JP2004125615A - レーザ超音波検査装置 - Google Patents

レーザ超音波検査装置 Download PDF

Info

Publication number
JP2004125615A
JP2004125615A JP2002290140A JP2002290140A JP2004125615A JP 2004125615 A JP2004125615 A JP 2004125615A JP 2002290140 A JP2002290140 A JP 2002290140A JP 2002290140 A JP2002290140 A JP 2002290140A JP 2004125615 A JP2004125615 A JP 2004125615A
Authority
JP
Japan
Prior art keywords
laser
optical fiber
laser beam
ultrasonic
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002290140A
Other languages
English (en)
Inventor
Yasuaki Nagata
永田 泰昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002290140A priority Critical patent/JP2004125615A/ja
Publication of JP2004125615A publication Critical patent/JP2004125615A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】超音波の発生時における進行方向角度の制御を簡易に行うことができるレーザ超音波検査装置を提供する。
【解決手段】各超音波発生用レーザ装置10のビーム出力端には第一光ファイバ20が接続されている。複数の第一光ファイバ20の先端部を、それらの光軸を揃えて束ねることにより、光ファイバ束Fが形成されている。光軸に垂直な平面で切断したときの光ファイバ束Fの断面は略正方形状である。集光レンズ40が各第一光ファイバ20から出力された第一レーザビームを検査対象物2に導くことにより、検査対象物2に超音波が発生する。このとき、発振制御回路50は、各超音波発生用レーザ装置10が第一レーザビームを発生するタイミングを制御する。これにより、任意の角度方向に進行する超音波を発生させたり、点集束型又は線集束型の超音波を発生させたりすることができる。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、検査対象物内部の欠陥を非破壊で検出することができるレーザ超音波検査装置に関するものである。
【0002】
【従来の技術】
各種材料の内部欠陥等を非破壊で、かつ、検査対象物に非接触で検出する方法として、次のようなレーザ超音波法が知られている(例えば、非特許文献1参照。)。まず、検査対象物の表面にパルス発振のレーザビームを照射し、検査対象物の表面又は内部に超音波を励起させる。この超音波が検査対象物を伝播する過程で欠陥に当たると、そこで超音波の反射エコーが生じる。一方、検査対象物には、超音波発生用のレーザビームとは別に、超音波検出用のレーザビームを照射する。この照射部位に欠陥からの反射エコーが到達すると、その表面には超音波振動が生じるので、その照射部位で反射された超音波検出用のレーザビームはドップラーシフトを受け、その光周波数が変化する。この光周波数の変化を、例えばファブリ・ペロー干渉計で透過光強度の変化に変換し、光検出器に入射させる。その結果、検査対象物内部の欠陥は、光検出器の出力信号の変化として検出することが可能となる。
【0003】
また、かかるレーザ超音波法により超音波を発生させるための典型的な条件は、1パルス当たり約100mJのエネルギーを有する超音波発生用のレーザビームを、直径約3mmのスポット径で検査対象物に照射することである。したがって、超音波発生用のレーザビームには、そのエネルギー密度が約1.4J/cm以上であることが要求される。
【0004】
【非特許文献1】
中野英俊著「実用化に近づいたレーザ超音波探傷技術」日本設備管理学会誌第8巻第2(1996)
【0005】
【発明が解決しようとする課題】
しかしながら、レーザ超音波法を利用したレーザ超音波検査装置では、超音波の発生時における進行方向角度の制御を簡易に行うことができず、あまり使い勝手がよくないという問題があった。
【0006】
本発明は上記事情に基づいてなされたものであり、超音波の発生時における進行方向角度の制御を簡易に行うことができるレーザ超音波検査装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記の目的を達成するための請求項1記載の発明に係るレーザ超音波検査装置は、第一レーザビームを発生する複数の第一レーザ装置と、前記各第一レーザ装置のビーム出力端には第一光ファイバが接続されており、前記複数の第一光ファイバの先端部を、それらの光軸を揃えて束ねることにより形成された光ファイバ束と、前記各第一レーザ装置が前記第一レーザビームを発生するタイミングを制御する制御手段と、検査対象物に超音波を発生させるために、前記各第一光ファイバから出力された前記第一レーザビームを前記検査対象物に導く第一光学系と、第二レーザビームを発生する第二レーザ装置と、前記検査対象物の内部を伝播した前記超音波のエコーを検出するために、前記第二レーザビームを前記検査対象物に導く第二光学系と、前記検査対象物の表面で反射した前記第二レーザビームに基づいて、前記超音波の振動に起因して生じる前記第二レーザビームの周波数の変化を検出する検出手段と、を具備し、前記検出手段による検査結果に基づいて前記検査対象物内部の欠陥を検出することを特徴とするものである。
【0008】
請求項2記載の発明は、請求項1記載のレーザ超音波検査装置において、前記第二レーザビームを伝送する第二光ファイバを有し、前記第二光ファイバの先端部は前記各第一光ファイバとともに束ねられていることを特徴とするものである。
【0009】
請求項3記載の発明は、請求項1又は2記載のレーザ超音波検査装置において、前記各第一レーザ装置は、半導体レーザ装置と、レーザ発振用光ファイバとを有し、前記半導体レーザ装置から前記レーザ発振用光ファイバに励起レーザビームを照射して、前記レーザ発振用光ファイバにおいて前記第一レーザビームを発振させるものであることを特徴とするものである。
【0010】
請求項4記載の発明は、請求項1、2又は3記載のレーザ超音波検査装置において、前記光ファイバ束は、光軸に垂直な平面で切断したときの断面が略正方形状であることを特徴とするものである。
【0011】
請求項5記載の発明は、請求項1、2、3又は4記載のレーザ超音波検査装置において、前記制御手段は、前記各第一レーザ装置が前記第一レーザビームを発生するタイミングをずらすことにより、前記検査対象物の内部を所望の角度方向に進行する前記超音波を発生させることを特徴とするものである。
【0012】
【発明の実施の形態】
以下に本発明の第一実施形態について図面を参照して説明する。図1は本発明の第一実施形態であるレーザ超音波検査装置の概略構成図、図2はそのレーザ超音波検査装置の光ファイバ束の概略斜視図である。
【0013】
第一実施形態のレーザ超音波検査装置は、検査対象物2の内部の欠陥を非破壊で検出するものであり、図1に示すように、複数の超音波発生用レーザ装置(第一レーザ装置)10と、複数の受動光ファイバ(第一光ファイバ)20と、光ファイバ束ホルダ30と、第一光学系としての集光レンズ40と、発振制御回路50と、超音波検出用レーザ装置(第二レーザ装置)60と、第二光学系70と、ファブリ・ペロー干渉計(検出手段)110と、光検出器120と、コンピュータ130とを備える。
【0014】
各超音波発生用レーザ装置10は、検査対象物2内に超音波を励起させるためのレーザ装置である。第一実施形態では、超音波発生用レーザ装置10として、パルス型ファイバレーザ装置を使用する。パルス型ファイバレーザ装置10は、半導体レーザ装置と、能動光ファイバとを備えている。半導体レーザ装置としては、例えばGa−As系半導体レーザ装置を用いることができる。能動光ファイバは、レーザ発振用光ファイバである。半導体レーザ装置から能動光ファイバに励起レーザビーム(波長:約0.8μm)を照射して、能動光ファイバにおいてレーザビーム(波長:約1.06μm)を発振させる。この能動光ファイバの端部がレーザビーム出力端となる。ここで、パルス型ファイバレーザ装置10の出力は、例えば10μJ/Pulseである。尚、以下では、超音波発生用レーザ装置10から発せられたレーザビームのことを「第一レーザビーム」とも称する。
【0015】
各受動光ファイバ20は、パワー伝送用光ファイバであり、各超音波発生用レーザ装置10のレーザビーム出力端に融着により接続されている。各受動光ファイバ20のコア径は、例えば直径100μmである。複数の受動光ファイバ20の先端部は、それらの光軸が揃うように束ねられており、光ファイバ束Fを構成する。この光ファイバ束Fは、光ファイバ束ホルダ30で保持されている。光ファイバ束Fを形成する際、複数の受動光ファイバ20を規則正しく配置し、隣合う受動光ファイバ20のピッチ間隔をすべて一定とすることが望ましい。第一実施形態では、図2に示すように、光軸に垂直な平面で切断したときの光ファイバ束Fの断面を略正方形状としている。具体的には、2500個の受動光ファイバ20を二次元的に密に配列し、5mm×5mmの面プローブを形成している。また、各受動光ファイバ20の先端は揃えられており、光ファイバ束Fの先端面は光軸に垂直な平面となっている。
【0016】
光ファイバ束Fの前方には、集光レンズ40が設けられている。集光レンズ40は、検査対象物2に超音波を発生させるために、各受動光ファイバ20から出力された第一レーザビームL1を検査対象物2に導くものである。この集光レンズ40の光軸は、光ファイバ束Fの光軸と平行である。第一実施形態では、各受動光ファイバ20から出力された第一レーザビームL1が、例えば直径10μmの照射スポット径で検査対象物2に照射されるように、集光レンズ40の位置等を調整している。したがって、第一実施形態では、各超音波発生用レーザ装置10から発生させた第一レーザビームL1を、超音波を発生させるのに十分なエネルギー密度で検査対象物2の表面に照射することができる。
【0017】
尚、各パルス型ファイバレーザ装置10が発生する第一レーザビームL1は、1パルス当たりのエネルギーが10μJ/Pulseと低いが、複数の受動光ファイバ20から第一レーザビームL1を同時に出力することにより、レーザ出力を全体として高めることができる。
【0018】
各超音波発生用レーザ装置10から発せられた第一レーザビームL1は、当該受動光ファイバ20を介して集光レンズ40に達する。そして、かかる第一レーザビームL1は、集光レンズ40で集光された後、検査対象物2の表面に照射される。このとき、その照射点には熱的応力又は蒸発反力によって超音波が発生する。この超音波は検査対象物2の内部を伝播するが、この伝播経路に内部欠陥が存在すると、超音波はこの内部欠陥でも反射・散乱され、エコーとして表面に戻る。
【0019】
発振制御回路50は、各超音波発生用レーザ装置10が第一レーザビームL1を発生するタイミングを制御するものである。例えば、発振制御回路50は、各超音波発生用レーザ装置10が第一レーザビームL1を発生するタイミングをずらすことにより、検査対象物2の内部において超音波を所望の角度方向に発生させることができる。この点については後に詳述する。この発振制御回路50は、コンピュータ130からの制御信号に基づいて動作する。
【0020】
超音波検出用レーザ装置60は、各超音波発生用レーザ装置10からの第一レーザビームL1の照射によって検査対象物2内に発生し、検査対象物2内を伝播してきた超音波を検出するためのレーザ装置である。超音波検出用レーザ装置60としては、単一周波数のレーザビームを発するものを用いる。尚、以下では、超音波検出用レーザ装置60から発せられたレーザビームL2のことを「第二レーザビーム」とも称することにする。
【0021】
第二光学系70は、第二レーザビームL2を検査対象物2の表面に導くと共に、検査対象物2の表面で反射・散乱した第二レーザビームL2をファブリ・ペロー干渉計110に導くものであり、図1に示すように、二つの集光レンズ71a,71bと、ハーフミラー72とを有する。また、この第二光学系70は、一体的に構成されており、検査対象物2の表面に平行な平面上を移動することができる。
【0022】
超音波検出用レーザ装置60から発せられた第二レーザビームL2は、集光レンズ71aで集光され、ハーフミラー72を透過した後、検査対象物2の表面に照射される。検査対象物2の表面は粗面であるため、第二レーザビームL2は検査対象物2の表面においてほぼ等方的に散乱される。このとき、その第二レーザビームL2が超音波エコーの戻ってきた部分に照射されていると、そこで散乱された第二レーザビームL2は、検査対象物2の表面の超音波振動に起因するドップラーシフトを受けて周波数が変化する。
【0023】
検査対象物2の表面で散乱された第二レーザビームL2のうち、その一部は、ハーフミラー72で反射され、集光レンズ71bで集光された後、ファブリ・ペロー干渉計110に入射する。
【0024】
ファブリ・ペロー干渉計110は、超音波のエコーに起因して生じる第二レーザビームL2の周波数の変化を検出するものであり、互いに対向する二つの反射ミラーを有する。この二つの反射ミラーは共振器を構成し、第二レーザビームL2を二つの反射ミラーの間で多重反射させることによりバンドパスフィルタとして機能する。二つの反射ミラー間の距離を調節することにより、この共振器を透過する光の周波数を調節することができる。
【0025】
ここで、ファブリ・ペロー干渉計110における共振曲線について説明する。図3はこの共振曲線の一例を示す図である。図3において、横軸は入射する光の周波数fを、縦軸はファブリ・ペロー干渉計110からの出力、すなわちファブリ・ペロー干渉計110を透過する光の強度Iを示している。図3から分かるように、透過光強度Iは、特定の周波数において急峻なピークを示すが、ピークの前後では速やかに低下する。このピークを示す周波数は、ファブリ・ペロー干渉計110の反射ミラー間の距離を調節することによって変えることができる。そこで、図3に示す曲線の傾きが最大となる点(共振曲線動作点)Aにおける周波数が、ちょうど第二レーザビームL2の発振周波数と一致するように反射ミラー間の距離が調節されていれば、周波数のわずかな変化±Δfを、相対的に大きな透過光強度の変化±ΔIに変換することができる。これにより、ファブリ・ペロー干渉計110は、検査対象物2の表面の超音波振動に起因するドップラーシフトを受けて周波数が変化した第二レーザビームL2が入力したときに、その周波数の変化を透過光強度の変化として出力する。
【0026】
ファブリ・ペロー干渉計110から出力された透過光強度は、光検出器120に送られる。光検出器120は、透過光強度を電気信号に変換するものである。これにより、超音波エコーは、最終的に電気的な信号として捉えられる。光検出器120からの信号は、コンピュータ130に送られ、波形データとして記録される。
【0027】
コンピュータ130は、超音波エコーが検出されたときに、超音波検出用レーザ装置60からの第二レーザビームL2の照射位置と、検出タイミングと、予め分かっている検査対象物2の音速とから、その欠陥の位置を計算で求めることができる。すなわち、非破壊で検査対象物2の内部欠陥を検出し、かつ、その位置を特定することが可能となる。
【0028】
次に、超音波の進行方向角度の制御について説明する。図4は超音波の進行方向角度を制御する一例を説明するための図である。
【0029】
いま、図4において、光ファイバ束Fの各列に配置された50個の受動光ファイバ20を一まとまりとして考え、最左列から右側に向かって順に光ファイバ群G,G,G,・・・ ,G50とする。また、隣合う光ファイバ群のピッチ間隔をd、検査対象物2の音速をCとする。
【0030】
発振制御回路50は、各光ファイバ群G,G,G,・・・ 毎に第一レーザビームL1の発生を制御する。これにより、各光ファイバ群G,G,G,・・・ からは直線状パターンの第一レーザビームL1が出力される。このとき、発振制御回路50は、最左列の光ファイバ群Gから右側の光ファイバ群に向かう順番で、各光ファイバ群G,G,G,・・・ から第一レーザビームL1を発生させると共に、各光ファイバ群G,G,G,・・・ からの第一レーザビームL1の発生のタイミングを一定の時間Δτずつずらす。これにより、各光ファイバ群G,G,G,・・・ から第一レーザビームL1が検査対象物2の表面に照射されたときに発生する超音波はC・Δτずつずれて円筒面状に進行するので、超音波の波面は全体として、
θ= sin−1(Δτ・C/d)
の方向に形成される。すなわち、超音波は検査対象物2の厚さ方向に対して角度θの方向に発生する。したがって、発振制御回路50によりΔτを変えることにより、超音波の進行方向角度θを簡易に制御することができる。
【0031】
また、発振制御回路50は、各超音波発生用レーザ装置10が第一レーザビームL1を発生するタイミングを制御することにより、検査対象物2内に発生させる超音波について焦点を形成することが可能である。例えば、超音波の波面を一点に集束させたり、線状に集束させたりすることができる。これは超音波計測における信号処理の公知の技術を用いて実現することができる。
【0032】
尚、第一実施形態では、光軸に垂直な平面で切断したときの光ファイバ束Fの断面を略正方形状としているが、これは、受動光ファイバ20をこのように配置すると、超音波の発生制御を容易に行うことができるからである。一般に、光軸に垂直な平面で切断したときの光ファイバ束Fの断面は、例えば長方形や三角形等の多角形状、円形状等としてもよい。
【0033】
第一実施形態のレーザ超音波検査装置では、各超音波発生用レーザ装置のビーム出力端に受動光ファイバが接続され、複数の受動光ファイバの先端部を、それらの光軸を揃えて束ねており、そして、各受動光ファイバから出力された第一レーザビームを検査対象物に導くことにより、検査対象物に超音波を発生させる。
【0034】
このとき、発振制御回路が、各超音波発生用レーザ装置からの第一レーザビームの発生タイミングを制御することにより、機械的な駆動部分を必要とせず、完全な電気的な制御のみで、任意の角度方向に進行する超音波を発生させたり、点集束型又は線集束型の超音波を発生させたりすることができる。すなわち、第一実施形態のレーザ超音波検査装置は、従来、接触型若しくは水浸型で実現されているアレイプローブと同様の機能を持つプローブを有する。超音波の発生に関してこれほど自由度のあるレーザ超音波発生技術はこれまでなかったものである。
【0035】
次に、本発明の第二実施形態について図面を参照して説明する。図5は本発明の第二実施形態であるレーザ超音波検査装置の概略構成図、図6はそのレーザ超音波検査装置の光ファイバ束の概略斜視図である。尚、第二実施形態において、第一実施形態のものと同一の機能を有するものには、同一の符号を付すことにより、その詳細な説明を省略する。
【0036】
第二実施形態のレーザ超音波検査装置は、図5に示すように、複数の超音波発生用レーザ装置(第一レーザ装置)10と、複数の受動光ファイバ(第一光ファイバ)20と、光ファイバ束ホルダ30と、第一光学系としての集光レンズ40と、発振制御回路50と、超音波検出用レーザ装置(第二レーザ装置)60と、第二光学系70aと、第二光ファイバ80と、ファブリ・ペロー干渉計(検出手段)110と、光検出器120と、コンピュータ130とを備える。
【0037】
第二実施形態のレーザ超音波検査装置が第一実施形態のものと異なる主な点は、第二レーザビームを伝送する第二光ファイバ80を設け、その第二光ファイバ80の先端部を各第一光ファイバ20とともに束ねた点である。すなわち、複数の第一光ファイバ20の先端部と第二光ファイバ80の先端部とを、それらの光軸を揃えて束ねることにより、図6に示すように、光ファイバ束F′を構成している。この場合も、光ファイバ束F′は、光ファイバ束ホルダ30で保持されている。光ファイバ束F′を形成する際、第二光ファイバ80が配置された部分を除き、複数の第一光ファイバ20については規則正しく配置し、隣合う第一光ファイバ20のピッチ間隔をすべて一定とすることが望ましい。第二実施形態でも、図6に示すように、光軸に垂直な平面で切断したときの光ファイバ束F′の断面を略正方形状としている。具体的には、複数の第一光ファイバ20と第二光ファイバ80とを二次元的に配列し、5mm×5mmの面プローブを形成している。また、各第一光ファイバ20の先端と第二光ファイバ80の先端とは揃えられており、光ファイバ束F′の先端面は光軸に垂直な平面となっている。
【0038】
第二実施形態では、第二光ファイバ80として、例えばコア径が直径約100μmであるものが用いられる。すなわち、第一光ファイバ20のコア径とほぼ同じである。但し、図6では、第一光ファイバ20と第二光ファイバ80と識別しやすいように、第二光ファイバ80の大きさを第一光ファイバ20の大きさよりも大きく描いている。尚、一般に、第一光ファイバ20と第二光ファイバ80とのコア径は必ずしも同じである必要はなく、第二光ファイバ80のコア径は、第一光ファイバのコア径と異なっていてもよい。
【0039】
また、複数の第一光ファイバ20と第二光ファイバ80とを束ねて、光ファイバ束F′を形成しているので、第一光ファイバ80の個数は、第一実施形態に比べて、少なくとも第二光ファイバ80を加えた分だけ少なくなっている。実際、第一光ファイバ20の個数は数個から十個程度少なくなる。
【0040】
第二実施形態でも、上記の第一実施形態と同様に、発振制御回路50が、各第一光ファイバ20からの第一レーザビームの発生タイミングを制御することにより、超音波の進行方向角度θを任意に変えたり、検査対象物2内に発生させる超音波について焦点を形成したりすることが可能である。ここで、第一光ファイバ20の個数が第一実施形態に比べてせいぜい十個程度少ないことから、第二光ファイバ80を複数の第一光ファイバ20とともに束ねたことは、超音波の進行方向角度の制御性にほとんど影響を及ぼすことはないと考えられる。
【0041】
第二光学系70aは、第二レーザビームを検査対象物2の表面に導くと共に、検査対象物2の表面で反射・散乱した第二レーザビームをファブリ・ペロー干渉計110に導くものである。この第二光学系70aは、図5に示すように、1/2波長板75と、偏光ビームスプリッタ76と、1/4波長板77と、コリメート部78とを有する。1/2波長板75は、直線偏光の向きを90度変える役割を果たし、1/4波長板77は、直線偏光を円偏光に変える役割を果たす。偏光ビームスプリッタ76は、直線偏光を、偏光面が互いに直交する二つの直線偏光に分岐するものである。コリメート部78は、第二レーザビームを集光して、第二光ファイバ80に入射させるためのものである。
【0042】
超音波検出用レーザ装置60からは直線偏光した第二レーザビームが発生する。この第二レーザビームは、1/2波長板75に入射すると、直線偏光の向きが90度変えられる。この向きが変えられた第二レーザビームは、偏光ビームスプリッタ76で反射されて、1/4波長板77に向かって進む。その後、第二レーザビームは、1/4波長板77に入射すると、円偏光に変えられる。
【0043】
この円偏光の第二レーザビームは、コリメート部78を介して、第二光ファイバ80に入射し、集光レンズ40に導かれる。そして、集光レンズ40で集光された後、検査対象物2の表面に照射される。検査対象物2の表面は粗面であるため、第二レーザビームは検査対象物2の表面においてほぼ等方的に散乱される。
【0044】
このとき、その第二レーザビームが超音波エコーの戻ってきた部分に照射されていると、そこで散乱された第二レーザビームは、検査対象物2の表面の超音波振動に起因するドップラーシフトを受けて周波数が変化する。ここで、第二レーザビームの偏光状態は、検査対象物2の表面で散乱されても変わらない。
【0045】
検査対象物2の表面で散乱された第二レーザビームのうち、その一部は、集光レンズ40で集光された後、第二光ファイバ80に入射し、コリメート部78に導かれる。次に、第二レーザビームは、1/4波長板77に入射すると、超音波検出用レーザ装置60から発生した時の偏光状態(直線偏光)に戻る。この直線偏光の第二レーザビームは、偏光ビームスプリッタ76を透過した後、ファブリ・ペロー干渉計110に入射する。
【0046】
第二実施形態のレーザ超音波検査装置では、第二レーザビームを伝送する第二光ファイバを設け、第二光ファイバの先端部を各第一光ファイバとともに束ねたことにより、超音波の発生部と検出部とを一体的に構成することができる。このため、超音波の発生部及び検出部をコンパクトな超音波送受信プローブとして実現することができるので、第二実施形態のレーザ超音波検査装置はとても使い勝手がよいという利点がある。その他の効果は、上記の第一実施形態のものと同様である。
【0047】
尚、本発明は上記の各実施形態に限定されるものではなく、その要旨の範囲内において種々の変形が可能である。
【0048】
上記の各実施形態では、超音波発生用レーザ装置としてパルス型ファイバレーザ装置を用い、その能動光ファイバに接続した受動光ファイバを束ねることにより光ファイバ束を形成する場合について説明したが、能動光ファイバを束ねることにより光ファイバ束を形成するようにしてもよい。この場合は、能動光ファイバが本発明の第一光ファイバの役割を果たすことになる。
【0049】
また、上記の各実施形態では、超音波発生用レーザ装置として、パルス型ファイバレーザ装置を用いた場合について説明したが、パルス型ファイバレーザ装置以外に、例えばYAGレーザ装置、COレーザ装置等を用いてもよい。
【0050】
【発明の効果】
以上説明したように本発明に係るレーザ超音波検査装置によれば、各第一レーザ装置のビーム出力端に第一光ファイバが接続され、複数の第一光ファイバの先端部を、それらの光軸を揃えて束ねており、そして、各第一光ファイバから出力された第一レーザビームを検査対象物に導くことにより、検査対象物に超音波を発生させる。このとき、制御手段が、各第一レーザ装置が第一レーザビームを発生するタイミングを制御することにより、機械的な駆動部分を必要とせず、完全な電気的な制御のみで、任意の角度方向に進行する超音波を発生させたり、点集束型又は線集束型の超音波を発生させたりすることができる。
【0051】
また、第二レーザビームを伝送する第二光ファイバを設け、第二光ファイバの先端部を各第一光ファイバとともに束ねることにより、超音波の発生部と検出部とを一体的に構成することができる。このため、超音波の発生部及び検出部をコンパクトな超音波送受信プローブとして実現することができるので、かかるレーザ超音波検査装置はとても使い勝手がよいという利点がある。
【図面の簡単な説明】
【図1】本発明の第一実施形態であるレーザ超音波検査装置の概略構成図である。
【図2】そのレーザ超音波検査装置の光ファイバ束の概略斜視図である。
【図3】そのレーザ超音波検査装置におけるファブリ・ペロー干渉計の共振曲線の一例を示す図である。
【図4】超音波の進行方向角度を制御する一例を説明するための図である。
【図5】本発明の第二実施形態であるレーザ超音波検査装置の概略構成図である。
【図6】そのレーザ超音波検査装置の光ファイバ束の概略斜視図である。
【符号の説明】
2  検査対象物
10  超音波発生用レーザ装置
20  第一光ファイバ(受動光ファイバ)
30  光ファイバ束ホルダ
40  集光レンズ
50  発振制御回路
60  超音波検出用レーザ装置
70,70a  第二光学系
71a,71b  集光レンズ
72  ハーフミラー
75  1/2波長板
76  偏光ビームスプリッタ
77  1/4波長板
78  コリメート部
80  第二光ファイバ
110  ファブリ・ペロー干渉計
120  光検出器
130  コンピュータ

Claims (5)

  1. 第一レーザビームを発生する複数の第一レーザ装置と、
    前記各第一レーザ装置のビーム出力端には第一光ファイバが接続されており、前記複数の第一光ファイバの先端部を、それらの光軸を揃えて束ねることにより形成された光ファイバ束と、
    前記各第一レーザ装置が前記第一レーザビームを発生するタイミングを制御する制御手段と、
    検査対象物に超音波を発生させるために、前記各第一光ファイバから出力された前記第一レーザビームを前記検査対象物に導く第一光学系と、
    第二レーザビームを発生する第二レーザ装置と、
    前記検査対象物の内部を伝播した前記超音波のエコーを検出するために、前記第二レーザビームを前記検査対象物に導く第二光学系と、
    前記検査対象物の表面で反射した前記第二レーザビームに基づいて、前記超音波の振動に起因して生じる前記第二レーザビームの周波数の変化を検出する検出手段と、
    を具備し、前記検出手段による検査結果に基づいて前記検査対象物内部の欠陥を検出することを特徴とするレーザ超音波検査装置。
  2. 前記第二レーザビームを伝送する第二光ファイバを有し、前記第二光ファイバの先端部は前記各第一光ファイバとともに束ねられていることを特徴とする請求項1記載のレーザ超音波検査装置。
  3. 前記各第一レーザ装置は、半導体レーザ装置と、レーザ発振用光ファイバとを有し、前記半導体レーザ装置から前記レーザ発振用光ファイバに励起レーザビームを照射して、前記レーザ発振用光ファイバにおいて前記第一レーザビームを発振させるものであることを特徴とする請求項1又は2記載のレーザ超音波検査装置。
  4. 前記光ファイバ束は、光軸に垂直な平面で切断したときの断面が略正方形状であることを特徴とする請求項1、2又は3記載のレーザ超音波検査装置。
  5. 前記制御手段は、前記各第一レーザ装置が前記第一レーザビームを発生するタイミングをずらすことにより、前記検査対象物の内部を所望の角度方向に進行する前記超音波を発生させることを特徴とする請求項1、2、3又は4記載のレーザ超音波発生装置。
JP2002290140A 2002-10-02 2002-10-02 レーザ超音波検査装置 Withdrawn JP2004125615A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290140A JP2004125615A (ja) 2002-10-02 2002-10-02 レーザ超音波検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290140A JP2004125615A (ja) 2002-10-02 2002-10-02 レーザ超音波検査装置

Publications (1)

Publication Number Publication Date
JP2004125615A true JP2004125615A (ja) 2004-04-22

Family

ID=32282116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290140A Withdrawn JP2004125615A (ja) 2002-10-02 2002-10-02 レーザ超音波検査装置

Country Status (1)

Country Link
JP (1) JP2004125615A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544038A (ja) * 2006-07-18 2009-12-10 ロッキード マーティン コーポレイション 超音波レーザー検査のためのファイバー・レーザー
KR101180151B1 (ko) 2009-12-23 2012-09-05 니뽄스틸코포레이션 프와송비의 계측 방법 및 계측 장치
CN102721748A (zh) * 2012-06-12 2012-10-10 北京工业大学 基于虚拟相控的管道导波聚焦检测方法
CN104237381A (zh) * 2014-10-15 2014-12-24 北京新联铁科技股份有限公司 一种激光超声和高速摄像的图像融合的钢轨探伤方法
CN105136069A (zh) * 2015-07-28 2015-12-09 河海大学常州校区 一种激光超声波技术测量圆柱体内锥形锥尖角度的方法
CN106546604A (zh) * 2016-11-02 2017-03-29 山西大学 一种青铜器表面及亚表面微缺陷检测方法及系统
CN109444265A (zh) * 2018-12-19 2019-03-08 莆田学院 一种激光超声振动检测装置及方法
CN113324912A (zh) * 2021-04-14 2021-08-31 航天科工防御技术研究试验中心 塑封结构内部缺陷检测设备、方法及存储介质
CN114414658A (zh) * 2022-01-11 2022-04-29 南京大学 一种金属表面微裂纹深度的激光超声探测方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544038A (ja) * 2006-07-18 2009-12-10 ロッキード マーティン コーポレイション 超音波レーザー検査のためのファイバー・レーザー
KR101180151B1 (ko) 2009-12-23 2012-09-05 니뽄스틸코포레이션 프와송비의 계측 방법 및 계측 장치
CN102721748A (zh) * 2012-06-12 2012-10-10 北京工业大学 基于虚拟相控的管道导波聚焦检测方法
CN104237381A (zh) * 2014-10-15 2014-12-24 北京新联铁科技股份有限公司 一种激光超声和高速摄像的图像融合的钢轨探伤方法
CN105136069A (zh) * 2015-07-28 2015-12-09 河海大学常州校区 一种激光超声波技术测量圆柱体内锥形锥尖角度的方法
CN106546604A (zh) * 2016-11-02 2017-03-29 山西大学 一种青铜器表面及亚表面微缺陷检测方法及系统
CN109444265A (zh) * 2018-12-19 2019-03-08 莆田学院 一种激光超声振动检测装置及方法
CN109444265B (zh) * 2018-12-19 2024-04-02 莆田学院 一种激光超声振动检测装置及方法
CN113324912A (zh) * 2021-04-14 2021-08-31 航天科工防御技术研究试验中心 塑封结构内部缺陷检测设备、方法及存储介质
CN114414658A (zh) * 2022-01-11 2022-04-29 南京大学 一种金属表面微裂纹深度的激光超声探测方法
CN114414658B (zh) * 2022-01-11 2024-04-09 南京大学 一种金属表面微裂纹深度的激光超声探测方法

Similar Documents

Publication Publication Date Title
JP3735650B2 (ja) 表面検査装置
US20050099634A1 (en) System and method to reduce laser noise for improved interferometric laser ultrasound detection
JP2664443B2 (ja) 超音波でサンプルを調査する装置
JP4621781B2 (ja) レーザ超音波検査装置
JP4914729B2 (ja) 物体の光学的測定方法と光学測定装置
US20220050084A1 (en) Device and method for testing a test object
JP2010043954A (ja) 寸法測定装置
WO2012081347A1 (ja) 内部欠陥検査方法及びその装置
JP2004125615A (ja) レーザ超音波検査装置
JP5072789B2 (ja) レーザ超音波法による材料中の縦波と横波の音速の計測方法及び装置
KR100993989B1 (ko) 레이저 초음파 측정장치 및 레이저 초음파 측정방법
US20060132804A1 (en) System and method to decrease probe size for improved laser ultrasound detection
JP2002257793A (ja) レーザ超音波検査装置
JP3477330B2 (ja) 超音波発生装置
JP2019095419A (ja) レーザ励起超音波発生装置、レーザ超音波検査装置、及びレーザ超音波検査方法
JP3294148B2 (ja) レーザ超音波探傷装置
JPH10260163A (ja) レーザー超音波検査装置
JP4027261B2 (ja) 多重ビームの照射によるレーザ超音波発生装置
JP3545611B2 (ja) レーザー超音波検査装置及びレーザー超音波検査方法
JPWO2020090893A1 (ja) レーザ加工方法
JP2015206739A (ja) レーザ超音波測定装置
JPH11271281A (ja) レーザー超音波検査装置及びレーザー超音波検査方法
Caron et al. Continuous laser generation of ultrasound for nondestructive evaluation
CN114018822B (zh) 一种远距离激光无损探伤装置及方法
JPH09257755A (ja) レーザー超音波検査装置及びレーザー超音波検査方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110