JP2004126136A - Electrophotographic photoreceptor, processing cartridge comprising it and electrophotographic apparatus - Google Patents
Electrophotographic photoreceptor, processing cartridge comprising it and electrophotographic apparatus Download PDFInfo
- Publication number
- JP2004126136A JP2004126136A JP2002288883A JP2002288883A JP2004126136A JP 2004126136 A JP2004126136 A JP 2004126136A JP 2002288883 A JP2002288883 A JP 2002288883A JP 2002288883 A JP2002288883 A JP 2002288883A JP 2004126136 A JP2004126136 A JP 2004126136A
- Authority
- JP
- Japan
- Prior art keywords
- group
- substituent
- electrophotographic
- atom
- photosensitive member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 CC(C)(CCCC(C)(C)C(C)=CC)*ON(C)[U]C Chemical compound CC(C)(CCCC(C)(C)C(C)=CC)*ON(C)[U]C 0.000 description 4
- XMNIXWIUMCBBBL-UHFFFAOYSA-N CC(C)(c1ccccc1)OOC(C)(C)c1ccccc1 Chemical compound CC(C)(c1ccccc1)OOC(C)(C)c1ccccc1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Epoxy Resins (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は電子写真感光体、該電子写真感光体を備えた電子写真装置並びにファクシミリに関する。
【0002】
【従来の技術】
従来、電子写真感光体で用いる光導電材料としてはセレン、酸化亜鉛及びカドミウム等を主成分とする感光層を有する無機感光体が広く用いられてきた。これ等はある程度の感光体としての基礎特性は備えているが、成膜が困難である、可塑性が悪い、製造コストが高い等の問題がある。更に無機光導電材料は一般的に毒性が強く、製造上並びに取り扱い上にも大きな制約があった。
【0003】
一方、有機光導電材料を主成分とする感光体は、無機感光体の上記欠点を補う等多くの利点を有し、近年注目を集めており、これまで数多くの提案がされ、かつ、実用化されてきている。このような有機感光体としては、電荷発生機能と電荷輸送機能とをそれぞれ別々の物質に分担させた機能分離型電子写真感光体が、感度や耐久性の面で改善をもたらせた。このような機能分離型感光体は、電荷発生物質と電荷輸送物質の材料選択の範囲が広く、任意の特性を有する電子写真感光体を比較的容易に作成できるという利点を有している。
【0004】
しかし、これ等機能分離型の感光体は、その殆どが電荷発生層上に電荷輸送層をこの順に積層する型の感光体であり、この構成の感光体の殆どは、負帯電プロセスで用いられる。このような構成を採る理由は、高速電子写真プロセスにおいても十分な電荷移動度を持つ有機材料が、これまで殆どの場合、正孔輸送の性質のみを有する正孔輸送材料に限られ、また、静電的特性の疲労現象を極力抑え、かつ、プロセスに供された状態で感光体の機械的強度を十分保持させるには、電荷発生と電荷移動との機能を層ごとに分けた機能分離型構成とし、正孔輸送性の有機材料を有する電荷輸送層を表面に配した積層構造の感光体がもっとも合理的とされていたためである。しかしながら、このような機能分離型の電子写真感光体は新たな問題を生じさせているのが現状である。
【0005】
その問題の一つとして負帯電で使用される有機感光体を用いた電子写真装置では、帯電に伴うオゾンの発生量が多く、このために環境を汚染したり、感光体が酸化されて劣化したりする恐れがあり、これを防ぐために、オゾンを発生させないシステムや、装置内のオゾンを回収するシステム等を必要とし、プロセスやシステムが複雑化するという欠点がある。
【0006】
そこで、帯電時オゾン発生量が少ない正帯電用感光体の研究・開発が近年活発に行われて来た。例えば、一つの層中に電荷発生材料と正孔輸送材料を結着樹脂中に分散し形成した単層構成の感光体や、一つの層中に電荷発生材料、正孔輸送材料及び電子輸送材料を結着樹脂中に分散し形成した単層感光体が近年数多く提案されつつある。(例えば、特許文献1乃至特許文献11参照。)
【0007】
しかしながら、前記の正帯電用感光体は、帯電時の電気的衝撃により絶縁破壊が起き、白ポチや黒ポチ等の画像欠陥が生じ易く、かつ、分散層が表面層を形成している為、機械的耐磨耗性に乏しい等の欠点が有る。尚、これを防止する為、感光体上に保護層を設けることが考えられるが、この場合には繰り返し像形成の過程で残留電位が増大して地かぶりが発生し、かつ、電子写真性能が劣化し易い問題が起きる。
【0008】
そこで、近年になって、トリアリールアミン等の正孔輸送物質が有するキャリア移動能には及ばないながらも、ある程度のキャリア移動能を有する電子輸送物質が開発され、このような電子輸送物質を用いた正帯電型の積層構成の電子写真感光体が提案されている。(例えば、特許文献12乃至特許文献21参照。)
【0009】
しかしながら、上記積層型感光体でも、電子輸送材料のキヤリヤ移動が十分ではなく感度が悪かったり、それに起因した繰り返し使用時での残留電位の変動が大きかったりとの問題を生じている。それを補う為に、電子輸送材料の量を多くしようとすると結着樹脂との相溶性が悪く析出してしまったり、また量を増やせたとしても今度は耐久性(表面層の磨耗や傷発生)が著しく低下したりしてしまう。この様に電子輸送材料を用いた積層型電子写真感光体は感度、電位特性または耐久性等のいずれかの問題を少なからず抱えておりいまだ実用化されていないのが現状である。
【0010】
更に、上記問題を解決すべく電子輸送化合物をポリマー化して使用する方法も近年提案されてきている。(例えば、特許文献22乃至特許文献24参照。)
【0011】
しかしながら、前記構成の感光体でも、機械的強度がいまだ十分ではなかったり、繰り返し使用時での電位変動が大きかったり、また感度が悪かったりと、少なからず大きな問題を抱えており、近年の高速化/高画質化の要求に応えられる電子写真感光体が得られていないのが現状であり、改善の必要がある。
【0012】
【特許文献1】
特開昭61−48861号公報
【特許文献2】
特開平2−37354号公報
【特許文献3】
特開平3−290666号公報
【特許文献4】
特開平4−338760号公報
【特許文献5】
特開平5−992号公報
【特許文献6】
特開平6−123984号公報
【特許文献7】
特開平6−123985号公報
【特許文献8】
特開平6−130688号公報
【特許文献9】
特開平6−27693号公報
【特許文献10】
特開平8−334910号公報
【特許文献11】
特開平11−65141号公報
【特許文献12】
特開昭60−69657号公報
【特許文献13】
特開昭61−233750号公報
【特許文献14】
特開平3−256050号公報
【特許文献15】
特開平4−285670号公報
【特許文献16】
特開平4−327555号公報
【特許文献17】
特開平6−43673号公報
【特許文献18】
特開平6−26612号公報
【特許文献19】
特開平6−273952号公報
【特許文献20】
特開平8−248653号公報
【特許文献21】
特開平10−10760号公報
【特許文献22】
特開平8−134019号公報
【特許文献23】
特開平9−194535号公報
【特許文献24】
特開平11−119458号公報
【0013】
【発明が解決しようとする課題】
本発明の目的は、従来技術における上記問題点を解決する為に成されたものである。すなわち第一に、高い電子輸送能を有し、機械的/化学的に極めて安定な高耐久な電子輸送膜を形成し、耐磨耗性および耐傷性を向上させ、かつ耐析出性が良好な正帯電で使用可能な電子写真感光体を提供することにある。
【0014】
第二に、繰り返し使用時における電位変動が極めて小さく、繰り返し使用時にも安定した性能を発揮することができる正帯電で使用可能な電子写真感光体を提供することにある。
【0015】
第三に、感光体の表面摩耗性及び耐傷性が向上し、長寿命で高画質な正帯電で使用可能な電子写真感光体、及び該電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することにある。
【0016】
【課題を解決するための手段】
本発明者らは、鋭意研究を重ねた結果、導電性支持体上に感光層を有する電子写真感光体において該感光層が、同一分子内に二つ以上の連鎖重合性官能基を有する電子輸送性化合物及び前記電子輸送性化合物を重合あるいは架橋し硬化したものを含むことを特徴とする電子写真感光体が前述の課題を解決するものであることを見いだした。
【0017】
また本発明によれば、上記電子写真感光体有するプロセスカートリッジおよび電子写真装置が提供される。
【0018】
【発明の実施の形態】
以下に本発明の詳細を説明する。
【0019】
まず、本発明における連鎖重合性官能基について説明する。本発明における連鎖重合とは、高分子物の生成反応を大きく連鎖重合と逐次重合に分けた場合の前者の重合反応形態を示し、詳しくは例えば技報堂出版 三羽忠広著の「基礎 合成樹脂の化学(新版)」1995年7月25日(1版8刷)P.24に説明されているように、その形態が主にラジカルあるいはイオンをなどの中間体を経由して反応が進行する不飽和重合、開環重合そして異性化重合などのことをいう。前記式(1)における連鎖重合性官能基Pとは、前述の反応形態が可能な官能基を意味するが、ここではその大半を占め応用範囲の広い不飽和重合あるいは開環重合性官能基の具体例を示す。
【0020】
不飽和重合とは、ラジカル、イオンなどによって不飽和基、例えばC=C、C≡C、C=O、C=N、C≡Nなどが重合する反応であるが、主には
C=Cによる場合が大部分である。不飽和重合性官能基の具体例を表1に示すがこれらに限定されるものではない。
【0021】
【表1】
【0022】
開環重合とは、炭素環、オクソ環、窒素ヘテロ環などのひずみを有した不安定な環状構造が触媒の作用で活性化され、開環すると同時に重合を繰り返し鎖状高分子物を生成する反応であるが、この場合基本的にはイオンが活性種として作用するものが大部分である。該開環重合性官能基の具体例を表2に示すがこれらに限定されるものではない。
【0023】
【表2】
【0024】
表1及び表2中、Rは置換基を有しても良いメチル基、エチル基、プロピル基及びブチル基等のアルキル基、置換基を有しても良いベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基、置換基を有しても良いフェニル基、ナフチル基及びアンスリル基等のアリール基又は水素原子を示す。
【0025】
上記で説明したような本発明に係わる連鎖重合性官能基の中でも、下記の一般式(4)〜(6)で示されるものが好ましい。
【0026】
【化11】
【0027】
式中、Eは水素原子、フッ素、塩素及び臭素等のハロゲン原子、置換基を有してもよいメチル基、エチル基、プロピル基及びブチル基等のアルキル基、置換基を有してもよいベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基、置換基を有してもよいフェニル基、ナフチル基、アンスリル基、ピレニル基、チオフェニル基及びフリル基等のアリール基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基、CN基、ニトロ基、−COOR15又はCONR16R17を示し、
Wは置換基を有してもよい2価のフェニレン、ナフチレン、アントラセニレン等のアリーレン基、置換基を有してもよいメチレン、エチレン、ブチレン等の2価のアルキレン基、−COO−、−CH2−、−O−、または−CONR18−で示され、
R15、R16、R17及びR18は水素原子、フッ素、塩素、臭素及びヨウ素等のハロゲン原子、置換基を有してもよいメチル基、エチル基、プロピル基及びブチル基等のアルキル基、置換基を有してもよいベンジル基及びフェネチル基等のアラルキル基又は置換基を有してもよいフェニル基、ナフチル基及びアンスリル基等のアリール基を示し、R16とR17は互いに同一であっても異なってもよく、また、fは0または1を示す。
【0028】
E及びW中で有してもよい置換基としては、フッ素、塩素、臭素及びヨウ素等のハロゲン原子、ニトロ基、シアノ基、水酸基、メチル基、エチル基。プロピル基及びブチル基等のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基、フェノキシ基及びナフトキシ基等のアリールオキシ基、ベンジル基、フェネチル基、ナフチルメチル基、フルフリル基、チエニル基等のアラルキル基又はフェニル基、ナフチル基、アンスリル基及びピレニル基等のアリール基等が挙げられる。
【0029】
【化12】
【0030】
(式中R19及びR20は水素原子、置換基を有してもよいメチル基、エチル基、プロピル基及びブチル基等のアルキル基、置換基を有してもよいベンジル基及びフェネチル基等のアラルキル基又は置換基を有してもよいフェニル基及びナフチル基等のアリール基を示し、nは1から10の整数を示す。)
【0031】
【化13】
【0032】
(式中R21及びR22は水素原子、置換基を有してもよいメチル基、エチル基、プロピル及びブチル基等のアルキル基、置換基を有してもよいベンジル基及びフェネチル基等のアラルキル基又は置換基を有してもよいフェニル基及びナフチル基等のアリール基を示し、式中nは0から10以下の整数を示す。)
尚、上記一般式の(5)及び(6)のR19、R20、R21及びR22が有してもよい置換基としてはフッ素、塩素、臭素及びヨウ素等のハロゲン原子、メチル基、エチル基。プロピル基及びブチル基等のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基、フェノキシ基及びナフトキシ基等のアリールオキシ基、ベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基又はフェニル基、ナフチル基、アンスリル基及びピレニル基等のアリール基等が挙げられる。
【0033】
また、上記一般式(4)〜(6)の中でも、更に特に好ましい連鎖重合性官能基としては、下記一般式(7)〜(13)で示されるものが挙げられる。
【0034】
【化14】
【0035】
さらに上記式(7)〜(13)の中でも、(7)のアクリロイルオキシ基および(8)のメタクリロイルオキシ基が、重合特性などの点から特に好ましい。
【0036】
本発明で「連鎖重合性官能基を有する電子輸送性化合物」とは、上記で説明した連鎖重合性基が上記で説明した電子輸送性化合物に官能基として少なくとも2つ以上化学結合している化合物を示す。この場合それらの連鎖重合性官能基はすべて同一でも異なったものであってもよい。
【0037】
それらの連鎖重合性官能基を少なくとも2つ有する電子輸送性化合物としては下記の一般式(1)である場合が好ましい。
【0038】
【化15】
【0039】
式中、Aは電子輸送性基を示し;P1及びP2は連鎖重合性官能基を示し;P1とP2は同一でも異なってもよく;Zは置換基を有してもよい有機基を示し;a、b及びdは0以上の整数を示し、a+b×dは2以上の整数を示し;また、aが2以上の場合P1は同一でも異なってもよく、dが2以上の場合はP2は同一でも異なってもよく、またb が2以上の場合、Z及びP2は同一でも異なってもよい。
【0040】
尚ここで、「aが2以上の場合P1は同一でも異なってもよく」とは、それぞれ異なるn種類の連鎖重合性官能基をP11,P12,P13,P14,P15・・・・P1nと示した場合、例えばa=3のとき電子輸送性化合物Aに直接結合する重合性官能基P1は3つとも同じものでも、2つ同じで1つは違うもの(例えば、P11とP11とP12とか)でも、それぞれ3つとも異なるもの(例えば、P12とP15とP17とか)でも良いということを意味するものである(「d が2以上の場合P2は同一でも異なってもよく」というのも、「bが2以上の場合、Zは同一でも異なってもよい」というのもこれと同様な事を意味するものである)。
【0041】
上記一般式(1)連鎖重合性官能基を2つ以上有する電子輸送化合物は、還元電位(電子親和力Eaに対応)の値が参照電極SCE(飽和カルメロ電極)に対して−0.2(v)から−1.2(v)である物が好ましく、特に好ましくは−0.2(v)から−0.8(v)であるものが好ましい。
【0042】
それは、還元電位が−1.2(v)越えると電荷発生材料からの電荷(電子)の注入が起こりにく残留電位の上昇、感度悪化及び繰り返し使用時の電位変動が大きくなる等の問題が生じ、また−0.2(v)未満では帯電能低下等の問題が生じ易くなる為である。
【0043】
尚、ここで述べている還元電位は、以下の方法によって測定される。
【0044】
(還元電位の測定法)
飽和カロメル電極を参照電極とし、電解液に0.1N (n−C4H9)4N+ClO4 −ジクロロメタン溶液を用い、ポテンシャルスイーパによって作用電極(白金)に印加する電位をスイープし得られた電流―電位曲線がピークを示したときの電位を酸化電位とした。詳しくは、サンプルを0.1N (n−C4H9)4N+ClO4 −ジクロロメタン溶液に1mmol%程度の濃度になるように溶解する。そしてこのサンプル溶液に作用電極によって電圧を加え、電圧を0(v)から−1.5(v)に直線的に変化させ(この電流―電位曲線において電流値がピークを示したピークトップの位置の電位をE1)更に、−1.5(v)から0(v)に直線的に変化させた時の電流変化を測定し(この電流―電位曲線において電流値がピークを示したピークトップの位置の電位をE2)電流−電位曲線を得る。この得られたE1+E2/2をここでの還元電位とした。尚、ピークが複数ある場合には、0(v)に最も近い第1還元ピークをそれぞれE1及びE2した。
【0045】
上記一般式(1)のAのP1及びZとの結合部位を水素原子に置き換えた電子輸送化合物の好ましい例として、下記一般式(A−1)から(A−11)が挙げられるがこれらの化合物に限定されるわけではない。
【0046】
【化16】
【0047】
式中、R1 ,R2 は水素原子、置換基を有してもよいメチル基、エチル基。プロピル基及びブチル基等の炭素数10以下のアルキル基、置換基を有してもよいベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基、置換基を有してもよいフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基、チオフェニル基、フリル基、ピリジル基、キノリル基、ベンゾキノリル基、カルバゾリル基、フェノチアジニル基、ベンゾフリル基、及びベンゾチオフェニル基等のアリール基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基、フェノキシ基、ナフトキシ基等のアリールオキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミド基、スルホン酸基、スルホン酸エステル基、スルホン酸アミド基、ヒドロキシ基、アルデヒド基またはハロゲン原子を示し、m≧0、n≧0であり、ただし、m≧2のときR1は互いに異なっていてもよく、n≧2のときR2は互いに異なってもよい。
【0048】
R3 ,R4 は置換基を有してもよいメチル基、エチル基。プロピル基及びブチル基等の炭素数10以下のアルキル基、置換基を有してもよいベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基、置換基を有してもよいフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基、チオフェニル基、フリル基、ピリジル基、キノリル基、ベンゾキノリル基、カルバゾリル基、フェノチアジニル基、ベンゾフリル基、及びベンゾチオフェニル基等のアリール基またはエステル基を示す。
【0049】
Q1 ,Q2は、それぞれ独立に酸素原子,硫黄原子,C(CN)2 ,CR5CN ,CY2(Yはフッ素、塩素、臭素等のハロゲン原子),C(COOR6)2 ,CR7COOR8 ,NR9 またはNCNのいずれかを表す。Q3は、酸素原子、硫黄原子またはSO2を示す。
【0050】
但し、R5 ,R6 ,R7,R8 ,R9はそれぞれ独立に水素原子、置換基を有してもよいメチル基、エチル基。プロピル基及びブチル基等の炭素数10以下のアルキル基、置換基を有してもよいベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基又は置換基を有してもよいフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基、チオフェニル基、フリル基、ピリジル基、キノリル基、ベンゾキノリル基、カルバゾリル基、フェノチアジニル基、ベンゾフリル基、及びベンゾチオフェニル基等のアリール基を示す。
【0051】
【化17】
【0052】
は置換基を有してもよいベンゼン環、ナフタレン環、アントラセン環、チオフェン環、フラン環、ピリジン環等のアリール基を示す。
【0053】
また、上記一般式(1)中のZは、置換基を有してもよいアルキレン基、置換基を有してもよいアリーレン基、CR10=CR11(R10及びR11はアルキル基、アリール基または水素原子を示し、R10及びR11は同一でも異なっても良い)、C=O、S=O、SO2、酸素原子又は硫黄原子より一つあるいは任意に組み合わされた有機基を示す。その中でも下記一般式(2)で示されるものが好ましく、下記一般式(3)で示されるものが特に好ましい。
【0054】
【化18】
【0055】
上記一般式(3)中、X1〜X3は置換基を有してもよいメチレン基、エチレン基及びプロピレン基等の炭素数20以下のアルキレン基、(CR12=CR13)m2、C=O、S=O、SO2、酸素原子又は硫黄原子を示し、Ar1及びAr2は置換基を有してもよい2価のアリーレン基(ベンゼン、ナフタレン、アントラセン、フェナンスレン、ピレン、チオフェン、フラン、ピリジン、キノリン、ベンゾキノリン、カルバゾール、フェノチアジン、ベンゾフラン、ベンゾチオフェン、ジベンゾフラン、ジベンゾチオフェン等より2個の水素原子を取り除いた基)を示す。R12及びR13は置換基を有してもよいメチル基、エチル基プロピル基及びブチル基等のアルキル基、置換基を有してもよいフェニル基、ナフチル基及びチオフェニル基等のアりール基または水素原子を示し、R12及びR13は同一でも異なっても良い。m2は1から5の整数、p〜tは0から10の整数を示す(但しp〜tは同時に0であることはない)。
【0056】
上記一般式(3)中、X4及びX5は(CH2)m3、(CH=CR14)m4、C=O、又は酸素原子を示し、Ar3は置換基を有してもよい2価のアリーレン基(ベンゼン、ナフタレン、アントラセン、フェナンスレン、ピレン、チオフェン、フラン、ピリジン、キノリン、ベンゾキノリン、カルバゾール、フェノチアジン、ベンゾフラン、ベンゾチオフェン、ジベンゾフラン、ジベンゾチオフェン等より2個の水素原子を取り除いた基)を示す。R14は置換基を有してもよいメチル基、エチル基、プロピル基及びブチル基等のアルキル基、置換基を有しても良いフェニル基、ナフチル基及びチオフェニル基等のアリール基又は水素原子を示す。m3は1から10の整数、m4は1から5の整数、u〜wは0から10の整数を示す(特に0から5の整数の時が特に好ましい。但しu〜wは同時に0であることはない)。
【0057】
尚、上述の一般式(1)〜(13)及び(A−1)〜(A−11)のR1〜R22、Ar1〜Ar3、X1〜X5、Z及びQがそれぞれ有してもよい置換基としてはフッ素、塩素、臭素及びヨウ素等のハロゲン原子、ニトロ基、シアノ基、水酸基、メチル基、エチル基。プロピル基及びブチル基等のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基、フェノキシ基、ナフトキシ基等のアリールオキシ基、ベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基、フェニル基、ナフチル基、アンスリル基及びピレニル基等のアリール基等が挙げられる。
【0058】
また更に、上記連鎖重合性官能基を有する電子輸送性化合物は電子輸送能として1×10−7(cm2/v.sec)以上のドリフト移動度を有しているものが好ましい(但し、印加電界:5×104v/cm)。1×10−7(cm2/v.sec)未満では電子写真感光体として露光後現像までに電子が十分に移動できないため見かけ上感度が低減し、残留電位も高くなってしまう問題が発生する場合がある。
【0059】
以下に本発明に係わる、連鎖重合性官能基を有する電子輸送性化合物の代表例を挙げるがこれらに限定されるものではない。
【0060】
【表3】
【0061】
【表4】
【0062】
【表5】
【0063】
本発明においては,前記同一分子内に二つ以上の連鎖重合性官能基を有する電子輸送性化合物を重合・硬化させることで、その感光層中において、電子輸送能を有する化合物は少なくとも二つ以上の架橋点をもって3次元架橋構造の中に共有結合を介して取り込まれる。前記電子輸送性化合物はそれのみを重合・架橋させる、あるいは他の連鎖重合性基を有する化合物と混合させることのいずれもが可能であり、その種類/比率はすべて任意である。ここでいう他の連鎖重合性基を有する化合物とは、連鎖重合性基を有する単量体あるいはオリゴマー/ポリマーのいずれもが含まれる。電子輸送性化合物の官能基とその他の連鎖重合性化合物の官能基が同一の基あるいは互いに重合可能な基である場合には、両者は共有結合を介した共重合3次元架橋構造をとることが可能である。両者の官能基が互いに重合しない官能基である場合には、感光層は少なくとも二つ以上の3次元硬化物の混合物あるいは主成分の3次元硬化物中に他の連鎖重合性化合物単量体あるいはその硬化物を含んだものとして構成されるが、その配合比率/製膜方法をうまくコントロールすることで、IPN(Inter Penetrating Network)すなわち相互進入網目構造を形成することも可能である。
【0064】
また前記電子輸送性化合物と連鎖重合性基を有しない単量体あるいはオリゴマー/ポリマーや連鎖重合性以外の重合性基を有する単量体あるいはオリゴマー/ポリマーなどから感光層を形成してもよい。
【0065】
さらに場合によっては3次元架橋構造に化学結合的に組み込まれないすなわち連鎖重合性官能基を有しない電子輸送性化合物を含有することも可能である。
【0066】
また、その他の各種添加剤、テフロン(登録商標)その他の潤滑剤などを含有してもよい。
【0067】
本発明の感光体の構成は、導電性支持体上に感光層として電荷発生物質を含有する電荷発生層および電荷輸送物質を含有する電荷輸送層をこの順に積層した構成あるいは逆に積層した構成、また電荷発生物質と電荷輸送物質を同一層中に分散した単層からなる構成のいずれの構成をとることも可能である。前者の積層型においては電荷輸送層が二層以上の構成、また後者の単層型においては電荷発生物質と電荷輸送物質を同一に含有する感光層上にさらに電荷輸送層を構成してもよく、さらには電荷発生層あるいは電荷輸送層上に保護層の形成も可能である。これらいずれの場合においても、先の連鎖重合性基を有する電子輸送性化合物および/あるいは前電子輸送性化合物を重合・硬化したものを感光層が含有していればよい。ただし、電子写真感光体としての特性、特に残留電位などの電気的特性および耐久性の点より、電荷発生層/電荷輸送層をこの順に積層した機能分離型の感光体構成が好ましく、本発明の利点も電荷輸送能を低下させることなく表面層の高耐久化が可能になった点にある。
【0068】
次に本発明による電子写真感光体の製造方法を具体的に示す。
【0069】
電子写真感光体の支持体としては導電性を有するものであればよく、例えばアルミニウム、銅、クロム、ニッケル、亜鉛およびステンレスなどの金属や合金をドラムまたはシート状に成形したもの、アルミニウムおよび銅などの金属箔をプラスチックフィルムにラミネートしたもの、アルミニウム、酸化インジウムおよび酸化錫などをプラスチックフィルムに蒸着したもの、導電性物質を単独または結着樹脂とともに塗布して導電層を設けた金属、またプラスチックフィルムおよび紙などが挙げられる。
【0070】
本発明においては導電性支持体の上にはバリアー機能と接着機能をもつ下引き層を設けることができる。
【0071】
下引き層は感光層の接着性改良、塗工性改良、支持体の保護、支持体上の欠陥の被覆、支持体からの電荷注入性改良、また感光層の電気的破壊に対する保護などのために形成される。下引き層の材料としてはポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、にかわおよびゼラチンなどがしられている。これらはそれぞれに適した溶剤に溶解されて支持体上に塗布される。その際の膜厚としては0.1〜2μmが好ましい。
【0072】
本発明の感光体が機能分離型の感光体である場合には電荷発生層および電荷輸送層を積層する。電荷発生層に用いる電荷発生物質としては、セレン−テルル、ピリリウム、チアピリリウム系染料、また各種の中心金属および結晶系、具体的には例えばα、β、γ、εおよびX型などの結晶型を有するフタロシアニン化合物、アントアントロン顔料、ジベンズピレンキノン顔料、ピラントロン顔料、トリスアゾ顔料、ジスアゾ顔料、モノアゾ顔料、インジゴ顔料、キナクリドン顔料、非対称キノシアニン顔料、キノシアニンおよびアモルファスシリコーンなどが挙げられる。
【0073】
機能分離型感光体の場合、電荷発生層は前記電荷発生物質を0.3〜4倍量の結着樹脂および溶剤とともにホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライターおよびロールミルなどの方法で良く分散し、分散液を塗布し、乾燥されて形成されるか、または前記電荷発生物質の蒸着膜など、単独組成の膜として形成される。その膜厚は5μm以下であることが好ましく、特に0.1〜2μmの範囲であることが好ましい。
【0074】
結着樹脂を用いる場合の例は、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン、などのビニル化合物の重合体および共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。
【0075】
本発明における前記連鎖重合性官能基を有する電子輸送性化合物は、前述した電荷発生層上に電荷輸送層として、もしくは電荷発生層上に電荷輸送物質と結着樹脂からなる電荷輸送層を形成した後に電子輸送能力を有する表面保護層として用いることができる。いずれの場合も前記表面層の形成方法は、前記正孔輸送性化合物を含有する溶液を塗布後、重合/硬化反応をさせるのが一般的であるが、前もって該正孔輸送性化合物を含む溶液を反応させて硬化物を得た後に再度溶剤中に分散あるいは溶解させたものなどを用いて、表面層を形成することも可能である。これらの溶液を塗布する方法は、例えば浸漬コーティング法、スプレーコーティング法、カーテンコーティング法およびスピンコーティング法などが知られているが、効率性/生産性の点からは浸漬コーティング法が好ましい。
【0076】
また蒸着、プラズマその他の公知の製膜方法が適宜選択できる。
【0077】
本発明において連鎖重合性基を有する電子輸送性化合物は放射線により重合・硬化させることが好ましい。放射線による重合の最大の利点は重合開始剤を必要としない点であり、これにより非常に高純度な三次元感光層マトリックスの作製が可能となり、良好な電子写真特性が確保される点である。また、短時間でかつ効率的な重合反応であるがゆえに生産性も高く、さらには放射線の透過性の良さから、厚膜時や添加剤などの遮蔽物質が膜中に存在する際の硬化阻害の影響が非常に小さいことなどが挙げられる。ただし、連鎖重合性基の種類や中心骨格の種類によっては重合反応が進行しにくい場合があり、その際には影響のない範囲内での重合開始剤の添加は可能である。この際使用する放射線とは電子線およびγ線である。電子線照射をする場合、加速器としてはスキャニング型、エレクトロカーテン型、ブロードビーム型、パルス型およびラミナー型などいずれの形式も使用することが出来る。電子線を照射する場合に、本発明の感光体においては電気特性および耐久性能を発現させる上で照射条件が非常に重要である。本発明において、加速電圧は250KV以下が好ましく、最適には150KV以下である。また照射線量は好ましくは1Mradから100Mradの範囲、より好ましくは3Mradから50Mradの範囲である。加速電圧が上記を越えると感光体特性に対する電子線照射のダメージが増加する傾向にある。また、照射線量が上記範囲よりも少ない場合には硬化が不十分となりやすく、線量が多い場合には感光体特性の劣化がおこりやすいので注意が必要である。
【0078】
前記連鎖重合性基を有する電子輸送性化合物を電荷輸送層として用いた場合の前記電子輸送性化合物の量は、重合硬化後の電荷輸送層膜の全重量に対して、前記式(1)で示される連鎖重合性官能基を有する電子輸送性基Aの水素付加物が分子量換算で20%以上、好ましくは40%以上含有されていることが望ましい。それ以下であると電荷輸送能が低下し、感度低下および残留電位の上昇などの問題点が生ずる。この場合の電荷輸送層としての膜厚は1〜50μmであることが好ましく、特には3〜30μmであることが好ましい。
【0079】
前記電子輸送性化合物を電荷発生層/電荷輸送層上に表面保護層として用いた場合、その下層に当たる電荷輸送層は適当な電子輸送化合物、例えばベンゾキノン誘導体、ジフェノキノン誘導体、ナフトキノン誘導体、シクロペンタジエン誘導体、インデノン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、イミド誘導体、ジイミド誘導体、4−オキソチオピラン−1,1−ジオキシド誘導体、フルオレノン誘導体などの低分子化合物などを適当な結着樹脂(前述の電荷発生層用樹脂の中から選択できる)とともに溶剤に分散/溶解した溶液を前述の公知の方法によって塗布、乾燥して形成することができる。この場合の電荷輸送物質と結着樹脂の比率は、両者の全重量を100とした場合に電荷輸送物質の重量30〜100が望ましく、好ましくは50〜100の範囲で適宜選択される。電荷輸送物質の量がそれ以下であると、電荷輸送能が低下し、感度低下および残留電位の上昇などの問題点が生ずる。電荷輸送層の膜厚は、上層の表面保護層と合わせた総膜厚が1〜50μmとなるように決定され、好ましくは5〜30μmの範囲で調整される。
【0080】
本発明においては上述のいずれの場合においても、前記連鎖重合性基を有する電子輸送性化合物の硬化物を含有する感光層に、前記電子輸送化合物を含有することが可能である。
【0081】
単層型感光層の場合は、前記電子輸送性化合物を含む溶液中に同時に電荷発生物質が含まれることになり、この溶液を適当な下引き層あるいは中間層を設けても良い導電性支持体上に塗布後重合/硬化させて形成される場合と、導電性支持体上に設けられた電荷発生物質および電荷輸送物質から構成される単層型感光層上に前記電子輸送性化合物を含有する溶液を塗布後、重合/硬化させる場合のいずれもが可能である。
【0082】
本発明における感光層には、各種添加剤を添加することができる。該添加剤とは酸化防止剤および紫外線吸収剤などの劣化防止剤や、テトラフルオロエチレン樹脂粒子およびフッ化カーボンなどの潤剤などである。
【0083】
図1に本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成を示す。図において、1はドラム上の本発明の電子写真感光体であり、軸2を中止に矢印方向に所定の周速度で回転駆動される。感光体1は、回転過程において、一次帯電手段3によりその周面に正または負の所定電位の均一帯電を受け、次いでスリット露光やレーザービーム走査露光などの像露光手段(不図示)からの画像露光光4を受ける。こうして感光体1の周面に静電潜像が順次形成されていく。形成された静電潜像は、次いで現像手段5によりトナー現像され、現像されたトナー現像像は、不図示の給紙部から感光体1と転写手段6との間に感光体1の回転と同期取り出されて給紙された転写材7に、転写手段6により順次転写されていく。像転写を受けた転写材7は、感光体面から分離されて像定着手段8へ導入されて像定着をうけることにより複写物(コピー)として装置外へプリントアウトされる。像転写後の感光体1の表面は、クリーニング手段9によって転写残りトナーの除去を受けて清浄面化され、さらに前露光手段(不図示)からの前露光光10により助電処理された後、繰り返し画像形成に使用される。なお、一次帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5およびクリーニング手段9などの構成要素のうち、複数のものをプロセスカートリッジとして一体に結合して構成しこのプロセスカートリッジを複写機やレーザービームプリンターなどの電子写真装置本体に対して着脱可能に構成してもよい。例えば、一次帯電手段3、現像手段5およびクリーニング手段9の少なくとも一つを感光体1とともに一体に支持してカートリッジ化して、装置本体のレール12などの案内手段を用いて装置本体に着脱可能なプロセスカートリッジ11とすることができる。また、画像露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいはセンサーで原稿を読みとり、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動および液晶シャッターアレイの駆動などにより照射される光である。
【0084】
本発明の電子写真感光体は電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、液晶プリンターおよびレーザー製版などの電子写真応用分野にも広く用いることができる。
【0085】
【実施例】
(実施例1)
まず導電層用の塗料を以下の手順で調整した。10%の酸化アンチモンを含有する酸化スズで被覆した導電性酸化チタン粉体50部(質量部、以下同様)、フェノール樹脂25部、メチルセロソルブ20部、メタノール5部およびシリコーンオイル(ポリジメチルシロキサンポリオキシアルキレン共重合体、平均分子量3000)0.002部を、φ1mmガラスビーズ入りサンドミル装置で2時間分散して調整した。この塗料を30φのアルミニウムシリンダー上に浸漬塗布方法で塗布し、140℃で30分乾燥して、膜厚20μmの導電層を形成した。
【0086】
次に、N−メトキシメチル化ナイロン5部をメタノール95部中に溶解し、中間層用塗料を調整した。この塗料を前記の導電層上に浸漬コーティング法によって塗布し、100℃で20分間乾燥して、0.6μmの中間層を形成した。
【0087】
次にCuKαのX線回折におけるブラッグ角2θ±0.2°の7.4°及び28.2°に強いピークを有する結晶型持つヒドロキシガリウムフタロシアニン化合物4部とポリビニルブチラール樹脂(ブチラール化度65モル%、数平均分子量35000)2部をシクロヘキサノン80部に添加し、ガラスビーズとともにサンドミルで4時間分散し、これに80部の酢酸エチルを加え希釈し、これを中間層上に乾燥後の膜厚が0.2μmになるように浸漬コーティング法で塗布し電荷発生層を形成した。
【0088】
次いで、表3の化合物例No.19の電子輸送性化合物60部をモノクロロベンゼン30部およびジクロロメタン30部の混合溶媒中に溶解し、電荷輸送層用塗料を調整した、この塗料を前記の電荷発生層上にコーティングし、50℃で10分間乾燥させた後に、加速電圧150KV、照射線量10Mradの条件で電子線を照射し樹脂を硬化し、膜厚15μmの電荷輸送層を形成し、電子写真感光体を得た。
【0089】
作製した電子写真感光体について、経時析出性、電子写真特性、耐久性を評価した。経時析出性については、複写起用のウレタンゴム製のクリーニングブレードを感光体表面に圧接し、75℃で保存し析出性に対する加速試験を行った。評価は14日後に感光体表面を顕微鏡により観察し析出の有無を判定した。析出のない場合はさらに30日後まで試験を継続した。電子写真特性および耐久性は、この感光体をキヤノン(株)製GP55を正帯電用に改造した機械に装着して評価した。初期の感光体特性[暗部電位Vd、光減衰感度(暗部電位+700V設定で+200Vに光減衰させるために必要な光量)および残留電位Vsl(光減衰感度光量の10倍の光量を照射したときの電位)]を測定し、さらに15000枚の通紙耐久試験を行い、目視による画像欠陥の発生有無を観察、感光体の削れ量および耐久後の前記感光体特性を測定し、各々の変化値△Vd、△Vl(初期にVlが+200Vとなる光量と同量の光量を耐久後に照射したときのVlの変化量)および△Vslを求めた。
【0090】
結果を表6に示すが、本発明の感光体では析出は発生せず、また感光体特性が良好であり、耐久での削れ量が少なく、かつ耐久においても感光体特性にはほとんど変化がみられないというように、非常に安定した良好な特性を示している。
【0091】
(実施例2〜16)
実施例1における電子輸送性化合物No.19を表6に示した化合物に変えた以外は、実施例1と同様に電子写真感光体を作製し評価した。その結果を表6に示す。
【0092】
(実施例17)
実施例1において電子輸送性化合物No.19の量を48部とし、さらに下記式を有するアクリレートモノマーを12部添加した以外は実施例1と同様
【0093】
【化19】
【0094】
に電子写真感光体を作製し評価した。その結果を表6に示す。
【0095】
(実施例18〜21)
実施例1において電子線の照射条件を表6に示したように変えた以外は実施例1と同様に電子写真感光体を作製し、評価した。削れ量、耐久画像は良好であったが、照射線量を上げることで初期の電子写真特性において、若干の感度ダウンや残留電位の上昇が見られた。その結果を表6に示す。
【0096】
(実施例22)
実施例1と同様に導電層、中間層および電荷発生層を形成した後、表3の電子輸送性化合物例No.14 60部および下記構造式の光重合開始剤0.6部をモノクロロベンゼン30部およびジクロロメタン30部の混合溶媒中に
【0097】
【化20】
【0098】
溶解し、電荷輸送層用塗料を調整した、この塗料を前記の電荷発生層上にコーティングし、メタルハライドランプを用いて500mW/cm2の光強度で硬化させることによって膜厚15μmの電荷輸送層を形成し、電子写真感光体を得た。得られた感光体を実施例1と同様に評価した。その結果を表6に示す。
【0099】
(実施例23)
実施例22において光重合開始剤を下記熱重合開始剤とし、紫外線硬化のかわりに硬化反応を150℃/1時間とした以外は実施例1と同様に電子写真感光体を作製し評価した。その結果を表6に示す。
【0100】
【化21】
【0101】
(実施例24)
実施例1と同様に導電層、中間層を形成した後、下記構造式の正孔輸送性化合物20部およびポリカーボネート樹脂(Z型;重量平均分子量:
【0102】
【化22】
【0103】
50000)10部をモノクロロベンゼン50部およびジクロロメタン20部の混合溶媒中に溶解して調整した電荷輸送層用塗料を用いて、前記中間層上に電荷輸送層を形成した。このときの電荷輸送層の膜厚は10μmであった。次いで実施例1で用いた電荷発生用塗料を用い乾燥後の膜厚が2.0μmになるように浸漬コーティング法で塗布し電荷発生層を形成した。
【0104】
次いで、表5の電子輸送性化合物No.60 60部をモノクロロベンゼン50部およびジクロロメタン30部の混合溶媒中に溶解し、表面保護層用塗料を調整した。この塗料をスプレーコーティング法により先の電荷輸送層上に塗布し、50℃で10分間乾燥させた後に、加速電圧150KV、照射線量10Mradの条件で電子線を照射し樹脂を硬化し、膜厚5μmの表面保護層を形成し、電子写真感光体を得た。この感光体を実施例1と同様に評価した。その結果を表6に示す。
【0105】
(実施例25)
実施例1と同様に導電層、中間層および電荷発生層を形成した後、下記構造式のナフタレンテトラカルボン酸ジイミド誘導体化合物をそれぞれ4部
【0106】
【化23】
【0107】
及びポリカーボネート樹脂(Z型;重量平均分子量:50000)10部をモノクロロベンゼン50部およびジクロロメタン20部の混合溶媒中に溶解して調整した電荷輸送層用塗料を用いて、前記電荷発生層上に電荷輸送層を形成した。このときの電荷輸送層の膜厚は15μmであった。次いで、表3の電子輸送性化合物例No.19 60部をモノクロロベンゼン50部およびジクロロメタン30部の混合溶媒中に溶解し、表面保護層用塗料を調整した。この塗料をスプレーコーティング法により先の電荷輸送層上に塗布し、50℃で10分間乾燥させた後に、加速電圧150KV、照射線量10Mradの条件で電子線を照射し樹脂を硬化し、膜厚5μmの表面保護層を形成し、電子写真感光体を得た。この感光体を実施例1と同様に評価した。その結果を表6に示す。
【0108】
(実施例26)
実施例1と同様に導電層および中間層を形成した後、β型オキシチタニウムフタロシアニン結晶を3部、正孔輸送材料として下記構造式(A)の化合物40部、電子輸送材料として下記構造式(B)の化合物40部、
【0109】
【化24】
【0110】
ポリカーボネート樹脂(Z型;重量平均分子量:50000)100部およびテトラヒドロフラン700部をボールミルで混合分散した単層型感光体の塗料を塗布し、乾燥後の膜厚が13μmの感光層を形成した。次いで、表4の電子輸送性化合物No.32 60部をモノクロロベンゼン50部およびジクロロメタン30部の混合溶媒中に溶解し、表面保護層用塗料を調整した。この塗料をスプレーコーティング法により先の電荷輸送層上に塗布し、50℃で10分間乾燥させた後に、加速電圧150KV、照射線量10Mradの条件で電子線を照射し樹脂を硬化し、膜厚5μmの表面保護層を形成し、電子写真感光体を得た。この感光体を実施例1と同様に評価した。その結果を表6に示す。
【0111】
【表6】
【0112】
(比較例1)
実施例1において導電層、中間層及び電荷発生層を形成した後、下記構造式の電子輸送性化合物15部およびポリメチルメタクリレート樹脂(数平均分子量:約40000)15部をモノクロロベンゼン50部およびジクロロメタン20部の混合溶媒中に溶解して調整した電荷輸送層用塗料を用いて、前記電荷発生層上に電荷輸送層を形成した。このときの電荷輸送層の膜厚は15μmであった。
【0113】
【化25】
【0114】
この電子写真感光体を実施例1と同様に評価した結果、14日後に析出が見られた。一方初期の電子写真特性は良好であったが、耐久での表面層の削れ量が多く、かぶり、傷などの画像欠陥が発生している。さらに8000枚以降は削れにより電荷輸送層の膜厚がうすくなり、帯電不良が発生し、画像形成が不可能となった。その結果を表7に示す。
【0115】
(比較例2)
比較例1においてポリメチルメタクリレート樹脂のかわりにポリカーボネート樹脂(Z型;重量平均分子量:50000)を用いた以外は、比較例1と同様に電子写真感光体を作製し、評価した。析出試験では14日後に析が観察された。またポリメチルメタクリレート樹脂の場合に比べて耐久性は若干向上したものの十分ではなく、12000枚より帯電不良が発生し、画像形成が不可能となった。その結果を表7に示す。
【0116】
(比較例3)
比較例2の電子輸送性化合物10部、ポリカーボネート樹脂15部とした以外は比較例2と同様に電子写真感光体を作製し、評価した結果、比較例2に比べて耐久性は向上したものの、電荷輸送物質間の距離が広がったことによって電荷輸送能が低下し、感度低下および残留電位の上昇が見られた。その結果を表7に示す。
【0117】
(比較例4)
保護層を形成しなかった以外は、実施例24と同様にして感光体を作成し評価した。初期より帯電不良およびカブリが発生し500枚より画像形成評価に値しないような画になった。その結果を表7に示す。
【0118】
(比較例5)
保護層を形成しなかった以外は、実施例25と同様にして感光体を作成し評価した。析出試験では30日後に析が観察された。耐久性に関しては十分ではなく、13000枚より帯電不良が発生し、画像形成が不可能となった。その結果を表7に示す。
【0119】
(比較例6)
保護層を形成しなかった以外は、実施例26と同様にして感光体を作成し評価した。耐久性に関しては十分ではなく、800枚より帯電不良及びカブリが発生し、5000枚より帯電不良で画像形成が不可能となった。その結果を表7に示す。
【0120】
(比較例7)
実施例25と同様に導電層、中間層、電荷発生層および電荷輸送層を形成した後、下記構造式のアクリルモノマー50部をテトラヒドロフラン50部
【0121】
【化26】
【0122】
に溶解し表面保護層用塗料を調整した。この塗料をスプレーコーティング法により先の電荷輸送層上に塗布し、50℃で10分間乾燥させた後に、加速電圧150KV、照射線量30Mradの条件で電子線を照射し樹脂を硬化し、膜厚5μmの表面保護層を形成し、電子写真感光体を得た。この感光体を実施例1と同様に評価した。初期より残留電位が高く画出しおよび電位変動等の評価は出来なかった。その結果を表7に示す。
【0123】
(比較例8)
特開平09−194535に開示されているのと同様な方法で合成し、下記の電子輸送性ポリマーを(重量平均分子量:10000、還元電位:−0.93 v
)得た。
【0124】
【化27】
【0125】
実施例1において導電層、中間層及び電荷発生層を形成した後、上記ポリマー10部をモノクロロベンゼン40部およびジクロロメタン10部の混合溶媒中に溶解して調整した電荷輸送層用塗料を用いて、浸漬塗布により電荷輸送層を形成した。このときの電荷輸送層の膜厚は15μmであった。この電子写真感光体を実施例1と同様に評価した。初期の電位特性及び耐久の電位特性は十分ではなくかつ耐久画像も7000枚より傷及びカブリが発生した。その結果を表7に示す。
【0126】
(比較例9)
特開平11−119458に開示されている下記化合物0.4部と
【0127】
【化28】
【0128】
シリコンハードコート材料(X−40−2239;信越化学社製)0.5部およびn−ブチルエーテル3部とを混合した保護層用塗料を調整した。実施例24と同様に導電層、中間層および電荷発生層を形成した後、この保護層用塗料を電荷発生層上にスプレーコーティング法により塗布し、100℃で10分間乾燥表面保護層を作成した。この電子写真感光体を実施例1と同様に評価した。削れ性はかなり良好なものの、初期の電位特性及び耐久の電位特性は十分ではなくかつ耐久画像も1000枚よりカブリが発生した。その結果を表7に示す。
【0129】
【表7】
【0130】
(実施例27)
アルマイト処理されたアルミニウムシリンダー上に、β型オキシチタニウムフタロシアニン結晶を3部、正孔輸送材料として実施例26の化合物(A)50部、表3の電子輸送化合物例No.20 50部、ポリカーボネート樹脂(Z型;重量平均分子量:40000)30部およびおよびテトラヒドロフラン700部をボールミルで混合分散した単層型感光体の塗料を浸漬塗布し、50℃で10分間乾燥させた後に、加速電圧150KV、照射線量10Mradの条件で電子線を照射し樹脂を硬化し、膜厚15μmの単層型電子写真感光体を得た。この感光体をレーザービームプリンター(Laser Jet4000:ヒューレットパッカード製)の改造機のシリンダーに貼り付けて、初期暗部電位(Vd)が−700(V)になるように帯電設定をし、これに波長780(nm)のレーザー光を照射して−700(V)の電位を−200(V)まで下げるのに必要な光量(EΔ500)を測定し感度とした。さらに、20(μJ/cm2)の光量を照射した場合の電位を残留電位(Vr)として初期特性を測定した。その結果は、EΔ500;0.42(μJ/cm2)、Vr;90(v)であった。
【0131】
更に、連続2000枚の通紙耐久を行っても画像欠陥のない良好な画像が得られ、2000枚終了時でのドラムの削れ量は0.4μmであった。
【0132】
(実施例28)
実施例27の化合物(A)の替わりに下記構造式の化合物を用いた以外は
【0133】
【化29】
【0134】
実施例27と同様に感光体を作成し同様な評価をした。その結果は、EΔ500;0.38(μJ/cm2)、Vr;75(v)、2000枚終了時でのドラムの削れ量は0.15μmであった。
【0135】
(比較例10)
アルマイト処理されたアルミニウムシリンダー上に、β型オキシチタニウムフタロシアニン結晶を3部、正孔輸送材料として実施例26の化合物(A)50部、下記電子輸送化合物
【0136】
【化30】
【0137】
50部、ポリカーボネート樹脂(Z型;重量平均分子量:40000)100部およびおよびテトラヒドロフラン 700部をボールミルで混合分散した単層型感光体の塗料を浸漬塗布し膜厚15μmの単層型電子写真感光体を得た。この感光体を実施例27と同様な評価を行った。その結果は、EΔ500;0.55(μJ/cm2)、Vr;110(v)、2000枚終了時でのドラムの削れ量は2.9μmであった。
【0138】
【発明の効果】
本発明の電子写真感光体は耐析出性、耐磨耗性および耐傷性に優れた効果を有する。さらに、感度、残留電位などの電子写真特性も非常に良好であり、また繰り返し使用時にも安定した性能を発揮することができる。
【0139】
また、該電子写真感光体の効果は、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置においても当然に発揮され、長期間高画質が維持される。
【図面の簡単な説明】
【図1】本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成の例を示す図である。
【符号の説明】
1 電子写真感光体
2 軸
3 一次帯電手段
4 画像露光光
5 現像手段
6 転写手段
7 転写材
8 像定着手段
9 クリーニング手段
10 前露光光
11 プロセスカートリッジ
12 レール[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member, an electrophotographic apparatus provided with the electrophotographic photosensitive member, and a facsimile.
[0002]
[Prior art]
Conventionally, as a photoconductive material used in an electrophotographic photoreceptor, an inorganic photoreceptor having a photosensitive layer containing selenium, zinc oxide, cadmium or the like as a main component has been widely used. These have some basic characteristics as a photoreceptor, but have problems such as difficulty in film formation, poor plasticity, and high production cost. Further, inorganic photoconductive materials are generally highly toxic, and there are great restrictions on production and handling.
[0003]
On the other hand, a photoreceptor containing an organic photoconductive material as a main component has many advantages, such as compensating for the above-mentioned disadvantages of an inorganic photoreceptor, and has been receiving attention in recent years. Have been. As such an organic photoreceptor, a function-separated type electrophotographic photoreceptor in which a charge generation function and a charge transport function are respectively assigned to different substances has brought improvements in sensitivity and durability. Such a function-separated type photoreceptor has an advantage that a material selection range of a charge generation material and a charge transport material is wide, and an electrophotographic photoreceptor having arbitrary characteristics can be relatively easily prepared.
[0004]
However, most of these function-separated type photoconductors are photoconductors of a type in which a charge transport layer is laminated on a charge generation layer in this order, and most of the photoconductors having this configuration are used in a negative charging process. . The reason for adopting such a configuration is that organic materials having a sufficient charge mobility even in a high-speed electrophotographic process have been almost always limited to hole transport materials having only the property of hole transport. In order to minimize the fatigue of electrostatic characteristics and maintain the mechanical strength of the photoreceptor sufficiently during the process, the function of charge generation and charge transfer is separated for each layer. This is because a photoconductor having a laminated structure in which a charge transport layer having an organic material having a hole transport property is disposed on the surface thereof has been considered to be the most reasonable. However, such a function-separated type electrophotographic photosensitive member presents a new problem at present.
[0005]
One of the problems is that electrophotography using an organic photoreceptor that is used for negative charging generates a large amount of ozone due to charging, and consequently pollutes the environment and oxidizes and degrades the photoreceptor. In order to prevent this, a system that does not generate ozone, a system that recovers ozone in the apparatus, and the like are required, and there is a disadvantage that the process and the system are complicated.
[0006]
Therefore, research and development of a positively charged photoreceptor that generates a small amount of ozone during charging has been actively performed in recent years. For example, a photoconductor having a single layer structure in which a charge generation material and a hole transport material are dispersed in a binder resin in one layer, or a charge generation material, a hole transport material, and an electron transport material in one layer In recent years, a large number of single-layer photoreceptors formed by dispersing in a binder resin have been proposed. (For example, refer to Patent Documents 1 to 11)
[0007]
However, the photoreceptor for positive charging described above causes dielectric breakdown due to electric shock at the time of charging, image defects such as white spots and black spots are likely to occur, and the dispersion layer forms a surface layer, There are drawbacks such as poor mechanical wear resistance. In order to prevent this, it is conceivable to provide a protective layer on the photoreceptor. In this case, however, the residual potential increases in the process of repeated image formation, causing background fog, and the electrophotographic performance becomes poor. A problem that easily deteriorates occurs.
[0008]
Therefore, in recent years, an electron transporting material having a certain level of carrier transporting ability has been developed while being inferior to the carrier transporting ability of a hole transporting substance such as a triarylamine. An electrophotographic photoreceptor having a positively-charged laminated structure has been proposed. (For example, see
[0009]
However, even with the above-mentioned laminated photoreceptor, there are problems in that the carrier of the electron transport material is not sufficiently moved and the sensitivity is poor, and the resulting fluctuation in the residual potential upon repeated use is large. To compensate for this, if the amount of the electron transporting material is increased, the compatibility with the binder resin will be poor, and if the amount is increased, the durability will still increase even if the amount is increased (wear and scratches on the surface layer ) Is significantly reduced. As described above, the laminated electrophotographic photoreceptor using the electron transport material has at least some problems such as sensitivity, potential characteristics, and durability, and has not yet been put to practical use.
[0010]
Further, in order to solve the above-mentioned problem, a method of polymerizing and using an electron transport compound has recently been proposed. (For example, see Patent Documents 22 to 24.)
[0011]
However, even with the photoreceptor having the above-described configuration, the mechanical strength is still not sufficient, the potential fluctuation during repeated use is large, and the sensitivity is poor. At present, an electrophotographic photoreceptor that can meet the demand for higher image quality has not been obtained, and needs to be improved.
[0012]
[Patent Document 1]
JP-A-61-48861
[Patent Document 2]
JP-A-2-37354
[Patent Document 3]
JP-A-3-290666
[Patent Document 4]
JP-A-4-338760
[Patent Document 5]
JP-A-5-992
[Patent Document 6]
JP-A-6-123984
[Patent Document 7]
JP-A-6-123985
[Patent Document 8]
JP-A-6-130688
[Patent Document 9]
JP-A-6-27693
[Patent Document 10]
JP-A-8-334910
[Patent Document 11]
JP-A-11-65141
[Patent Document 12]
JP-A-60-69657
[Patent Document 13]
JP-A-61-233750
[Patent Document 14]
JP-A-3-256050
[Patent Document 15]
JP-A-4-285670
[Patent Document 16]
JP-A-4-327555
[Patent Document 17]
JP-A-6-43673
[Patent Document 18]
JP-A-6-26612
[Patent Document 19]
JP-A-6-273952
[Patent Document 20]
JP-A-8-248553
[Patent Document 21]
JP-A-10-10760
[Patent Document 22]
JP-A-8-134019
[Patent Document 23]
JP-A-9-194535
[Patent Document 24]
JP-A-11-119458
[0013]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems in the prior art. That is, first, a highly durable electron transporting film having high electron transporting ability and extremely stable mechanically / chemically is formed, the abrasion resistance and the scratch resistance are improved, and the deposition resistance is excellent. An object of the present invention is to provide an electrophotographic photoreceptor that can be used with positive charging.
[0014]
Second, it is an object of the present invention to provide a positively chargeable electrophotographic photoreceptor capable of exhibiting extremely small potential fluctuations during repeated use and exhibiting stable performance even during repeated use.
[0015]
Third, the present invention provides an electrophotographic photoreceptor which has improved surface abrasion and scratch resistance of the photoreceptor, has a long service life, can be used for positive charge with high image quality, and a process cartridge and an electrophotographic apparatus having the electrophotographic photoreceptor. Is to do.
[0016]
[Means for Solving the Problems]
The present inventors have conducted extensive studies and found that, in an electrophotographic photoreceptor having a photosensitive layer on a conductive support, the photosensitive layer has two or more chain-polymerizable functional groups in the same molecule. It has been found that an electrophotographic photoreceptor characterized in that it contains a compound obtained by polymerizing or cross-linking and curing an electron transporting compound and the electron transporting compound solves the above-mentioned problems.
[0017]
Further, according to the present invention, there is provided a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The details of the present invention will be described below.
[0019]
First, the chain polymerizable functional group in the present invention will be described. The term chain polymerization in the present invention refers to the former type of polymerization reaction when the production reaction of a macromolecular substance is largely divided into chain polymerization and sequential polymerization, and is described in detail in, for example, `` Basic '' (New Edition), July 25, 1995 (1st edition, 8th press), p. As described in 24, the form mainly refers to unsaturated polymerization, ring-opening polymerization and isomerization polymerization in which the reaction proceeds via an intermediate such as a radical or ion. The chain polymerizable functional group P in the above formula (1) means a functional group capable of the above-mentioned reaction mode, and here, it occupies most of the functional group, and includes unsaturated polymerizable or ring-opening polymerizable functional groups having a wide application range. A specific example will be described.
[0020]
The unsaturated polymerization is a reaction in which an unsaturated group, for example, C = C, C≡C, C = O, C = N, C≡N, or the like is polymerized by a radical, an ion, or the like.
In most cases, C = C. Specific examples of the unsaturated polymerizable functional group are shown in Table 1, but are not limited thereto.
[0021]
[Table 1]
[0022]
In ring-opening polymerization, an unstable cyclic structure having a strain, such as a carbon ring, an oxo ring, or a nitrogen hetero ring, is activated by the action of a catalyst and repeats polymerization at the same time as ring opening to produce a chain polymer. The reaction is a reaction, and in this case, most of the ions basically act as active species. Specific examples of the ring-opening polymerizable functional group are shown in Table 2, but are not limited thereto.
[0023]
[Table 2]
[0024]
In Tables 1 and 2, R represents an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group which may have a substituent, a benzyl group which may have a substituent, a phenethyl group, and a naphthylmethyl group. , An aralkyl group such as a furfuryl group and a thienyl group, an aryl group such as a phenyl group, a naphthyl group and an anthryl group which may have a substituent, or a hydrogen atom.
[0025]
Among the chain polymerizable functional groups according to the present invention as described above, those represented by the following general formulas (4) to (6) are preferable.
[0026]
Embedded image
[0027]
In the formula, E is a hydrogen atom, a halogen atom such as fluorine, chlorine and bromine, an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group which may have a substituent, and may have a substituent. Benzyl group, phenethyl group, naphthylmethyl group, aralkyl group such as furfuryl group and thienyl group, phenyl group which may have a substituent, naphthyl group, anthryl group, pyrenyl group, aryl group such as thiophenyl group and furyl group, Alkoxy groups such as methoxy group, ethoxy group and propoxy group, CN group, nitro group, -COORFifteenOr CONR16R17Indicates that
W represents an arylene group such as divalent phenylene, naphthylene and anthracenylene which may have a substituent, a divalent alkylene group such as methylene, ethylene and butylene which may have a substituent, -COO- and -CH2-, -O-, or -CONR18-,
RFifteen, R16, R17And R18Is a hydrogen atom, a halogen atom such as fluorine, chlorine, bromine and iodine, an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group which may have a substituent, and a benzyl group which may have a substituent. And an aralkyl group such as a phenethyl group or an aryl group such as a phenyl group, a naphthyl group and an anthryl group which may have a substituent;16And R17May be the same or different, and f represents 0 or 1.
[0028]
Substituents which may be present in E and W include halogen atoms such as fluorine, chlorine, bromine and iodine, nitro groups, cyano groups, hydroxyl groups, methyl groups and ethyl groups. Alkyl groups such as propyl group and butyl group, alkoxy groups such as methoxy group, ethoxy group and propoxy group, aryloxy groups such as phenoxy group and naphthoxy group, benzyl group, phenethyl group, naphthylmethyl group, furfuryl group, thienyl group, etc. And an aryl group such as a phenyl group, a naphthyl group, an anthryl group and a pyrenyl group.
[0029]
Embedded image
[0030]
(Where R19And R20Has a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group which may have a substituent, an aralkyl group or a substituent such as a benzyl group or a phenethyl group which may have a substituent. Represents an aryl group such as a phenyl group and a naphthyl group, and n represents an integer of 1 to 10. )
[0031]
Embedded image
[0032]
(Where R21And R22Has a hydrogen atom, an optionally substituted methyl group, an ethyl group, an alkyl group such as propyl and butyl group, an optionally substituted benzyl group and an aralkyl group such as a phenethyl group or a substituent. And an aryl group such as a phenyl group and a naphthyl group, wherein n represents an integer of 0 to 10 or less. )
In addition, R in the above general formulas (5) and (6)19, R20, R21And R22May have a halogen atom such as fluorine, chlorine, bromine and iodine, a methyl group and an ethyl group. Alkyl groups such as propyl group and butyl group, alkoxy groups such as methoxy group, ethoxy group and propoxy group, aryloxy groups such as phenoxy group and naphthoxy group, benzyl group, phenethyl group, naphthylmethyl group, furfuryl group and thienyl group And an aryl group such as a phenyl group, a naphthyl group, an anthryl group and a pyrenyl group.
[0033]
Further, among the above general formulas (4) to (6), particularly preferable chain polymerizable functional groups include those represented by the following general formulas (7) to (13).
[0034]
Embedded image
[0035]
Further, among the above formulas (7) to (13), the acryloyloxy group of (7) and the methacryloyloxy group of (8) are particularly preferable from the viewpoint of polymerization characteristics and the like.
[0036]
In the present invention, "an electron transporting compound having a chain polymerizable functional group" refers to a compound in which the chain polymerizable group described above is chemically bonded to at least two of the electron transporting compounds described above as a functional group. Is shown. In this case, all of the chain polymerizable functional groups may be the same or different.
[0037]
The electron transporting compound having at least two chain polymerizable functional groups is preferably a compound represented by the following general formula (1).
[0038]
Embedded image
[0039]
Wherein A represents an electron transporting group;1And P2Represents a chain polymerizable functional group;1And P2May be the same or different; Z represents an organic group which may have a substituent; a, b and d each represent an integer of 0 or more; a + b × d represents an integer of 2 or more; Is greater than or equal to 21May be the same or different, and when d is 2 or more, P2May be the same or different, and when b is 2 or more, Z and P2May be the same or different.
[0040]
Note that here, "a is 2 or more, P1May be the same or different. "Means that n different types of chain polymerizable functional groups11, P12, PThirteen, P14, PFifteen.... P1nWhen, for example, when a = 3, the polymerizable functional group P directly bonded to the electron transporting compound A1Are the same, but two are the same and one is different (for example, P11And P11And P12), But each of the three is different (for example, P12And PFifteenAnd P17) Is acceptable (“P if dP is 2 or more, P2May be the same or different ", and" when b is 2 or more, Z may be the same or different "means the same.)
[0041]
The electron transport compound having two or more chain polymerizable functional groups of the general formula (1) has a reduction potential (corresponding to the electron affinity Ea) of -0.2 (v) with respect to the reference electrode SCE (saturated carmelo electrode). ) To -1.2 (v), particularly preferably -0.2 (v) to -0.8 (v).
[0042]
This is because when the reduction potential exceeds -1.2 (v), injection of charges (electrons) from the charge generating material is unlikely to occur, and there are problems such as an increase in residual potential, deterioration in sensitivity, and a large potential fluctuation during repeated use. This is because if it is less than -0.2 (v), problems such as a decrease in charging ability are likely to occur.
[0043]
In addition, the reduction potential described here is measured by the following method.
[0044]
(Method of measuring reduction potential)
A saturated calomel electrode was used as a reference electrode, and 0.1N (n-C4H9)4N+ClO4 −Using a dichloromethane solution, the potential applied to the working electrode (platinum) was swept by a potential sweeper using a potential sweeper, and the potential obtained when the obtained current-potential curve showed a peak was defined as the oxidation potential. More specifically, the sample is 0.1N (n-C4H9)4N+ClO4 −Dissolve in a dichloromethane solution to a concentration of about 1 mmol%. Then, a voltage is applied to this sample solution by the working electrode, and the voltage is linearly changed from 0 (v) to −1.5 (v) (the peak-top position where the current value shows a peak in this current-potential curve). Potential of E1) Further, the current change when linearly changing from -1.5 (v) to 0 (v) is measured (the potential at the peak top position where the current value shows a peak in this current-potential curve is calculated). E2) Obtain a current-potential curve. This obtained E1+ E2/ 2 was defined as the reduction potential here. When there are a plurality of peaks, the first reduction peak closest to 0 (v) is set to E1And E2did.
[0045]
P of A in the above general formula (1)1Preferred examples of the electron transporting compound in which the bonding site with Z and Z are replaced by a hydrogen atom include the following general formulas (A-1) to (A-11), but are not limited to these compounds.
[0046]
Embedded image
[0047]
Where R1, R2Represents a hydrogen atom, a methyl group or an ethyl group which may have a substituent. An alkyl group having 10 or less carbon atoms such as a propyl group and a butyl group, a benzyl group which may have a substituent, an aralkyl group such as a phenethyl group, a naphthylmethyl group, a furfuryl group and a thienyl group, which may have a substituent. Aryl groups such as phenyl, naphthyl, anthryl, phenanthryl, pyrenyl, thiophenyl, furyl, pyridyl, quinolyl, benzoquinolyl, carbazolyl, phenothiazinyl, benzofuryl, and benzothiophenyl , An alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an aryloxy group such as a phenoxy group, a naphthoxy group, an acyl group, an ester group, a cyano group, a nitro group, an amide group, a sulfonic acid group, and a sulfonic acid ester Group, sulfonamide group, hydroxy group, aldehyde group or Indicates Gen atom, an m ≧ 0, n ≧ 0, provided that when m ≧ 2 R1May be different from each other, and when n ≧ 2, R2May be different from each other.
[0048]
R3, R4Represents a methyl group or an ethyl group which may have a substituent. An alkyl group having 10 or less carbon atoms such as a propyl group and a butyl group, a benzyl group which may have a substituent, an aralkyl group such as a phenethyl group, a naphthylmethyl group, a furfuryl group and a thienyl group, which may have a substituent. Aryl groups such as phenyl, naphthyl, anthryl, phenanthryl, pyrenyl, thiophenyl, furyl, pyridyl, quinolyl, benzoquinolyl, carbazolyl, phenothiazinyl, benzofuryl, and benzothiophenyl Or an ester group.
[0049]
Q1Q, Q2Is independently oxygen, sulfur, C (CN)2CR, CR5CN, CY2(Y is a halogen atom such as fluorine, chlorine and bromine), C (COOR6)2CR, CR7COOR8 , NR9 Or NCN. Q3Is an oxygen atom, a sulfur atom or SO2Is shown.
[0050]
Where R5, R6, R7, R8, R9Each independently represents a hydrogen atom, a methyl group or an ethyl group which may have a substituent. An alkyl group having 10 or less carbon atoms such as a propyl group and a butyl group, a benzyl group which may have a substituent, a phenethyl group, a naphthylmethyl group, a furfuryl group and a thienyl group may have an aralkyl group or a substituent. Aryl groups such as phenyl, naphthyl, anthryl, phenanthryl, pyrenyl, thiophenyl, furyl, pyridyl, quinolyl, benzoquinolyl, carbazolyl, phenothiazinyl, benzofuryl, and benzothiophenyl Is shown.
[0051]
Embedded image
[0052]
Represents an optionally substituted aryl group such as a benzene ring, a naphthalene ring, an anthracene ring, a thiophene ring, a furan ring, and a pyridine ring.
[0053]
Z in the general formula (1) is an alkylene group which may have a substituent, an arylene group which may have a substituent, CR10= CR11(R10And R11Represents an alkyl group, an aryl group or a hydrogen atom;10And R11May be the same or different), C = O, S = O, SO2, An organic group which is one or more optionally combined from an oxygen atom or a sulfur atom. Among them, a compound represented by the following general formula (2) is preferable, and a compound represented by the following general formula (3) is particularly preferable.
[0054]
Embedded image
[0055]
In the general formula (3), X1~ X3Is an alkylene group having 20 or less carbon atoms such as a methylene group, an ethylene group and a propylene group which may have a substituent;12= CRThirteen) M2, C = O, S = O, SO2Represents an oxygen atom or a sulfur atom;1And Ar2Is a divalent arylene group which may have a substituent (benzene, naphthalene, anthracene, phenanthrene, pyrene, thiophene, furan, pyridine, quinoline, benzoquinoline, carbazole, phenothiazine, benzofuran, benzothiophene, dibenzofuran, dibenzothiophene, etc. From which two hydrogen atoms have been removed). R12And RThirteenRepresents an alkyl group such as methyl group, ethyl group propyl group and butyl group which may have a substituent, an aryl group such as phenyl group, naphthyl group and thiophenyl group which may have a substituent, or a hydrogen atom. And R12And RThirteenMay be the same or different. m2Represents an integer of 1 to 5, and p to t represents an integer of 0 to 10 (however, p to t are not simultaneously 0).
[0056]
In the general formula (3), X4And X5Is (CH2) M3, (CH = CR14) M4, C = O, or an oxygen atom;3Is a divalent arylene group which may have a substituent (benzene, naphthalene, anthracene, phenanthrene, pyrene, thiophene, furan, pyridine, quinoline, benzoquinoline, carbazole, phenothiazine, benzofuran, benzothiophene, dibenzofuran, dibenzothiophene, etc. From which two hydrogen atoms have been removed). R14Represents an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group which may have a substituent, an aryl group such as a phenyl group, a naphthyl group and a thiophenyl group which may have a substituent, or a hydrogen atom. . m3Is an integer from 1 to 10, m4Represents an integer of 1 to 5, and u to w represent an integer of 0 to 10 (particularly preferably an integer of 0 to 5; however, u to w are not simultaneously 0).
[0057]
In addition, R of the above general formulas (1) to (13) and (A-1) to (A-11)1~ R22, Ar1~ Ar3, X1~ X5, Z and Q may have a halogen atom such as fluorine, chlorine, bromine and iodine, a nitro group, a cyano group, a hydroxyl group, a methyl group and an ethyl group. Alkyl groups such as propyl group and butyl group, alkoxy groups such as methoxy group, ethoxy group and propoxy group, aryloxy groups such as phenoxy group and naphthoxy group, benzyl group, phenethyl group, naphthylmethyl group, furfuryl group and thienyl group And an aryl group such as a phenyl group, a naphthyl group, an anthryl group and a pyrenyl group.
[0058]
Further, the electron transporting compound having a chain polymerizable functional group has an electron transporting ability of 1 × 10-7(Cm2/ V. sec) or more having a drift mobility of at least (provided electric field: 5 × 104v / cm). 1 × 10-7(Cm2/ V. If the time is less than (sec), electrons may not move sufficiently before development after exposure as an electrophotographic photoreceptor, so that apparently sensitivity may decrease and a residual potential may increase.
[0059]
Hereinafter, typical examples of the electron transporting compound having a chain polymerizable functional group according to the present invention will be described, but the present invention is not limited thereto.
[0060]
[Table 3]
[0061]
[Table 4]
[0062]
[Table 5]
[0063]
In the present invention, by polymerizing and curing an electron transporting compound having two or more chain polymerizable functional groups in the same molecule, in the photosensitive layer, at least two or more compounds having electron transporting ability are provided. Is incorporated into the three-dimensional crosslinked structure via a covalent bond. The electron transporting compound can be polymerized or cross-linked alone, or can be mixed with a compound having another chain polymerizable group, and the type / ratio thereof is arbitrary. The compound having another chain polymerizable group as referred to herein includes both monomers and oligomers / polymers having a chain polymerizable group. When the functional group of the electron transporting compound and the functional group of the other chain polymerizable compound are the same group or a group that can be polymerized with each other, both may form a copolymerized three-dimensional cross-linked structure via a covalent bond. It is possible. When both functional groups are functional groups that do not polymerize with each other, the photosensitive layer may be a mixture of at least two or more three-dimensional cured products or a three-dimensional cured product of the main component containing another chain polymerizable compound monomer or Although it is configured as containing the cured product, it is also possible to form an IPN (Inter Penetrating Network), that is, an interpenetrating network structure, by properly controlling the mixing ratio / film forming method.
[0064]
Further, the photosensitive layer may be formed from the above-mentioned electron transporting compound and a monomer or oligomer / polymer having no chain polymerizable group or a monomer or oligomer / polymer having a polymerizable group other than chain polymerizable group.
[0065]
Further, in some cases, it is possible to contain an electron transporting compound that is not chemically bonded to the three-dimensional crosslinked structure, that is, has no chain polymerizable functional group.
[0066]
Further, it may contain other various additives, Teflon (registered trademark) and other lubricants.
[0067]
The configuration of the photoreceptor of the present invention has a configuration in which a charge generation layer containing a charge generation substance and a charge transport layer containing a charge transport substance are stacked in this order as a photosensitive layer on a conductive support, or a configuration in which the charge transport layer is stacked in reverse order. In addition, any structure of a single layer in which a charge generation material and a charge transport material are dispersed in the same layer can be adopted. In the former laminated type, the charge transport layer may have two or more layers, and in the latter single layer type, a charge transport layer may be further formed on the photosensitive layer containing the same charge generating substance and charge transporting substance. Further, a protective layer can be formed on the charge generation layer or the charge transport layer. In any of these cases, it is sufficient that the photosensitive layer contains a polymerized and cured electron transporting compound having a chain polymerizable group and / or a pre-electron transporting compound. However, from the viewpoint of the characteristics as an electrophotographic photoreceptor, in particular, electric characteristics such as residual potential and durability, a function-separated type photoreceptor having a charge generation layer / a charge transport layer laminated in this order is preferable. An advantage is that the durability of the surface layer can be increased without lowering the charge transporting ability.
[0068]
Next, a method for producing an electrophotographic photosensitive member according to the present invention will be specifically described.
[0069]
The support of the electrophotographic photoreceptor may be any conductive material, for example, a metal or alloy such as aluminum, copper, chromium, nickel, zinc, and stainless steel formed into a drum or sheet, aluminum and copper, and the like. Metal foil laminated on a plastic film, aluminum, indium oxide, tin oxide, etc. deposited on a plastic film, a conductive material applied alone or with a binder resin to provide a conductive layer, or a plastic film And paper.
[0070]
In the present invention, an undercoat layer having a barrier function and an adhesive function can be provided on the conductive support.
[0071]
The undercoat layer is used to improve the adhesion of the photosensitive layer, improve coating properties, protect the support, cover defects on the support, improve charge injection from the support, and protect the photosensitive layer against electrical breakdown. Formed. Examples of the material for the undercoat layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, copolymer nylon, glue and gelatin. Has been done. These are dissolved in a suitable solvent and applied onto a support. The thickness at this time is preferably 0.1 to 2 μm.
[0072]
When the photoreceptor of the invention is a function-separated type photoreceptor, a charge generation layer and a charge transport layer are laminated. Examples of the charge generation material used in the charge generation layer include selenium-tellurium, pyrylium, thiapyrylium dyes, and various kinds of central metals and crystal systems, specifically, for example, α, β, γ, ε, and X-type crystal forms. Phthalocyanine compounds, anthantrone pigments, dibenzopyrene quinone pigments, pyranthrone pigments, trisazo pigments, disazo pigments, monoazo pigments, indigo pigments, quinacridone pigments, asymmetric quinocyanine pigments, quinocyanines and amorphous silicones.
[0073]
In the case of a function-separated type photoreceptor, the charge generation layer is formed by mixing the charge generation substance with a binder resin and a solvent in an amount of 0.3 to 4 times as much as a homogenizer, an ultrasonic dispersion, a ball mill, a vibration ball mill, a sand mill, an attritor and a roll mill. It is formed by dispersing well by a method, applying a dispersion, and drying, or formed as a film of a single composition such as a vapor-deposited film of the charge generating substance. The film thickness is preferably 5 μm or less, particularly preferably in the range of 0.1 to 2 μm.
[0074]
Examples of using a binder resin include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylates, methacrylates, vinylidene fluoride, trifluoroethylene, polyvinyl alcohol, and polyvinyl alcohol. Examples include acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, epoxy resin, and the like.
[0075]
The electron transporting compound having a chain polymerizable functional group in the present invention is formed as a charge transporting layer on the above-described charge generating layer, or a charge transporting layer comprising a charge transporting substance and a binder resin on the charge generating layer. It can be used later as a surface protective layer having an electron transporting ability. In any case, the method for forming the surface layer generally involves a polymerization / curing reaction after the application of the solution containing the hole transporting compound. Is reacted to obtain a cured product, and then the surface layer can be formed using a material that is dispersed or dissolved again in a solvent. As a method of applying these solutions, for example, a dip coating method, a spray coating method, a curtain coating method, a spin coating method, and the like are known, but a dip coating method is preferable in terms of efficiency / productivity.
[0076]
In addition, deposition, plasma, and other known film forming methods can be appropriately selected.
[0077]
In the present invention, the electron transporting compound having a chain polymerizable group is preferably polymerized and cured by radiation. The greatest advantage of polymerization by radiation is that no polymerization initiator is required, which makes it possible to produce a very high-purity three-dimensional photosensitive layer matrix, and ensures good electrophotographic properties. In addition, the productivity is high due to the short and efficient polymerization reaction, and the good radiation permeability prevents curing when the film is thick or when a shielding substance such as an additive is present in the film. Is very small. However, depending on the type of the chain polymerizable group and the type of the central skeleton, the polymerization reaction may not easily proceed, and in that case, the polymerization initiator can be added within a range that does not affect the polymerization reaction. The radiation used at this time is an electron beam and γ-ray. When irradiating with an electron beam, any type of accelerator such as a scanning type, an electro curtain type, a broad beam type, a pulse type, and a laminar type can be used. When irradiating with an electron beam, irradiation conditions are very important for the photoreceptor of the present invention to develop electrical characteristics and durability. In the present invention, the acceleration voltage is preferably 250 KV or less, and most preferably 150 KV or less. The irradiation dose is preferably in the range of 1 Mrad to 100 Mrad, more preferably in the range of 3 Mrad to 50 Mrad. If the accelerating voltage exceeds the above, the damage of the electron beam irradiation to the photoconductor characteristics tends to increase. If the irradiation dose is smaller than the above range, curing tends to be insufficient, and if the irradiation dose is large, the characteristics of the photoreceptor are likely to deteriorate.
[0078]
When the electron transporting compound having a chain polymerizable group is used as the charge transporting layer, the amount of the electron transporting compound is calculated by the above formula (1) based on the total weight of the charge transporting layer film after polymerization and curing. It is desirable that the hydrogenated product of the electron transporting group A having the chain polymerizable functional group shown is contained in an amount of 20% or more, preferably 40% or more in terms of molecular weight. If it is less than that, the charge transporting ability is reduced, and problems such as a decrease in sensitivity and an increase in residual potential occur. In this case, the film thickness of the charge transport layer is preferably from 1 to 50 μm, particularly preferably from 3 to 30 μm.
[0079]
When the electron transporting compound is used as a surface protective layer on the charge generating layer / charge transporting layer, the underlying charge transporting layer may be a suitable electron transporting compound such as a benzoquinone derivative, a diphenoquinone derivative, a naphthoquinone derivative, a cyclopentadiene derivative, A low-molecular compound such as an indenone derivative, a benzoxazole derivative, a benzothiazole derivative, an imide derivative, a diimide derivative, a 4-oxothiopyran-1,1-dioxide derivative, or a fluorenone derivative is appropriately bound with a suitable binder resin (the above-described resin for the charge generation layer). And a solution dispersed / dissolved in a solvent and coated and dried by the above-mentioned known method. In this case, the ratio of the charge transporting material to the binder resin is desirably 30 to 100, preferably 50 to 100, assuming that the total weight of both is 100. If the amount of the charge transporting substance is less than that, the charge transporting ability is reduced, causing problems such as a decrease in sensitivity and an increase in residual potential. The thickness of the charge transport layer is determined so that the total thickness including the upper surface protective layer is 1 to 50 μm, and is preferably adjusted in the range of 5 to 30 μm.
[0080]
In any of the cases described above, in the present invention, the photosensitive layer containing the cured product of the electron transporting compound having a chain polymerizable group can contain the electron transporting compound.
[0081]
In the case of a single-layer type photosensitive layer, a charge-generating substance is simultaneously contained in the solution containing the electron-transporting compound, and the solution may be provided with a suitable undercoat layer or an intermediate layer. The electron transporting compound is formed on a single-layered photosensitive layer composed of a charge generating substance and a charge transporting substance provided on a conductive support, in the case of being formed by applying and polymerizing / curing after coating on the conductive support. Any of polymerization and curing after application of the solution is possible.
[0082]
Various additives can be added to the photosensitive layer in the invention. The additives include a deterioration inhibitor such as an antioxidant and an ultraviolet absorber, and a lubricant such as tetrafluoroethylene resin particles and carbon fluoride.
[0083]
FIG. 1 shows a schematic configuration of an electrophotographic apparatus having a process cartridge having the electrophotographic photosensitive member of the present invention. In the drawing, reference numeral 1 denotes an electrophotographic photosensitive member of the present invention on a drum, which is rotated at a predetermined peripheral speed in the direction of an arrow with the shaft 2 stopped. In the rotation process, the photosensitive member 1 is uniformly charged with a predetermined positive or negative potential on its peripheral surface by the primary charging means 3, and then an image from an image exposure means (not shown) such as slit exposure or laser beam scanning exposure. The
[0084]
The electrophotographic photoreceptor of the present invention can be widely used not only for electrophotographic copying machines but also for electrophotographic applications such as laser beam printers, CRT printers, LED printers, liquid crystal printers, and laser plate making.
[0085]
【Example】
(Example 1)
First, the paint for the conductive layer was prepared in the following procedure. 50 parts (parts by mass, hereinafter the same) of conductive titanium oxide powder coated with tin oxide containing 10% antimony oxide, 25 parts of phenol resin, 20 parts of methyl cellosolve, 5 parts of methanol, and silicone oil (polydimethylsiloxane poly) 0.002 parts of an oxyalkylene copolymer (average molecular weight: 3000) was dispersed and adjusted by a sand mill containing φ1 mm glass beads for 2 hours. This coating material was applied on a 30φ aluminum cylinder by a dip coating method, and dried at 140 ° C. for 30 minutes to form a conductive layer having a thickness of 20 μm.
[0086]
Next, 5 parts of N-methoxymethylated nylon was dissolved in 95 parts of methanol to prepare a coating for the intermediate layer. This paint was applied on the conductive layer by a dip coating method and dried at 100 ° C. for 20 minutes to form a 0.6 μm intermediate layer.
[0087]
Next, 4 parts of a hydroxygallium phthalocyanine compound having a crystal form having strong peaks at 7.4 ° and 28.2 ° at Bragg angles 2θ ± 0.2 ° in X-ray diffraction of CuKα and polyvinyl butyral resin (butyralization degree of 65 mol) %, Number average molecular weight 35000) 2 parts to 80 parts of cyclohexanone, dispersed with glass beads by a sand mill for 4 hours, diluted with 80 parts of ethyl acetate, and dried on the intermediate layer to obtain a film thickness. Was applied by dip coating to form a charge generation layer.
[0088]
Then, Compound Example Nos. The electron transporting compound of No. 19 was dissolved in a mixed solvent of 30 parts of monochlorobenzene and 30 parts of dichloromethane to prepare a coating material for the charge transport layer. This coating material was coated on the above-mentioned charge generation layer, and heated at 50 ° C. After drying for 10 minutes, the resin was cured by irradiating an electron beam under the conditions of an acceleration voltage of 150 KV and an irradiation dose of 10 Mrad to form a charge transport layer having a thickness of 15 μm to obtain an electrophotographic photosensitive member.
[0089]
The produced electrophotographic photoreceptor was evaluated for its sedimentability over time, electrophotographic properties, and durability. With respect to the sedimentability with time, a urethane rubber cleaning blade for copying was pressed against the surface of the photoreceptor, stored at 75 ° C., and an accelerated test for the sedimentability was performed. After 14 days, the surface of the photoreceptor was observed under a microscope to determine the presence or absence of precipitation. If there was no precipitation, the test was continued until 30 days later. The electrophotographic characteristics and durability were evaluated by mounting this photoreceptor on a machine obtained by modifying GP55 manufactured by Canon Inc. for positive charging. Initial photoconductor characteristics [dark portion potential Vd, light attenuation sensitivity (light amount required to attenuate light to +200 V at dark portion potential +700 V setting) and residual potential Vsl (potential when irradiating 10 times the light attenuation sensitivity light amount) )], A 15,000-sheet paper-pass durability test is conducted, the occurrence of image defects is visually observed, the amount of scraping of the photoconductor and the photoconductor characteristics after the durability are measured, and each change value ΔVd is measured. , ΔVl (the amount of change in Vl when the same amount of light as that at which Vl becomes +200 V initially was irradiated after the endurance) and ΔVsl.
[0090]
The results are shown in Table 6, where no precipitation occurred in the photoreceptor of the present invention, the photoreceptor characteristics were good, the amount of scraping during durability was small, and the photoreceptor characteristics showed little change in durability. It shows very stable and good properties.
[0091]
(Examples 2 to 16)
The electron transporting compound No. An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1, except that 19 was changed to the compounds shown in Table 6. Table 6 shows the results.
[0092]
(Example 17)
In Example 1, the electron transporting compound No. Same as Example 1 except that the amount of 19 was 48 parts and further 12 parts of an acrylate monomer having the following formula was added.
[0093]
Embedded image
[0094]
An electrophotographic photoreceptor was prepared and evaluated. Table 6 shows the results.
[0095]
(Examples 18 to 21)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1 except that the irradiation conditions of the electron beam in Example 1 were changed as shown in Table 6. Although the shaving amount and the durability image were good, the sensitivity was slightly lowered and the residual potential was slightly increased in the initial electrophotographic characteristics by increasing the irradiation dose. Table 6 shows the results.
[0096]
(Example 22)
After forming a conductive layer, an intermediate layer and a charge generation layer in the same manner as in Example 1, the electron transporting compound No. 1 shown in Table 3 was used. 14 60 parts and 0.6 parts of a photopolymerization initiator having the following structural formula are mixed in a mixed solvent of 30 parts of monochlorobenzene and 30 parts of dichloromethane.
[0097]
Embedded image
[0098]
After dissolving and preparing a coating material for the charge transport layer, this coating material was coated on the above-mentioned charge generation layer, and then 500 mW / cm using a metal halide lamp.2A 15 μm-thick charge transporting layer was formed by curing at a light intensity of 1. to obtain an electrophotographic photosensitive member. The obtained photoreceptor was evaluated in the same manner as in Example 1. Table 6 shows the results.
[0099]
(Example 23)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the photopolymerization initiator in Example 22 was changed to the following thermal polymerization initiator and the curing reaction was changed to 150 ° C./1 hour instead of the ultraviolet curing. Table 6 shows the results.
[0100]
Embedded image
[0101]
(Example 24)
After forming a conductive layer and an intermediate layer in the same manner as in Example 1, 20 parts of a hole transporting compound having the following structural formula and a polycarbonate resin (Z type; weight average molecular weight:
[0102]
Embedded image
[0103]
(50000) was dissolved in a mixed solvent of 50 parts of monochlorobenzene and 20 parts of dichloromethane to prepare a charge transport layer on the intermediate layer using a paint for a charge transport layer. At this time, the thickness of the charge transport layer was 10 μm. Next, the charge generation paint used in Example 1 was applied by a dip coating method so that the film thickness after drying was 2.0 μm to form a charge generation layer.
[0104]
Next, the electron transporting compound No. 60 to 60 parts were dissolved in a mixed solvent of 50 parts of monochlorobenzene and 30 parts of dichloromethane to prepare a coating for the surface protective layer. The paint was applied on the charge transport layer by spray coating, dried at 50 ° C. for 10 minutes, and then irradiated with an electron beam under the conditions of an acceleration voltage of 150 KV and an irradiation dose of 10 Mrad to cure the resin, and the film thickness was 5 μm. Was formed to obtain an electrophotographic photosensitive member. This photoreceptor was evaluated in the same manner as in Example 1. Table 6 shows the results.
[0105]
(Example 25)
After forming a conductive layer, an intermediate layer and a charge generation layer in the same manner as in Example 1, 4 parts each of a naphthalenetetracarboxylic diimide derivative compound having the following structural formula was used.
[0106]
Embedded image
[0107]
And 10 parts of a polycarbonate resin (Z type; weight average molecular weight: 50,000) dissolved in a mixed solvent of 50 parts of monochlorobenzene and 20 parts of dichloromethane to prepare a charge transport layer coating material, and the charge on the charge generation layer was adjusted. A transport layer was formed. At this time, the thickness of the charge transport layer was 15 μm. Then, the electron transporting compound example No. 19 to 60 parts was dissolved in a mixed solvent of 50 parts of monochlorobenzene and 30 parts of dichloromethane to prepare a paint for a surface protective layer. The paint was applied on the charge transport layer by spray coating, dried at 50 ° C. for 10 minutes, and then irradiated with an electron beam under the conditions of an acceleration voltage of 150 KV and an irradiation dose of 10 Mrad to cure the resin, and the film thickness was 5 μm. Was formed to obtain an electrophotographic photosensitive member. This photoreceptor was evaluated in the same manner as in Example 1. Table 6 shows the results.
[0108]
(Example 26)
After forming a conductive layer and an intermediate layer in the same manner as in Example 1, 3 parts of β-type oxytitanium phthalocyanine crystal, 40 parts of a compound of the following structural formula (A) as a hole transport material, and the following structural formula ( 40 parts of the compound of B),
[0109]
Embedded image
[0110]
A coating of a single-layer photoreceptor in which 100 parts of a polycarbonate resin (Z type; weight average molecular weight: 50,000) and 700 parts of tetrahydrofuran were mixed and dispersed by a ball mill was applied, and a photosensitive layer having a dried film thickness of 13 μm was formed. Next, the electron transporting compound Nos. 32 to 60 parts was dissolved in a mixed solvent of 50 parts of monochlorobenzene and 30 parts of dichloromethane to prepare a paint for a surface protective layer. The paint was applied on the charge transport layer by spray coating, dried at 50 ° C. for 10 minutes, and then irradiated with an electron beam under the conditions of an acceleration voltage of 150 KV and an irradiation dose of 10 Mrad to cure the resin, and the film thickness was 5 μm. Was formed to obtain an electrophotographic photosensitive member. This photoreceptor was evaluated in the same manner as in Example 1. Table 6 shows the results.
[0111]
[Table 6]
[0112]
(Comparative Example 1)
After forming a conductive layer, an intermediate layer and a charge generation layer in Example 1, 15 parts of an electron transporting compound having the following structural formula and 15 parts of a polymethyl methacrylate resin (number average molecular weight: about 40,000) were mixed with 50 parts of monochlorobenzene and dichloromethane. A charge transport layer was formed on the charge generation layer using a charge transport layer coating solution prepared and dissolved in 20 parts of a mixed solvent. At this time, the thickness of the charge transport layer was 15 μm.
[0113]
Embedded image
[0114]
As a result of evaluating this electrophotographic photosensitive member in the same manner as in Example 1, precipitation was observed after 14 days. On the other hand, the electrophotographic characteristics in the initial stage were good, but the amount of surface layer shaved in durability was large, and image defects such as fogging and scratches occurred. Further, after 8000 sheets were scraped, the thickness of the charge transport layer became thinner, and charging failure occurred, making image formation impossible. Table 7 shows the results.
[0115]
(Comparative Example 2)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Comparative Example 1 except that a polycarbonate resin (Z type; weight average molecular weight: 50,000) was used instead of the polymethyl methacrylate resin in Comparative Example 1. In the precipitation test, precipitation was observed after 14 days. In addition, although the durability was slightly improved as compared with the case of the polymethyl methacrylate resin, it was not sufficient, and charging failure occurred from 12,000 sheets, making image formation impossible. Table 7 shows the results.
[0116]
(Comparative Example 3)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Comparative Example 2 except that the electron transporting compound of Comparative Example 2 was changed to 10 parts and the polycarbonate resin was changed to 15 parts. As a result, although the durability was improved as compared with Comparative Example 2, As the distance between the charge transporting substances was increased, the charge transporting ability was reduced, and a decrease in sensitivity and an increase in residual potential were observed. Table 7 shows the results.
[0117]
(Comparative Example 4)
A photoconductor was prepared and evaluated in the same manner as in Example 24 except that the protective layer was not formed. Insufficiency of charging and fogging occurred from the beginning, and the image became less worthy of image formation evaluation than 500 sheets. Table 7 shows the results.
[0118]
(Comparative Example 5)
A photoconductor was prepared and evaluated in the same manner as in Example 25, except that the protective layer was not formed. In the precipitation test, precipitation was observed after 30 days. The durability was not sufficient, and charging failure occurred from 13,000 sheets, making image formation impossible. Table 7 shows the results.
[0119]
(Comparative Example 6)
A photoconductor was prepared and evaluated in the same manner as in Example 26 except that the protective layer was not formed. The durability was not sufficient, and poor charging and fogging occurred on 800 sheets, and image formation was impossible due to poor charging on 5000 sheets. Table 7 shows the results.
[0120]
(Comparative Example 7)
After forming a conductive layer, an intermediate layer, a charge generation layer, and a charge transport layer in the same manner as in Example 25, 50 parts of an acrylic monomer having the following structural formula was added to 50 parts of tetrahydrofuran.
[0121]
Embedded image
[0122]
To prepare a coating for the surface protective layer. This paint was applied on the charge transport layer by spray coating, dried at 50 ° C. for 10 minutes, and then irradiated with an electron beam under the conditions of an acceleration voltage of 150 KV and an irradiation dose of 30 Mrad to cure the resin, and the film thickness was 5 μm. Was formed to obtain an electrophotographic photosensitive member. This photoreceptor was evaluated in the same manner as in Example 1. The residual potential was higher than at the beginning, and it was not possible to evaluate image formation and potential fluctuation. Table 7 shows the results.
[0123]
(Comparative Example 8)
The following electron-transporting polymer was synthesized by the same method as disclosed in JP-A-09-194535 (weight average molecular weight: 10,000, reduction potential: -0.930.9v
)Obtained.
[0124]
Embedded image
[0125]
After forming the conductive layer, the intermediate layer, and the charge generation layer in Example 1, 10 parts of the polymer was dissolved in a mixed solvent of 40 parts of monochlorobenzene and 10 parts of dichloromethane, and a coating material for a charge transport layer was prepared. A charge transport layer was formed by dip coating. At this time, the thickness of the charge transport layer was 15 μm. This electrophotographic photosensitive member was evaluated in the same manner as in Example 1. The initial potential characteristics and the durability potential characteristics were not sufficient, and scratches and fogging occurred in the durability image from 7,000 sheets. Table 7 shows the results.
[0126]
(Comparative Example 9)
0.4 parts of the following compound disclosed in JP-A-11-119458:
[0127]
Embedded image
[0128]
A coating for a protective layer was prepared by mixing 0.5 part of a silicon hard coat material (X-40-2239; manufactured by Shin-Etsu Chemical Co., Ltd.) and 3 parts of n-butyl ether. After forming a conductive layer, an intermediate layer and a charge generation layer in the same manner as in Example 24, this coating material for a protective layer was applied on the charge generation layer by a spray coating method to form a dry surface protection layer at 100 ° C. for 10 minutes. . This electrophotographic photosensitive member was evaluated in the same manner as in Example 1. Although the shaving property was fairly good, the initial potential characteristics and the durable potential characteristics were not sufficient, and fog occurred on the durable image from 1000 sheets. Table 7 shows the results.
[0129]
[Table 7]
[0130]
(Example 27)
On an alumite-treated aluminum cylinder, 3 parts of β-type oxytitanium phthalocyanine crystal, 50 parts of the compound (A) of Example 26 as a hole transport material, and electron transport compound example No. 20 to 50 parts, 30 parts of a polycarbonate resin (Z type; weight average molecular weight: 40000), and 700 parts of tetrahydrofuran were mixed and dispersed in a ball mill by dip coating with a coating of a single-layer photoreceptor, and dried at 50 ° C. for 10 minutes. The resin was cured by irradiating an electron beam under the conditions of an acceleration voltage of 150 KV and an irradiation dose of 10 Mrad to obtain a single-layer type electrophotographic photosensitive member having a thickness of 15 μm. This photoreceptor was attached to a cylinder of a modified machine of a laser beam printer (Laser @ Jet4000: manufactured by Hewlett-Packard), and charging was set so that the initial dark portion potential (Vd) became -700 (V). (Nm) of laser light was applied to reduce the potential of -700 (V) to -200 (V). Furthermore, 20 (μJ / cm2The initial characteristics were measured with the potential when the light amount of (1) was applied as the residual potential (Vr). The result was EΔ500; 0.42 (μJ / cm2), Vr; 90 (v).
[0131]
Further, a good image without image defects was obtained even after continuous running of 2,000 sheets, and the amount of scraping of the drum at the end of 2,000 sheets was 0.4 μm.
[0132]
(Example 28)
Except that the compound of the following structural formula was used instead of the compound (A) of Example 27,
[0133]
Embedded image
[0134]
A photoconductor was prepared in the same manner as in Example 27, and the same evaluation was performed. The result was EΔ500; 0.38 (μJ / cm2), Vr; 75 (v), the scraping amount of the drum at the end of 2,000 sheets was 0.15 μm.
[0135]
(Comparative Example 10)
On an alumite-treated aluminum cylinder, 3 parts of β-type oxytitanium phthalocyanine crystal, 50 parts of the compound (A) of Example 26 as a hole transport material, the following electron transport compound
[0136]
Embedded image
[0137]
A single-layer type electrophotographic photoreceptor having a thickness of 15 μm is obtained by dip-coating a coating of a single-layer type photoreceptor in which 50 parts, 100 parts of a polycarbonate resin (Z type; weight average molecular weight: 40000) and 700 parts of tetrahydrofuran are mixed and dispersed by a ball mill. Got. This photoreceptor was evaluated in the same manner as in Example 27. The result was EΔ500; 0.55 (μJ / cm2), Vr; 110 (v), the scraping amount of the drum at the end of 2,000 sheets was 2.9 μm.
[0138]
【The invention's effect】
The electrophotographic photoreceptor of the present invention has excellent effects on precipitation resistance, abrasion resistance and scratch resistance. Further, the electrophotographic characteristics such as sensitivity and residual potential are very good, and stable performance can be exhibited even when repeatedly used.
[0139]
Further, the effect of the electrophotographic photosensitive member is naturally exerted also in a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member, and high image quality is maintained for a long time.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a schematic configuration of an electrophotographic apparatus having a process cartridge having an electrophotographic photosensitive member of the present invention.
[Explanation of symbols]
1. Electrophotographic photoreceptor
2 axis
3 Primary charging means
4 Image exposure light
5 Development means
6 Transfer means
7 transfer material
8 Image fixing means
9 Cleaning means
10 ° pre-exposure light
11 process cartridge
12mm rail
Claims (17)
である請求項1記載の電子写真感光体。The electron transporting compound having a chain polymerizable functional group is represented by the following general formula (1)
The electrophotographic photosensitive member according to claim 1, wherein
R3 ,R4 は置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基またはエステル基を示し、
Q1 ,Q2は、それぞれ独立に酸素原子,硫黄原子,C(CN)2 ,CR5CN ,CY2(Yはハロゲン原子),C(COOR6)2 ,CR7COOR8 ,NR9 またはNCNのいずれかを表し、Q3は、酸素原子、硫黄原子またはSO2を示し、
(但し、R5 ,R6 ,R7,R8 ,R9はそれぞれ独立に水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、または置換基を有してもよいアリール基のいずれかを示す。)、また上記式中の
で示される請求項2または3のいずれかに記載の電子写真感光体。Electron-transporting compounds in which the bonding site of A in formula (1) to P 1 and Z are replaced by hydrogen atoms are represented by the following formulas (A-1) to (A-11)
R 3 and R 4 represent an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group or an ester group which may have a substituent,
Q 1 and Q 2 are each independently an oxygen atom, a sulfur atom, C (CN) 2 , CR 5 CN, CY 2 (Y is a halogen atom), C (COOR 6 ) 2 , CR 7 COOR 8 , NR 9 Or NCN; Q 3 represents an oxygen atom, a sulfur atom or SO 2 ;
(However, R 5 , R 6 , R 7 , R 8 , and R 9 each independently represent a hydrogen atom, an alkyl group optionally having a substituent, an aralkyl group optionally having a substituent, or a substituent. And any of the aryl groups which may be present).
The electrophotographic photoreceptor according to claim 2, wherein
で示される請求項2〜5のいずれかに記載の電子写真感光体。Z in the above general formula (1) is the following general formula (2)
The electrophotographic photosensitive member according to claim 2, wherein
で示される請求項2〜6のいずれかに記載の電子写真感光体。Z in the general formula (1) is the following general formula (3)
The electrophotographic photoreceptor according to claim 2, wherein
−CONR18−(式中、R18は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基である。)を示し;fは0又は1を示す。]
で示される不飽和重合性官能基である請求項2〜7のいずれかに記載の電子写真感光体。One or both of the chain polymerizable groups P 1 and P 2 are represented by the following formula (4)
—CONR 18 — (wherein, R 18 is a hydrogen atom, a halogen atom, an alkyl group optionally having a substituent, an aralkyl group optionally having a substituent, or an aryl group optionally having a substituent. F) represents 0 or 1. ]
The electrophotographic photoreceptor according to any one of claims 2 to 7, which is an unsaturated polymerizable functional group represented by the formula:
で示される環状エーテル基である請求項2〜7のいずれかに記載の電子写真感光体。One or both of the chain polymerizable groups P 1 and P 2 are represented by the following formula (5)
The electrophotographic photoreceptor according to any one of claims 2 to 7, which is a cyclic ether group represented by the formula:
で示される脂環式エポキシ基である請求項2〜7のいずれかに記載の電子写真感光体。One or both of the chain polymerizable groups P 1 and P 2 are represented by the following formula (6)
The electrophotographic photosensitive member according to any one of claims 2 to 7, which is an alicyclic epoxy group represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002288883A JP4289859B2 (en) | 2002-10-01 | 2002-10-01 | Electrophotographic photosensitive member, process cartridge having the same, and electrophotographic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002288883A JP4289859B2 (en) | 2002-10-01 | 2002-10-01 | Electrophotographic photosensitive member, process cartridge having the same, and electrophotographic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004126136A true JP2004126136A (en) | 2004-04-22 |
JP4289859B2 JP4289859B2 (en) | 2009-07-01 |
Family
ID=32281255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002288883A Expired - Fee Related JP4289859B2 (en) | 2002-10-01 | 2002-10-01 | Electrophotographic photosensitive member, process cartridge having the same, and electrophotographic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4289859B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005104849A (en) * | 2003-09-26 | 2005-04-21 | Dainippon Printing Co Ltd | Photosensitive polyfunctional compound, photosensitive resin composition and article using the same |
JP2006036647A (en) * | 2004-07-22 | 2006-02-09 | Kyocera Mita Corp | Naphthoquinone-based compound and electrophotographic photoreceptor using the same |
JP2007017933A (en) * | 2004-12-21 | 2007-01-25 | Ricoh Co Ltd | Electrophotographic photoreceptor, image forming method using same, image forming apparatus, and process cartridge for image forming apparatus |
WO2010092936A1 (en) * | 2009-02-13 | 2010-08-19 | 昭和電工株式会社 | (meth)acrylate compound containing aromatic group |
US8268948B2 (en) * | 2006-07-21 | 2012-09-18 | Nektar Therapeutics | Polymeric reagents comprising a terminal vinylic group and conjugates formed therefrom |
JP2013043841A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | New reactive compound, charge transporting film, and photoelectric conversion device |
JP2015102752A (en) * | 2013-11-26 | 2015-06-04 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9188885B2 (en) | 2011-08-22 | 2015-11-17 | Fuji Xerox Co., Ltd. | Reactive compound, charge transporting film, photoelectric conversion device, electrophotographic photoreceptor and method of producing the same, process cartridge, and image forming apparatus |
WO2020218259A1 (en) * | 2019-04-22 | 2020-10-29 | 三菱ケミカル株式会社 | Electrophotographic photoreceptor and method for producing same, electrophotographic photoreceptor cartridge, and image formation device |
CN116143960A (en) * | 2021-11-15 | 2023-05-23 | 中国科学院化学研究所 | Organic phosphine doped high-conductivity hydrophobic cross-linked interface layer and application thereof in reverse organic solar cell |
WO2024204544A1 (en) * | 2023-03-31 | 2024-10-03 | 三菱ケミカル株式会社 | Electrophotographic photoreceptor |
-
2002
- 2002-10-01 JP JP2002288883A patent/JP4289859B2/en not_active Expired - Fee Related
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4574971B2 (en) * | 2003-09-26 | 2010-11-04 | 大日本印刷株式会社 | Photoradical polymerization initiator, photosensitive resin composition and article using the same |
JP2005104849A (en) * | 2003-09-26 | 2005-04-21 | Dainippon Printing Co Ltd | Photosensitive polyfunctional compound, photosensitive resin composition and article using the same |
JP2006036647A (en) * | 2004-07-22 | 2006-02-09 | Kyocera Mita Corp | Naphthoquinone-based compound and electrophotographic photoreceptor using the same |
JP4515845B2 (en) * | 2004-07-22 | 2010-08-04 | 京セラミタ株式会社 | Naphthoquinone compounds and electrophotographic photoreceptors using the same |
JP2007017933A (en) * | 2004-12-21 | 2007-01-25 | Ricoh Co Ltd | Electrophotographic photoreceptor, image forming method using same, image forming apparatus, and process cartridge for image forming apparatus |
JP4657900B2 (en) * | 2004-12-21 | 2011-03-23 | 株式会社リコー | Electrophotographic photosensitive member, image forming method using the same, image forming apparatus, and process cartridge for image forming apparatus |
US8905235B2 (en) | 2006-07-21 | 2014-12-09 | Nektar Therapeutics | Polymeric reagents comprising a terminal vinylic group and conjugates formed therefrom |
US8268948B2 (en) * | 2006-07-21 | 2012-09-18 | Nektar Therapeutics | Polymeric reagents comprising a terminal vinylic group and conjugates formed therefrom |
WO2010092936A1 (en) * | 2009-02-13 | 2010-08-19 | 昭和電工株式会社 | (meth)acrylate compound containing aromatic group |
JP2013043841A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | New reactive compound, charge transporting film, and photoelectric conversion device |
US9188885B2 (en) | 2011-08-22 | 2015-11-17 | Fuji Xerox Co., Ltd. | Reactive compound, charge transporting film, photoelectric conversion device, electrophotographic photoreceptor and method of producing the same, process cartridge, and image forming apparatus |
JP2015102752A (en) * | 2013-11-26 | 2015-06-04 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
WO2020218259A1 (en) * | 2019-04-22 | 2020-10-29 | 三菱ケミカル株式会社 | Electrophotographic photoreceptor and method for producing same, electrophotographic photoreceptor cartridge, and image formation device |
JPWO2020218259A1 (en) * | 2019-04-22 | 2020-10-29 | ||
JP7439830B2 (en) | 2019-04-22 | 2024-02-28 | 三菱ケミカル株式会社 | Electrophotographic photoreceptor and its manufacturing method, electrophotographic photoreceptor cartridge, and image forming apparatus |
CN116143960A (en) * | 2021-11-15 | 2023-05-23 | 中国科学院化学研究所 | Organic phosphine doped high-conductivity hydrophobic cross-linked interface layer and application thereof in reverse organic solar cell |
CN116143960B (en) * | 2021-11-15 | 2024-06-11 | 中国科学院化学研究所 | Organic phosphine doped high-conductivity hydrophobic cross-linked interface layer and application thereof in reverse organic solar cell |
WO2024204544A1 (en) * | 2023-03-31 | 2024-10-03 | 三菱ケミカル株式会社 | Electrophotographic photoreceptor |
Also Published As
Publication number | Publication date |
---|---|
JP4289859B2 (en) | 2009-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4115056B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4365960B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4585930B2 (en) | Method for producing electrophotographic photosensitive member | |
JP4630806B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP3809396B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4208367B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4365961B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4095509B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4164176B2 (en) | Method for producing electrophotographic photosensitive member | |
JP4769848B2 (en) | Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and method for manufacturing electrophotographic photosensitive member | |
JP4217360B2 (en) | Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge | |
JP2000147814A5 (en) | ||
JP4136238B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4164175B2 (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method for manufacturing electrophotographic photosensitive member | |
JP4289859B2 (en) | Electrophotographic photosensitive member, process cartridge having the same, and electrophotographic apparatus | |
JP2005062301A (en) | Electrophotographic photoreceptor | |
JP2005062300A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus | |
JP4165843B2 (en) | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2000147813A5 (en) | ||
JP2004212959A (en) | Electrophotographic photoreceptor, electrophotographic apparatus, and process cartridge | |
JP2014126590A (en) | Electrophotographic photoreceptor and method for manufacturing the same, image forming method, image forming apparatus, and process cartridge | |
JP2007192905A (en) | Electrophotographic photoreceptor, process cartridge and image forming apparatus | |
JP5737052B2 (en) | Electrophotographic photosensitive member and method for manufacturing the same, image forming method, image forming apparatus, and process cartridge | |
JP5737051B2 (en) | Electrophotographic photosensitive member and method for manufacturing the same, image forming method, image forming apparatus, and process cartridge | |
JP4115057B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050811 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070413 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070709 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070827 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070907 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20090324 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090331 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4289859 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140410 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |