JPH0617415A - Fluidization backfill and backfilling method - Google Patents

Fluidization backfill and backfilling method

Info

Publication number
JPH0617415A
JPH0617415A JP19461392A JP19461392A JPH0617415A JP H0617415 A JPH0617415 A JP H0617415A JP 19461392 A JP19461392 A JP 19461392A JP 19461392 A JP19461392 A JP 19461392A JP H0617415 A JPH0617415 A JP H0617415A
Authority
JP
Japan
Prior art keywords
strength
water
backfilling
backfill
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19461392A
Other languages
Japanese (ja)
Inventor
Fumihiko Iwashita
文彦 岩下
Naoki Hara
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kokan Koji KK
Original Assignee
Nippon Kokan Koji KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Koji KK filed Critical Nippon Kokan Koji KK
Priority to JP19461392A priority Critical patent/JPH0617415A/en
Publication of JPH0617415A publication Critical patent/JPH0617415A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00706Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like around pipelines or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PURPOSE:To increase workability by adding a specified amount of gypsum, jet fine powder, and Portland cement to the muddy water made by adding water to dug soil, and filling it to a backfilling section. CONSTITUTION:A relatively large amount of water is added to dug soil to form muddy water. Next, a hydraulic solidification agent with a mixing ratio of 70:5:25 of gypsum, jet fine powder, and Portland cement is added and mixed with the muddy water. It is poured into a backfilling section in a short time to fill it evenly also into the underside of pipes and narrow spaces. Thus, it can be filled also into narrow spaces without tamping, the strength of the backfilling section can be increased, the work period can be reduced, and the work cost can be reduced remarkably because dug soil is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば掘削溝に石油
導管やガス管,水道管,下水道管等を配管したのち埋戻
しに使用する流動化埋戻し材料及び埋戻し施工法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized backfilling material used for backfilling after a petroleum pipe, a gas pipe, a water pipe, a sewer pipe, etc. are piped in an excavation trench and a backfilling method. .

【0002】[0002]

【従来の技術】石油導管やガス管等を地中に埋設すると
きは、石油導管等を保護するために地表から一定の深さ
以上に埋設する必要がある。この埋設工事ににおいて
は、掘削した土砂を内陸部受入れ地や海面埋立て地に運
搬し、掘削土砂を一切使用せずに山砂で埋戻したり、掘
削土砂を掘削溝の周囲に置いたり、仮置場に運んで保存
し、配管後に掘削土砂に固化材を添加して埋め戻してい
る。
2. Description of the Related Art When burying oil pipes and gas pipes in the ground, it is necessary to bury them at a certain depth or more from the surface of the earth in order to protect the oil pipes. In this burial work, the excavated earth and sand are transported to the inland receiving land and sea landfill, and backfilled with mountain sand without using the excavated earth and sand, or placed the excavated earth and sand around the excavation trench, It is transported to a temporary storage site and stored, and after piping, solidification material is added to the excavated soil to backfill it.

【0003】[0003]

【発明が解決しようとする課題】しかしながら掘削土砂
を使用せずに山砂のみで埋戻す場合は、掘削土砂の受入
れ規制により掘削土砂の受入れ地が将来少なくなるとと
もに良質な山砂が不足するという問題がある。
However, when backfilling with only the sand without using the excavated earth and sand, it is said that due to the regulation of acceptance of the excavated earth and sand, the receiving place of the excavated earth and sand will be reduced in the future and the quality of the sand and sand will be insufficient. There's a problem.

【0004】また、埋戻す場合に、掘削土砂に固化材を
添加した改良土や山砂を何層かに分けてまき出し、ラン
マ−やタンパ−等で突き固めているが、この突き固めを
丁寧にするために多くの時間を要する。また、実際の管
埋設作業においては、長く掘削した溝内に設置された管
の全てのくさびの部分を完全に締め固めることは困難で
あり、不十分な転圧になる危険性がある。このようにく
さびの部分が不十分な転圧になると埋設部に陥没が生じ
たり、埋設した管がヒュ−ム管や陶管の場合には、継手
部が抜ける等の損傷事故を起す可能性がある。
Further, in the case of backfilling, the improved soil obtained by adding a solidifying material to the excavated soil and the mountain sand are spread out in several layers and compacted with a rammer or tamper. It takes a lot of time to be polite. Further, in the actual pipe burying work, it is difficult to completely compact all the wedge portions of the pipe installed in the long excavated groove, and there is a risk of insufficient compaction. In this way, if the wedge part becomes insufficiently compacted, the buried part may be depressed, or if the buried pipe is a humor pipe or a ceramic pipe, the joint part may come off and a damage accident may occur. There is.

【0005】さらに、ランマ−やタンパ−等で突き固め
るときに振動や騒音が発生し、市街地では騒音公害等の
問題も生じる。
Further, vibration and noise are generated when tampering with a rammer, tamper or the like, which causes problems such as noise pollution in urban areas.

【0006】このような短所を解決するために、掘削土
に数%から10%程度の固化材を混合し、若干の水を加え
て有る程度流動性を持たせた埋戻材料を掘削溝に流し込
む方法が、例えば特開平1−312118号公報に開示されて
いる。
[0006] In order to solve such disadvantages, a backfill material is mixed in excavated soil with a solidifying material of several% to 10%, and a certain amount of water is added to the excavated groove to provide a certain degree of fluidity to the excavation trench. A pouring method is disclosed in, for example, Japanese Patent Laid-Open No. 1-312118.

【0007】しかしながらこの方法によると、例えば地
山の種類が火山灰質粘性土の場合であっても掘削土と固
化材と水の配合度が100;13;30と固化材の量が少な
く、強度は28日材令で2.7kgf/cm2程度であることは記さ
れているが、30分材令のような短期材令での強度は示さ
れておらず明確ではない。
However, according to this method, even if the type of ground is volcanic ash cohesive soil, the mixing ratio of excavated soil, solidifying material and water is 100; 13; 30, the amount of solidifying material is small, and the strength is low. Although it is stated that it is about 2.7 kgf / cm 2 in 28-day age, it is not clear because the strength in short-term age such as 30-minute age is not shown.

【0008】この発明はかかる点を改善するためになさ
れたものであり、埋設管の下部にも簡単に充填すること
ができるとともに、短期材令でも十分な強度を有する流
動化埋戻し材料と埋戻し施工法を提供することを目的と
するものである。
The present invention has been made in order to improve the above points, and it is possible to easily fill the lower portion of the buried pipe, and it is possible to fill the fluidized backfill material and the backfill material having sufficient strength even for a short period of time. The purpose is to provide a return construction method.

【0009】[0009]

【課題を解決するための手段】この発明に係る流動化埋
戻し材料は、水を掘削土に加えて撹拌した泥水に石膏と
ジェット微粉末とポルトランドセメントを混合した水硬
性固化材を土質に応じて一定量加えて撹拌したことを特
徴とする。
The fluidized backfilling material according to the present invention is a hydraulic solidifying material prepared by mixing gypsum, jet fine powder and Portland cement in muddy water obtained by adding water to excavated soil and stirring the material. It is characterized in that a certain amount was added and stirred.

【0010】水硬性固化材の石膏とジェット微粉末とポ
ルトランドセメントとの配合比が70;5;25であること
が好ましい。
The mixing ratio of gypsum, jet fine powder and Portland cement as the hydraulic setting material is preferably 70; 5; 25.

【0011】また、この発明に係る埋戻し施工法は、上
記流動化埋戻し材料を埋戻し部に流し込み充填すること
を特徴とする。
Further, the backfilling method according to the present invention is characterized in that the fluidized backfilling material is poured and filled into the backfilling portion.

【0012】[0012]

【作用】ガス管や水道管等を埋設するときに掘削土を埋
戻し材料として利用し、ランマ−やタンパ−等で突き固
めることなしに、管下部や管が輻輳した狭い空隙に均一
に埋め戻すためには、掘削土に適量な水を混合して流動
性を高めるとともに、固化材を混合して地山強度と同等
以上の強度に高める必要がある。そこでこの発明におい
ては、掘削土に比較的多い水を加えて撹拌した泥水に
し、流動性を高め、埋戻し部に短時間で流し込み、配管
の下回りや狭い空隙にも均一に充填する。
[Operation] When burying gas pipes, water pipes, etc., the excavated soil is used as a backfill material, and it is uniformly filled in a narrow space where the lower part of the pipe or the pipe is congested without being tampered with a rammer or tamper. In order to restore it, it is necessary to mix an appropriate amount of water with the excavated soil to increase the fluidity and to mix the solidifying material to increase the strength to be equal to or higher than the ground strength. Therefore, in the present invention, a relatively large amount of water is added to the excavated soil to make it agitated mud water, the fluidity is enhanced, and the fluid is poured into the backfilling portion in a short time, and the lower part of the pipe and narrow voids are evenly filled.

【0013】また、この泥水に水硬性固化材を混合して
埋戻し部の強度を高める。この水硬性固化材として石膏
とジェット微粉末とポルトランドセメントを70;5;25
の割合で混合した材料を使用することにより、掘削土を
使用した埋戻し材料の強度を短時間で高める。
The muddy water is mixed with a hydraulic solidifying material to enhance the strength of the backfilled portion. As this hydraulic setting material, gypsum, jet fine powder and Portland cement 70; 5; 25
The strength of the backfill material using excavated soil is increased in a short time by using the material mixed in the ratio of.

【0014】[0014]

【実施例】例えば火山灰質粘性土からなる埋戻し部の地
山強度を測定するために、その地山の不撹乱土を採取し
て一軸圧縮強度quを測定した結果、測定した一軸圧縮
強度quは1.2kgf/cm2であった。そこで、この地山の掘
削土を利用した埋戻し材料でランマ−やタンパ−等で突
き固めることなしに埋め戻すため、掘削土に比較的多量
の水を加えて流動性を高めながら、水硬性固化材として
石膏と、脱燐スラグ,螢石,石灰,アルミ灰の混合物か
らなるジェット微粉末と、ポルトランドセメントとの混
合物を使用し、地山強度を満足する掘削土と水と水硬性
固化材の配合比を調べた。
[Example] For example, in order to measure the ground strength of a backfill part made of volcanic ash cohesive soil, undisturbed soil of the ground was sampled and the uniaxial compressive strength qu was measured. Was 1.2 kgf / cm 2 . Therefore, in order to backfill the excavated soil with a backfill material without tampering with a rammer or tamper, etc., a relatively large amount of water is added to the excavated soil to increase fluidity and Using a mixture of gypsum, jet fine powder made of a mixture of dephosphorized slag, fluorite, lime and aluminum ash, and Portland cement as a solidifying material, excavated soil, water and hydraulic solidifying material satisfying the ground strength. The compounding ratio of was investigated.

【0015】火山灰質粘性土からなり自然含水比が135
%の掘削土に比較的多量の水を加えて1分間混合し、調
整含水比が300%の泥水とし、この泥水に、石膏(S)と
ジェット微粉末(J)とポルトランドセメント(C)の
配合比率をS;J;C=70;5;25とした水硬性固化材
を添加率を変えて1分間混合して作った埋戻し材料の強
度変化を調べた結果を図1に示す。図1において、Aは
固化材添加率が調整含水比が300%の泥水に対して重量
比で25%の場合、Bは固化材添加率が20%の場合、Cは
固化材添加率が15%の場合である。図1に示すように、
固化材添加率が15%の場合は、30分材令で一軸圧縮強度
quが約0.8kgf/cm2、28日材令で一軸圧縮強度quが1kg
f/cm2程度であり、強度増加はなく地山強度の1.2kgf/cm
2には達しなかった。また、固化材添加率が20%の場合
は、30分材令で一軸圧縮強度quが約1.3kgf/cm2、28日
材令で一軸圧縮強度quが2.5kgf/cm2程度であり、30分
材令から地山強度の1.2kgf/cm2を超えているが、2時間
材令,1日材令で地山強度程度であった。固化材添加率
が25%の場合は、30分材令で一軸圧縮強度quが約2.3kg
f/cm2、28日材令で一軸圧縮強度quが3.8kgf/cm2程度で
あり、30分材令で地山強度の2倍程度、28日材令で地山
強度の3倍以上であり、かつ初期強度から全て地山強度
を張るかに超えた強度を得ることができた。したがって
流動性を高めるために比較的多量の水を加えて泥水にし
ても、固化材を20%以上添加すると初期強度から十分な
強度を得ることができる。
Consisting of volcanic ash cohesive soil with a natural water content of 135
% Excavated soil with a relatively large amount of water and mixed for 1 minute to make muddy water with an adjusted water content ratio of 300%. FIG. 1 shows the result of examining the strength change of the backfill material prepared by mixing the hydraulic solidifying material with the compounding ratio of S; J; C = 70; 5; 25 for 1 minute while changing the addition rate. In FIG. 1, A is a solidifying agent addition rate of 25% by weight relative to muddy water with an adjusted water content of 300%, B is a solidifying agent addition rate of 20%, and C is a solidifying agent addition rate of 15%. % Is the case. As shown in Figure 1,
When the solidifying material addition rate is 15%, the uniaxial compressive strength qua is about 0.8 kgf / cm 2 at 30 minutes of age, and the uniaxial compressive strength qua is 1 kg at 28 days of age.
f / cm 2 and no increase in strength, 1.2 kgf / cm of natural strength
Did not reach 2 . Also, if the solidified material addition rate is 20%, a uniaxial compressive strength qu about 1.3 kgf / cm 2, the uniaxial compressive strength qu 28 days material ordinance 2.5 kgf / cm 2 about 30 min material age, 30 Although it exceeds the natural strength of 1.2 kgf / cm 2 from the division age, it was about the strength of the ground for 2 hours and 1 day. When the solidifying material addition rate is 25%, the uniaxial compressive strength qu is about 2.3 kg at 30 minutes of age.
The uniaxial compressive strength qu is about 3.8 kgf / cm 2 at f / cm 2 and 28 days old, and is about twice as much as the ground strength at 30 minutes old, and more than 3 times as strong as the 28 days old age. It was possible to obtain a strength that exceeded or exceeded the initial strength. Therefore, even if a relatively large amount of water is added to make it muddy to improve fluidity, it is possible to obtain sufficient strength from the initial strength by adding 20% or more of the solidifying material.

【0016】そこで、固化材の添加率を20%と25%と
し、調整含水比を変えて埋戻し材料の強度変化を調べた
結果を図2に示す。図2において、Aは掘削土と水を混
合した泥水の調整含水比が300%で固化材の添加率が25
%の場合、Bは同じ条件で固化材の添加率が20%の場
合、Cは泥水の調整含水比が325%で固化材の添加率が2
5%の場合、Dは調整含水比が325%で固化材の添加率が
20%の場合である。図2に示すように、固化材の添加率
が同じであっても、調整含水比300%から325%に大きく
なると一軸圧縮強度quが急激に低下してしまう。した
がって調整含水比は最大で300%程度が適当である。
Therefore, the results of examining the change in strength of the backfill material by changing the adjusted water content ratio by setting the addition rates of the solidifying material to 20% and 25% are shown in FIG. In Fig. 2, A is the adjusted water content of mud mixed with excavated soil and water, and the addition rate of solidifying material is 25%.
%, B is 20% in the same condition under the same conditions, and C is 325% in the adjusted water content and 2% in the solidification ratio.
In the case of 5%, D has an adjusted water content ratio of 325% and the addition rate of the solidifying material is
It is the case of 20%. As shown in FIG. 2, even if the addition rate of the solidifying material is the same, when the adjusted water content ratio increases from 300% to 325%, the uniaxial compressive strength qu sharply decreases. Therefore, it is appropriate that the adjusted water content is about 300% at maximum.

【0017】そこで、調整含水比を300%、固化材の添
加率を25%とし、固化材の原料配合比率を変えた場合の
埋戻し材料の強度変化を調べた結果を図3に示す。図3
においてAは固化材の原料配合比率をS;J;C=70;
5;25とした場合、BはS;J;C=60;10;30とした
場合を示す。図に示すように、固化材の原料配合比率が
S;J;C=60;10;30の場合には、28日材令で一軸圧
縮強度quは約8.8kgf/cm2になるが、30分材令では一軸
圧縮強度quは約1.5kgf/cm2であり、初期強度は固化材
の原料配合比率がS;J;C=70;5;25とした場合の
ほうが良かった。これは初期強度発現時には石膏(S)
の影響が大きく、長期材令になるとジェット微粉末
(J)とポルトランドセメント(C)の効果が発揮され
てくることを示す。したがって、初期強度から安定した
強度を得るためには固化材の原料配合比率をS;J;C
=70;5;25にすることが好ましい。
Therefore, FIG. 3 shows the results of examining the strength change of the backfill material when the adjusted water content ratio is 300%, the solidification material addition rate is 25%, and the raw material blending ratio of the solidification material is changed. Figure 3
In A, the raw material mixture ratio of the solidifying material is S; J; C = 70;
In the case of 5; 25, B shows the case of S; J; C = 60; 10; 30. As shown in the figure, when the raw material mixture ratio of the solidifying material is S; J; C = 60; 10; 30, the uniaxial compressive strength qu becomes about 8.8 kgf / cm 2 at the age of 28 days, but 30 The uniaxial compressive strength q u was about 1.5 kgf / cm 2 in the parting age, and the initial strength was better when the raw material mixture ratio of the solidifying material was S; J; C = 70; 5; 25. This is gypsum (S) when the initial strength appears
The effect of the jet fine powder (J) and Portland cement (C) will be exerted in the long term. Therefore, in order to obtain stable strength from the initial strength, the raw material mixture ratio of the solidifying material is S; J; C.
= 70; 5; 25 is preferable.

【0018】このように原料配合比率をS;J;C=7
0;5;25とした固化材を調整含水比300%の泥水に25%
添加すると、初期強度から安定した強度を得ることがで
きる。そこで掘削土に水を加えて1分間混合し、調整含
水比が300%の泥水とし、この泥水に固化材を25%添加
して混合するときの撹拌時間を変えた場合の埋戻し材料
の強度変化を調べた結果を図4に示す。図4において、
Aは固化材を添加したときの撹拌時間が1分の場合、B
は撹拌時間が5分の場合を示す。図に示すように5分間
撹拌すると初期強度と長期材令の強度は共に1分の場合
よりも低下してしまう。この現象は固化材の添加率を20
%に変えた場合も同様に生じる。これは5分間撹拌する
と、すでに硬化を開始した流動化土を乱してしまうため
と考えられる。また、1分間撹拌した場合は粘性も小さ
く流動性は非常に良好であるが、5分間撹拌した場合は
粘性が高くなり流動性が悪くなった。したがって、固化
材を添加したときの撹拌時間を5分以内にすると良い。
In this way, the raw material mixing ratio is S; J; C = 7.
Adjust the solidifying material to 0; 5; 25 to 25% in muddy water with a water content of 300%.
When added, stable strength can be obtained from the initial strength. Therefore, water is added to the excavated soil and mixed for 1 minute to make muddy water with an adjusted water content ratio of 300%, and the strength of the backfill material when the stirring time is changed when 25% of the solidifying material is added to this muddy water and mixed. The result of examining the change is shown in FIG. In FIG.
When A is a stirring time of 1 minute when the solidifying material is added,
Indicates the case where the stirring time is 5 minutes. As shown in the figure, when agitating for 5 minutes, both the initial strength and the strength of the long-term material are lower than those of 1 minute. This phenomenon requires a solidifying agent addition rate of 20.
The same occurs when changing to%. It is considered that this is because the fluidized soil, which has already started to harden, is disturbed by stirring for 5 minutes. Further, when the mixture was stirred for 1 minute, the viscosity was small and the fluidity was very good, but when the mixture was stirred for 5 minutes, the viscosity was high and the fluidity was poor. Therefore, the stirring time when the solidifying material is added should be within 5 minutes.

【0019】これらの結果から、火山灰質粘性土からな
る掘削土に比較的多量の水を加えて調整含水比が300%
の泥水とし、この泥水に、石膏(S)とジェット微粉末
(J)とポルトランドセメント(C)の配合比率をS;
J;C=70;5;25とした水硬性固化材を25%添加して
1分程度混合すると、流動性と強度が非常に良好な埋戻
し材料を得ることができた。そして、この埋戻し材料を
管を配置した掘削溝に流し込むことにより、管の下部や
管が輻輳している間隙にも均一に充填することができ
た。
From these results, a relatively large amount of water was added to the excavated soil made of volcanic ash cohesive soil to adjust the water content to 300%.
And the mixing ratio of gypsum (S), jet fine powder (J) and Portland cement (C) to this muddy water is S;
When 25% of the hydraulic solidifying material with J; C = 70; 5; 25 was added and mixed for about 1 minute, a backfilled material having very good fluidity and strength could be obtained. Then, by pouring this backfill material into the excavation groove in which the pipe was arranged, it was possible to uniformly fill the lower portion of the pipe and the gap where the pipe was converging.

【0020】なお、上記実施例は火山灰質粘性土からな
る掘削土を使用した場合について説明したが、粘性土,
シルト,砂質土からなる掘削土を使用する場合にも同様
に適用することができる。
In the above embodiment, the case of using the excavated soil made of volcanic ash cohesive soil was explained.
The same can be applied when using excavated soil composed of silt or sandy soil.

【0021】[0021]

【発明の効果】この発明は以上説明したように、掘削土
に比較的多い水を加えて撹拌した泥水にし、流動性を高
めて埋戻し部に流し込むようにしたから、ランマ−やタ
ンパ−等で突き固めずに埋戻しすることができるととも
に、配管の下回りや狭い空隙にも均一に充填して埋め戻
すことができる。
As described above, according to the present invention, since a relatively large amount of water is added to excavated soil to make muddy water which is stirred to improve the fluidity and to be poured into the backfill portion, a rammer, a tamper, etc. It can be backfilled without being tampered with, and can be filled evenly in the lower part of the pipe or in a narrow space by backfilling.

【0022】また、この泥水に石膏とジェット微粉末と
ポルトランドセメントを70;5;25の割合で混合した水
硬性固化材を所定添加率で混合することにより埋戻し部
全体の強度を初期から高めることができ、工期を短縮す
ることができるとともに、埋戻し部に陥没が生じること
を防ぐことができる。
Further, the strength of the entire backfilled portion is increased from the initial stage by mixing the muddy water with the hydraulic solidifying material obtained by mixing gypsum, jet fine powder and Portland cement at a ratio of 70: 5; 25 at a predetermined addition rate. Therefore, the construction period can be shortened, and the backfill portion can be prevented from being depressed.

【0023】また、埋戻し材料として掘削土を利用する
から、掘削土を内陸部受入れ地等に運搬する必要はな
く、工費を大幅に低減することができる。
Further, since the excavated soil is used as the backfill material, it is not necessary to transport the excavated soil to an inland receiving site or the like, and the construction cost can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】固化材の添加率を変えた場合の埋戻し材料の強
度変化特性図である。
FIG. 1 is a strength change characteristic diagram of a backfill material when an addition rate of a solidifying material is changed.

【図2】調整含水比を変えた場合の埋戻し材料の強度変
化特性図である。
FIG. 2 is a strength change characteristic diagram of the backfill material when the adjusted water content ratio is changed.

【図3】固化材の原料配合比率を変えた場合の埋戻し材
料の強度変化特性図である。
FIG. 3 is a strength change characteristic diagram of the backfill material when the raw material mixture ratio of the solidified material is changed.

【図4】固化材の撹拌時間を変えた場合の埋戻し材料の
強度変化特性図である。
FIG. 4 is a strength change characteristic diagram of the backfill material when the stirring time of the solidified material is changed.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水を掘削土に加えて撹拌した泥水に石膏
とジェット微粉末とポルトランドセメントを混合した水
硬性固化材を土質に応じて一定量加えて撹拌したことを
特徴とする流動化埋戻し材料。
1. A fluidized embedding characterized by adding a fixed amount of a hydraulic solidifying material obtained by mixing gypsum, jet fine powder and Portland cement to muddy water obtained by adding water to excavated soil and stirring the mixture. Return material.
【請求項2】 水硬性固化材の石膏とジェット微粉末と
ポルトランドセメントとの配合比が70;5;25である請
求項1記載の流動化埋戻し材料。
2. The fluidized backfill material according to claim 1, wherein the compounding ratio of gypsum, jet fine powder and Portland cement as the hydraulic setting material is 70; 5; 25.
【請求項3】 請求項1又は2記載の流動化埋戻し材料
を埋戻し部に流し込み充填することを特徴とする埋戻し
施工法。
3. A backfilling method, comprising pouring and filling the fluidized backfilling material according to claim 1 into a backfilling portion.
JP19461392A 1992-06-30 1992-06-30 Fluidization backfill and backfilling method Pending JPH0617415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19461392A JPH0617415A (en) 1992-06-30 1992-06-30 Fluidization backfill and backfilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19461392A JPH0617415A (en) 1992-06-30 1992-06-30 Fluidization backfill and backfilling method

Publications (1)

Publication Number Publication Date
JPH0617415A true JPH0617415A (en) 1994-01-25

Family

ID=16327455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19461392A Pending JPH0617415A (en) 1992-06-30 1992-06-30 Fluidization backfill and backfilling method

Country Status (1)

Country Link
JP (1) JPH0617415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064367A1 (en) * 1998-06-05 1999-12-16 Pirelli Cavi E Sistemi S.P.A. Composition having low thermal resistivity and method for laying underground cables for carrying electrical energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064367A1 (en) * 1998-06-05 1999-12-16 Pirelli Cavi E Sistemi S.P.A. Composition having low thermal resistivity and method for laying underground cables for carrying electrical energy

Similar Documents

Publication Publication Date Title
JP3144321B2 (en) Fluidization method
JPH06344328A (en) Fast-curing fluidized threaded soil and rapid construction of roadbed/road body using the same
JP2831441B2 (en) Stabilized soil and construction method using stabilized soil
JPH0617415A (en) Fluidization backfill and backfilling method
JPH0790272A (en) Super-plasticizable back-filling material and back-filling process
JPH0571730B2 (en)
JP3230147B2 (en) Fluidized soil construction structure and its construction method
JP4027572B2 (en) How to use construction soil
JP3046476B2 (en) Backfill method
JPH0987622A (en) Solidifying material for fluidized backfilling soil and fluidized backfilling soil
JP2004125100A (en) Construction method for burying pipe
JP3341541B2 (en) Backfilling method for buried objects
JPH01312118A (en) Strength-applied backfilled material and backfilling construction with its material
JP3454757B2 (en) Underground structure buried structure
JPH03168489A (en) Burying method of buried pipe
JP3363219B2 (en) Sabo dam structure
JP2001081806A (en) Fluidization back filling method for construction generated earth
KR20020024486A (en) A mothod of preparation for a coagulating soil and a coagulating soil thereby
JPH10306433A (en) Back-filling method of excavated ditch
JP2744578B2 (en) Fluidizing backfill solidifying agent and method of using the same
JPH1150438A (en) Superplasticization backfilling method of buried substance
JP2001049994A (en) Tunnel back-filling construction method of using surplus soil
JPS6070241A (en) Construction of sewage pipe culvert
JP2002275933A (en) Method for fluidizing and backfilling earth generated by construction
KR0167035B1 (en) Method of laying hume pipes