 2 is a characteristic diagram showing a relationship between the impurity dose of the gate region 7 and IGSS (leakage current).
[0044]
First, FIG. 2A is a diagram showing IGSS-VGS dependence depending on the impurity dose when the gate region 7 is formed. The broken line indicates the characteristics of the conventional structure, and the dose amount of the gate region 27 is 10 16 It is an order. On the other hand, in the embodiment of the present invention, the dose amount is 1 × 10 14 cm -3 (Circle) and 4 × 10 14 cm -3 (Squares). As described above, according to the structure of the present embodiment in which the impurity concentration of the gate region 7 is lower than that of the conventional structure indicated by the broken line, the IGSS, that is, the leak current can be reduced. In particular, the initial leak current is reduced as compared with the related art, regardless of the impurity concentration.
[0045]
FIG. 2B is a correlation diagram of the IGSS and the impurity dose of the gate region 7. The upper limit (square) and the lower limit (circle) of the IGSS measured a plurality of times by changing the impurity concentration in forming the gate region 7 are shown. Is plotted.
[0046]
If the impurity concentration of the gate region 7 is too high, the leakage current increases. Also, if the concentration is too low, the concentration difference from the well region 4 increases, which also causes the leakage current to increase. This is apparent from the fact that the IGSS increases when the dose in FIG. 2B is low. In other words, the gate region 7 is lower than the conventional impurity concentration, and the concentration difference between the gate region 7 and the N well region 4 does not increase. 14 cm -3 From 1 × 10 Fifteen cm ―3 Concentrations of the order are preferred.
[0047]
As described above, by setting the impurity concentration of the gate region 7 low and substantially equal to that of the N well region 4, the voltage dependency of the IGSS can be stabilized, and the leak current can be reduced as compared with the conventional case.
[0048]
When the impurity concentration of the gate region 7 is reduced as compared with the conventional case, the gate resistance becomes higher than before, but there is no problem because the gate resistance hardly affects the noise characteristic improvement.
[0049]
The second feature is the one-conductivity-type high-concentration impurity diffusion region 8 provided at the interface between the well region 4 and the insulating separation region 3. By providing a one-conductivity-type high-concentration impurity diffusion region 8 having the same concentration as that of the gate region 7 and a sufficiently lower impurity concentration than the insulation separation region 3 at the interface, a PN junction having a large concentration difference and a well region are formed. Since the PN junction area of No. 4 can be reduced by the one conductivity type impurity diffusion region 8, the leakage current can be suppressed.
[0050]
A third feature resides in that the source region 5 and the drain region 6 are each provided deeply to the limit that a breakdown voltage can be secured. As a result, the internal resistance of the operating unit is reduced, and the noise characteristics are improved from this point as well.
[0051]
Fourth, the source region 5 and the drain region 6 are provided with a diffusion region of the second N + type impurity (As) on the surface of the deep diffusion region formed by the first N + type impurity (P) to increase the surface concentration. Is to do. Thereby, the internal resistance of the operating section can be reduced, and the resistance of the ohmic junction with the source electrode 9 and the drain electrode 10 can be reduced.
[0052]
FIG. 3 shows a comparison of noise characteristics between the conventional structure and the embodiment of the present invention. This figure shows the characteristics when the junction type FET is set for a sensor. FIG. 3A shows the noise at f = 0 to 100 KHz, and FIG. 3B shows the noise at f = 0 to 10 KHz. FIG. The broken line shows the characteristics of the conventional product, and the solid line shows the dose of 1 × 10 Fifteen cm -3 This is the characteristic in the case of As described above, according to the embodiment of the present invention, a reduction in leakage current and a reduction in internal resistance can be realized, so that noise characteristics can be improved as shown in FIG.
[0053]
Next, a method for manufacturing a junction FET of the present invention will be described with reference to FIGS.
[0054]
The method for manufacturing a junction type FET of the present invention includes the steps of laminating a one-conductivity-type epitaxial layer and a reverse-conductivity-type epitaxial layer on a one-conductivity-type semiconductor substrate, and forming a one-conductivity-type insulating isolation region reaching the one-conductivity-type epitaxial layer. Forming a source region and a drain region by diffusing a high-concentration impurity of a reverse conductivity type into the well region, and forming a source region and a drain region in the well region. Forming a gate region by diffusing an impurity of one conductivity type therebetween, and simultaneously forming an impurity diffusion region of one conductivity type at an interface between the insulating isolation region and the well region; and a source electrode contacting the source region and the drain region. And forming a drain electrode, and forming a gate electrode connected to the gate region on the back surface of the substrate.
[0055]
In the first step of the present invention, as shown in FIG. 4, one conductivity type epitaxial layer 2 and the opposite conductivity type epitaxial layer are laminated on one conductivity type semiconductor substrate 1, and one conductivity type epitaxial layer 2 reaching the one conductivity type epitaxial layer 2 is formed. The purpose is to form the mold isolation region 3 and form the well region 4 of the opposite conductivity type.
[0056]
A P-type epitaxial layer 2 and an N-type epitaxial layer are stacked on a P-type semiconductor substrate 1. In order to form the insulating isolation region 3, a predetermined position of the oxide film 20 formed on the entire surface is opened, a high concentration (approximately) P + type impurity is implanted and diffused, and the high concentration reaches the P type epitaxial layer 2. An insulating isolation region 3 made of a P + type impurity region is formed. Thereby, the N-type epitaxial layer is separated, and an N-type well region 4 is formed.
[0057]
The second step of the present invention is to form a source region 5 and a drain region 6 by diffusing a high concentration impurity of the opposite conductivity type into the well region 4 as shown in FIG.
[0058]
This step is the first feature of the present invention. First, an oxide film 20 is formed again on the entire surface, a predetermined position for forming the source region 5 and the drain region 6 is opened, and P + -type impurities are ion-implanted. Next, diffusion is performed by heat treatment to form a source region 5 and a drain region 6 which are deeper than the conventional one and have a depth (for example, about 2.0 μm) at which a breakdown voltage can be ensured.
[0059]
By making the source region 5 and the drain region 6 deep, the resistance of the well region 4 (operation region) can be reduced, and the noise characteristics can be improved.
[0060]
Here, first, a first N + type impurity (for example, P) is implanted and diffused to form a predetermined depth, for example, about 2.0 μm, and further, a second N + impurity is formed to a depth of about 0.1 μm from its surface. A type impurity (eg, As) is implanted and diffused to increase the impurity concentration on the surface. Thereby, the resistance of the ohmic junction between the metal layer that will become the source electrode 9 and the drain electrode 10 in a later step and the source region 5 and the drain region 6 can be reduced.
[0061]
Alternatively, P may be used as the first N + type impurity and As may be used as the second N + type impurity, and then both impurities may be implanted and then simultaneously diffused. As has a large atomic size and diffusion in Si does not proceed, so that the surface concentration can be similarly increased.
[0062]
The depth of the gate region 7 determines the characteristics of the FET. However, by forming the source and drain regions 5 and 6 before the gate region 7 is formed, the deep source region 5 and the drain region can be formed without considering the gate depth. Region 6 can be formed. Accordingly, the deep source region 5 and the drain region 6 become a part of the current path, so that the internal resistance of the operation section can be reduced and the leak current can be suppressed.
[0063]
In the third step of the present invention, as shown in FIG. 6, one conductivity type impurity is diffused into the well region 4 between the source region 5 and the drain region 6 to form a gate region 7, and at the same time, the insulating isolation region is formed. One impurity diffusion region 8 is formed at the interface between the well 3 and the well region 4.
[0064]
This step is the second feature of the present invention. An oxide film 20 is again formed on the entire surface, and an opening is formed in a predetermined position of the oxide film 20 where the gate region 7 and the one conductivity type impurity diffusion region 8 are to be formed. The gate region 7 is formed between the source region 5 and the drain region 6 at an equal distance from both the regions 5 and 6. The one-conductivity-type impurity diffusion region 8 is formed at the interface between the insulating isolation region 3 and the well region 4 so that a part thereof overlaps or abuts the well region 4.
[0065]
Next, the dose amount is 4 × 10 14 cm -3 From 1 × 10 Fifteen cm ―3 The gate region 7 and the one-conductivity-type impurity diffusion region 8 are simultaneously formed by injecting and diffusing a P + type impurity of a degree. By forming the gate region 7 with a lower impurity concentration than in the related art, the voltage dependency of the IGSS can be stabilized. That is, the leak current can be suppressed even in the region where the voltage is high, and the noise characteristics are improved.
[0066]
In one part of the insulating isolation region 3, the one conductivity type impurity diffusion region 8 forms a PN junction with the well region 4. Conventionally, the insulating isolation region 3 and the well region 4, which are high-concentration P-type impurity regions, form a PN junction, and the difference in impurity concentration is large, so that the leakage current is increased. In the one-conductivity-type impurity diffusion region 8, the difference in impurity concentration at the PN junction can be reduced as compared with the conventional case. That is, a PN junction area having a large impurity concentration difference can be reduced, so that a leak current can be suppressed.
[0067]
Here, Vp is controlled by the depth of the gate region 7. If the gate region 7 is made deeper, the width to the bottom of the well region 4 which becomes a channel region becomes narrower, and the IDSS (current flowing to the drain when a constant voltage is applied between the drain electrode and the source electrode) becomes smaller. GS (off) (The gate voltage required to turn off the junction FET) is reduced.
[0068]
Conventionally, the source region 5 and the drain region 7 are formed after the gate region 7 is formed. However, in the present embodiment, there is no diffusion step after the gate region 7 is formed. That is, even if the deep source region 5 and the drain region 6 are formed, it is only necessary to control so that a predetermined Vp is obtained in the subsequent formation of the gate region 7, and the characteristics do not change.
[0069]
The one conductivity type impurity diffusion region 8 can be formed simultaneously with the gate region 7 only by changing the pattern for forming the gate region 7. That is, in the same process, the low-concentration gate region 7 and the one-conductivity-type impurity diffusion region 8 in which the difference in the concentration of the PN junction is small can be formed, so that the leak current can be reduced without increasing the number of manufacturing steps.
[0070]
In the fourth step of the present invention, as shown in FIG. 7, a source electrode 9 and a drain electrode 10 are formed in contact with the source region 5 and the drain region 6, and a gate electrode connected to the gate region 7 is formed on the back surface of the substrate. 11 is formed.
[0071]
Opening the oxide film 20 on the substrate surface, exposing the surface of the source region 5 and the drain region 6, depositing a metal such as Al and patterning it into a predetermined electrode structure to form the source electrode 9 and the drain electrode 10. Further, a gate electrode 11 connected to the gate region 7 via the insulating isolation region 3 is formed on the back surface of the substrate.
[0072]
【The invention's effect】
According to the present invention, the following effects can be obtained.
[0073]
First, by reducing the impurity concentration of the gate region 7, the leakage current can be reduced and the noise characteristics can be improved.
[0074]
Second, by providing the one conductivity type impurity diffusion region 8 having the same impurity concentration as that of the gate region 7 having a reduced concentration at the interface between the well region 4 and the insulating isolation region 3, the PN junction of the portion is lower than in the conventional case. The difference in impurity concentration can be reduced. Since the PN junction area having a large impurity concentration difference between the well region 4 and the insulating isolation region 3 can be reduced, it is possible to contribute to the suppression of the leak current.
[0075]
Third, by deepening the source region 5 and the drain region 6 to the limit at which the withstand voltage can be ensured, the internal resistance of the operation section can be reduced, and thus the leak current can be reduced.
[0076]
Fourth, a diffusion region of As is further provided on the surface of the source region 5 and the drain region 6 to increase the impurity concentration on the surface, so that the metal layer serving as the source electrode 9 and the drain electrode 10 and the source region 5 Resistance of the ohmic junction with the semiconductor substrate can be reduced.
[0077]
Fifth, the impurity diffusion region 8 of one conductivity type can be formed simultaneously with the gate region 7 only by changing the pattern for forming the gate region 7, so that the leakage current can be reduced without increasing the number of manufacturing steps as compared with the related art. It is possible to provide a manufacturing method that can reduce the amount.
[0078]
Sixth, by forming the source region 5 and the drain region 6 before the gate region 7 is formed, the deep source region 5 and the drain region 6 can be formed without changing the depth of the gate region 7, and the Vp characteristics can be improved. The internal resistance can be reduced without changing.
[0079]
As described above, since the leakage current can be reduced and the internal resistance of the operation section can be reduced, the noise characteristics can be significantly improved.
[Brief description of the drawings]
FIG. 1A is a plan view and FIG. 1B is a cross-sectional view of a semiconductor device of the present invention.
FIG. 2 is a characteristic diagram of the semiconductor device of the present invention.
FIG. 3 is a characteristic diagram of the semiconductor device of the present invention.
FIG. 4 is a cross-sectional view illustrating a method for manufacturing a semiconductor device according to the present invention.
FIG. 5 is a cross-sectional view illustrating a method for manufacturing a semiconductor device of the present invention.
FIG. 6 is a sectional view illustrating the method for manufacturing a semiconductor device according to the present invention;
FIG. 7 is a cross-sectional view illustrating the method for manufacturing a semiconductor device according to the present invention;
8A is a plan view and FIG. 8B is a sectional view of a conventional semiconductor device.
FIG. 9 is a cross-sectional view illustrating a method for manufacturing a conventional semiconductor device.
[Explanation of symbols]
1 P + type semiconductor substrate
2 P + type epitaxial layer
3 Isolation area
4 well area
5 Source area
6 Drain region
7 Gate area
8 One conductivity type impurity diffusion region
9 Source electrode
10 Drain electrode
11 Gate electrode
20 Oxide film
21 P + type semiconductor substrate
22 P + type epitaxial layer
23 Isolation area
24 well area
25 Source area
26 Drain region
27 Gate area
29 source electrode
30 drain electrode
31 Gate electrode
40 oxide film

Claims (13)

一導電型の半導体層と、該半導体層に設けられ一導電型絶縁分離領域で分離された逆導電型のウェル領域と、前記ウェル領域に設けられた逆導電型のソース領域およびドレイン領域と、前記ソース領域およびドレイン領域の間の前記ウェル領域に設けられた一導電型のゲート領域とを具備する接合型FETにおいて、
前記絶縁分離領域および前記ウェル領域の界面に一導電型不純物拡散領域を設けることを特徴とする接合型FET。
A semiconductor layer of one conductivity type, a well region of the opposite conductivity type provided in the semiconductor layer and separated by an insulating isolation region of one conductivity type, and a source region and a drain region of the opposite conductivity type provided in the well region; A junction FET provided with a gate region of one conductivity type provided in the well region between the source region and the drain region;
A junction type FET, wherein an impurity diffusion region of one conductivity type is provided at an interface between the insulating isolation region and the well region.
一導電型の半導体基板と、該基板上に設けられた一導電型エエピタキシャル層と、該エピタキシャル層上に設けられ一導電型絶縁分離領域で分離された逆導電型のウェル領域と、前記ウェル領域に設けられた逆導電型のソース領域およびドレイン領域と、前記ソース領域およびドレイン領域の間の前記ウェル領域に設けられ一導電型のゲート領域と、前記ソース領域およびドレイン領域とコンタクトするソース電極およびドレイン電極と、前記半導体基板に設けられ前記ゲート領域と接続するゲート電極とを具備する接合型FETにおいて、
前記絶縁分離領域および前記ウェル領域の界面に一導電型不純物拡散領域を設けることを特徴とする接合型FET。
A semiconductor substrate of one conductivity type; an e-epitaxial layer of one conductivity type provided on the substrate; a well region of the opposite conductivity type provided on the epitaxial layer and separated by an insulating isolation region of one conductivity type; A source region and a drain region of opposite conductivity type provided in a region, a gate region of one conductivity type provided in the well region between the source region and the drain region, and a source electrode in contact with the source region and the drain region And a drain electrode and a gate electrode provided on the semiconductor substrate and connected to the gate region,
A junction type FET, wherein an impurity diffusion region of one conductivity type is provided at an interface between the insulating isolation region and the well region.
前記ゲート領域と前記一導電型不純物拡散領域は、同一不純物濃度であり、ほぼ同一の深さに設けられることを特徴とする請求項1または請求項2に記載の接合型FET。3. The junction type FET according to claim 1, wherein the gate region and the one conductivity type impurity diffusion region have the same impurity concentration and are provided at substantially the same depth. 前記一導電型不純物拡散領域の不純物濃度は、前記絶縁分離領域の不純物濃度よりも低いことを特徴とする請求項1または請求項2に記載の接合型FET。3. The junction type FET according to claim 1, wherein an impurity concentration of the one conductivity type impurity diffusion region is lower than an impurity concentration of the insulating isolation region. 前記ゲート領域と前記ウェル領域の不純物濃度は、同程度に設けることを特徴とする請求項1または請求項2に記載の接合型FET。3. The junction type FET according to claim 1, wherein the impurity concentration of the gate region and the impurity concentration of the well region are set to be substantially the same. 前記ソースおよびドレイン領域を所定の耐圧が確保できる限界まで深く設けることを特徴とする請求項1または請求項2に記載の接合型FET。3. The junction type FET according to claim 1, wherein the source and drain regions are provided deep enough to ensure a predetermined breakdown voltage. 前記ソースおよびドレイン領域は、第1の逆導電型不純物を深く拡散した領域の表面に第2の逆導電型不純物を拡散してなることを特徴とする請求項1または請求項2に記載の接合型FET。3. The junction according to claim 1, wherein the source and drain regions are formed by diffusing a second reverse conductivity type impurity into a surface of a region in which the first reverse conductivity type impurity is deeply diffused. 4. Type FET. 一導電型半導体層に一導電型絶縁分離領域で分離された逆導電型のウェル領域を形成する工程と、
前記ウェル領域に逆導電型のソース領域およびドレイン領域を形成する工程と、
前記ウェル領域の前記ソース領域およびドレイン領域の間に一導電型のゲート領域を形成し、同時に前記絶縁分離領域と前記ウェル領域界面に一導電型不純物拡散領域を形成する工程とを具備することを特徴とする接合型FETの製造方法。
Forming a well region of the opposite conductivity type separated by the one conductivity type insulating separation region in the one conductivity type semiconductor layer,
Forming a source region and a drain region of the opposite conductivity type in the well region;
Forming a one conductivity type gate region between the source region and the drain region of the well region, and simultaneously forming a one conductivity type impurity diffusion region at the interface between the insulating isolation region and the well region. A method for manufacturing a junction type FET, which is characterized by the following.
一導電型半導体基板上に一導電型エピタキシャル層と逆導電型エピタキシャル層を積層し、前記一導電型エピタキシャル層まで達する一導電型絶縁分離領域を形成して逆導電型のウェル領域を形成する工程と、
前記ウェル領域に高濃度の逆導電型不純物を拡散してソース領域およびドレイン領域を形成する工程と、
前記ウェル領域の前記ソース領域およびドレイン領域の間に一導電型不純物を拡散してゲート領域を形成し、同時に前記絶縁分離領域と前記ウェル領域界面に一導電型不純物拡散領域を形成する工程と、
前記ソース領域およびドレイン領域にコンタクトするソース電極及びドレイン電極を形成し、前記基板裏面に前記ゲート領域に接続するゲート電極を形成する工程とを具備することを特徴とする接合型FETの製造方法。
Forming a one conductivity type epitaxial layer and a reverse conductivity type epitaxial layer on a one conductivity type semiconductor substrate, forming a one conductivity type insulating isolation region reaching the one conductivity type epitaxial layer, and forming a reverse conductivity type well region; When,
Forming a source region and a drain region by diffusing high-concentration reverse conductivity type impurities into the well region;
Forming a gate region by diffusing one conductivity type impurity between the source region and the drain region of the well region, and simultaneously forming a one conductivity type impurity diffusion region at the interface between the insulating isolation region and the well region;
Forming a source electrode and a drain electrode in contact with the source region and the drain region, and forming a gate electrode connected to the gate region on the back surface of the substrate.
前記ゲート領域および一導電型不純物拡散領域は、同一濃度の不純物を注入し、同一の拡散条件で形成されることを特徴とする請求項8または請求項9に記載の接合型FETの製造方法。The method according to claim 8, wherein the gate region and the one-conductivity-type impurity diffusion region are formed under the same diffusion conditions by implanting the same concentration of impurities. 前記一導電型不純物拡散領域の不純物濃度は、前記絶縁分離領域の不純物濃度よりも低く形成することを特徴とする請求項8または請求項9に記載の接合型FETの製造方法。10. The method according to claim 8, wherein the impurity concentration of the one conductivity type impurity diffusion region is lower than the impurity concentration of the insulating isolation region. 前記ソース領域及びドレイン領域は前記ゲート領域の形成工程より前に形成されることを特徴とする請求項8または請求項9に記載の接合型FETの製造方法。10. The method according to claim 8, wherein the source region and the drain region are formed before the step of forming the gate region. 前記ソース領域及びドレイン領域は、第1の逆導電型不純物を所定の耐圧が確保できる限界の深さまで拡散し、更に表面に第2の逆導電型不純物を拡散して形成することを特徴とする請求項8または請求項9に記載の接合型FETの製造方法。The source region and the drain region are formed by diffusing a first reverse-conductivity-type impurity to a limit depth at which a predetermined withstand voltage can be secured, and further diffusing a second reverse-conductivity-type impurity on the surface. A method for manufacturing a junction type FET according to claim 8.
JP2002288728A 2002-10-01 2002-10-01 Junction FET and manufacturing method thereof Expired - Fee Related JP4623923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288728A JP4623923B2 (en) 2002-10-01 2002-10-01 Junction FET and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288728A JP4623923B2 (en) 2002-10-01 2002-10-01 Junction FET and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004128138A true JP2004128138A (en) 2004-04-22
JP4623923B2 JP4623923B2 (en) 2011-02-02

Family

ID=32281140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288728A Expired - Fee Related JP4623923B2 (en) 2002-10-01 2002-10-01 Junction FET and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4623923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174943A (en) * 2011-02-23 2012-09-10 Sony Corp Field effect transistor, semiconductor switch circuit, and communication device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161157A (en) * 1974-06-17 1975-12-26
JPS6484733A (en) * 1987-09-28 1989-03-30 Nec Corp Semiconductor device
JPH0244335U (en) * 1988-09-21 1990-03-27
JPH05136121A (en) * 1991-11-11 1993-06-01 Fuji Electric Co Ltd Semiconductor integrated circuit device
JPH07288278A (en) * 1994-04-18 1995-10-31 Rohm Co Ltd Semiconductor device and manufacture therefor
JPH08227900A (en) * 1995-02-21 1996-09-03 Nec Corp Semiconductor device
JPH09306925A (en) * 1996-05-16 1997-11-28 Murata Mfg Co Ltd Field-effect junction transistor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161157A (en) * 1974-06-17 1975-12-26
JPS6484733A (en) * 1987-09-28 1989-03-30 Nec Corp Semiconductor device
JPH0244335U (en) * 1988-09-21 1990-03-27
JPH05136121A (en) * 1991-11-11 1993-06-01 Fuji Electric Co Ltd Semiconductor integrated circuit device
JPH07288278A (en) * 1994-04-18 1995-10-31 Rohm Co Ltd Semiconductor device and manufacture therefor
JPH08227900A (en) * 1995-02-21 1996-09-03 Nec Corp Semiconductor device
JPH09306925A (en) * 1996-05-16 1997-11-28 Murata Mfg Co Ltd Field-effect junction transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174943A (en) * 2011-02-23 2012-09-10 Sony Corp Field effect transistor, semiconductor switch circuit, and communication device

Also Published As

Publication number Publication date
JP4623923B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JPH09270466A (en) Semiconductor device and manufacture thereof
JP2010062564A (en) Poly-emitter type bipolar transistor, bcd device, poly-emitter type bipolar transistor manufacturing method, and bcd device manufacturing method
US5721148A (en) Method for manufacturing MOS type semiconductor device
KR100779005B1 (en) Semiconductor device and manufacturing method thereof
KR20030072069A (en) Semiconductor device whith multiple isolation structure and method of fabricating the same
US8022475B2 (en) Semiconductor device optimized to increase withstand voltage and reduce on resistance
US5913122A (en) Method of making high breakdown voltage twin well device with source/drain regions widely spaced from FOX regions
JP2007158188A (en) Semiconductor device, and method of manufacturing same
JP2007005575A (en) Semiconductor device and its manufacturing method
JP2004039774A (en) Semiconductor device and its manufacturing method
JP3059423B2 (en) Method for manufacturing semiconductor device
US6362025B1 (en) Method of manufacturing a vertical-channel MOSFET
JPH07142565A (en) Semiconductor device and manufacture thereof
US20090236665A1 (en) Semiconductor device and fabrication method thereof
WO2006082618A1 (en) Semiconductor device and method for manufacturing the same
JPH09232458A (en) Bicmos device and its manufacture
JPH07176701A (en) Semiconductor device and its manufacture
US5994190A (en) Semiconductor device with impurity layer as channel stopper immediately under silicon oxide film
JP2004128138A (en) Junction type fet and its manufacturing method
JP2005044948A (en) Semiconductor device and manufacturing method thereof
JP3127951B2 (en) Semiconductor device and manufacturing method thereof
US7932140B2 (en) Semiconductor device and manufacturing method thereof
KR100305205B1 (en) Method for manufacturing semiconductor device
US6586799B1 (en) Semiconductor device and method of manufacturing same
KR0165347B1 (en) Transistor with high breakdown voltage and method of making thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees