JP2004125100A - Construction method for burying pipe - Google Patents

Construction method for burying pipe Download PDF

Info

Publication number
JP2004125100A
JP2004125100A JP2002291746A JP2002291746A JP2004125100A JP 2004125100 A JP2004125100 A JP 2004125100A JP 2002291746 A JP2002291746 A JP 2002291746A JP 2002291746 A JP2002291746 A JP 2002291746A JP 2004125100 A JP2004125100 A JP 2004125100A
Authority
JP
Japan
Prior art keywords
pipe
soil
sand
diameter
fluidized soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002291746A
Other languages
Japanese (ja)
Inventor
Atsushi Matsuo
松尾 淳
Tetsuji Asano
浅野 哲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Koken Co Ltd
Original Assignee
JFE Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Koken Co Ltd filed Critical JFE Koken Co Ltd
Priority to JP2002291746A priority Critical patent/JP2004125100A/en
Publication of JP2004125100A publication Critical patent/JP2004125100A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the amount of earth and sand to be excavated and to greatly reduce execution time when burying a pipe into the ground by an open-cut method, and further to surely prevent the subsidence of the ground surface after backfill. <P>SOLUTION: After an excavation groove 2 for burying the pipe 1 is excavated by an extremely small width having a margin of a maximum of 10cm to the left and right to a diameter D of the pipe 1 to be buried and then the pipe 1 is arranged in the excavation groove 2, slurry-like fluidized soil 5, where water, earth and sand, and a setting agent are mixed at a position without exceeding the 1/2 of the diameter of the pipe 1, thus immediately throwing the earth and sand 6 to the upper portion of the fluidized soil for rolling. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、例えばガス管や上下水道管等を開削工法により地中に敷設するときの管埋設工法、特に、掘削する土砂量の低減と施工時間の短縮及び埋め戻し後の地表面の沈下の防止に関するものである。
【0002】
【従来の技術】
【特許文献1】特開平9−67573号工法
例えばガス管等を開削工法で地中に埋設する場合、図4の断面図に示すように、管1を埋設する場所に、埋設する管1の直径Dに対して少なくとも左右に30cm程度の余裕を持たせた幅W1の掘削溝2aを構築する。この掘削溝2aに管1を配設した後、掘削溝2aを山砂又は再生土6で埋め戻してランマなどにより締め固めてから路盤7や表層8などの上層部を施工している。この掘削溝2aを埋め戻すときに、管周辺部などの狭隘な部分にも隙間なく埋戻し材を充填するために、例えば特許文献1等に示されているように、掘削溝2a内に配設した管1の周辺部と上部に流動化土を打設し、流動化土が固化してからランマ等で土砂を転圧している。
【0003】
【発明が解決しようとする課題】
このように掘削溝を埋設する管の直径に対して少なくとも左右に30cm程度の余裕を持たせて掘削すると、掘削する土砂の量すなわち残土の処分量が大量になるとともに、埋戻し材料も大量に必要になってしまう。
【0004】
また、管と掘削溝の壁面との距離が30cm程度の余裕がある場合、管の周辺部に打設した流動化土が固化するまでに2〜4時間と時間がかかり、土砂を転圧するまで待機する必要があり、施工時間が長くなってしまう。
【0005】
この発明はかかる短所を改善し、開削工法により地中に管を埋設するときの掘削する土砂量を低減するとともに施工時間を大幅に短縮し、さらに埋め戻し後の地表面の沈下を確実に防止することができる管埋設工法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
この発明の管埋設工法は、開削工法により地表面下に管を埋設する管埋設工法において、管を埋設する掘削溝を、埋設する管の直径に対して左右に最大で10cmの余裕を持たせた極小幅で掘削し、掘削溝に管を配設し、管の直径の1/2を越えない位置まで水と土砂と固化剤を混合したスリラー状の流動化土を流し込んで埋め戻し、流動化土の上部に直ちに土砂を投入して転圧することを特徴とする。
【0007】
【発明の実施の形態】
図1はこの発明の管埋設工法を示す断面図である。開削工法で例えばガス管等の管1を地中に埋設する場合、管1を埋設する場所に、埋設する管1の直径Dに対して左右に最大で10cm程度の余裕を持たせた幅Wの掘削溝2を構築する。この掘削溝2に管1を吊り下ろして配設した後、図2の側面断面図に示すように、布堀部3の両端に土のう4を積み上げる。この状態で、地表面に配置したミキサーに水と土砂とたとえば高炉セメント等をの主成分とした固化材を投入し、混練してスラリー状の流動化土を作成し、作成した流動化土5を布堀部3に打設する。この流動化土5を打設するとき、掘削溝2に配設された管1の直径Dの1/2を越えない位置まで流動化土5を流し込む。この流動化土5を流し込むとき、布堀部3の両端に土のう4が積み上げてあるから、流動化土5が流出することを防止して、所定の位置まで流動化土5を流し込むことができる。掘削溝2の所定の位置まで流動化土5を流し込んだ後、直ちに山砂又は再生土6を埋め戻してランマ等で転圧して締め固める。この山砂又は再生土6の埋め戻しと転圧作業は、例えば厚さ30cm毎に掘削深さに応じて数層行う。この山砂又は再生土6の埋め戻しと転圧作業を行った後、路盤7や表層8などの上層部を施工する。
【0008】
このように管1の直径Dに対して左右に最大で10cm程度の余裕を持たせた幅Wの掘削溝2の管1の直径Dの1/2を越えない位置まで流動化土5を流し込むことにより、流動化土5が固化して強度を発現する前に直ちに山砂又は再生土6を投入して転圧することができる。これは流動化土5の上部の山砂又は再生土6による荷重分散効果と管1と掘削溝2の壁面との隙間が最大で10cmと狭いことによるアーチ作用により流動化土5の表面への荷重はほとんど作用しないためである。
【0009】
【実施例】
例えば実施例として口径200Aと300Aと400Aと500A及び600Aの管1を使用し、管1の直径Dに対して左右に10cm程度の余裕を持たせた幅Wの掘削溝2を掘削して管1を配設し、掘削溝2の管1の直径Dの1/2を越えない位置まで流動化土5を流し込んで山砂又は再生土6を直ちに投入して転圧した。このとき使用した流動化土5の品質は、材令28日で一軸圧縮強度qu≦0.3〜0.5MPa、フロー値は250mm〜350mm、ブリーディング率は3%以内である。また、比較例として、従来工法により、図3に示すように、管1の直径Dに対して左右に30cm程度の余裕を持たせた幅W1の掘削溝2aを掘削して管1を配設して、管1の周辺部と上部に流動化土5を打設し、流動化土5が固化してからランマ等で土砂を転圧した。
【0010】
この実施例の場合、従来工法に比較して掘削溝2の幅が小さくなることから、掘削土砂の量は従来工法と比較して、表1の掘削土砂量の削減率に示すように、大幅に削減することができ、例えば400Aの口径の管1の場合で43%削減することができた。したがって埋戻し材料も従来工法と比べて大幅に削減することができる。
【0011】
【表1】

Figure 2004125100
【0012】
また、実施例の場合は、流動化土5を流し込んで直ちに山砂又は再生土6を投入して転圧することができ、流動化土5の固化を待つ必要がないから、施工時間を大幅に短縮することができ、長距離の施工を短時間で行うことができる。
【0013】
さらに、実施例と従来工法で300Aの管1を埋設後、その地表面にトラックを走行させて、図3の断面図に示すように、管横部10と管上部11及び地表面12の沈下量を計測した結果を表2に示す。
【0014】
【表2】
Figure 2004125100
【0015】
表2に示すように、実施例の場合、管1の沈下量と地表面の沈下量はいずれも従来工法より小さいことが確認できた。
【0016】
【発明の効果】
この発明は以上説明したように、管を埋設する掘削溝を、埋設する管の直径に対して左右に最大で10cmの余裕を持たせた極小幅で掘削するようにしたから、掘削土砂の量を大幅に削減することができるとともに埋戻し材料も大幅に削減することができ、管を埋設するときの掘削土の処理費用や埋戻し材料の費用を低減することができる。
【0017】
また、掘削溝を埋設する管の直径に対して左右に最大で10cmの余裕を持たせた極小幅で掘削するとともに、掘削溝に配設した管の直径の1/2を越えない位置までスリラー状の流動化土を流し込んで埋め戻すことにより、流動化土を流し込んでから直ちに土砂を投入して転圧すことができ、施工時間を大幅に短縮することができる。
【0018】
さらに、管下側に充填性が優れた流動化土を打設することにより、管周囲の転圧不足に起因する地表面の沈下が生じることを防ぐことができる。
【0019】
また、流動化土を流し込んでいるとき、管には振動が発生しないから、流動化土を流し込んでいるときに埋設する管を溶接して接合することができ、管の接合と埋設を効率良く行うことができる。
【図面の簡単な説明】
【図1】この発明の管埋設工法を示す断面図である。
【図2】流動化土を打設した状態を示す側面断面図である。
【図3】管埋設後の沈下量の測定位置を示す断面図である。
【図4】従来工法を示す断面図である。
【符号の説明】
1;管、2;掘削溝、3;布堀部、4;土のう、5;流動化土、
6;山砂又は再生土、7;路盤、8;表層。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pipe burying method for laying gas pipes, water and sewage pipes and the like in the ground by an open-cutting method, and in particular, to reduce the amount of excavated earth and sand, shorten the construction time, and settle the ground surface after backfilling. It is about prevention.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 9-67573. For example, when a gas pipe or the like is buried in the ground by an open-cutting method, as shown in a sectional view of FIG. An excavation groove 2a having a width W1 having at least a left and right margin of about 30 cm with respect to the diameter D is constructed. After arranging the pipe 1 in the excavation groove 2a, the excavation groove 2a is backfilled with mountain sand or reclaimed soil 6 and compacted by a rammer or the like, and then the upper layers such as the roadbed 7 and the surface layer 8 are constructed. When backfilling the excavation groove 2a, in order to fill a narrow portion such as a pipe peripheral portion with the backfill material without any gap, for example, as shown in Patent Document 1 or the like, the excavation groove 2a is disposed in the excavation groove 2a. Fluidized soil is poured around and above the pipe 1 provided, and after the fluidized soil is solidified, the soil is compacted with a rammer or the like.
[0003]
[Problems to be solved by the invention]
When digging with a margin of at least about 30 cm on the left and right with respect to the diameter of the pipe in which the digging trench is buried, the amount of excavated earth and sand, that is, the disposal amount of residual soil, becomes large, and the backfill material also becomes large. You will need it.
[0004]
In addition, when the distance between the pipe and the wall of the excavation groove has a margin of about 30 cm, it takes 2 to 4 hours to solidify the fluidized soil cast around the pipe, and until the soil is compacted. It is necessary to wait, and the construction time becomes longer.
[0005]
This invention improves such disadvantages, reduces the amount of excavated earth and sand when burying pipes in the ground by open-cutting, significantly shortens the construction time, and reliably prevents the settlement of the ground surface after backfilling It is an object of the present invention to provide a pipe burying method that can perform the method.
[0006]
[Means for Solving the Problems]
The pipe burial method according to the present invention is a pipe burial method in which a pipe is buried below the ground surface by an open-cutting method, wherein the excavation groove for burying the pipe has a maximum of 10 cm left and right with respect to the diameter of the pipe to be buried. Excavation with a very small width, laying a pipe in the digging trench, pouring in a chiller-like fluidized soil mixed with water, earth and sand, and a solidifying agent to a position not exceeding 1/2 of the diameter of the pipe, backfilling, and flowing It is characterized by immediately putting earth and sand into the upper part of the fossilized soil and compacting it.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view showing a pipe burying method according to the present invention. When the pipe 1 such as a gas pipe is buried in the ground by the open-cutting method, the width W of the place where the pipe 1 is buried has a maximum width of about 10 cm left and right with respect to the diameter D of the buried pipe 1. Of the excavation groove 2 of. After hanging the pipe 1 in the excavation groove 2 and arranging it, sandbags 4 are piled up on both ends of the cloth moat part 3 as shown in the side sectional view of FIG. In this state, water, earth and sand, and a solidifying material mainly containing blast furnace cement, for example, are put into a mixer arranged on the ground surface, and the mixture is kneaded to form a slurry-like fluidized soil. Into the cloth moat part 3. When the fluidized soil 5 is cast, the fluidized soil 5 is poured to a position not exceeding 1/2 of the diameter D of the pipe 1 provided in the excavation groove 2. When the fluidized soil 5 is poured, since the sandbags 4 are piled up at both ends of the cloth moat portion 3, the fluidized soil 5 can be prevented from flowing out and the fluidized soil 5 can be poured to a predetermined position. Immediately after pouring the fluidized soil 5 to a predetermined position in the excavation groove 2, the mountain sand or the reclaimed soil 6 is backfilled and compacted by rolling with a rammer or the like. The backfilling of the mountain sand or the reclaimed soil 6 and the compaction work are performed, for example, in several layers every 30 cm in accordance with the excavation depth. After backfilling and compacting the mountain sand or the reclaimed soil 6, the upper layers such as the roadbed 7 and the surface layer 8 are constructed.
[0008]
As described above, the fluidized soil 5 is poured to a position not exceeding 1/2 of the diameter D of the pipe 1 of the excavation groove 2 having a width W having a maximum of about 10 cm left and right with respect to the diameter D of the pipe 1. Thus, the mountain sand or the reclaimed soil 6 can be immediately charged and compacted before the fluidized soil 5 solidifies and develops strength. This is due to the effect of the load distribution by the mountain sand or the reclaimed soil 6 on the upper part of the fluidized soil 5 and the arching effect due to the narrow gap between the pipe 1 and the wall surface of the excavation groove 2 of 10 cm at the maximum. This is because the load hardly acts.
[0009]
【Example】
For example, a pipe 1 having a diameter of 200A, 300A, 400A, 500A, and 600A is used as an example, and a pipe 2 is formed by digging a pit 2 having a width W of about 10 cm left and right with respect to the diameter D of the pipe 1. 1 and the fluidized soil 5 was poured to a position not exceeding 1 / of the diameter D of the pipe 1 in the excavation groove 2, and mountain sand or reclaimed soil 6 was immediately charged and compacted. The quality of the fluidized soil 5 used at this time is as follows: 28 days old, the unconfined compressive strength qu ≦ 0.3-0.5 MPa, the flow value is 250-350 mm, and the bleeding rate is within 3%. As a comparative example, as shown in FIG. 3, the pipe 1 is laid by excavating a digging groove 2a having a width W1 having a margin of about 30 cm left and right with respect to the diameter D of the pipe 1 by a conventional method. Then, the fluidized soil 5 was cast around and above the pipe 1, and after the fluidized soil 5 was solidified, the soil was compacted with a rammer or the like.
[0010]
In the case of this embodiment, since the width of the excavation groove 2 is smaller than that of the conventional method, the amount of excavated sediment is significantly lower than that of the conventional method, as shown in the reduction rate of the amount of excavated sediment in Table 1. For example, in the case of the pipe 1 having a diameter of 400 A, the reduction was 43%. Therefore, the backfill material can be significantly reduced as compared with the conventional method.
[0011]
[Table 1]
Figure 2004125100
[0012]
In addition, in the case of the embodiment, the sand 5 or the reclaimed soil 6 can be poured immediately after the fluidized soil 5 is poured and the soil can be compacted, and it is not necessary to wait for the solidification of the fluidized soil 5. It can be shortened, and long-distance construction can be performed in a short time.
[0013]
Further, after burying the 300A pipe 1 in the embodiment and the conventional method, a truck is run on the ground surface, and as shown in the sectional view of FIG. Table 2 shows the results of the measurement.
[0014]
[Table 2]
Figure 2004125100
[0015]
As shown in Table 2, in the case of the example, it was confirmed that the settlement amount of the pipe 1 and the settlement amount of the ground surface were both smaller than the conventional method.
[0016]
【The invention's effect】
As described above, according to the present invention, the excavation trench for burying a pipe is excavated with a very small width having a maximum of 10 cm left and right with respect to the diameter of the buried pipe. Can be greatly reduced, and the backfill material can also be significantly reduced, so that the cost of treating excavated soil and the cost of the backfill material when burying the pipe can be reduced.
[0017]
In addition, excavation is performed with a minimum width of 10 cm at the left and right with respect to the diameter of the pipe in which the digging groove is buried. By pouring and refilling the fluidized soil in a shape, the sand can be immediately injected and compacted immediately after the fluidized soil is poured, and the construction time can be greatly reduced.
[0018]
Furthermore, by pouring fluidized soil having excellent filling properties below the pipe, it is possible to prevent the ground surface from sinking due to insufficient rolling pressure around the pipe.
[0019]
Also, when fluidized soil is poured, the pipes do not vibrate, so the pipes to be buried can be welded and joined when the fluidized soil is poured, and the joining and embedding of pipes can be performed efficiently. It can be carried out.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a pipe burying method according to the present invention.
FIG. 2 is a side sectional view showing a state where fluidized soil is cast.
FIG. 3 is a cross-sectional view showing a measurement position of a settlement amount after the pipe is buried.
FIG. 4 is a cross-sectional view showing a conventional method.
[Explanation of symbols]
1; pipe, 2; excavation groove, 3; cloth pit, 4; sandbag, 5; fluidized soil,
6; mountain sand or reclaimed soil; 7; roadbed; 8;

Claims (1)

開削工法により地表面下に管を埋設する管埋設工法において、管を埋設する掘削溝を、埋設する管の直径に対して左右に最大で10cmの余裕を持たせた極小幅で掘削し、掘削溝に管を配設し、管の直径の1/2を越えない位置まで水と土砂と固化剤を混合したスリラー状の流動化土を流し込んで埋め戻し、流動化土の上部に直ちに土砂を投入して転圧することを特徴とする管埋設工法。In the pipe burial method where the pipe is buried below the ground surface by the open-cutting method, the digging groove for burying the pipe is excavated with a minimum width of 10 cm left and right with respect to the diameter of the pipe to be buried. A pipe is placed in the groove, and a chiller-like fluidized soil mixed with water, earth and sand, and a solidifying agent is poured back to a position that does not exceed 1/2 of the diameter of the pipe, and backfilled. A pipe burial method characterized by charging and rolling.
JP2002291746A 2002-10-04 2002-10-04 Construction method for burying pipe Pending JP2004125100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291746A JP2004125100A (en) 2002-10-04 2002-10-04 Construction method for burying pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291746A JP2004125100A (en) 2002-10-04 2002-10-04 Construction method for burying pipe

Publications (1)

Publication Number Publication Date
JP2004125100A true JP2004125100A (en) 2004-04-22

Family

ID=32283218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291746A Pending JP2004125100A (en) 2002-10-04 2002-10-04 Construction method for burying pipe

Country Status (1)

Country Link
JP (1) JP2004125100A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241791A (en) * 2005-03-02 2006-09-14 Tokura Construction Co Ltd Shallow-layer burial method using filler such as fluidized soil and disposed soil
JP2009033951A (en) * 2007-07-30 2009-02-12 Daewon Electric Co Ltd Method of construction work of circular arc shape aerial line electric pole under bracing member using expansion excavation unit for auger crane
JP2012007690A (en) * 2010-06-25 2012-01-12 Sumitomo Osaka Cement Co Ltd Pipe embedding method
CN104653902A (en) * 2014-12-19 2015-05-27 华北水利水电大学 Water-saving irrigation pipeline and construction method thereof
JP7034224B1 (en) 2020-09-17 2022-03-11 芦森工業株式会社 Groundwater level lowering method and equipment laying system for groundwater level lowering

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241791A (en) * 2005-03-02 2006-09-14 Tokura Construction Co Ltd Shallow-layer burial method using filler such as fluidized soil and disposed soil
JP4537228B2 (en) * 2005-03-02 2010-09-01 徳倉建設株式会社 Shallow buried method using fluidized soil
JP2009033951A (en) * 2007-07-30 2009-02-12 Daewon Electric Co Ltd Method of construction work of circular arc shape aerial line electric pole under bracing member using expansion excavation unit for auger crane
JP2012007690A (en) * 2010-06-25 2012-01-12 Sumitomo Osaka Cement Co Ltd Pipe embedding method
CN104653902A (en) * 2014-12-19 2015-05-27 华北水利水电大学 Water-saving irrigation pipeline and construction method thereof
JP7034224B1 (en) 2020-09-17 2022-03-11 芦森工業株式会社 Groundwater level lowering method and equipment laying system for groundwater level lowering
JP2022050249A (en) * 2020-09-17 2022-03-30 芦森工業株式会社 Underground water level lowering method and facility laying system for lowering underground water level

Similar Documents

Publication Publication Date Title
CN107859062B (en) The earth-filling method of underground pipe gallery
JP2007051517A (en) Construction method for forming inclined plane reinforced by external protection material
CN110528578A (en) Under wear existing railway double track tunnel cover and cut construction method
JP2004125100A (en) Construction method for burying pipe
CN107654239A (en) A kind of tunnel bottom is excavated and inverted arch construction method
CN217870532U (en) Backfill structure for pipeline construction
KR20100030293A (en) Method for laying pipes under the ground
JP3756077B2 (en) Burial method and structure of underground objects
JPH08284126A (en) Repairing method of quay and quay structure
JP3454757B2 (en) Underground structure buried structure
JP3664526B2 (en) Burial backfilling method
JP3230147B2 (en) Fluidized soil construction structure and its construction method
JP3454332B2 (en) Groove backfill method
CN209539359U (en) Shield crosses the constructing structure for invading limit box culvert
JPH09125394A (en) Backfilling technique for burying ditch
KR20240003601A (en) Construction method for tunnel of slope
JPH0617415A (en) Fluidization backfill and backfilling method
JP2021050500A (en) Ground improvement method
JP2001049994A (en) Tunnel back-filling construction method of using surplus soil
SAITOH Construction Of A Perimeter Bund Using The Pre-Mixed (Pm)-Clay Method
JPH07317959A (en) Pipe burying method
JP2023047749A (en) Structure of quay or revetment
RU2227238C2 (en) Pipeline securing method
JP3545641B2 (en) Backfill method
JPH0931962A (en) Back-filling work of buried material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108