JP2004124579A - Base isolation construction method for existing building - Google Patents

Base isolation construction method for existing building Download PDF

Info

Publication number
JP2004124579A
JP2004124579A JP2002292057A JP2002292057A JP2004124579A JP 2004124579 A JP2004124579 A JP 2004124579A JP 2002292057 A JP2002292057 A JP 2002292057A JP 2002292057 A JP2002292057 A JP 2002292057A JP 2004124579 A JP2004124579 A JP 2004124579A
Authority
JP
Japan
Prior art keywords
seismic isolation
floor
support member
axial force
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002292057A
Other languages
Japanese (ja)
Other versions
JP3918705B2 (en
Inventor
Minoru Koyama
小山 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2002292057A priority Critical patent/JP3918705B2/en
Publication of JP2004124579A publication Critical patent/JP2004124579A/en
Application granted granted Critical
Publication of JP3918705B2 publication Critical patent/JP3918705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve convenience and outward appearance in a base isolated floor. <P>SOLUTION: A base isolation construction method comprises steps of providing a first support member 11 on the outer periphery of the lower part of a position S to interpose a seismic isolator A of a column 1 of the base isolated floor 2, temporarily providing a first jack 12 between the first support member 11 and a beam 3, providing a second support member 13 on the outer periphery of the column 1 of a base isolation upper floor 5 and temporarily providing a second jack 14 between the second support member 13 and the beam 3, and further comprises steps of cutting and removing the column 1 of the position S to interpose the seismic isolator A in a state that an axial force acting on the column 1 from the upper floor side is transmitted to the column 1 of the lower floor side through the second support member 13, the second jack 3, the first jack 12 and the first support member 11 and then inserting the seismic isolator A in a cut and removed part of the column 1, and then removing the first jack 12, the second jack 14 and the like. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、既存の建物の中間階の軸力材に免震装置を介装することによって、当該既存建物を免震化する既存建物の免震化工法に関するものである。
【0002】
【従来の技術】
鉄筋コンクリート(RC)造、鉄骨鉄筋コンクリート(SRC)造あるいは鉄骨(S)造等の各種の既存建物において、免震装置を特定の階に設置することにより、建物全体あるいはその一部を免震建物とする要請がある。
このような既存建物の免震化工法としては、例えば特許文献1に示す方法が知られている。
【0003】
この免震化工法方法は、免震階における鉄骨柱(軸力材)の免震装置を介装すべき範囲の上下部外周に、それぞれ免震装置を支持する支承部を固定し、次いで上記上下位置の支承部を複数の仮支持用ボルト(支持部材)で連結することによって、鉄骨柱に作用する少なくとも軸力を上記支承部および仮支持用ボルトで仮受けした後に、免震装置を介装すべき範囲の鉄骨柱を切断除去し、次いで鉄骨柱の切断除去部に免震装置を挿入した後に、仮支持用ボルトを撤去するようになっている。
【0004】
上記既存建物の免震化工法においては、鉄骨柱の周りの狭い範囲で工事を進行させることができるので、免震階内における平常業務の妨げとなることがなく、かつ短時間で簡単に免震化の工事を完了することができるという利点がある。
【0005】
【特許文献1】
特開平10−8738号公報
【0006】
【発明が解決しようとする課題】
ところが、上記既存建物の免震化工法においては、鉄骨柱における免震装置を介装すべき範囲の上部外周および下部外周のそれぞれに支承部を固定するようになっているので、例えば免震装置を免震階における鉄骨柱の柱頭に設置しようとした場合、当該免震装置を上階側の梁から支承部の厚さ分だけ下げた位置に設置しなければならない。
このため、地震等によって生じる上下階間の相対変位の位置が低くなるため、例えば壁に沿って棚等を設置する場合、その棚等は高さの制約を受けることになるなど、免震階における使用勝手が低下するという問題がある。また、免震装置を天井内に納めることが困難になり、見栄えが悪くなるという問題も生じることになる。
【0007】
本発明は、上記事情に鑑みてなされたものであり、免震階における免震装置の納まりが良く、しかも使用勝手に大きな制約を生じることがない既存建物の免震化工法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
請求項1に記載の本発明に係る既存建物の免震化工法は、既存建物の中間階の軸力材に免震装置を介装することにより免震階を設ける免震化工法であって、上記免震階における上記軸力材の上記免震装置を介装すべき位置の下部外周に第1の支承部材を設け、この第1の支承部材と上記免震階の上階側の梁との間に第1の支持部材を仮設し、かつ免震階上階の上記軸力材の外周に第2の支承部材を設け、この第2の支承部材と上記梁との間に第2の支持部材を仮設し、上階側から上記軸力材に作用する軸力を上記第2の支承部材、上記第2の支持部材、上記梁、上記第1の支持部材および第1の支承部材を介して下階側の上記軸力材に伝達させた状態で、上記免震装置を介装すべき位置の上記軸力材を切断除去し、次いで上記軸力材の切断除去部に上記免震装置を挿入した後、少なくとも上記第1の支持部材および上記第2の支持部材を撤去することを特徴とするものである。
【0009】
なお、第1の支承部材は、免震階の軸力材の外周に仮固定し、後で撤去可能なものや、軸力材の外周に打設する補強用の増打ちコンクリートが含まれるとともに、このよな増打ちコンクリートを設けた場合には当該増打ちコンクリートの外周に仮固定し、後で撤去可能なものも含まれる。
【0010】
請求項2に記載の発明は、既存建物の中間階の軸力材に免震装置を介装することにより免震階を設ける免震化工法であって、上記免震階における上記軸力材の近傍の上記免震階の下階側の梁と上階側の梁との間に支持部材を仮設し、かつ免震階上階の上記軸力材の近傍の上記免震階の上階側の梁と上記免震階上階の上階側の梁との間に仮支保工を仮設し、上階側から上記軸力材に作用する軸力を上記免震階上階の上階側の梁、上記仮支保工、上記免震階の上階側の梁、上記支持部材、上記免震階の下階側の梁を介して下階側の上記軸力材に伝達させた状態で、上記免震装置を介装すべき位置の上記軸力材を切断除去し、次いで上記軸力材の切断除去部に上記免震装置を挿入した後、上記支持部材および上記仮支保工を撤去することを特徴とするものである。
【0011】
請求項3に記載の発明は、既存建物の中間階の軸力材に免震装置を介装することにより免震階を設ける免震化工法であって、上記免震階における上記軸力材の上記免震装置を介装すべき位置の下部外周に支承部材を設け、この支承部材と上記免震階の上階側の梁との間に支持部材を仮設し、かつ免震階上階の上記軸力材の近傍の上記梁と上記免震階上階の上階側の梁との間に仮支保工を仮設し、上階側から上記軸力材に作用する軸力を上記免震階上階の上階側の梁、上記仮支保工、上記免震階の上階側の梁、上記支持部材および上記支承部材を介して下階側の上記軸力材に伝達させた状態で、上記免震装置を介装すべき位置の上記軸力材を切断除去し、次いで上記軸力材の切断除去部に上記免震装置を挿入した後、少なくとも上記支持部材および上記仮支保工を撤去することを特徴とするものである。
【0012】
なお、この発明においても、支承部材は、免震階の軸力材の外周に仮固定し、後で撤去可能なものや、軸力材の外周に打設する補強用の増打ちコンクリートが含まれるとともに、このよな増打ちコンクリートを設けた場合には当該増打ちコンクリートの外周に仮固定し、後で撤去可能なものも含まれる。
【0013】
請求項4に記載の発明は、既存建物の中間階の軸力材に免震装置を介装することにより免震階を設ける免震化工法であって、上記免震階における上記軸力材の近傍の上記免震階の下階側の梁と上階側の梁との間に第1の支持部材を仮設し、かつ免震階上階の上記軸力材の外周に支承部材を設け、この支承部材と上記免震階の上階側の梁との間に第2の支持部材を仮設し、上階側から上記軸力材に作用する軸力を上記支承部材、上記第2の支持部材、上記免震階の上階側の梁、上記第1の支持部材、上記免震階の下階側の梁を介して下階側の上記軸力材に伝達させた状態で、上記免震装置を介装すべき位置の上記軸力材を切断除去し、次いで上記軸力材の切断除去部に上記免震装置を挿入した後、少なくとも上記第1の支持部材および上記第2の支持部材を撤去することを特徴とするものである。
【0014】
免震装置を介装すべく軸力材の所定位置を切断するに際し、請求項1に記載の発明によれば、上階側から軸力材に作用する軸力が第2の支承部材、第2の支持部材、梁、第1の支持部材および第1の支承部材を介して下階側の軸力材に伝達され、軸力が軸力材の切断除去部を迂回した流れとなるので、上記梁、すなわち免震装置を介装すべき位置の上方の梁を補強する必要がないという利点がある。
【0015】
一方、請求項2に記載の発明によれば、上階側から免震階上階の軸力材に作用する軸力が免震階上階の上階側の梁に伝達された後、仮支保工、免震階の上階側の梁、支持部材および免震階の下階側の梁を介して下階側の軸力材に伝達される力の流れが生じるとともに、上記軸力が免震階上階の軸力材を介して免震階の上階側の梁および支持部材に順次伝達される力の流れが生じることにより、軸力が軸力材の切断除去部を迂回した流れとなる。
【0016】
このため、上階側から作用する軸力は、免震階上階の上階側の梁および免震階の上階側の梁の2本の梁に分散して流れるので、これらの各梁の負担を軽減することができる。したがって、免震装置を介装すべき位置の上方の梁を補強することなく、当該免震装置を介装すべき位置の軸力材を切断除去して、この切断除去部に免震装置を挿入することができる。また、免震装置を介装すべき位置の上方の梁(特に免震階の上階側の梁)に補強が必要な場合でも、その補強量の低減を図ることができる。
なお、免震階の下階側および/または免震階上階の上階側に仮支保工を一または複数層階にわたって増設するようにしてもよい。
【0017】
また、請求項3に記載の発明によれば、上階側から免震階上階の軸力材に作用する軸力が免震階上階の上階側の梁に伝達された後、仮支保工、免震階の上階側の梁、支持部材および支承部材を介して下階側の軸力材に伝達される力の流れが生じるとともに、上記軸力が免震階上階の軸力材を介して免震階の上階側の梁および支持部材に順次伝達される力の流れが生じることにより、軸力が軸力材の切断除去部を迂回した流れとなる。
【0018】
このため、上階側から作用する軸力は、免震階上階の上階側の梁および免震階の上階側の梁の2本の梁に分散して流れるので、これらの各梁の負担を軽減することができる。したがって、免震装置を介装すべき位置の上方の梁に補強を施すことなく、当該免震装置を介装すべき位置の軸力材を切断除去して、この切断除去部に免震装置を挿入することができる。また、免震装置を介装すべき位置の上方の梁(特に免震階の上階側の梁)に補強が必要な場合でも、その補強量の低減を図ることができる。
なお、免震階上階の上階側に仮支保工を一または複数層階にわたって増設するようにしてもよい。
【0019】
さらに、請求項4に記載の発明によれば、上階側から免震階上階の軸力材に作用する軸力が支承部材、第2の支持部材、免震階の上階側の梁、第1の支持部材、免震階の下階側の梁を介して下階側の軸力材に伝達され、軸力が軸力材の切断除去部を迂回した流れとなるので、免震装置を介装すべき位置の上方の梁を補強する必要がないという利点がある。
【0020】
以上の結果、請求項1〜4に記載の発明によれば、いずれも免震階における軸力材の免震装置を介装すべき位置の上部に軸力を仮受けするための治具を設ける必要がないので、軸力材における免震装置を介装すべき位置を免震階の上階側の梁に近接した位置に設けることができる。
したがって、免震装置を軸力材の高位置に介装させることができるので、地震等で発生する免震装置を介して上下の相対変位の位置が高位置となり、壁等に沿って設置する棚等が高さの制約を受けることが少なくなる。よって、従来と比較して、免震階における使用勝手の向上を図ることができる。
しかも、免震装置を天井で覆うことが可能になったり、仮に天井から突出してもその突出量を低減することができるので、見栄えの向上を図ることができるとともに、免震階における使用可能な容積の向上を図ることができる。
【0021】
【発明の実施の形態】
(第1の実施の形態)
図1は、本発明の既存建物の免震化工法の第1の実施の形態およびこの実施の形態の実施に直接使用する免震化治具を示す説明図であり、図2は免震化治具等に伝達する軸力の流れを示す図であり、図3は柱に免震装置を介装した状態を示す図である。
【0022】
まず、上記免震化治具の構成を説明した上で、上記第1の実施の形態について説明する。
この免震化治具は、RC造の既存建物の基礎上に立設された柱(軸力材)1の中間部であって、免震化に適した免震階2の柱1に免震装置Aを介装するために選定されたものであり、第1の支承部材11と、第1のジャッキ(第1の支持部材)12と、第2の支承部材13と、第2のジャッキ(第2の支持部材)14とを備えた構成になっている。
【0023】
第1の支承部材11は、免震階2における柱1の免震装置Aを介装すべき位置Sを除く上下部のそれぞれに打設された上部補強コンクリート4aおよび下部補強コンクリート4bのうち下部補強コンクリート4bの上端部外周にPC鋼棒11aなどによって仮固定されるようになっている。柱1の免震装置Aを介装すべき位置Sは、免震階2における上階側の梁3の下面に近接する位置から下側の所定の範囲である。
【0024】
上記柱1は、四角柱状に形成されており、各補強コンクリート4a、4bは、柱1の外周面に沿って打設され四角柱状に形成されている。
そして、第1の支承部材11は、下部補強コンクリート4bにおける表裏をなす一対の各外周面に配置され、複数のPC鋼棒11aの張力によって当該各外周面に押圧されることにより仮固定されるようになっている。なお、図1において11bは、PC鋼棒11aの両端部に螺合し、当該PC鋼棒11aに上記張力を発生させるためのナットである。
また、各第1の支承部材11は、下部補強コンクリート4bの各外周面に仮固定された状態において、その上面が第1のジャッキ12の支持面11cとなっている。
【0025】
第1のジャッキ12は、ねじ方式のもので構成されており、各第1の支承部材11の支持面11cと、梁3の下面との間に仮設されるようになっている。
【0026】
第2の支承部材13は、免震階上階5の柱1の柱脚における表裏をなす一対の各外周面に配置され、複数のPC鋼棒13aの張力によって当該各外周面に押圧されることにより仮固定されるようになっている。なお、図1において13bは、PC鋼棒13aの両端部に螺合し、当該PC鋼棒13aに上記張力を発生させるためのナットである。
また、第2の支承部材13は、第1の支承部材11が仮固定された下部補強コンクリート4bの外周面の上方に位置する柱1の外周面に仮固定されるようになっている。そして、この仮固定された状態において、第2の支承部材13の下面が第2のジャッキ14の支持面13cとなっている。
【0027】
第2のジャッキ14は、ねじ方式のもので構成されており、各第2の支承部材13の支持面13cと、梁3の上面との間に仮設されるようになっている。なお、第1および第2のジャッキ12、14は、油圧方式などの他の方式のものを用いてもよい。
【0028】
次ぎに、上記免震化治具を用いた既存建物の免震化工法の第1の実施の形態について説明する。
まず、免震化に当たって、免震階2における柱1に上部補強コンクリート4aおよび下部補強コンクリート4bを打設し、所定の期間養生させた後に、下部補強コンクリート4bの上端部の各外周面に第1の支承部材11をPC鋼棒11aおよびナット11bを介して仮固定するとともに、第1の支承部材11の支持面11cと梁3の下面との間に第1のジャッキ12を仮設する。
【0029】
また、免震階上階5における柱1の脚部の各外周面に第2の支承部材13をPC鋼棒13aおよびナット13bを介して仮固定するとともに、第2の支承部材13の支持面13cと梁3の上面との間に第2のジャッキ14を仮設する。
【0030】
そして、第1のジャッキ12および第2のジャッキ14の高さ増加させることにより、上階側から免震階上階5の柱1に作用する軸力を第1のジャッキ12および第2のジャッキ14で仮受けする。
これにより、免震階上階5の柱1に作用する軸力は、図2の矢印で示すように、第2の支承部材13、第2のジャッキ14、梁3、第1のジャッキ12、第1の支承部材11および下部補強コンクリート4bを介して下階側の柱1に伝達されることになる。
【0031】
そこで、免震装置Aを介装すべき位置Sの柱1を切断除去し、次いで当該柱1の切断除去部に免震装置Aを挿入して下部補強コンクリート4bの上端面および上部補強コンクリート4aの下端面にボルト等の連結手段を用いて固定する。なお、免震装置Aは、柱1の上端面および下端面あるいは柱1および補強コンクリート4a、4bの上端面および下端面に固定するようにしてもよい。
【0032】
免震装置Aを介装した後は、第1のジャッキ12および第2のジャッキ14の高さを低下させて、柱1の軸力を免震装置Aに作用させる。そして、これらの第1のジャッキ12および第2のジャッキ14をそれぞれ第1の支承部材11および第2の支承部材13の位置から外す。また、ナット11b、13bを緩めることにより、第1の支承部材11および第2の支承部材13をそれぞれ下部補強コンクリート4bおよび柱1から外す。そして、第1の支承部材11、第1のジャッキ12、第2の支承部材13および第2のジャッキ14等を免震階2および免震階上階5から撤去する。これにより、免震化工事が終了する。
【0033】
以上のように構成された免震化治具およびこれを用いた既存建物の免震化工法によれば、柱1の免震装置Aを介装すべき位置Sの上部に軸力を仮受けするための治具を設ける必要がないので、柱1における免震装置Aを介装すべき位置Sを梁3の下面に極力近接する位置あるいは接する位置に設けることができる(なお、この実施の形態では免震装置Aを介装すべき位置Sを梁3の下面に極力近接する位置に設けている)。
したがって、免震装置Aを梁3の下側における柱1の最も高い位置に介装させることができるので、免震装置Aを介してその上下に生じる相対変位の位置が高なり、免震階2における壁等に沿って設置する棚等が高さの制約を受けることが少なくなる。よって、免震階2における使用勝手の向上を図ることができる。
しかも、免震装置Aを介装する位置が高くなることから、当該免震装置Aを天井内に隠すことが可能になったり、天井から突出してもその突出量を低減することができるようになる。したがって、免震化処理をした後の柱1およびその周辺の見栄えの向上を図ることができるとともに、室内における使用可能な容積の向上を図ることができる。
【0034】
また、上階側から柱1に作用する軸力が第2の支承部材13、第2のジャッキ14、梁3、第1のジャッキ12、第1の支承部材11および下部補強コンクリート4bを介して下階側の柱1に伝達されることから、軸力が柱1の切断除去部を迂回した流れとなる。したがって、柱1の切削除去に際して、免震装置Aを介装すべき位置Sの上方の梁3を補強する必要がないという利点がある。
【0035】
なお、上記実施の形態においては、下部補強コンクリート4bの外周面に固定した第1の支承部材11で第1のジャッキ12を保持するように構成したが、下部補強コンクリート4bの上端面で第1のジャッキ12を保持するようにしてもよい。すなわち、下部補強コンクリート4bを第1の支承部材として用い、この下部補強コンクリート4bの上端面と梁3の下端面との間に第1のジャッキ12を仮設するように構成してもよい。
【0036】
また、第1の支承部材11は、免震階2における柱1の免震装置Aを介装すべき位置Sの下部外周に仮固定するようにしてもよい。この場合には、上部補強コンクリート4aおよび下部補強コンクリート4bを打設することを要しない。
【0037】
(第2の実施の形態)
図4は、本発明の既存建物の免震化工法の第2の実施の形態およびこの実施の形態の実施に直接使用する免震化治具を示す説明図であり、図5は免震化治具等に伝達する軸力の流れを示す図であり、図6は柱に免震装置を介装した状態を示す図である。
【0038】
ここにおいても、上記免震化治具の構成を説明した上で、上記第2の実施の形態について説明する。ただし、第1実施の形態に関する図1〜図3に示した構成要素と共通する要素には同一の符号を付し、その説明を簡略化する。
【0039】
この免震化治具は、図4〜図6に示すように、ジャッキ(支持部材)21と、仮連結支保工22と、仮支保工23とを備えた構成になっている。
【0040】
ジャッキ21は、ねじ方式のもので構成されており、下部補強コンクリート4bにおける表裏をなす一対の各外周面の近傍に位置する免震階2の下階側の梁6の上面と免震階2の上階側の梁3の下面との間に仮連結支保工22を介して仮設されるようになっている。
【0041】
仮連結支保工22は、断面が四角形状に形成されており、その上端面でジャッキ21の下端面を同軸状に保持し、その一外周面を下部補強コンクリート4bの外側面に平行に近接させて、梁6上に立設されるようになっている。
なお、仮連結支保工22の一外周面を下部補強コンクリート4bの外周面に当接させるようにしたり、仮連結支保工22を下部補強コンクリート4bにボルト等で連結するようにしてもよい。
また、ジャッキ21と仮連結支保工22との間およびジャッキ21と梁3との間の少なくとも一方に、高さの調整材(図示せず)を設けるようにしてもよい。
【0042】
仮支保工23は、上記各ジャッキ21の直上に位置する梁3の上面と、免震階上階5の上階側の梁7の下面との間に仮設されるようになっている。この仮支保工23は、高さ調整材や楔(いずれも図示せず)等を用いて梁3および梁7に確実に当接するように構成されている。
【0043】
また、上記ジャッキ21、仮連結支保工22および仮支保工23は、鉛直方向に延在べく、免震階2や免震階上階5に設置されるようになっている。
【0044】
次ぎに、上記免震化治具を用いた既存建物の免震化工法の第2の実施の形態について説明する。
上部補強コンクリート4aおよび下部補強コンクリート4bを打設した後、下部補強コンクリート4bの表裏をなす各外周面の近傍の梁6の上面と梁3の下面との間にジャッキ21および仮連結支保工22を仮設する。
【0045】
また、仮支保工23をジャッキ21の直上であって柱1の近傍の梁3の上面と梁7の下面との間に仮設する。
【0046】
そして、ジャッキ21の高さを増加させることにより、上階側から免震階上階5の柱1に作用する軸力を仮支保工23、ジャッキ21および仮連結支保工22で仮受けする。
これにより、免震階上階5の柱1に作用する軸力は、図5の実線の矢印で示すように、梁7、仮支保工23、梁3、ジャッキ21、仮連結支保工22および梁6を介して下階側の柱1に伝達されることになる。また、上記軸力は、図5の鎖線の矢印で示すように、免震階上階5の柱1を介して梁3およびジャッキ21に順次伝達されることにもなる。
【0047】
そこで、免震装置Aを介装すべき位置Sの柱1を切断除去し、次いで当該柱1の切断除去部に免震装置Aを挿入して下部補強コンクリート4bの上端面および上部補強コンクリート4aの下端面にボルト等の連結手段によって固定する。
【0048】
それから、ジャッキ21の高さを低下させて、柱1の軸力を免震装置Aに作用させた後、ジャッキ21、仮連結支保工22および仮支保工23を外して、免震階2および免震階上階5から撤去する。これにより、免震化工事が終了する。
【0049】
以上のように構成された免震化治具およびこれを用いた既存建物の免震化工法によれば、上階側から免震階上階5の柱1に作用する軸力が梁7に伝達された後、仮支保工23、梁3、ジャッキ21、仮連結支保工22および梁6を介して下階側の柱1に伝達される力の流れが生じるとともに、上記軸力が免震階上階5の柱1を介して梁3およびジャッキ21に順次伝達される力の流れが生じることにより、軸力が柱1の切断除去部を迂回した流れとなる。
【0050】
このため、上階側から作用する軸力は、梁7および梁3の2つの梁に分散して流れるので、これらの各梁7、3の負担を軽減することができる。したがって、免震装置Aを介装すべき位置Sの上方の梁7、3を補強することなく、免震装置Aを介装すべき位置Sの柱1を切断除去して、当該切断除去部に免震装置Aを挿入することができる。また、各梁7、3(特に免震階の上階側の梁3)に補強が必要な場合でも、その補強量の低減を図ることができる。
【0051】
なお、上記実施の形態においては、上部補強コンクリート4aおよび下部補強コンクリート4bを打設するように構成したが、これらの補強コンクリート4a、4bを打設せずに、ジャッキ21および仮連結支保工22を柱1の近傍に仮設するように構成してもよい。
また、免震階2の下階側および/または免震階上階5の上階側に仮支保工23を一または複数層階にわたって増設するようにしてもよい。
【0052】
(第3の実施の形態)
本発明の既存建物の免震化工法の第3の実施の形態を図7を参照して説明する。
この第3の実施の形態おいては、免震階2では、第1の実施の形態で示した第1の支承部材(支承部材)11および第1のジャッキ(支持部材)12を用いて当該第1の実施の形態と同様の手順で工事を行い、免震階上階5では、第2の実施の形態で示した仮支保工23を用いて当該第2の実施の形態と同様の手順によって工事を行うことにより、免震階上階5の柱1に作用する軸力を、図7の実線の矢印で示すように、梁7、仮支保工23、梁3、第1のジャッキ12、第1の支承部材11および下部補強コンクリート4bを介して下階側の柱1に伝達させる。また、上記軸力は、図7の鎖線の矢印で示すように、免震階上階5の柱1を介して梁3および第1のジャッキ12に順次伝達されることにもなる。
【0053】
そして、免震装置Aを介装すべき位置Sの柱1を切断除去し、次いで当該柱1の切断除去部に免震装置Aを挿入して下部補強コンクリート4bの上端面および上部補強コンクリート4aの下端面にボルト等の連結手段によって固定する。
【0054】
それから、第1のジャッキ12の高さを低下させて、柱1の軸力を免震装置Aに作用させた後、第1の支承部材11、第1のジャッキ12および仮支保工23を外して、免震階2および免震階上階5から撤去する。これにより、免震化工事が終了する。
【0055】
以上のように構成された既存建物の免震化工法によれば、上階側から免震階上階5の柱1に作用する軸力が梁7に伝達された後、仮支保工23、梁3、第1のジャッキ12、第1の支承部材11および下部補強コンクリート4bを介して下階側の柱1に伝達される力の流れが生じるとともに、上記軸力が免震階上階5の柱1を介して梁3および第1のジャッキ12に順次伝達される力の流れが生じることにより、軸力が柱1の切断除去部を迂回した流れとなる。
【0056】
このため、上階側から作用する軸力は、梁7および梁3の2つの梁に分散して流れるので、これらの各梁7、3の負担を軽減することができる。したがって、免震装置Aを介装すべき位置Sの上方の各梁7、3に補強を施すことなく、免震装置Aを介装すべき位置Sの柱1を切断除去して、当該切断除去部に免震装置Sを挿入することができる。また、各梁7、3(特に免震階2の上階側の梁3)に補強が必要な場合でも、その補強量の低減を図ることができる。
【0057】
なお、免震階上階5の上階側に仮支保工23を一または複数層階にわたって増設するようにしてもよい。
【0058】
(第4の実施の形態)
本発明の既存建物の免震化工法の第4の実施の形態を図8を参照して説明する。
この第8の実施の形態おいては、免震階2では、第2の実施の形態で示したジャッキ(第1の支持部材)21および仮連結支保工22を用いて当該第2の実施の形態と同様の手順で工事を行い、免震階上階5では、第1の実施の形態で示した第2の支承部材(支承部材)13および第2のジャッキ(第2の支持部材)14を用いて当該第1の実施の形態と同様の手順によって工事を行うことにより、免震階上階5の柱1に作用する軸力を、図8の矢印で示すように、第2の支承部材13、第2のジャッキ14、梁3、ジャッキ21、仮連結支保工22および梁6を介して下階側の柱1に伝達させる。
【0059】
そして、免震装置Aを介装すべき位置Sの柱1を切断除去し、次いで当該柱1の切断除去部に免震装置Aを挿入して下部補強コンクリート4bの上端面および上部補強コンクリート4aの下端面にボルト等の連結手段によって固定する。
【0060】
それから、ジャッキ21および第2のジャッキ14の高さを低下させて、柱1の軸力を免震装置Aに作用させた後、ジャッキ21、仮連結支保工22、第2の支承部材13および第2のジャッキ14を外して、免震階2および免震階上階5から撤去する。これにより、免震化工事が終了する。
【0061】
以上のように構成された既存建物の免震化工法によれば、上階側から免震階上階5の柱1に作用する軸力が第2の支承部材13、第2のジャッキ14、梁3、ジャッキ21、仮連結支保工22および梁6を介して下階側の柱1に伝達され、軸力が柱1の切断除去部を迂回した流れとなる。したがって、柱1の切削除去に際して、免震装置Aを介装すべき位置Sの上方の梁3を補強する必要がないという利点がある。
【0062】
【発明の効果】
以上説明したように、請求項1〜4に記載の本発明の既存建物の免震化工法によれば、いずれも免震階における軸力材の免震装置を介装すべき位置の上部に軸力を仮受けするための治具を設ける必要がないので、軸力材における免震装置を介装すべき位置を免震階の上階側の梁に近接した位置に設けることができる。
したがって、免震装置を軸力材の高位置に介装させることができるので、地震等で発生する免震装置を介して上下の相対変位の位置が高位置となり、壁等に沿って設置する棚等が高さの制約を受けることが少なくなる。よって、従来に比較して、免震階における使用勝手の向上を図ることができる。
しかも、免震装置を天井で覆うことが可能になったり、仮に天井から突出してもその突出量を低減することができるので、見栄えの向上を図ることができるとともに、免震階における使用可能な容積の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態における既存建物の免震化工法を示す図であって、免震化治具を設置した後の状態を示す説明図である。
【図2】同既存建物の免震化工法を示す図であって、免震装置を介装すべき位置の柱を切断除去した後の状態を示す説明図である。
【図3】同既存建物の免震化工法を示す図であって、柱に免震装置を挿入した後の状態を示す説明図である。
【図4】本発明の第2の実施形態における既存建物の免震化工法を示す図であって、免震化治具を設置した後の状態を示す説明図である。
【図5】同既存建物の免震化工法を示す図であって、免震装置を介装すべき位置の柱を切断除去した後の状態を示す説明図である。
【図6】同既存建物の免震化工法を示す図であって、柱に免震装置を挿入した後の状態を示す説明図である。
【図7】本発明の第3の実施形態における既存建物の免震化工法を示す図であって、免震化治具を設置し、かつ柱に免震装置を挿入した後の状態を示す説明図である。
【図8】本発明の第4の実施形態における既存建物の免震化工法を示す図であって、免震化治具を設置し、かつ柱に免震装置を挿入した後の状態を示す説明図である。
【符号の説明】
1 柱(軸力材)
2 免震階
3 梁(免震階の上階側の梁)
5 免震階上階
6 梁(免震階の下階側の梁)
7 梁(免震階上階の上階側の梁)
11 第1の支承部材(支承部材)
12 第1のジャッキ(第1の支持部材、支持部材)
13 第2の支承部材(支承部材)
14 第2のジャッキ(第2の支持部材)
21 ジャッキ(支持部材、第1の支持部材)
23 仮支保工
A 免震装置
S 免震装置を介装すべき位置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seismic isolation method for an existing building in which an existing building is seismically isolated by interposing a seismic isolation device on an axial member on an intermediate floor of the existing building.
[0002]
[Prior art]
In various existing buildings such as reinforced concrete (RC), steel reinforced concrete (SRC) or steel frame (S), seismic isolation devices are installed on specific floors. There is a request to do.
As such a seismic isolation method for an existing building, for example, a method disclosed in Patent Document 1 is known.
[0003]
According to this method of seismic isolation, a bearing for supporting the seismic isolation device is fixed to the upper and lower outer peripheries of an area where the seismic isolation device for a steel column (axial member) on the seismic isolation floor is to be interposed. By connecting the bearings at the upper and lower positions with a plurality of temporary supporting bolts (supporting members), at least the axial force acting on the steel column is temporarily received by the above-mentioned bearings and the temporary supporting bolts. The steel column in the area to be mounted is cut and removed, and then the seismic isolation device is inserted into the cut and removed portion of the steel column, and then the temporary supporting bolt is removed.
[0004]
In the above seismic isolation method for existing buildings, construction can proceed within a narrow area around the steel column, so that normal work on the seismic isolation floor is not hindered, and it can be easily isolated in a short time. There is an advantage that the construction of the earthquake can be completed.
[0005]
[Patent Document 1]
JP-A-10-8738
[0006]
[Problems to be solved by the invention]
However, in the above-mentioned seismic isolation method for an existing building, since the bearings are fixed to the upper outer periphery and the lower outer periphery of the steel column in the range where the seismic isolation device is to be interposed, for example, the seismic isolation device is used. If the seismic isolation device is to be installed on the capital of a steel column on the seismic isolation floor, the seismic isolation device must be installed at a position lower than the beam on the upper floor by the thickness of the support.
For this reason, the position of relative displacement between the upper and lower floors caused by an earthquake or the like becomes lower, and for example, when shelves are installed along a wall, the shelves are subject to height restrictions. However, there is a problem that the usability of the device is reduced. In addition, it becomes difficult to put the seismic isolation device in the ceiling, which causes a problem that the appearance is deteriorated.
[0007]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method of seismic isolation of an existing building in which seismic isolation devices can be easily accommodated on a seismic isolation floor, and which does not cause a great restriction on usability. It is the purpose.
[0008]
[Means for Solving the Problems]
The seismic isolation method for an existing building according to the present invention according to claim 1 is a seismic isolation method for providing a seismic isolation floor by interposing a seismic isolation device on an axial member on an intermediate floor of the existing building. A first support member is provided on a lower outer periphery of a position where the seismic isolation device is to be interposed on the axial force member on the seismic isolation floor, and the first support member and an upper floor beam of the seismic isolation floor are provided. And a second support member is provided on the outer periphery of the axial force member on the upper floor of the seismic isolation floor, and a second support member is provided between the second support member and the beam. And the second support member, the second support member, the beam, the first support member, and the first support member apply the axial force acting on the axial force member from the upper floor side. Cut off the axial force material at the position where the seismic isolation device is to be interposed, and then cut and remove the axial force material. After insertion of the isolator in section, it is characterized in that removing the at least the first support member and the second support member.
[0009]
In addition, the first support member is temporarily fixed to the outer periphery of the axial force member on the seismic isolation floor, and can be removed later, or includes additional concrete for reinforcement to be cast on the outer periphery of the axial force member. In the case where such additional concrete is provided, it includes those which are temporarily fixed to the outer periphery of the additional concrete and can be removed later.
[0010]
The invention according to claim 2 is a seismic isolation method for providing a seismic isolation floor by interposing a seismic isolation device on an axial force member on an intermediate floor of an existing building, wherein the axial force member on the seismic isolation floor is provided. A temporary support member is provided between the lower beam and the upper beam of the seismic isolation floor near the seismic isolation floor, and the upper floor of the seismic isolation floor near the axial force member on the upper floor of the seismic isolation floor Temporary supports are temporarily installed between the side beam and the upper floor beam of the seismic isolation floor, and the axial force acting on the axial force member from the upper floor side is applied to the upper floor of the seismic isolation floor. A state in which the beam is transmitted to the axial force member on the lower floor side via the side beam, the temporary support, the upper floor side beam of the seismic isolation floor, the support member, and the lower floor beam of the seismic isolation floor. Then, after cutting and removing the axial force member at the position where the seismic isolation device is to be interposed, and then inserting the seismic isolation device into the cutting and removing portion of the axial force material, the support member and the temporary support Characterized by removal It is intended.
[0011]
The invention according to claim 3 is a seismic isolation method for providing a seismic isolation floor by interposing a seismic isolation device on an axial member on an intermediate floor of an existing building, wherein the axial force member on the seismic isolation floor is provided. A supporting member is provided on a lower outer periphery of a position where the seismic isolation device is to be interposed, and a supporting member is temporarily provided between the supporting member and the beam on the upper floor side of the seismic isolation floor; A temporary support is temporarily installed between the beam near the axial force member and the beam on the upper floor of the seismic isolation floor, so that the axial force acting on the axial force material from the upper floor is isolated. A state in which the beam is transmitted to the lower-level axial force member via the upper-level beam on the upper floor of the seismic floor, the temporary support, the upper-level beam on the seismic isolation floor, the support member, and the support member. Then, after cutting and removing the axial force member at the position where the seismic isolation device is to be interposed, and then inserting the seismic isolation device into the cutting and removing portion of the axial force material, at least the support member and It is characterized in that removing the fine the temporary 支保 Engineering.
[0012]
In the present invention, the bearing members include those temporarily fixed to the outer periphery of the axial force member on the seismic isolation floor, which can be removed later, and additional concrete for reinforcement to be cast on the outer periphery of the axial force member. In addition, when such additional concrete is provided, there is also included one that is temporarily fixed to the outer periphery of the additional concrete and can be removed later.
[0013]
The invention according to claim 4 is a seismic isolation method of providing a seismic isolation floor by interposing a seismic isolation device on an axial force member on an intermediate floor of an existing building, wherein the axial force member on the seismic isolation floor is provided. A first support member is temporarily provided between a lower beam and an upper beam of the seismic isolation floor in the vicinity of the above, and a support member is provided on the outer periphery of the axial force member on the upper floor of the seismic isolation floor. A second support member is temporarily provided between the support member and the upper-floor beam of the seismic isolation floor, and applies an axial force acting on the axial force member from the upper floor side to the support member, the second support member; In a state where it is transmitted to the axial force member on the lower floor side via a support member, a beam on the upper floor side of the seismic isolation floor, the first support member, a beam on the lower floor side of the seismic isolation floor, After cutting and removing the axial force member at the position where the seismic isolation device is to be interposed, and then inserting the seismic isolation device into the cutting and removing portion of the axial force material, at least the first support member and the second It is characterized in that removing the support member.
[0014]
According to the first aspect of the present invention, when cutting a predetermined position of the axial force member in order to interpose the seismic isolation device, the axial force acting on the axial force material from the upper floor side is the second support member, 2 is transmitted to the axial force member on the lower floor side via the second support member, the beam, the first support member, and the first support member, and the axial force becomes a flow bypassing the cutting and removing portion of the axial force material. There is an advantage that it is not necessary to reinforce the beam, that is, the beam above the position where the seismic isolation device is to be interposed.
[0015]
On the other hand, according to the invention of claim 2, after the axial force acting on the axial force member on the upper floor of the seismic isolated floor is transmitted from the upper floor side to the beam on the upper floor side of the upper floor of the seismic isolated floor, The flow of force transmitted to the lower floor axial force member via the shoring, the upper floor beam of the seismic isolation floor, the support member, and the lower floor beam of the seismic isolation floor occurs, and the above axial force is reduced. Axial force bypassed the cut-off portion of the axial force material due to the flow of force transmitted sequentially to the upper beams and support members of the seismic isolated floor via the axial force material on the upper floor of the seismic isolated floor. It becomes a flow.
[0016]
For this reason, the axial force acting from the upper floor side is dispersed and flows to two beams of the upper floor side beam of the upper floor of the seismic isolation floor and the upper floor side beam of the seismic isolation floor. Burden can be reduced. Therefore, without reinforcing the beam above the position where the seismic isolation device is to be interposed, the axial force member at the position where the seismic isolation device is to be interposed is cut and removed, and the seismic isolation device is attached to the cut-off portion. Can be inserted. Further, even when the beams above the position where the seismic isolation device is to be interposed (particularly the beams on the upper floor side of the seismic isolation floor) need to be reinforced, the amount of reinforcement can be reduced.
In addition, you may make it extend a temporary support structure over one or more floors on the lower floor side of the seismic isolation floor and / or the upper floor side of the upper floor of the seismic isolation floor.
[0017]
According to the third aspect of the invention, after the axial force acting on the axial force member on the upper floor of the seismic isolated floor is transmitted from the upper floor side to the beam on the upper floor side of the upper floor of the seismic isolated floor, The flow of the force transmitted to the axial force member on the lower floor via the support, the beam on the upper floor of the base-isolated floor, the supporting member and the support member occurs, and the axial force is applied to the shaft on the upper floor of the base-isolated floor. The flow of the force sequentially transmitted to the upper-floor beams and the support members of the seismic isolation floor via the force member occurs, so that the axial force becomes a flow bypassing the cut-off portion of the axial force member.
[0018]
For this reason, the axial force acting from the upper floor side is dispersed and flows to two beams of the upper floor side beam of the upper floor of the seismic isolation floor and the upper floor side beam of the seismic isolation floor. Burden can be reduced. Therefore, the axial force member at the position where the seismic isolation device is to be interposed is cut and removed without reinforcing the beam above the position where the seismic isolation device is to be interposed, and the seismic isolation device is provided at the cut-off portion. Can be inserted. Further, even when the beams above the position where the seismic isolation device is to be interposed (particularly the beams on the upper floor side of the seismic isolation floor) need to be reinforced, the amount of reinforcement can be reduced.
In addition, you may make it extend a temporary support structure over one or more floors on the upper floor side of the seismic isolation floor.
[0019]
Further, according to the invention described in claim 4, the axial force acting on the axial force member on the upper floor of the seismic isolation floor from the upper floor side is the support member, the second support member, and the beam on the upper floor side of the seismic isolation floor. , The first supporting member is transmitted to the axial force member on the lower floor side via the beam on the lower floor side of the seismic isolation floor, and the axial force becomes a flow bypassing the cutting and removing portion of the axial force member. The advantage is that there is no need to reinforce the beam above the location where the device is to be interposed.
[0020]
As a result, according to the first to fourth aspects of the present invention, a jig for temporarily receiving an axial force is provided above a position where the seismic isolation device of the axial force member is to be interposed on the seismic isolation floor. Since there is no need to provide the seismic isolation device in the axial force member, the position where the seismic isolation device is to be interposed can be provided at a position close to the beam on the upper floor side of the seismic isolation floor.
Therefore, since the seismic isolation device can be interposed at a high position of the axial force member, the position of the relative displacement in the vertical direction becomes a high position via the seismic isolation device generated by an earthquake or the like, and is installed along a wall or the like. Shelf and the like are less restricted by height. Therefore, it is possible to improve the usability on the seismic isolation floor as compared with the related art.
Moreover, the seismic isolation device can be covered with a ceiling, or even if it protrudes from the ceiling, the amount of protrusion can be reduced, so that the appearance can be improved and the seismic isolation floor can be used. The capacity can be improved.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
FIG. 1 is an explanatory view showing a first embodiment of a seismic isolation method for an existing building according to the present invention and a seismic isolation jig used directly for carrying out this embodiment, and FIG. It is a figure which shows the flow of the axial force transmitted to a jig etc., and FIG. 3 is a figure which shows the state which installed the seismic isolation device in the pillar.
[0022]
First, the configuration of the seismic isolation jig will be described, and then the first embodiment will be described.
This seismic isolation jig is installed in the middle of a pillar (axial member) 1 erected on the foundation of an existing RC building, and is isolated on a pillar 1 on a seismic isolation floor 2 suitable for seismic isolation. A first support member 11, a first jack (first support member) 12, a second support member 13, and a second jack (Second support member) 14.
[0023]
The first bearing member 11 is a lower part of the upper reinforced concrete 4a and the lower reinforced concrete 4b which are cast on the upper and lower parts of the seismic isolation floor 2 excluding the position S where the seismic isolation device A of the column 1 is to be interposed. It is temporarily fixed to the outer periphery of the upper end of the reinforced concrete 4b by a PC steel rod 11a or the like. The position S where the column 1 is to be provided with the seismic isolation device A is a predetermined range below the position close to the lower surface of the beam 3 on the upper floor side of the seismic isolation floor 2.
[0024]
The pillar 1 is formed in a square pillar shape, and each of the reinforcing concretes 4a and 4b is cast along the outer peripheral surface of the pillar 1 and is formed in a square pillar shape.
The first bearing member 11 is disposed on each of a pair of outer peripheral surfaces forming the front and back surfaces of the lower reinforced concrete 4b, and is temporarily fixed by being pressed against the respective outer peripheral surfaces by the tension of the plurality of PC steel bars 11a. It has become. In FIG. 1, reference numeral 11b denotes a nut that is screwed to both ends of the PC steel bar 11a to generate the tension on the PC steel bar 11a.
In a state where each first bearing member 11 is temporarily fixed to each outer peripheral surface of the lower reinforcing concrete 4b, the upper surface thereof serves as a support surface 11c of the first jack 12.
[0025]
The first jack 12 is formed of a screw type, and is temporarily provided between the support surface 11 c of each first support member 11 and the lower surface of the beam 3.
[0026]
The second bearing member 13 is disposed on each of a pair of outer peripheral surfaces of the column base of the column 1 on the upper floor 5 of the seismic isolation floor, and is pressed against the respective outer peripheral surfaces by the tension of the plurality of PC steel bars 13a. As a result, it is temporarily fixed. In FIG. 1, reference numeral 13b denotes a nut that is screwed to both ends of the PC steel bar 13a to generate the tension on the PC steel bar 13a.
The second support member 13 is temporarily fixed to the outer peripheral surface of the column 1 located above the outer peripheral surface of the lower reinforcing concrete 4b to which the first support member 11 is temporarily fixed. In this temporarily fixed state, the lower surface of the second support member 13 serves as the support surface 13c of the second jack 14.
[0027]
The second jack 14 is formed of a screw type, and is temporarily provided between the support surface 13 c of each second support member 13 and the upper surface of the beam 3. The first and second jacks 12 and 14 may be of another type such as a hydraulic type.
[0028]
Next, a first embodiment of a seismic isolation method for an existing building using the seismic isolation jig will be described.
First, upon seismic isolation, an upper reinforcing concrete 4a and a lower reinforcing concrete 4b are poured into the column 1 on the base-isolated floor 2, and after curing for a predetermined period, the outer peripheral surface of the upper end of the lower reinforcing concrete 4b is applied to each outer peripheral surface. The first support member 11 is temporarily fixed via the PC steel bar 11a and the nut 11b, and the first jack 12 is temporarily provided between the support surface 11c of the first support member 11 and the lower surface of the beam 3.
[0029]
Further, the second support member 13 is temporarily fixed to each outer peripheral surface of the leg of the column 1 on the upper floor 5 of the seismic isolation floor via the PC steel rod 13a and the nut 13b, and the support surface of the second support member 13 is provided. A second jack 14 is temporarily provided between 13c and the upper surface of the beam 3.
[0030]
By increasing the height of the first jack 12 and the second jack 14, the axial force acting on the column 1 of the upper floor 5 of the base-isolated floor from the upper floor side is increased by the first jack 12 and the second jack 12. I will temporarily receive it at 14.
Thereby, the axial force acting on the column 1 of the upper floor 5 of the seismic isolation floor is, as shown by the arrow in FIG. 2, the second support member 13, the second jack 14, the beam 3, the first jack 12, It is transmitted to the lower pillar 1 via the first bearing member 11 and the lower reinforcing concrete 4b.
[0031]
Therefore, the column 1 at the position S where the seismic isolation device A is to be interposed is cut and removed, and then the seismic isolation device A is inserted into the cut and removed portion of the column 1 to insert the upper end surface of the lower reinforced concrete 4b and the upper reinforced concrete 4a. Is fixed to the lower end surface using a connecting means such as a bolt. In addition, the seismic isolation device A may be fixed to the upper end surface and the lower end surface of the column 1 or the upper end surface and the lower end surface of the column 1 and the reinforced concrete 4a, 4b.
[0032]
After the seismic isolation device A is interposed, the height of the first jack 12 and the second jack 14 is reduced, and the axial force of the column 1 acts on the seismic isolation device A. Then, the first jack 12 and the second jack 14 are removed from the positions of the first support member 11 and the second support member 13, respectively. By loosening the nuts 11b and 13b, the first support member 11 and the second support member 13 are removed from the lower reinforced concrete 4b and the column 1, respectively. Then, the first support member 11, the first jack 12, the second support member 13, the second jack 14, and the like are removed from the seismic isolation floor 2 and the upper floor 5 of the seismic isolation floor. This completes the seismic isolation work.
[0033]
According to the seismic isolation jig configured as described above and the seismic isolation method of an existing building using the jig, the axial force is temporarily received above the position S where the seismic isolation device A of the column 1 is to be interposed. Since it is not necessary to provide a jig for performing the operation, the position S of the pillar 1 where the seismic isolation device A is to be interposed can be provided at a position as close as possible or in contact with the lower surface of the beam 3 (this embodiment). In the embodiment, the position S where the seismic isolation device A is to be interposed is provided at a position as close as possible to the lower surface of the beam 3).
Therefore, since the seismic isolation device A can be interposed at the highest position of the column 1 below the beam 3, the position of the relative displacement generated up and down through the seismic isolation device A increases, and The height of the shelves and the like installed along the walls and the like in 2 is less restricted. Therefore, the usability of the seismic isolation floor 2 can be improved.
Moreover, since the position at which the seismic isolation device A is interposed becomes higher, the seismic isolation device A can be hidden in the ceiling, and the amount of projection from the ceiling can be reduced even if it protrudes from the ceiling. Become. Therefore, it is possible to improve the appearance of the pillar 1 and its surroundings after the seismic isolation treatment, and to increase the usable volume in the room.
[0034]
Further, the axial force acting on the column 1 from the upper floor side is applied via the second support member 13, the second jack 14, the beam 3, the first jack 12, the first support member 11, and the lower reinforcing concrete 4b. Since the axial force is transmitted to the pillar 1 on the lower floor side, the axial force becomes a flow bypassing the cutting and removing part of the pillar 1. Therefore, there is an advantage that it is not necessary to reinforce the beam 3 above the position S where the seismic isolation device A is to be interposed when cutting and removing the column 1.
[0035]
In the above embodiment, the first jack 12 is held by the first support member 11 fixed to the outer peripheral surface of the lower reinforced concrete 4b, but the first jack 12 is held by the upper end surface of the lower reinforced concrete 4b. May be held. That is, the lower reinforcing concrete 4b may be used as a first bearing member, and the first jack 12 may be temporarily provided between the upper end surface of the lower reinforcing concrete 4b and the lower end surface of the beam 3.
[0036]
Further, the first bearing member 11 may be temporarily fixed to the outer periphery of the lower part of the position S where the seismic isolation device A of the column 1 on the seismic isolation floor 2 is to be interposed. In this case, it is not necessary to cast the upper reinforced concrete 4a and the lower reinforced concrete 4b.
[0037]
(Second embodiment)
FIG. 4 is an explanatory view showing a second embodiment of the seismic isolation method of an existing building according to the present invention and a seismic isolation jig used directly for carrying out this embodiment, and FIG. It is a figure which shows the flow of the axial force transmitted to a jig etc., and FIG. 6 is a figure which shows the state which inserted the seismic isolation device in the pillar.
[0038]
Also in this case, the configuration of the seismic isolation jig is described, and then the second embodiment is described. However, the same reference numerals are given to the same components as those of the first embodiment shown in FIGS. 1 to 3 and the description thereof will be simplified.
[0039]
As shown in FIGS. 4 to 6, the seismic isolation jig has a configuration including a jack (support member) 21, a temporary connection support 22 and a temporary support 23.
[0040]
The jack 21 is formed of a screw type, and the upper surface of the lower beam 6 of the base-isolated floor 2 and the base-isolated floor 2 located near the pair of outer peripheral surfaces forming the front and back sides of the lower reinforced concrete 4b. The temporary connection support 22 is provided between the upper floor and the lower surface of the beam 3 on the upper floor side.
[0041]
The temporary connection support 22 has a square cross section, holds the lower end surface of the jack 21 coaxially at its upper end surface, and makes one outer peripheral surface thereof parallel to and close to the outer surface of the lower reinforcing concrete 4b. Thus, it is erected on the beam 6.
Note that the outer peripheral surface of the temporary connection support 22 may be brought into contact with the outer peripheral surface of the lower reinforcement concrete 4b, or the temporary connection support 22 may be connected to the lower reinforcement concrete 4b by bolts or the like.
Further, a height adjusting member (not shown) may be provided between at least one of the jack 21 and the temporary connection support 22 and between the jack 21 and the beam 3.
[0042]
The temporary support 23 is temporarily provided between the upper surface of the beam 3 located immediately above each jack 21 and the lower surface of the beam 7 on the upper floor side of the upper floor 5 of the seismic isolation floor. The temporary support 23 is configured to securely contact the beams 3 and 7 using a height adjusting material, a wedge (neither is shown), or the like.
[0043]
The jack 21, the temporary connection support 22 and the temporary support 23 are installed on the seismic isolation floor 2 or the upper floor 5 so as to extend in the vertical direction.
[0044]
Next, a description will be given of a second embodiment of a seismic isolation method for an existing building using the seismic isolation jig.
After placing the upper reinforced concrete 4a and the lower reinforced concrete 4b, a jack 21 and a temporary connection support 22 are provided between the upper surface of the beam 6 and the lower surface of the beam 3 near each outer peripheral surface forming the front and back of the lower reinforced concrete 4b. Is temporarily established.
[0045]
Further, a temporary support 23 is temporarily provided between the upper surface of the beam 3 and the lower surface of the beam 7 immediately above the jack 21 and near the column 1.
[0046]
Then, by increasing the height of the jack 21, an axial force acting on the column 1 of the upper floor 5 of the seismic isolation floor is temporarily received by the temporary support 23, the jack 21, and the temporary connection support 22 from the upper floor side.
Thereby, the axial force acting on the column 1 of the upper floor 5 of the seismic isolation floor is, as shown by the solid arrow in FIG. 5, the beam 7, the temporary support 23, the beam 3, the jack 21, the temporary connection support 22 and The beam is transmitted to the lower pillar 1 via the beam 6. In addition, the axial force is sequentially transmitted to the beam 3 and the jack 21 via the column 1 of the upper floor 5 of the seismic isolation floor, as indicated by a chain line arrow in FIG.
[0047]
Therefore, the column 1 at the position S where the seismic isolation device A is to be interposed is cut and removed, and then the seismic isolation device A is inserted into the cut and removed portion of the column 1 to insert the upper end surface of the lower reinforced concrete 4b and the upper reinforced concrete 4a. Is fixed to the lower end surface by connecting means such as bolts.
[0048]
Then, after the height of the jack 21 is reduced and the axial force of the column 1 is applied to the seismic isolation device A, the jack 21, the temporary connection support 22 and the temporary support 23 are removed, and the seismic isolation floor 2 and Remove from seismic isolated upper floor 5 This completes the seismic isolation work.
[0049]
According to the seismic isolation jig configured as described above and the seismic isolation method of an existing building using the same, the axial force acting on the column 1 of the upper floor 5 from the upper floor is applied to the beam 7. After the transmission, the flow of the force transmitted to the lower column 1 via the temporary support 23, the beam 3, the jack 21, the temporary connection support 22 and the beam 6 occurs, and the axial force is isolated. When the flow of the force sequentially transmitted to the beam 3 and the jack 21 via the column 1 of the upper floor 5 is generated, the axial force becomes a flow bypassing the cut-off portion of the column 1.
[0050]
For this reason, the axial force acting from the upper floor side is dispersed and flows to the two beams 7 and 3, so that the load on each of the beams 7 and 3 can be reduced. Therefore, the column 1 at the position S where the seismic isolation device A is to be interposed is cut and removed without reinforcing the beams 7 and 3 above the position S where the seismic isolation device A is to be interposed. Can be inserted into the base. Further, even when the beams 7, 3 (particularly, the beams 3 on the upper floor side of the seismic isolation floor) need to be reinforced, the amount of reinforcement can be reduced.
[0051]
In the above embodiment, the upper reinforced concrete 4a and the lower reinforced concrete 4b are cast, but the jack 21 and the temporary connection support 22 are not cast without the reinforced concrete 4a and 4b. May be temporarily provided near the column 1.
Further, the temporary supports 23 may be added to one or more floors on the lower floor side of the seismic isolation floor 2 and / or the upper floor side of the upper floor 5 of the seismic isolation floor.
[0052]
(Third embodiment)
A third embodiment of the seismic isolation method for an existing building according to the present invention will be described with reference to FIG.
In the third embodiment, the seismic isolation floor 2 uses the first support member (support member) 11 and the first jack (support member) 12 shown in the first embodiment. Construction is performed in the same procedure as in the first embodiment. On the upper floor 5 of the seismic isolation floor, the same procedure as in the second embodiment is performed using the temporary support 23 shown in the second embodiment. 7, the axial force acting on the column 1 of the upper floor 5 of the base-isolated floor is changed to the beam 7, the temporary support 23, the beam 3, and the first jack 12 as shown by solid-line arrows in FIG. Is transmitted to the pillar 1 on the lower floor side via the first bearing member 11 and the lower reinforcing concrete 4b. Further, the axial force is sequentially transmitted to the beam 3 and the first jack 12 via the column 1 of the upper floor 5 of the seismic isolation floor, as indicated by a chain line arrow in FIG.
[0053]
Then, the column 1 at the position S where the seismic isolation device A is to be interposed is cut and removed, and then the seismic isolation device A is inserted into the cut and removed portion of the column 1 to insert the upper end surface of the lower reinforcing concrete 4b and the upper reinforcing concrete 4a. Is fixed to the lower end surface by connecting means such as bolts.
[0054]
Then, after lowering the height of the first jack 12 to apply the axial force of the column 1 to the seismic isolation device A, the first support member 11, the first jack 12 and the temporary support 23 are removed. Remove from seismic isolation floor 2 and upper floor 5 from seismic isolation floor. This completes the seismic isolation work.
[0055]
According to the seismic isolation method of the existing building configured as described above, after the axial force acting on the column 1 of the upper floor 5 of the seismic isolated floor is transmitted to the beam 7 from the upper floor side, the temporary support 23, A flow of force is transmitted to the lower floor column 1 via the beam 3, the first jack 12, the first bearing member 11, and the lower reinforcing concrete 4b, and the axial force is reduced to the seismically isolated upper floor 5 When the flow of the force sequentially transmitted to the beam 3 and the first jack 12 via the column 1 is generated, the axial force becomes a flow bypassing the cut-off portion of the column 1.
[0056]
For this reason, the axial force acting from the upper floor side is dispersed and flows to the two beams 7 and 3, so that the load on each of the beams 7 and 3 can be reduced. Therefore, the column 1 at the position S where the seismic isolation device A is to be interposed is cut and removed without reinforcing the beams 7 and 3 above the position S where the seismic isolation device A is to be interposed. The seismic isolation device S can be inserted into the removing section. Further, even when reinforcement is required for each of the beams 7, 3 (particularly, the beam 3 on the upper floor side of the seismic isolation floor 2), the amount of reinforcement can be reduced.
[0057]
In addition, you may make it extend the temporary shoring 23 over one or more floors on the upper floor side of the seismic isolation floor upper floor 5.
[0058]
(Fourth embodiment)
A fourth embodiment of the seismic isolation method for an existing building according to the present invention will be described with reference to FIG.
In the eighth embodiment, on the seismic isolation floor 2, the jack (first support member) 21 and the temporary connection support 22 shown in the second embodiment are used to carry out the second embodiment. The construction is performed in the same procedure as in the embodiment, and the second support member (support member) 13 and the second jack (second support member) 14 shown in the first embodiment are provided on the upper floor 5 of the seismic isolation floor. By carrying out construction in the same procedure as in the first embodiment using the first embodiment, the axial force acting on the column 1 of the upper floor 5 of the base-isolated floor is changed to the second bearing as shown by the arrow in FIG. The power is transmitted to the lower pillar 1 via the member 13, the second jack 14, the beam 3, the jack 21, the temporary connection support 22 and the beam 6.
[0059]
Then, the column 1 at the position S where the seismic isolation device A is to be interposed is cut and removed, and then the seismic isolation device A is inserted into the cut and removed portion of the column 1 to insert the upper end surface of the lower reinforcing concrete 4b and the upper reinforcing concrete 4a. Is fixed to the lower end surface by connecting means such as bolts.
[0060]
Then, after lowering the height of the jack 21 and the second jack 14 to apply the axial force of the column 1 to the seismic isolation device A, the jack 21, the temporary connection support 22, the second support member 13, The second jack 14 is removed and removed from the base-isolated floor 2 and the upper floor 5 of the base-isolated floor. This completes the seismic isolation work.
[0061]
According to the seismic isolation construction method for an existing building configured as described above, the axial force acting on the column 1 of the upper floor 5 of the seismic isolated floor from the upper floor side causes the second support member 13, the second jack 14, The beam is transmitted to the column 1 on the lower floor side via the beam 3, the jack 21, the temporary connection support 22, and the beam 6, and the axial force forms a flow bypassing the cut-off portion of the column 1. Therefore, there is an advantage that it is not necessary to reinforce the beam 3 above the position S where the seismic isolation device A is to be interposed when cutting and removing the column 1.
[0062]
【The invention's effect】
As described above, according to the seismic isolation method of an existing building according to the present invention as set forth in claims 1 to 4, any of the above structures is provided above the position where the seismic isolation device for the axial force should be interposed on the seismic isolation floor. Since it is not necessary to provide a jig for temporarily receiving the axial force, the position where the seismic isolation device should be interposed in the axial force member can be provided at a position close to the beam on the upper floor side of the seismic isolation floor.
Therefore, since the seismic isolation device can be interposed at a high position of the axial force member, the position of the relative displacement in the vertical direction becomes a high position via the seismic isolation device generated by an earthquake or the like, and is installed along a wall or the like. Shelf and the like are less restricted by height. Therefore, the usability of the seismic isolation floor can be improved as compared with the related art.
Moreover, the seismic isolation device can be covered with a ceiling, or even if it protrudes from the ceiling, the amount of protrusion can be reduced, so that the appearance can be improved and the seismic isolation floor can be used. The capacity can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a seismic isolation method for an existing building according to a first embodiment of the present invention, and is an explanatory diagram illustrating a state after a seismic isolation jig is installed.
FIG. 2 is a view showing a seismic isolation method for the existing building, and is an explanatory view showing a state after cutting and removing a column at a position where a seismic isolation device is to be interposed.
FIG. 3 is a view showing a seismic isolation method for the existing building, and is an explanatory view showing a state after a seismic isolation device is inserted into a pillar.
FIG. 4 is a diagram illustrating a seismic isolation method for an existing building according to a second embodiment of the present invention, and is an explanatory diagram illustrating a state after a seismic isolation jig is installed.
FIG. 5 is a view showing a seismic isolation method for the existing building, and is an explanatory view showing a state after cutting and removing a column at a position where a seismic isolation device is to be interposed.
FIG. 6 is a diagram showing a seismic isolation method for the existing building, and is an explanatory diagram showing a state after a seismic isolation device is inserted into a pillar.
FIG. 7 is a view showing a seismic isolation method for an existing building according to a third embodiment of the present invention, showing a state after a seismic isolation jig is installed and a seismic isolation device is inserted into a pillar. FIG.
FIG. 8 is a view showing a seismic isolation method for an existing building according to a fourth embodiment of the present invention, showing a state after a seismic isolation jig is installed and a seismic isolation device is inserted into a pillar. FIG.
[Explanation of symbols]
1 pillar (axial material)
2 Seismic isolation floor
3 beam (beam on the upper floor side of seismic isolation floor)
5 Seismic isolation floor upper floor
6 beams (beams on the lower floor side of the seismic isolation floor)
7 beams (beams on the upper floor side of the upper floor of the seismic isolation floor)
11 First support member (support member)
12 First jack (first support member, support member)
13 Second support member (support member)
14 Second jack (second support member)
21 jack (support member, first support member)
23 Temporary Shoring
A seismic isolation device
S Position where the seismic isolation device should be interposed

Claims (4)

既存建物の中間階の軸力材に免震装置を介装することにより免震階を設ける免震化工法であって、上記免震階における上記軸力材の上記免震装置を介装すべき位置の下部外周に第1の支承部材を設け、この第1の支承部材と上記免震階の上階側の梁との間に第1の支持部材を仮設し、かつ免震階上階の上記軸力材の外周に第2の支承部材を設け、この第2の支承部材と上記梁との間に第2の支持部材を仮設し、上階側から上記軸力材に作用する軸力を上記第2の支承部材、上記第2の支持部材、上記梁、上記第1の支持部材および第1の支承部材を介して下階側の上記軸力材に伝達させた状態で、上記免震装置を介装すべき位置の上記軸力材を切断除去し、次いで上記軸力材の切断除去部に上記免震装置を挿入した後、少なくとも上記第1の支持部材および上記第2の支持部材を撤去することを特徴とする既存建物の免震化工法。This is a seismic isolation method in which a seismic isolation device is provided by interposing a seismic isolation device on an axial member on the middle floor of an existing building, wherein the seismic isolation device of the axial member on the seismic isolation floor is interposed. A first support member is provided on the outer periphery of a lower part of the position to be installed, and a first support member is temporarily provided between the first support member and the beam on the upper floor side of the seismic isolation floor. A second support member is provided on the outer periphery of the axial force member, a second support member is temporarily provided between the second support member and the beam, and a shaft acting on the axial force member from the upper floor side In a state where force is transmitted to the axial force member on the lower floor side via the second support member, the second support member, the beam, the first support member, and the first support member, After cutting and removing the axial force member at the position where the seismic isolation device is to be interposed, and then inserting the seismic isolation device into the cutting and removing portion of the axial force material, at least the first Base sinkers method of existing buildings, which comprises removing the support member and the second support member. 既存建物の中間階の軸力材に免震装置を介装することにより免震階を設ける免震化工法であって、上記免震階における上記軸力材の近傍の上記免震階の下階側の梁と上階側の梁との間に支持部材を仮設し、かつ免震階上階の上記軸力材の近傍の上記免震階の上階側の梁と上記免震階上階の上階側の梁との間に仮支保工を仮設し、上階側から上記軸力材に作用する軸力を上記免震階上階の上階側の梁、上記仮支保工、上記免震階の上階側の梁、上記支持部材、上記免震階の下階側の梁を介して下階側の上記軸力材に伝達させた状態で、上記免震装置を介装すべき位置の上記軸力材を切断除去し、次いで上記軸力材の切断除去部に上記免震装置を挿入した後、上記支持部材および上記仮支保工を撤去することを特徴とする既存建物の免震化工法。A seismic isolation method to provide a seismic isolation floor by interposing a seismic isolation device on the intermediate member on the middle floor of an existing building, wherein the seismic isolation floor is located below the seismic isolation floor near the axial member on the seismic isolation floor. A support member is temporarily provided between the floor-side beam and the upper-side beam, and the upper-side beam and the upper-side seismic-isolated floor above the seismic-isolated floor near the axial force member on the upper-side seismic-isolated floor. Temporary support is temporarily installed between the upper floor and the beam on the upper floor, and the axial force acting on the axial force member from the upper floor is applied to the upper floor of the seismically isolated floor, the temporary support, The seismic isolation device is interposed in a state where it is transmitted to the axial force member on the lower floor side through the upper floor beam of the seismic isolation floor, the support member, and the lower floor beam of the seismic isolation floor. An existing building, characterized in that after removing the axial force member at the position to be cut and then inserting the seismic isolation device into the cut-off portion of the axial force material, removing the support member and the temporary support structure Seismic isolation method. 既存建物の中間階の軸力材に免震装置を介装することにより免震階を設ける免震化工法であって、上記免震階における上記軸力材の上記免震装置を介装すべき位置の下部外周に支承部材を設け、この支承部材と上記免震階の上階側の梁との間に支持部材を仮設し、かつ免震階上階の上記軸力材の近傍の上記梁と上記免震階上階の上階側の梁との間に仮支保工を仮設し、上階側から上記軸力材に作用する軸力を上記免震階上階の上階側の梁、上記仮支保工、上記免震階の上階側の梁、上記支持部材および上記支承部材を介して下階側の上記軸力材に伝達させた状態で、上記免震装置を介装すべき位置の上記軸力材を切断除去し、次いで上記軸力材の切断除去部に上記免震装置を挿入した後、少なくとも上記支持部材および上記仮支保工を撤去することを特徴とする既存建物の免震化工法。This is a seismic isolation method in which a seismic isolation device is provided by interposing a seismic isolation device on an axial member on the middle floor of an existing building, wherein the seismic isolation device of the axial member on the seismic isolation floor is interposed. A support member is provided on the lower outer periphery of the position to be supported, a support member is temporarily provided between the support member and the beam on the upper floor side of the seismic isolation floor, and the support member near the axial force member on the upper floor of the seismic isolation floor is provided. Temporary support is temporarily installed between the beam and the upper floor beam of the above-mentioned seismic isolation floor, and the axial force acting on the above-mentioned axial force material from the upper floor is applied to the upper floor of the above-mentioned seismic isolation floor. The seismic isolation device is interposed in a state where it is transmitted to the axial force member on the lower floor side via the beam, the temporary support, the beam on the upper floor of the seismic isolation floor, the support member, and the support member. After cutting and removing the axial force material at the position to be cut, and then inserting the seismic isolation device into the cut and removed portion of the axial force material, at least the support member and the temporary support are removed. Seismic sinker method of existing buildings, characterized in that. 既存建物の中間階の軸力材に免震装置を介装することにより免震階を設ける免震化工法であって、上記免震階における上記軸力材の近傍の上記免震階の下階側の梁と上階側の梁との間に第1の支持部材を仮設し、かつ免震階上階の上記軸力材の外周に支承部材を設け、この支承部材と上記免震階の上階側の梁との間に第2の支持部材を仮設し、上階側から上記軸力材に作用する軸力を上記支承部材、上記第2の支持部材、上記免震階の上階側の梁、上記第1の支持部材、上記免震階の下階側の梁を介して下階側の上記軸力材に伝達させた状態で、上記免震装置を介装すべき位置の上記軸力材を切断除去し、次いで上記軸力材の切断除去部に上記免震装置を挿入した後、少なくとも上記第1の支持部材および上記第2の支持部材を撤去することを特徴とする既存建物の免震化工法。A seismic isolation method to provide a seismic isolation floor by interposing a seismic isolation device on the intermediate member on the middle floor of an existing building, wherein the seismic isolation floor is located below the seismic isolation floor near the axial member on the seismic isolation floor. A first support member is temporarily provided between a beam on the floor side and a beam on the upper floor side, and a support member is provided on the outer periphery of the axial force member on the upper floor of the seismic isolation floor, and the support member and the seismic isolation floor are provided. A second support member is temporarily provided between the upper floor side beam and an axial force acting on the axial force member from the upper floor side by the support member, the second support member, and the seismic isolation floor. A position where the seismic isolation device should be interposed in a state where the seismic isolation device is transmitted to the axial force member on the lower floor side via the floor beam, the first support member, and the lower floor beam of the seismic isolation floor. Cutting and removing the axial force member, and then inserting the seismic isolation device into the cutting and removing portion of the axial force material, and then removing at least the first support member and the second support member. Seismic sinker method of existing buildings and features.
JP2002292057A 2002-10-04 2002-10-04 Seismic isolation method for existing buildings Expired - Fee Related JP3918705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292057A JP3918705B2 (en) 2002-10-04 2002-10-04 Seismic isolation method for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292057A JP3918705B2 (en) 2002-10-04 2002-10-04 Seismic isolation method for existing buildings

Publications (2)

Publication Number Publication Date
JP2004124579A true JP2004124579A (en) 2004-04-22
JP3918705B2 JP3918705B2 (en) 2007-05-23

Family

ID=32283431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292057A Expired - Fee Related JP3918705B2 (en) 2002-10-04 2002-10-04 Seismic isolation method for existing buildings

Country Status (1)

Country Link
JP (1) JP3918705B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112051A (en) * 2004-10-12 2006-04-27 Takenaka Komuten Co Ltd Base-isolated building, and method for replacing base-isolating device
JP2012017612A (en) * 2010-07-08 2012-01-26 Takenaka Komuten Co Ltd Repair method of multilayer story building column
JP2016056516A (en) * 2014-09-05 2016-04-21 村本建設株式会社 Timbering structure and construction method thereof
CN108678423A (en) * 2018-08-06 2018-10-19 建研科技股份有限公司 Vertical conversion bearing structure is demolishd in reverse direction of reinforced concrete structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884357B1 (en) * 2017-12-18 2018-08-01 매크로드 주식회사 Seismic Isolation Method for Seismic Performance Improvement of Structures with Seismic Isolators Base on Cutting Columns

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112051A (en) * 2004-10-12 2006-04-27 Takenaka Komuten Co Ltd Base-isolated building, and method for replacing base-isolating device
JP4625302B2 (en) * 2004-10-12 2011-02-02 株式会社竹中工務店 Replacing seismic isolation buildings and seismic isolation devices
JP2012017612A (en) * 2010-07-08 2012-01-26 Takenaka Komuten Co Ltd Repair method of multilayer story building column
JP2016056516A (en) * 2014-09-05 2016-04-21 村本建設株式会社 Timbering structure and construction method thereof
CN108678423A (en) * 2018-08-06 2018-10-19 建研科技股份有限公司 Vertical conversion bearing structure is demolishd in reverse direction of reinforced concrete structure
CN108678423B (en) * 2018-08-06 2023-12-08 中建研科技股份有限公司 Vertical conversion supporting structure is demolishd in reverse direction to reinforced concrete structure

Also Published As

Publication number Publication date
JP3918705B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
KR101891942B1 (en) Earthquake reinforcement method of existing structure
JP2016183539A (en) Base-isolating structure, steel support structure and base-isolating construction method of existing steel support structure
JP2004116081A (en) Reinforcing construction of existing structure and reinforcing method
JP2008057190A (en) Method for constructing base-isolation for existing building and temporary vibration control panel used therefor
JP2004124579A (en) Base isolation construction method for existing building
KR20150138785A (en) Vertical expansion remodeling method of existing building with seperate load path
JP6441689B2 (en) How to install seismic isolation structures
JP3725818B2 (en) How to install seismic isolation devices on existing pillars
JP2001140343A (en) Theree-storied dwelling house
JP2002309593A (en) Method of base-isolating existing building
JP3581691B2 (en) Mounting method and mounting structure of horizontal force damper for structure
JP2018017041A (en) Foundation structure, and foundation construction method for the same
JP2004197373A (en) Earthquake resistant reinforcement method of existing concrete container structure and earthquake resistant reinforcement structure
JP2001271499A (en) Temporary bearing construction method for existing building by steel batter brace member
JP4131470B2 (en) Temporary support structure of building
JP4024449B2 (en) Seismic isolation method for existing buildings
JP3829458B2 (en) Attaching the vibration control device to the building
JP3937974B2 (en) Machine support method
JP3767776B2 (en) Fixing member of reinforced concrete column reinforcement and seismic reinforcement method
JP2000257273A (en) Base isolation construction method for existing building
JP6114071B2 (en) Seismic isolation method for existing buildings and temporary structure under construction
JPH10184032A (en) Method and apparatus for base isolation of already-constructed building
JP3903315B2 (en) Preservation method of existing outer wall structure
JP3261526B2 (en) Anchor frame for steel pier and footing using the same
JP2004300773A (en) Reinforced concrete column construction method and reinforced column construction structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Ref document number: 3918705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees