JP2004125570A - 電磁波によるコンクリート中の塩分濃度検査方法及び装置 - Google Patents

電磁波によるコンクリート中の塩分濃度検査方法及び装置 Download PDF

Info

Publication number
JP2004125570A
JP2004125570A JP2002289196A JP2002289196A JP2004125570A JP 2004125570 A JP2004125570 A JP 2004125570A JP 2002289196 A JP2002289196 A JP 2002289196A JP 2002289196 A JP2002289196 A JP 2002289196A JP 2004125570 A JP2004125570 A JP 2004125570A
Authority
JP
Japan
Prior art keywords
concrete
salt concentration
temperature
electromagnetic wave
propagation velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002289196A
Other languages
English (en)
Other versions
JP4073283B2 (ja
Inventor
Kumiko Suda
須田 久美子
Toshiaki Mizobuchi
溝渕 利明
Junichi Arai
新井 淳一
Noboru Sakata
坂田 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002289196A priority Critical patent/JP4073283B2/ja
Publication of JP2004125570A publication Critical patent/JP2004125570A/ja
Application granted granted Critical
Publication of JP4073283B2 publication Critical patent/JP4073283B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】コンクリート中の塩分量を非破壊的に且つ迅速に検査する方法及び装置を提供する。
【解決手段】対象コンクリート1と同じ組成のコンクリート材料に所定濃度の塩分を混入した複数の塩分濃度別コンクリート試験片33を作り、信号測定装置5及び温度測定装置16により試験片33毎に電磁波信号Eを入射して単位距離当たりの振幅減衰αと伝搬速度Vと当該試験片33の温度Tとを測定し、試験片33毎の測定値から振幅減衰αと伝搬速度Vと温度Tとを独立変数とし塩分濃度Nを従属変数とする関係式20を求め、記憶手段22に記憶する。対象コンクリート1に電磁波信号Eを入射して単位距離当たりの振幅減衰αと伝搬速度Vと当該コンクリート1の温度Tとを各測定装置5、16で測定し、塩分濃度検出手段23により振幅減衰αと伝搬速度Vと温度Tの測定値を関係式20に代入して対象コンクリート1中の塩分濃度を検出する。
【選択図】    図1

Description

【0001】
【発明が属する技術分野】
本発明は電磁波によるコンクリート中の塩分濃度検査方法及び装置に関し、とくに鉄筋コンクリート構造物の塩害要因であるコンクリート中の塩化物イオン濃度を電磁波により検出する方法及び装置に関する。本発明は、道路や鉄道、港湾施設等の塩害を受ける可能性があるコンクリート構造物・施設を建設、維持、管理する分野に広く適用可能である。
【0002】
【従来の技術】
鉄筋コンクリート構造物の劣化要因の1つに塩害がある。塩害とは、コンクリート中に存在し又は進入した塩分の作用により鋼材が腐食して膨張し、コンクリートにひび割れや剥離等の劣化が起こる現象である。従来は海砂等の使用や臨海部での飛来塩分による塩害が多かったが、最近では融雪剤の散布による山間部・寒冷地での塩害も問題となっている。コンクリート構造物を安全に供用するためには、コンクリート表面にひび割れ等が発生する前に塩害の危険性を調査して対策を立てることが必要である。
【0003】
コンクリート構造物の塩害状況を調査する方法の一例は、コンクリート中の塩分量を分析する方法である。従来の標準的なコンクリート中の塩分量分析方法は、コンクリート構造体からコンクリートコアを採取し、採取したコアをコンクリート深さ方向にスライスし、スライスしたコンクリート片中の全塩分量又は可溶性塩分量を塩化物イオン選択性電極による電位差滴定法、クロム酸銀−吸光光度法、硝酸銀滴定法等により定量する方法である(非特許文献1参照)。X線マイクロアナライザ(Electron Probe Micro−Analysis)等を用いて採取したコア中の塩素イオン量を分析する方法も開発されている。
【0004】
また、コンクリート構造物の塩害状況を調査する他の方法として、コンクリート中の塩分量を分析するのではなく、塩害の影響を受けていると考えられるコンクリート中の鉄筋の腐食程度を電気化学的に調査・把握する方法も実施されている(例えば非特許文献2参照)。
【0005】
更に、特許文献1は、鉄筋コンクリート構造物内に電磁波信号を送信し、コンクリート構造物から反射された電磁波信号の振幅から当該構造物内の鉄筋の腐食状態や含水状態等を検出するコンクリート構造物の状態検査方法及びシステムを提案している。この技術は、腐食して表面が酸化した鉄筋からの電磁波信号の反射波は表面が酸化していない鉄筋からの反射波に比し振幅が小さくなり、水分を含んだコンクリートを介して伝播した電磁波信号の反射波は水分を含まないコンクリートを介して伝播した反射波に比し振幅が小さくなるという原理に基づく(特許文献1の段落0085〜0086)。また特許文献2は、コンクリート構造物の内部へ電磁波を放射し、放射電磁波の反射波又は透過波を取り出し、取り出した電磁波から被検部位内部における誘電率の分布をディスプレイ上に表示し、内部の水分・塩分の分布状況を検査する方法を提案している。
【0006】
【非特許文献1】
社団法人日本コンクリート工学協会「JCI−SC4−1987 硬化コンクリート中に含まれる塩分の分析方法」コンクリート構造物の腐食・防食に関する試験方法ならびに規準(案)、株式会社技報堂、昭和62年4月10日
【非特許文献2】
除村王陽ほか「コンクリート構造物の鉄筋腐食診断システム」防錆管理、1998−05、pp14−18
【特許文献1】
特開2001−165870号公報
【特許文献2】
特開昭61−017051号公報
【0007】
【発明が解決しようとする課題】
しかし、非特許文献1が開示するコンクリート中の塩分量分析方法は、構造物からコンクリートコア等を採取する必要があり、局部的ではあるが構造物に損傷を与えるので、コンクリート圧縮部等の構造上重要な部位への適用が難しい問題点がある。また、コアの採取がコンクリート構造物の劣化進行を招く懸念がある。更に、一度コア等を採取した部位は新たなコンクリートを充填して元の状態に戻すのが通常であり、構造物の同一場所における塩分濃度の経時的な変化を把握する調査に適用するのは困難である。また、コア等の化学分析は採取現場で直ちに行うことは困難であり、分析に非常に手間と費用がかかるので、広い構造物全体を対象として塩害状況を把握するような調査も実際上困難である。
【0008】
他方、非特許文献2の電気化学的な鉄筋腐食検査方法や特許文献1の電磁波による状態検査方法によれば、鉄筋コンクリート構造物内の鉄筋腐食状態や含水状態を非破壊的に検査することが可能である。しかし、従来の非破壊的な塩害調査方法は鉄筋腐食状態から間接的に塩害の程度を把握するものであり、鉄筋腐食の原因となるコンクリート中の塩分量の直接的把握を目的とするものではない。とくに鉄筋の腐食が生じる前の段階でコンクリート中の塩分量を把握することを全く予定していない。コンクリート構造物の安全性・信頼性を維持するためには塩害の可能性を早期に把握することが重要であり、鉄筋の腐食の有無に拘わらずコンクリート中の塩分量を非破壊的に且つ迅速に把握できる技術の開発が求められている。
【0009】
そこで本発明の目的は、コンクリート中の塩分量を非破壊的に且つ迅速に検査する方法及び装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明者は、コンクリート中に入射した電磁波に対するコンクリート中の塩化物イオン濃度(以下、塩分濃度ということがある。)の影響に注目した。一般にコンクリート中の電磁波の伝播速度V(=伝播距離r/伝播時間t)は(1)式のようにコンクリートの比誘電率εの関数として表わすことができ、単位距離当たりの振幅減衰α(=−ln(受信振幅A/送信振幅A)/伝播距離r)は(2)式のように比誘電率ε及び導電率σの関数として表わすことができる。(1)式におけるCは真空中における電磁波伝播速度(=3×10m/s)、(2)式におけるμはコンクリートの透磁率である。
【0011】
【数1】
Figure 2004125570
【0012】
コンクリート中の伝播速度V及び振幅減衰αは、コンクリート中の含水率によって変化することは知られている。コンクリート中の含水率によって比誘電率εが変化するからである((1)式及び(2)式参照)。特許文献1及び2は、この原理を利用して、コンクリート中の含水率の分布を比誘電率εの分布から把握する方法ということができる。
【0013】
また、コンクリート中に比誘電率εの異なる物質(鉄筋や埋設管、空洞等)が存在すると、コンクリート表面から入射した電磁波はその比誘電率εの境界面で反射され、反射波の強度はコンクリート及び反射物の比誘電率εに応じて異なる。従来からこの原理を利用して、コンクリート表面から入射した電磁波が反射してコンクリート表面に戻る往復伝播時間tと伝播速度Vとからコンクリート内部の鉄筋・配管あるいはトンネル背面空洞の深さや位置を把握する電磁波レーダ法が開発されており、鉄筋コンクリート構造物の劣化調査や耐久性の診断に用いられている(例えば、吉村明彦ほか「コンクリート構造物の診断のための非破壊試験方法研究委員会報告書」日本コンクリート工学協会、2001年、pp132−142)。
【0014】
しかし、コンクリート中の塩分濃度をコンクリートの比誘電率εから把握することは困難である。真水と海水の比誘電率εは同じであり(腐食防食委員会「コンクリート構造物の腐食・防食に関する試験方法並びに規準(案)」日本コンクリート工学協会、1987年、pp57−58)、コンクリート中の塩分濃度が変化しても比誘電率εの変化は小さいと考えられるからである。特許文献2は、コンクリート構造物内部の誘電率の分布から塩分の分布状況を検査すると記載するが、誘電率分布から塩分分布を求める具体的手法を何ら記載しない。本発明者の実験によれば、コンクリート中の塩分濃度が変化しても比誘電率εの変化は極く僅かであり(図9参照)、コンクリート中の比誘電率εの分布のみからコンクリート中の塩分濃度の分布を把握することは困難である。
【0015】
他方、コンクリートの導電率σはコンクリート中のイオン量(電解物質量)によって変化するので、コンクリート中に塩化物イオンが存在すると導電率σの関数である振幅減衰αが変化する。すなわち、コンクリートの振幅減衰αに基づきコンクリート中の塩分濃度を把握できる可能性がある。
【0016】
本発明者は、この知見に基づき図5に示すように、塩化ナトリウム水溶液30を用いて塩分濃度と電磁波の振幅減衰αとの関係を確認する実験を行った。本実験では、複数の透明なプラスチック容器31(深さ50mmの例えばアクリル容器)に塩化ナトリウム濃度0〜10%の水溶液30を濃度別に封入し、鉄板32上に載置した各容器31の頂面に電磁波信号の送信部6及び受信部7を設け、送信部6から鉄板32に向けて電磁波信号を入射し、鉄板32からの反射波信号を受信部7で受信した。測定開始時のゲインでの最大出力比(=受信振幅A/送信振幅A)を基準値(100%)とし、この基準値に対する受信振幅Aの比率を振幅値β(%)として求めた。送信振幅Aが一定であれば、受信波の振幅値βは振幅減衰αが大きくなれば小さくなり、振幅減衰αが小さくなれば大きくなる。
【0017】
図5の実験結果を示す図6のグラフから、水溶液30の塩分濃度の増加に伴い、振幅値βが小さく(振幅減衰αが大きく)なることが分かる。また、塩分濃度が2%を超えると振幅値βにほとんど差異が生じないのに対し、塩分濃度1%以下の範囲では振幅値βが大きく変化している。コンクリート中の鋼材腐食発生限界の塩分濃度は0.3〜2.4kg/m(塩分濃度で0.03〜0.24%)であるといわれており、この実験結果から、電磁波の振幅値β又は振幅減衰αによりコンクリート中の鋼材腐食発生限界内の塩分濃度を効率的に評価できる可能性が示唆された。
【0018】
更に本発明者は、図7(A)に示すように、表1の組成のコンクリート材料を用いて塩分濃度=0、1、2、3、4、5及び6kg/mの7つの塩分濃度別コンクリート試験片33(100mm×100mm×400mm)を作製し、コンクリート中の塩分濃度と振幅減衰αとの関係を確認する実験を行った。各試験片33は、スランプ及び空気量が所定範囲(本実験ではスランプ値8cm、空気量4.5%)となるように混練し、コンクリート打込み後材齢1日で脱型し、ビニール袋で密封した上で7日間水中養生し、表面の水分を拭き取って実験に供した。各試験片33を図7(B)のように鉄板32上に載置し、試験片33の頂面に電磁波信号の送信部6及び受信部7を設け、送信部6から鉄板32に向けて入射した電磁波信号の反射波を受信部7で受信し、受信波の振幅値β(%)を123日間(約4ヶ月)にわたり継続的に測定した。また、各試験片33における電磁波の伝播時間tを123日間に亘り継続的に測定し、測定した伝播時間tと試験片33の厚さD(=100mm)とから電磁波の伝播速度Vを求め、(11)式により各材齢(測定開始からの経過日数)における試験片33の比誘電率εを算出した。
【0019】
【表1】
Figure 2004125570
【0020】
【数2】
Figure 2004125570
【0021】
図7の実験における材齢34日、74日及び123日目の実験結果を図8及び図9に示す。図8のグラフは各試験片33中の塩分濃度と振幅値βとの関係を表わし、塩分濃度の増加に伴い振幅値βが小さく(振幅減衰αが大きく)なること、材齢の経過に伴い振幅値βが大きく(振幅減衰αが小さく)なることを示す。また、図9のグラフは各試験片33中の塩分濃度と比誘電率εとの関係を表わし、塩分濃度の増加に伴い比誘電率εが僅かに大きくなること、材齢の経過に伴い比誘電率εが小さくなることを示す。材齢の経過に伴い振幅値βが大きくなり比誘電率εが小さくなる理由は、含水率の低下に伴う各試験片33中のイオン量(電解物質量)の減少にあると考えられる。
【0022】
図7の実験の結果に基づき、(21)式に示すように、コンクリート試験片33毎の電磁波の振幅値βと比誘電率εとを独立変数(又は説明変数)としコンクリート中の塩分濃度を従属変数(又は目的変数)とする関係式を設定し、振幅値βと比誘電率εとからコンクリート中の塩分濃度が推定可能であるか否かを検討した。(21)式の係数a、a、aは、試験片33毎の振幅値β及び比誘電率εの全測定値データに基づく重回帰分析により、(22)式のように偏回帰係数a(=−0.0887)、a(=−0.804)、a(=23.6)として定めた。各試験片33における材齢毎の測定値を(22)式に代入した塩分濃度の推定値Nを図10〜図11に示す。
【0023】
【数3】
Figure 2004125570
【0024】
図10は、各試験片33の測定値を(22)式に代入して求めた塩分濃度の推定値Nと各試験片33の実際の塩分濃度(設定値)との比較結果を示す。同図から、例えば塩分濃度1.0kg/mの試験片33に対する塩分濃度の推定値Nは−0.5〜4.2kg/mの範囲に分散しており、全体の重相関係数も0.69であり、振幅値βと比誘電率εとに基づく塩分濃度の推定値Nの精度は余り高くないことが分かる。また図11のグラフは、材齢毎の塩分濃度推定値Nの経時的変化を示す。同グラフは、同一試験片33に対する推定であるにも拘わらず推定値Nが経時的に変化する傾向があることを示す。
【0025】
そこで、塩分濃度の推定の独立変数に試験片33の温度Tを加えた関係式((23)式)を設定し、振幅値βと比誘電率εと温度Tとによりコンクリート中の塩分濃度が推定可能であるか否かを検討した。独立変数に温度Tを加えた理由は、図11の推定値Nの経時的変化を生じさせる要因を検討した結果、図12のように実験時の試験片33に接する大気温度Tが推定値Nと同様の経時的変化を示していることに注目したからである。試験片33に接する大気温度Tは試験片33の温度とほぼ一致していると考えられる。(23)式の係数a、a、a、aも、全測定値データに基づく重回帰分析により(24)式のように偏回帰係数a(=−0.105)、a(=−0.409)、a(=−0.425)、a(=27.9)として定めた。
【0026】
図13は、各試験片33の材齢毎の測定値を(24)式に代入して求めた塩分濃度の推定値Nと各試験片33の実際の塩分濃度(設定値)との比較結果を示す。同図は、コンクリートの振幅値βと比誘電率εと温度Tとを用いてコンクリート中の塩分濃度を推定することにより重相関係数が0.90となり、塩分濃度を実用可能な精度で推定できたことを示す。温度Tにより重相関係数が高まる原理の詳細は不明であるが、コンクリート自体の電磁波伝播特性や電磁波の送信部6及び受信部7に対する温度Tの影響等が考えられる。なお、(23)又は(24)式において、振幅値β・比誘電率εに代えて振幅減衰α・伝播速度Vを用いて塩分濃度を推定することも可能である。
【0027】
すなわち、コンクリートの温度Tを考慮した塩分濃度の推定式である(23)式又は(24)式を用いれば、コンクリート中に入射した電磁波の振幅値β及び比誘電率ε(又は振幅減衰α及び伝播速度V)からコンクリート中の塩分濃度を実用可能な精度で検出することが可能である。本発明は、この知見に基づく更なる研究開発の結果、完成に至ったものである。
【0028】
図1の実施例を参照するに、本発明の電磁波によるコンクリート中の塩分濃度検査方法は、検査対象コンクリート1と同じ組成のコンクリート材料に所定濃度の塩分を混入した複数の塩分濃度別コンクリート試験片33(図7(A)参照)を作り、試験片33毎に電磁波信号Eを入射して単位距離当たりの振幅減衰αと伝搬速度Vと当該試験片33の温度Tとを測定し、試験片33毎の測定値から振幅減衰αと伝搬速度Vと温度Tとを独立変数とし塩分濃度Nを従属変数とする関係式20((23)式参照)を求め、対象コンクリート1に電磁波信号Eを入射して単位距離当たりの振幅減衰αと伝搬速度Vと当該コンクリート1の温度Tとを測定し、振幅減衰αと伝搬速度Vと温度Tの測定値を関係式20に代入して対象コンクリート1中の塩分濃度を検出してなるものである。
【0029】
また図1のブロック図を参照するに、本発明の電磁波によるコンクリート中の塩分濃度検査装置は、コンクリート中に電磁波信号Eを入射して単位距離当たりの振幅減衰αと伝搬速度Vとを測定する信号測定装置5、前記コンクリートの温度Tを測定する温度測定装置16、対象コンクリート1と同じ組成のコンクリート材料に所定濃度の塩分を混入した複数の塩分濃度別コンクリート試験片33(図7(A)参照)に対する測定装置5、16の各測定値α、V、Tに基づき作成された振幅減衰αと伝搬速度Vと温度Tとを独立変数とし塩分濃度Nを従属変数とする関係式20((23)式参照)を記憶する記憶手段22、及び対象コンクリート1に対する測定装置5、16の各測定値α、V、Tを入力し且つ当該測定値を関係式20に代入して対象コンクリート1中の塩分濃度を検出する塩分濃度検出手段23を備えてなるものである。
【0030】
【発明の実施の形態】
図1に示す本発明の塩分濃度検査装置3は、信号測定装置5と温度測定装置16と処理装置8とを有する。信号測定装置5は、送信機10及び送信アンテナ11を含む送信部6と、受信機12及び受信アンテナ13を含む受信部7と、測定手段15とを有する。送信部6は例えば適当な周波数(例えば1.0MHz〜1.5MHz)のインパルス状の所定電磁波信号Eを対象コンクリート1内へ入射し、受信部7はコンクリート1からの反射波又は透過波の信号を受信する。測定手段15は、送信部6からの送信波と受信部7での受信波との相異に基づき、対象コンクリート1中の電磁波の単位距離当たりの振幅減衰αと伝搬速度Vとを測定する。
【0031】
例えば既存の鉄筋コンクリート構造物を対象コンクリート1とした場合、対象コンクリート1中の電磁波伝播距離rを設計図・竣工図・改修履歴に示された鉄筋2の被り厚さ等から求め、又は従来の電磁波レーダ法等を利用して求めることができる。対象コンクリート1中の電磁波伝播距離rが求まれば、信号測定装置5の測定手段15により、送信信号に対する受信信号の時間遅れ(=伝播時間t)及び振幅減衰(=受信振幅A/発信振幅A)と伝播距離rとから、対象コンクリート1中の単位距離当たりの振幅減衰α(=−ln(受信振幅A/送信振幅A)/r)及び伝搬速度V(=t/r)を算出することができる。図中の符号15aは、電磁波伝播距離rを記憶する測定手段15内のメモリを示す。
【0032】
温度測定装置16は、対象コンクリート1の温度Tを測定するものである。振幅減衰α及び伝搬速度Vの測定部位近傍のコンクリート温度を測定するため、温度測定装置16と信号測定装置5とを隣接させることが望ましい。温度測定装置16は例えば対象コンクリート1の表面温度Tを測定するものであるが、コンクリート1の温度Tとコンクリート1周囲の大気温度とが等しいと想定できる場合は、温度測定装置16をコンクリート1に接する大気の温度Tを測定するものとしてもよい。
【0033】
処理装置8は、信号測定装置5及び温度測定装置16に接続され、測定装置5、16の各測定値α、V、Tを入力する。図示例の処理装置8は、振幅減衰αと伝搬速度Vと温度Tと塩分濃度Nとの関係式20を記憶する記憶手段22、及び入力した対象コンクリート1の各測定値α、V、Tと関係式20とに基づき対象コンクリート1中の塩分濃度Nを検出する塩分濃度検出手段23を有する。なお、図示例の処理装置8は関係式20を作成する関係式作成手段21を有するが、関係式作成手段21は処理装置8から分離してもよい。処理装置8の一例はコンピュータであり、関係式作成手段21及び塩分濃度検出手段23の一例はコンピュータ内蔵のプログラムである。
【0034】
関係式20の一例は、(31)式に示すように、塩分濃度Nを従属変数(又は目的変数)とし、振幅減衰αと伝搬速度Vと温度Tとを独立変数(又は説明変数)としたものである。また、上述した(23)式のように関係式20の独立変数として、振幅減衰αに代えて受信信号の振幅値βを含め、伝搬速度Vに代えて比誘電率εを含めてもよい。比誘電率εを独立変数に含める場合は、図示例のように処理装置8に、電磁波伝搬速度Vと真空中の電磁波伝搬速度Cとから(11)式に基づき比誘電率εを算出する算出手段25を設ける。図中の符号25aは、真空中の電磁波伝播速度Cを記憶する算出手段25内のメモリを示す。
【0035】
【数4】
Figure 2004125570
【0036】
図1の検査装置3を用いて対象コンクリート1の塩分濃度を検出するに際し、予め対象コンクリート1に適した関係式20を作成して処理装置8の記憶手段22に記憶する。図13を参照して上述したように、(31)又は(23)式のように振幅減衰α(又は振幅値β)と伝播速度V(又は比誘電率ε)と温度Tとを独立変数として含む関係式20を用いることにより、コンクリート中の塩分濃度Nを実用可能な精度で推定可能である。しかし、コンクリートは非均質性媒質であり、関係式(31)又は(23)の係数a、a、a、aはコンクリート中の空隙や骨材の材質等によって変化し得る。調査すべき対象コンクリート1中の塩分濃度Nを精度よく推定するためには、そのコンクリート1の材料の組成・配合に応じて関係式(31)又は(23)の係数a、a、a、aを定める必要がある。
【0037】
対象コンクリート1に適した関係式20の作成方法の一例を、図7の実施例を参照して説明する。例えば鉄筋コンクリート構造物を対象コンクリート1とする場合は、そのコンクリート1の材料の組成・配合を求め、それと同じ組成・配合のコンクリート材料に所定濃度の塩分を混入した複数の塩分濃度別コンクリート試験片33を作成する(同図(A)参照)。作成した各試験片33を鉄板32上に載置し、各試験片33上に図1の検査装置3を設置して電磁波信号Eを入射し、信号測定装置5及び温度測定装置16により単位距離当たりの振幅減衰αと伝搬速度Vと温度Tとを測定する(同図(B)参照)。好ましくは、試験片33の材齢に応じて前記測定を繰り返すことにより必要なサンプル数の測定値を得る。試験片33毎の塩分濃度と測定値α、V、Tとを処理装置8の関係式作成手段21へ入力し、(31)又は(23)式のもとで重回帰分析により係数a、a、a、aを定め、対象コンクリート1に適した関係式20を作成する。関係式作成手段21の一例は重回帰分析プログラムである。作成した関係式20を処理装置8の記憶手段22に記憶する。例えば、このような関係式20を鉄筋コンクリート構造物の竣工時に作成して記憶しておくことができる。
【0038】
次に、記憶手段22に記憶された関係式20に基づき対象コンクリート1中の塩分濃度を検出する方法を図3及び図1により説明する。図3は図1の検査装置3を鉄筋コンクリート構造物に適用した実施例である。例えば同図(A)のように構造物表面の鉄筋2に最も近い部位(鉄筋直上部位)に検査装置3を設置し、信号測定装置5から対象コンクリート1中の鉄筋2に向けて電磁波信号Eを入射する。信号測定装置5での受信波の波形を示す同図(B)を参照するに、受信波中には表面波や様々な反射波が含まれるが、対象コンクリート1中の伝播距離r(鉄筋2の被り厚さD×2)が既知であれば、その伝播距離rに基づき受信波中の鉄筋2からの反射波を選別できる。選別した反射波の伝播時間t及び振幅値β(鉄筋2からの反射波形の最大値から最小値までの幅)に基づき、信号測定装置5の測定手段15によって対象コンクリート1中の単位距離当たりの振幅減衰α及び伝搬速度Vを測定する。また、振幅減衰α及び伝搬速度Vの測定時における対象コンクリート1の温度Tを温度測定手段16で測定する(図1参照)。
【0039】
図3の方法で振幅減衰α、伝搬速度V、温度Tを測定したのち、測定値α、V、Tを処理装置8の塩分濃度検出手段23(図1参照)へ入力し、塩分濃度検出手段23において対象コンクリート1中の塩分濃度を検出する。すなわち、塩分濃度検出手段23は記憶手段22から関係式20((31)式又は(23)式)を読み込み、入力した測定値α、V、Tを関係式20へ代入することにより対象コンクリート1中の塩分濃度を検出する。検出した塩分濃度は、例えば検査装置3の表示手段19等に表示して参照することができる。
【0040】
本発明によれば、対象コンクリート1の電磁波伝播特性及び温度の測定値に基づきコンクリート中の塩分濃度を検出できるので、従来困難であったコンクリート中の塩分濃度の非破壊的検査が可能となる。しかも、コンクリート中の塩分濃度を実用可能な精度で検出することができる。また、非破壊的検査であるため、鉄筋コンクリート構造物の同一場所における塩分濃度の経時的変化を把握する等の継続的検査に利用できる。更に、従来の化学分析等による塩分濃度検査に比しコンクリート中の塩分濃度を現場で短時間のうちに把握できるので、構造物全体を対象とした塩害調査のような広範囲の調査等にも容易に適用できる。
【0041】
こうして本発明の目的である「コンクリート中の塩分量を非破壊的に且つ迅速に検査する方法及び装置」の提供が達成できる。
【0042】
図4は、本発明の検査装置3により対象コンクリート1の振幅減衰α及び伝搬速度Vを測定する他の方法を示す。この実施例では同図(A)に示すように、構造物表面の鉄筋2の直上部位に検査装置3を設置して反射波を得ると共に、構造物表面の鉄筋2が存在しない部位又は鉄筋2の影響が小さい部位(例えば、鉄筋2から離れた部位)に検査装置3を設置して反射波を得る。鉄筋2の直上部位における反射波の波形(同図(B)参照)から、鉄筋2の影響が小さい部位における反射波の波形(同図(C)参照)を減算処理して両者に共通の表面波等を除去することにより、鉄筋2からの反射波のみが強調された波形(同図(D)参照)を得ることができる。この波形に基づき鉄筋2からの反射波の伝播時間t及び振幅値βを求め(同図(E)参照)、信号測定装置5により対象コンクリート1中の単位距離当たりの振幅減衰α及び伝搬速度Vを測定する。図3の振幅減衰α及び伝搬速度Vの測定方法は構造物の同一場所における塩分濃度の経時的な変化を把握する検査等に適しているのに対し、図4の測定方法は広い構造物全体を対象として塩害状況を把握する検査等に適している。
【0043】
なお、図3及び4の実施例では対象コンクリート1からの反射波信号に基づき振幅減衰α及び伝搬速度Vを測定しているが、本発明は反射波信号の利用に限定されず、例えば図2のように無筋コンクリート垂れ壁等の塩分濃度を検出する場合は、対象コンクリート1中を透過した透過波信号を利用して振幅減衰α及び伝搬速度Vを測定することも可能である。図2の検査装置3は、信号測定装置5の送信部6と受信部7とを分離可能としたものである。
【0044】
【実施例】
以上、コンクリートの振幅減衰αと伝搬速度Vと温度Tとを用いて対象コンクリート1中の塩分濃度Nを推定する関係式20について説明したが、関係式20の独立変数(又は説明変数)にコンクリートの水分量mを含め、振幅減衰αと伝搬速度Vと温度Tと水分量mとを用いて対象コンクリート1中の塩分濃度Nを推定することにより、対象コンクリート1中の塩分濃度Nの推定精度を更に高めることができる。
【0045】
図1に示す検査装置3は、対象コンクリート1中の水分量mを測定する水分測定装置17を有し、(41)式のように塩分濃度Nの推定の独立変数に試験片33の水分量mを加えた関係式20を記憶手段22に記憶している。このような関係式20は、塩分濃度別コンクリート試験片33毎に、信号測定装置5及び温度測定装置16により単位距離当たりの振幅減衰αと伝搬速度Vと温度Tとを測定すると共に、水分測定装置17により水分量mを測定し、各測定装置5、16、17の測定値α、V、T、mを処理装置8の関係式作成手段21へ入力することにより作成できる。(41)式の係数a、a、a、a、aは、関係式作成手段21における測定値の重回帰分析により定まる。
【0046】
【数5】
Figure 2004125570
【0047】
本発明者は、表1のコンクリート材料のコンクリート試験片33を用いた前記実験において、各試験片33の水分量mを123日間に亘り継続的に測定し、(42)式のように振幅値βと比誘電率εと温度Tと水分量mとを独立変数とする関係式20を作成し、コンクリート中の塩分濃度Nを推定した。(42)式の係数a、a、a、a、aは、重回帰分析により(43)式のように偏回帰係数a(=−0.123)、a(=−0.114)、a(=−0.374)、a(=0.120)、a(=18.9)として定めた。
【0048】
試験片33中の水分量mは、(44)式に示すように、測定終了後の試験片33を乾燥炉に入れて絶乾状態にした絶乾質量Wsに対する測定時の試験片33中の水分量(=測定時質量Wn−絶乾質量Ws)として測定することができる。(44)式は含水率を求めるものであるが、(44)式に代えて、(45)式に示すように試験片33の測定開始時質量W0に対する測定時の質量減少量(=開始時質量W0−測定時質量Wn)、又は(46)式に示すように試験片33中の測定開始時の水分量(=開始時質量W0−絶乾質量Ws)に対する測定開始から測定時までの水分逸散量(=開始時質量W0−測定時質量Wn)として水分量mを求めてもよい。また、コンクリート中の水分量と試験片33に接する大気の湿度との関係を把握した上で、試験片33に接する大気湿度を水分量mとして用いることも可能である。
【0049】
図14は、各試験片33の材齢毎の測定値β、ε、T、mを(43)式に代入して求めた塩分濃度の推定値Nと各試験片33の実際の塩分濃度(設定値)との比較結果を示す。同図から分かるように、コンクリートの水分量mを独立変数に加えることにより重相関係数を0.94にまで高め、塩分濃度を高精度で推定できることが確認できた。なお、(43)式において、振幅値β・比誘電率εに代えて振幅減衰α・伝播速度Vを用いて塩分濃度Nを推定した場合も同様の精度が得られる。
【0050】
図1の検査装置3において、対象コンクリート1の振幅減衰αと伝搬速度Vと温度Tとを信号測定装置5及び温度測定装置16で測定すると共に、対象コンクリート1の水分量mを水分測定装置17で測定し、各測定装置5、16、17の測定値α、V、T、mを処理装置8の塩分濃度検出手段23へ入力することにより、対象コンクリート1中の塩分濃度Nを高精度で検出できる。
【0051】
対象コンクリート1中の水分量mは、測定対象部分のコンクリート含水率を(44)式の含水率として測定することができる。また、コンクリート中の水分量と試験片33に接する大気の湿度との関係を把握した上で、対象コンクリート1に接する大気湿度を水分量mとして用いてもよい。更に、コンクリートの比誘電率εが含水率によって変化することから、図1の算出手段25で算出した比誘電率εに基づき対象コンクリート1中の水分量を推定することも可能である。但し、比誘電率εから水分量を推定する場合は、図9に示したように比誘電率εには塩分濃度の影響も極僅かではあるが含まれていることから、予め塩分濃度が既知であるコンクリート試験片等を用いて比誘電率εと水分量mのキャリブレーションを行うことが望ましい。
【0052】
コンクリート中の水分量mを独立変数に含めた(41)又は(42)式の関係式20は、とくに水分量の変化が大きい若材齢時のコンクリート中の塩分濃度検査に適している。水分量の変動が少なくなった材齢の経過したコンクリート構造物の塩分濃度Nを検出する場合は、(31)又は(23)式の関係式20によりコンクリート中の塩分濃度Nを十分高精度に推定できる。但し、臨海構造物の干満帯のようなコンクリート中の水分量の変化が大きいと判断される場合には、材齢が経過していても、水分量mを独立変数に含めた(41)又は(42)式の関係式20を用いることが望ましい。
【0053】
【発明の効果】
以上説明したように、本発明の電磁波によるコンクリート中の塩分濃度検査方法及び装置は、所定材料・組成の対象コンクリートに電磁波信号を入射して単位距離当たりの振幅減衰と伝搬速度と当該コンクリートの温度とを測定し、振幅減衰と伝搬速度と温度の測定値から対象コンクリート中の塩分濃度を検出するので、次の顕著な効果を奏する。
【0054】
(イ)対象コンクリートの電磁波伝播特性と温度とに基づきコンクリート中の塩分濃度を検出するので、コンクリート中の塩分濃度を非破壊的に且つ実用可能な精度で検査することができる。
(ロ)鉄筋コンクリート構造物に損傷を与えることなく塩害の程度を検査できるので、構造物の劣化進行を招くおそれがなく、圧縮部等の構造上重要な部位にも適用できる。
(ハ)非破壊的検査であるため、鉄筋コンクリート構造物の同一場所における塩分濃度の経時的変化を把握する等の継続的検査に利用できる。
(ニ)コンクリート中の塩分濃度を現場で迅速に把握できるので、従来困難であった構造物全体を対象とした広範囲に亘る塩害調査が実現可能となる。
(ホ)コンクリート中の水分量を考慮して塩分濃度を推定することにより、コンクリート中の塩分濃度の推定精度を更に高めることができる。
(ヘ)従来の電磁波レーダ法と容易に組み合わせることが可能であり、鉄筋コンクリート構造物の劣化調査や耐久性の診断の高機能化への寄与が期待できる。
【図面の簡単な説明】
【図1】本発明装置の一実施例の説明図である。
【図2】本発明装置の他の実施例の説明図である。
【図3】本発明の塩分濃度検査方法の一例(時間計測)の説明図である。
【図4】本発明の塩分濃度検査方法の他の一例(距離計測)の説明図である。
【図5】塩化ナトリウム水溶液の塩分濃度と電磁波振幅減衰との関係を確認する実験の説明図である。
【図6】図5の実験結果を示すグラフである。
【図7】コンクリート試験片の一例の説明図である。
【図8】コンクリート中の塩分濃度と電磁波振幅減衰との関係を示すグラフの一例である。
【図9】コンクリート中の塩分濃度と比誘電率との関係を示すグラフの一例である。
【図10】コンクリート中の電磁波振幅減衰αと比誘電率εとから塩分濃度を推定した推定結果を示すグラフの一例である。
【図11】図10の推定結果の経時的変化を示すグラフの一例である。
【図12】図10の実験における室内温度・湿度の経時的変化を示すグラフの一例である。
【図13】コンクリート中の電磁波振幅減衰αと比誘電率εと温度(外気温)Tとから塩分濃度を推定した推定結果を示すグラフの一例である。
【図14】コンクリート中の電磁波振幅減衰αと比誘電率εと温度(外気温)Tと含水率mとから塩分濃度を推定した推定結果を示すグラフの一例である。
【符号の説明】
1…検査対象コンクリート
2…鉄筋        3…塩分濃度検査装置
3a…車輪        5…信号測定装置
6…送信部       7…受信部
8…処理装置
10…送信機       11…送信アンテナ
12…受信機       13…受信アンテナ
15…測定手段      15a…メモリ
16…温度測定装置    17…水分測定装置
19…表示手段
20…関係式       21…関係式作成手段
22…記憶手段      23…塩分濃度検出手段
25…算出手段      25a…メモリ
30…塩化ナトリウム水溶液
31…プラスチック容器
32…鉄板
33…コンクリート試験片

Claims (10)

  1. 検査対象コンクリートと同じ組成のコンクリート材料に所定濃度の塩分を混入した複数の塩分濃度別コンクリート試験片を作り、試験片毎に電磁波信号を入射して単位距離当たりの振幅減衰と伝搬速度と当該試験片の温度とを測定し、試験片毎の測定値から前記振幅減衰と伝搬速度と温度とを独立変数とし塩分濃度を従属変数とする関係式を求め、対象コンクリートに前記電磁波信号を入射して単位距離当たりの振幅減衰と伝搬速度と当該コンクリートの温度とを測定し、当該振幅減衰と伝搬速度と温度の測定値を前記関係式に代入して対象コンクリート中の塩分濃度を検出してなる電磁波によるコンクリート中の塩分濃度検査方法。
  2. 請求項1の検査方法において、前記試験片毎の電磁波伝搬速度から真空中の電磁波伝搬速度との比である比誘電率を算出し、前記関係式の独立変数に前記伝搬速度に代えて比誘電率を含め、対象コンクリートの電磁波伝搬速度から比誘電率を算出して前記関係式へ代入することにより対象コンクリート中の塩分濃度を検出してなる電磁波によるコンクリート中の塩分濃度検査方法。
  3. 請求項1又は2の検査方法において、前記試験片毎に当該試験片中の水分量を測定して前記関係式の独立変数に水分量を含め、対象コンクリート中の水分量を測定し、当該水分量の測定値を前記関係式に代入して対象コンクリート中の塩分濃度を検出してなる電磁波によるコンクリート中の塩分濃度検査方法。
  4. 請求項1から3の何れかの検査方法において、前記試験片及び対象コンクリートの温度を当該試験片及びコンクリートに接する大気の温度としてなる電磁波によるコンクリート中の塩分濃度検査方法。
  5. 請求項3又は4の検査方法において、前記試験片及び対象コンクリートの水分量を当該試験片及びコンクリートに接する大気の湿度としてなる電磁波によるコンクリート中の塩分濃度検査方法。
  6. コンクリート中に電磁波信号を入射して単位距離当たりの振幅減衰と伝搬速度とを測定する信号測定装置、前記コンクリートの温度を測定する温度測定装置、検査対象コンクリートと同じ組成のコンクリート材料に所定濃度の塩分を混入した複数の塩分濃度別コンクリート試験片に対する前記測定装置の各測定値に基づき作成された振幅減衰と伝搬速度と温度とを独立変数とし塩分濃度を従属変数とする関係式を記憶する記憶手段、及び検査対象コンクリートに対する前記測定装置の各測定値を入力し且つ当該測定値を前記関係式に代入して対象コンクリート中の塩分濃度を検出する塩分濃度検出手段を備えてなる電磁波によるコンクリート中の塩分濃度検査装置。
  7. 請求項6の検査装置において、前記電磁波伝搬速度から真空中の電磁波伝搬速度との比である比誘電率を算出する算出手段を設け、前記関係式の独立変数に前記伝搬速度に代えて比誘電率を含めてなる電磁波によるコンクリート中の塩分濃度検査装置。
  8. 請求項6又は7の検査装置において、前記温度測定装置をコンクリートに接する大気の温度を測定するものとしてなる電磁波によるコンクリート中の塩分濃度検査装置。
  9. 請求項6から8の何れかの検査装置において、前記コンクリート中の水分量を測定する水分測定装置を設け、前記関係式の独立変数に水分量を含めてなる電磁波によるコンクリート中の塩分濃度検査装置。
  10. 請求項9の検査装置において、前記水分測定装置をコンクリートに接する大気の湿度を測定するものとしてなる電磁波によるコンクリート中の塩分濃度検査装置。
JP2002289196A 2002-10-01 2002-10-01 電磁波による鉄筋コンクリート構造物中の塩分濃度検査方法及び装置 Expired - Fee Related JP4073283B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289196A JP4073283B2 (ja) 2002-10-01 2002-10-01 電磁波による鉄筋コンクリート構造物中の塩分濃度検査方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289196A JP4073283B2 (ja) 2002-10-01 2002-10-01 電磁波による鉄筋コンクリート構造物中の塩分濃度検査方法及び装置

Publications (2)

Publication Number Publication Date
JP2004125570A true JP2004125570A (ja) 2004-04-22
JP4073283B2 JP4073283B2 (ja) 2008-04-09

Family

ID=32281471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289196A Expired - Fee Related JP4073283B2 (ja) 2002-10-01 2002-10-01 電磁波による鉄筋コンクリート構造物中の塩分濃度検査方法及び装置

Country Status (1)

Country Link
JP (1) JP4073283B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107259A (ja) * 2008-10-28 2010-05-13 Geo Search Co Ltd 鉄筋コンクリート体の健全性の非破壊評価方法、及びその装置
JP2010230466A (ja) * 2009-03-27 2010-10-14 Mitsui Eng & Shipbuild Co Ltd 対象物中の誘電率算出装置及び誘電率算出方法
JP2013160546A (ja) * 2012-02-02 2013-08-19 Shimizu Corp コンクリート品質管理試験方法
JP2018044948A (ja) * 2016-08-31 2018-03-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 層の誘電率および/または湿り度を判定するための方法およびセンサ装置
KR101846504B1 (ko) 2016-11-23 2018-04-09 한국도로공사 교량의 콘크리트 층에 대한 열화 판별 시스템 및 그 방법
WO2019198260A1 (ja) 2018-04-12 2019-10-17 国立研究開発法人理化学研究所 非破壊検査方法と装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10610043B2 (en) 2015-05-07 2020-04-07 Koninklijke Philips N.V. Food preparation apparatus and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107259A (ja) * 2008-10-28 2010-05-13 Geo Search Co Ltd 鉄筋コンクリート体の健全性の非破壊評価方法、及びその装置
JP2010230466A (ja) * 2009-03-27 2010-10-14 Mitsui Eng & Shipbuild Co Ltd 対象物中の誘電率算出装置及び誘電率算出方法
JP2013160546A (ja) * 2012-02-02 2013-08-19 Shimizu Corp コンクリート品質管理試験方法
JP2018044948A (ja) * 2016-08-31 2018-03-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 層の誘電率および/または湿り度を判定するための方法およびセンサ装置
JP7101462B2 (ja) 2016-08-31 2022-07-15 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 層の誘電率を判定するための方法およびセンサ装置
KR101846504B1 (ko) 2016-11-23 2018-04-09 한국도로공사 교량의 콘크리트 층에 대한 열화 판별 시스템 및 그 방법
WO2019198260A1 (ja) 2018-04-12 2019-10-17 国立研究開発法人理化学研究所 非破壊検査方法と装置
US11841335B2 (en) 2018-04-12 2023-12-12 Riken Nondestructive inspection method and apparatus comprising a neutron source and a gamma-ray detection device for determining a depth of a target component in an inspection target

Also Published As

Publication number Publication date
JP4073283B2 (ja) 2008-04-09

Similar Documents

Publication Publication Date Title
Senin et al. Ground penetrating radar wave attenuation models for estimation of moisture and chloride content in concrete slab
Du Plooy et al. Electromagnetic non-destructive evaluation techniques for the monitoring of water and chloride ingress into concrete: a comparative study
Hong et al. Periodic mapping of reinforcement corrosion in intrusive chloride contaminated concrete with GPR
Villain et al. Durability diagnosis of a concrete structure in a tidal zone by combining NDT methods: laboratory tests and case study
Sbartaï et al. Using radar direct wave for concrete condition assessment: Correlation with electrical resistivity
Davis et al. Nondestructive test methods for evaluation of concrete in structures
Maierhofer et al. Investigation of dielectric properties of brick materials as a function of moisture and salt content using a microwave impulse technique at very high frequencies
JP2008082749A (ja) 鉄筋コンクリート構造物の腐食劣化進行予測方法
Kaplanvural et al. Influence of water content investigation on GPR wave attenuation for early age concrete in natural air-drying condition
Tesic et al. Characterization of ground penetrating radar signal during simulated corrosion of concrete reinforcement
US6614240B2 (en) Microwave determination related to a material such as chloride found in a cement based composition
Ghasr et al. Holographical Microwave Imaging of Corroded Steel Bars in Concrete.
JP4073283B2 (ja) 電磁波による鉄筋コンクリート構造物中の塩分濃度検査方法及び装置
Hong GPR based periodic monitoring of reinforcement corrosion in chloride contaminated concrete
Omikrine Metalssi et al. Effectiveness of nondestructive methods for the evaluation of structures affected by internal swelling reactions: A review of electric, seismic and acoustic methods based on laboratory and site experiences
Wang et al. Non-destructive monitoring of incipient corrosion in reinforced concrete with top-bar defect using a combination of electrochemical and ultrasonic techniques
Lim et al. Mathematical modeling for corrosion environment estimation based on concrete resistivity measurement directly above reinforcement
Ghani et al. Attenuation of ground penetrating radar signal amplitude in monitoring reinforced steel corrosion
Kawataki et al. Nondestructive inspection of voids in concrete by multi-layered scanning method with electromagnetic waves
Gaydeckp et al. Nondestructive testing of reinforced and pre-stressed concrete structures
Zhan et al. Correlation between accelerated steel corrosion in concrete and ground penetrating radar parameters
Joisel et al. Embedded modulating dipole scattering for near-field microwave inspection of concrete: preliminary investigations
JPS6117051A (ja) コンクリ−ト構造物内部の水分・塩分の検査方法
Álvarez et al. The georadar in the evaluation of reinforced concrete structures affected by corrosion
Villain et al. Use of electromagnetic non-destructive techniques for monitoring the chloride ingress into concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4073283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees