JP2004124575A - Treatment method for permeabilizing impervious earth retaining wall - Google Patents

Treatment method for permeabilizing impervious earth retaining wall Download PDF

Info

Publication number
JP2004124575A
JP2004124575A JP2002292017A JP2002292017A JP2004124575A JP 2004124575 A JP2004124575 A JP 2004124575A JP 2002292017 A JP2002292017 A JP 2002292017A JP 2002292017 A JP2002292017 A JP 2002292017A JP 2004124575 A JP2004124575 A JP 2004124575A
Authority
JP
Japan
Prior art keywords
water
retaining wall
shock wave
plasma
earth retaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002292017A
Other languages
Japanese (ja)
Inventor
Akira Yasui
安井 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2002292017A priority Critical patent/JP2004124575A/en
Publication of JP2004124575A publication Critical patent/JP2004124575A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To apply accurate low-cost permeabilization treatment to an impervious earth retaining wall, and to permanently maintain permeability after the permeabilization treatment. <P>SOLUTION: Longitudinally-directed working holes 4 are formed at desired intervals in the continuous impervious earth retaining wall 2, which is made of concrete or soil cement and constructed underground, at or after the construction of the wall 2. An impact transfer material 5 such as water is injected into the working hole 4; a probe 6 for supplying electric power for generating plasma is inserted into the working hole 4; and the plasma generates a shock wave by supplying the electric power to the probe 6, so that the wall 4 can be crushed or deteriorated in a permeable state. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート製の連続地中壁や地中の土砂に固化材を注入混合して形成したソイルセメント柱を連続させて形成した遮水性土留め壁を、その使用後に透水性を持たせるための遮水性土留め壁の透水化処理方法に関する。
【0002】
【従来の技術】
一般に、共同溝や道路等の地下構築物の構築を、地表から掘削する所謂開削工事によって行う場合、掘削に先立って地中に遮水性土留め壁を形成する。この遮水性土留め壁として、コンクリート製の連続地中壁やソイルセメント柱を連続させて形成したソイルセメント柱列地下連続壁を用いる場合、地下構築物の構築完了後には、そのまま地中に埋め込まれた状態で残される。
【0003】
本来、遮水性土留め壁は、土留めの他、地下構造物の構築をドライ空間で行うために設置するものであるため、工事期間中は地下水脈を遮断している状態となる。このため工事完了後にもそのまま残存させると地下水脈を遮断したままであるため、地下水流動が阻害され、上流側の水位上昇(地下ダム化)、下流側の水位低下が発生する。その結果、地盤湿潤化、構造物浮き上がり、地下室漏水、植物根腐れ、井戸枯れ、地盤沈下など、周辺環境に影響を及ぼすことが問題となっている。
【0004】
このような現象を防止する方法として、従来次のような透水化処理方法が提案されている。
1.遮水性土留め壁を撤去又は破砕する方法
この方法は、開削埋め戻し完了後に、残された壁体の全部又は一部を、地上から破砕機や掘削機を使用して撤去又は破砕するものであり、例えば、ソイルセメント柱内に、先端に破砕用のビットを固定した芯材を挿入しておき、地下構築物の構築終了後に芯材を旋回させながら上下に移動させることにより所望長さだけソイルセメント柱を破砕する方法がある(例えば、特許文献1参照。)。この他、上述したビットの代わりにオーガスクリューを固定しておき、オーガスクリューをもってソイルセメント柱内を掘削した後、ウオータージェットにて破砕する方法がある(例えば特許文献2参照。)。
2.遮水性土留め壁に集排水機構及び通水機構を付加する方法
この方法は、開削工事中または開削埋め戻し完了後に、壁体の内部または外部に集排水機構および通水機構を付加するものであり、例えば、地中連続壁の地下水脈高さ位置外面に透水材層を設置しておき、この透水材層に連通する通水管を設置することにより地下水脈の遮断を解除する方法がある(例えば特許文献3参照。)。
【0005】
また、岩石を破砕する方法として、プラズマによる岩石破砕装置がある。これは破砕対象物に開けた穴内に水を注入し、その水内に電極(プローブ)を挿入し、該プローブを通じて大エネルギー電源を供給することによりプラズマを発生させ、その際に生じる衝撃波によって岩石を破砕するものである(例えば特許文献4及び5参照。)。
【0006】
【特許文献1】
特開2000−234331号公報
【0007】
【特許文献2】
特開2000−32856号公報
【0008】
【特許文献3】
特開2000−64270号公報
【0009】
【特許文献4】
特開平09−029732号公報
【0010】
【特許文献5】
特開2002−089167号公報
【0011】
【発明が解決しようとする課題】
上述した従来技術の内、土留め壁を撤去する方法は、地表より土留め壁を掘削するものであるため、30m以上もの大深度に到る場合には撤去が困難になる等、撤去範囲に限りがあり、また所要の範囲を撤去する際の確実性に欠け、かつ撤去費用が高価になるという問題がある。
【0012】
また、集排水機構を設ける方法においては、目詰まりによる集排水機能や通水機構の機能低下の問題があり、恒久的な地下水流動保全の観点から、技術確立に至っていない。
【0013】
更に、従来のプラズマによる岩石破砕方法は、岩石と遮水性土留め壁との材質の違いから、破砕の方向性、程度を管理するまでには至っておらず、未だ遮水性土留め壁の透水化処理に応用できるように具体化した技術は存在していない。
【0014】
本発明は、上述のような従来の問題に鑑み、低コストで遮水性土留め壁の適確な透水化処理ができ、また、透水化処理後においても永続的に透水性を維持できる遮水性土留め壁の透水化処理方法の提供を目的としてなされたものである。
【0015】
【課題を解決するための手段】
上述の如き従来の問題を解決し、所期の目的を達成するための請求項1に記載の発明の特徴は、地中に造成されたコンクリート又はソイルセメント製の遮水性連続土留め壁に、その構築時又は構築後に、所望の間隔を隔てて縦向きの作業孔を形成し、該作業孔に水等の衝撃伝達材を注入するとともにプラズマ発生用電極(以下プローブと記す)を挿入し、該プローブに電力を供給してプラズマによる衝撃波を発生させ、該衝撃波により前記遮水性土留め壁を透水可能な状態に破砕又は劣化させることにある。このようにすることにより、少ない作業によって短時間で遮水性土留め壁を局部的に破砕又は劣化させることができ、経済性が高い。
【0016】
請求項2に記載の発明の特徴は、前記請求項1の構成に加え、地中に造成されるコンクリート又はソイルセメント製の遮水性連続壁の造成時に、該連続壁中の透水化処理予定高さ位置に、プラズマによる衝撃波の伝達性能の高い衝撃波伝達媒体を分散させて埋設しておくことにある。
【0017】
このようにすることにより、プラズマによる衝撃波の伝達性が向上し、厚い土留め壁であってもより少ないエネルギーで透水化処理することができる。また、透水性が充分に確保できない程度の破砕状態のであっても、ジェットノズルを使用した破砕が容易となる。
【0018】
請求項3に記載の発明の特徴は、前記請求項1又は2に記載の構成に加え、遮水性連続土留め壁の作業孔は、該土留め壁に挿入した鞘管をもって構成することにある。このようにすることにより遮水性土留め壁の造成時に簡単な作業で作業孔を形成しておくことができ、土留め壁構築後に穿孔する場合に比べ短時間で容易に作業孔を設置することができる。
【0019】
請求項4に記載の発明の特徴は、前記請求項3に記載の構成に加え、鞘管の透水化処理予定高さ位置に、プラズマによる衝撃波を伝達させる突起を多数突設したことにある。このようにすることにより、衝撃波を鞘管の外方に効率よく伝播させることができ、破砕効率が向上する。
【0020】
請求項5に記載の発明の特徴は、前記請求項4に記載の構成に加え、プラズマによる衝撃波を伝達させる突起は、該鞘管内に連通した中空管であることにある。このようにすることにより、鞘管の外方への衝撃波の伝達がより効率よくなされる。
【0021】
請求項6に記載の発明の特徴は、前記請求項3、4又は5に記載の構成に加え、鞘管外周面に、その所望の高さ位置にプラズマによる衝撃波を吸収する弾性材層を予め被着させて作業孔を構成させ、該弾性材層によって隣接する地下構造物に対する前記衝撃波の伝達を遮断させるようにしたことにある。このようにすることにより、隣接する地下構築物に衝撃波の影響を及ぼすことなく安全に透水化処理を行うことができる。
【0022】
請求項7に記載の発明の特徴は、前記請求項1〜5又は6に記載の構成に加え、作業孔の透水化処理予定高さ位置とその下方及び/又は上方とを、プラズマによる衝撃波を吸収する材料からなる栓体をもって仕切ることにより該衝撃波の伝達を遮断させた状態でプローブに電力を供給し、プラズマによる衝撃波を発生させることにある。このようにすることにより、透水化処理しようとする範囲を限定することができ、局部的に効率のよい透水化処理が可能となり、ひいては隣接する地下構築物への影響を及ぼすことなく安全に処理を行うことができる。
【0023】
請求項8に記載の発明の特徴は、上記請求項7に記載の構成に加え、衝撃波を吸収する材料からなる栓体が、ゴム等の弾性材をもって成形された膨縮自在な中空袋状をなし、該栓体に気体又は液体からなる流体を圧入することにより膨張させて作業孔を閉鎖することにある。このようにすることにより、栓体による透水化処理範囲の限定作業がより簡単に作業性良く行うことができる。
【0024】
請求項9に記載の発明の特徴は、上記請求項1〜7又は8に記載の構成に加え、プラズマによる衝撃波を発生させることによって遮水性土留め壁を破砕させた後、残った作業孔を通して注水及び又は吸引することにより破砕部分の土の細粒分による目詰まりを除去することにある。このようにすることにより、破砕作業後の透水性が完全に確保されることとなり、また経時的な目詰まりも除去することが可能となり、透水性の永続性が確保できる。
【0025】
【発明の実施の形態】
次に本発明の実施の形態を図面について説明する。
【0026】
図1、図2は本発明をソイルセメント柱列による遮水性土留め壁に実施した一例を示しており、同図中符号1はトンネル等の地下構築物であり、2は地下構築物の開削工事に使用した遮水性土留め壁である。この遮水性土留め壁2は地下構築物1の構築に先立ち、その両側の地盤中にオーガスクリューや掘削攪拌ビットを取り付けた固化剤注入装置を使用し、ソイルセメント柱2a,2a……を連続させて形成したものである。
【0027】
このソイルセメント柱2aの造成時に、所望の間隔毎に、ソイルセメントの固化前にその中心部に鞘管3を、予めボーリングなどによって調査した地下水脈に到る深さまで挿入しておく。この鞘管3には、プラスチック系、セラミック系のものを使用し、その中空内部を透水化処理用の作業孔4としている。
【0028】
このようにして予め設置した作業孔4を使用して地下構築物1の構築完了後に透水化処理を行うものであり、その処理に際しては、前述した従来例に示したプラズマ破砕装置の原理を利用するものであり、図2に示すように作業孔4内に衝撃伝達材5を注入する。この衝撃伝達材5としては、水又はベントナイト泥水等の粘性をもたせた水が使用できる。
【0029】
次いで衝撃伝達材5内にプローブ6を挿入し、電力供給装置からプローブ6にパルス電流を供給してプラズマを発生させる。その際に生じる衝撃波が衝撃伝達材5を介してソイルセメント柱2aに至り、これを局部的に破砕する。これによってソイルセメント柱2aに生じた亀裂を通じ、地下水が透過可能な状態となる。
【0030】
尚、この作業において、衝撃伝達材5の量を調節したり、またプローブ6の挿入深さを調節することによって破砕する位置を変えることができる。
【0031】
このようにして局部的に亀裂を発生させた後、プローブを引き抜き、図3に示すように作業孔4内に注水若しくは揚水し、更には、注水揚水を繰り返して破砕部分に水圧をかけ、亀裂内の目詰まりを除去し、透水性を確実ならしめる。
【0032】
また、透水性が充分に確保できない程度の破砕状態の場合は、図4に示すように、鞘管3内にジェットノズル7を挿入し、加圧ジェット水を劣化部分に噴射させて破砕する。
【0033】
更に、透水性が十分に確保された後、上述した鞘管3を通した注水及び吸引による目詰まり除去作業を定期的に行うことにより、経時的に生じる透水処理部分の目詰まりを除去し透水性を復活させることができる。
【0034】
尚、上述した例は、場所打ちコンクリートによる連続地中壁を使用した遮水性土留め壁についても同様に実施することができる。
【0035】
また、上述の実施例では作業孔4を鞘管3の埋め込みによって形成しているが、鞘管3を使用することなく、遮水性土留め壁2の造成後に、ボーリングによって穿孔することによって形成しても良い。
【0036】
また、上述の実施例において、遮水性土留め壁2の造成時に、図5に示すように透水化処理予定部にプラズマによる衝撃波の伝達性が高い衝撃波伝達媒体10をカプセルに封入したり、又は吸水性ポリマーに吸着させたりして分散させることが好ましい。図5における符号aは衝撃波の伝播状況を示している。このようにすることにより衝撃波伝達媒体10の周囲へのプラズマによる衝撃波の伝達性が高くなり、透水化処理範囲を広くしたり、限定したりすることができる。
【0037】
また、上述した鞘管3を使用する場合において、図6に示すように鞘管3の透水化処理予定高さ位置に多数の突起11を一体に突設しておくことが好ましい。この突起11は鞘管3と同様に衝撃波の伝達性能が高い材料を使用するものであり、中空の材料を使用して鞘管内3内に連通させ、鞘管3に注入した衝撃伝達材5が共に充填されるようにすることが好ましい。このようにすることにより、図7に示すように突起11を中心にして衝撃波が伝達され、衝撃波の伝達効率が良くなり、透水化処理性能が向上する。
【0038】
更に、鞘管3を使用する場合において、図8に示すように構築した地下構築物1に対して、上述した透水化処理による衝撃波が影響を及ぼさなくするために、地下構築物1隣接した高さ位置の外周にゴム等の弾性材や空気を充填した中空材料等の振動吸収材層12を設けておくことが好ましい。これによって、透水化処理時に発生させる衝撃波が吸収され、地下構築物1に対する影響がなくなる。
【0039】
また、地下構築物1に隣接した部分を除いてその上下を透水化処理する場合など、透水化処理を一定範囲に限定して行うことが必要な場合があるが、このような場合には、図9に示すように、気体を充填することにより膨張する振動吸収性のある栓体13,13をプローブ6の下部及び上部に予め固定しておき、これに地上に通じる送気管を通して空気を充填して膨張させ、作業孔4内のプローブ上下部分を仕切る。このようにしてプラズマによる衝撃波を発生させると、該衝撃波の伝達が栓体13,13によって遮断され、両栓体13,13間のみにおいて透水化処理がなされる。
【0040】
尚、栓体13,13は必ずしもプローブ上下に一対使用する必要がなく、プローブ6の下側のみ又は上側のみ等、衝撃波の伝達を遮断したい側に使用すればよい。
【0041】
これによって、地下構築物1に対する影響をなくしつつ、その上下位置の透水化処理を行う場合には、図10に示すように先ず地下構築物1より深い位置において栓体13,13により遮断させた状態で処理し、次いで図11に示すように地下構築物1より高い位置までプローブ6を移動させて同様に栓体13,13を膨張させて遮断し、透水化処理をおこなう。
【0042】
上述した栓体13,13を使用する方法は、作業孔4を鞘管3によって形成する場合、鞘管を使用しないで造成後の留め壁に直接穿孔することにより形成する場合の何れにも効果的である。
【0043】
上述した例は、ソイルセメント柱列による遮水性土留め壁に実施した場合を示しているが、この他、場所打ちのコンクリート(RC造)によって形成した地下連続壁による遮水性土留め壁においても同様に実施できる。
【0044】
【発明の効果】
上述のように、本発明に係る遮水性土留め壁の透水化処理方法においては、遮水性連続土留め壁に、縦向きの作業孔を形成し、該作業孔を使用してプラズマによる衝撃波による衝撃を与えるようにしたことにより、少ない作業によって短時間で遮水性土留め壁を透水可能な状態に破砕又は劣化させることができ、経済性が高い。
【0045】
また、遮水性連続壁の造成時に、該連続壁中の透水化処理予定高さ位置に、プラズマによる衝撃波の伝達性能の高い衝撃波伝達媒体を分散させて埋設しておくことにより、プラズマによる衝撃波の伝達性が向上し、厚い土留め壁であってもより少ないエネルギーで透水化処理することができる。
【0046】
更に、作業孔を、土留め壁に挿入した鞘管をもって構成することにより、遮水性土留め壁の造成時に簡単な作業で作業孔を形成しておくことができ、土留め壁構築後に穿孔する場合に比べ短時間で容易に作業孔を設置することができる。
【0047】
更に、鞘管の透水化処理予定高さ位置に、プラズマによる衝撃波を伝達させる突起を多数突設しておくことにより、衝撃波を鞘管の外方に効率よく伝播させることができ、破砕効率が向上する。また、この突起を、鞘管内に連通した中空管とすることにより、鞘管の外方への衝撃波の伝達がより効率よくなされる。
【0048】
更に、鞘管外周面に、その所望の高さ位置にプラズマによる衝撃波を吸収する弾性材層を予め被着させて作業孔を構成させることにより、隣接する地下構造物に対して衝撃波の伝達が遮断され、透水化処理の影響を及ぼすことなく安全に処理を行うことができる。
【0049】
更に、作業孔の透水化処理予定高さ位置とその下方及び/又は上方とを、プラズマによる衝撃波を吸収する材料からなる栓体をもって仕切るようにしたことにより、透水化処理使用とする範囲を限定することができる。
【0050】
更に、プラズマによる衝撃波を発生させることによって遮水性土留め壁を破砕させた後、残った作業孔を通して注水及び又は吸引することにより破砕部分の目詰まりが除去され、破砕作業後の透水性が完全に確保され、また経時的な目詰まりも除去することが可能となり、透水性の永続性が確保できる。
【図面の簡単な説明】
【図1】本発明をソイルセメント柱列による遮水性土留め壁に実施した例を示す斜視図である。
【図2】同上のプラズマによる透水化処理状況を示す部分斜視図である。
【図3】同上の注排水による透水化処理状況を示す部分斜視図である。
【図4】同上のジェット水による透水化処理状況を示す部分斜視図である。
【図5】図1に示す実施例において、ソイルセメント柱に衝撃波伝達媒体を分散して埋設した場合の振動伝達状況を示す断面図である。
【図6】図1に示す実施例において、鞘管に突起を設けた状態を示す斜視図である。
【図7】同上の振動伝達状況を示す斜視図である
【図8】図1に示す実施例において、鞘管外周に弾性材層を設けた状態を示す断面図である
【図9】図1に示す実施例において、プローブの上下側に栓体を設置した状態を示す断面図である。
【図10】同上の栓体を使用して地下構築物より下側を透水化処理する状態を示す断面図である。
【図11】同上の栓体を使用して地下構築物より下側を透水化処理した後、上側を処理する状態を示す断面図である。
【符号の説明】
1 地下構築物
2 遮水性土留め壁
2a ソイルセメント柱
3 鞘管
4 作業孔
5 衝撃伝達材
6 プローブ
7 ジェットノズル
10 衝撃波伝達媒体
11 突起
12 振動吸収材層
13 栓体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a water-impervious soil retaining wall formed by continuously forming a soil cement column formed by injecting and mixing a solidifying material into a continuous underground wall made of concrete or earth and sand under the ground, and imparting water permeability after its use. Permeation treatment method of a water-impervious earth retaining wall.
[0002]
[Prior art]
Generally, when constructing an underground structure such as a common ditch or a road by so-called digging work excavating from the ground surface, a water-impermeable soil retaining wall is formed in the ground prior to excavation. When using a continuous underground wall made of concrete or a continuous soil cement column formed by connecting soil cement columns continuously as this impermeable soil retaining wall, it is embedded in the ground as it is after the construction of the underground building is completed. It is left in a state.
[0003]
Originally, the water-impervious earth retaining wall is installed in order to construct an underground structure in a dry space in addition to the earth retaining, so that the groundwater vein is shut off during the construction period. For this reason, if it is left as it is even after the completion of construction, the groundwater vein will be shut off, and the groundwater flow will be hindered, the upstream water level will rise (a subsurface dam), and the downstream water level will decrease. As a result, there is a problem that the surrounding environment is affected, such as soil moistening, uplifting of structures, leakage of basement, decay of plant roots, withering of wells, land subsidence.
[0004]
As a method for preventing such a phenomenon, the following permeation treatment methods have been conventionally proposed.
1. This method involves removing or crushing the impermeable soil retaining wall.This method involves removing or crushing all or part of the remaining wall body from the ground using a crusher or excavator after completion of excavation and backfilling. Yes, for example, by inserting a core material with a crushing bit fixed at the tip into the soil cement column, and moving the core material up and down while turning the core material after the construction of the underground building, so that the soil has the desired length. There is a method of crushing a cement column (for example, see Patent Document 1). In addition, there is a method in which an auger screw is fixed in place of the above-mentioned bit, and the inside of a soil cement column is excavated with the auger screw and then crushed by a water jet (for example, see Patent Document 2).
2. This method is to add a drainage and drainage mechanism inside or outside the wall during digging work or after digging and backfilling is completed. For example, there is a method of releasing a cutoff of a groundwater vein by installing a permeable material layer on the outer surface of a groundwater vein height position of an underground continuous wall and installing a water pipe communicating with the permeable material layer ( See, for example, Patent Document 3.)
[0005]
As a method of crushing rock, there is a rock crushing device using plasma. In this method, water is injected into a hole formed in an object to be crushed, an electrode (probe) is inserted into the water, and high-energy power is supplied through the probe to generate plasma. (See, for example, Patent Documents 4 and 5).
[0006]
[Patent Document 1]
JP 2000-234331 A
[Patent Document 2]
JP 2000-32856 A
[Patent Document 3]
JP 2000-64270 A
[Patent Document 4]
JP-A-09-029732
[Patent Document 5]
JP 2002-089167 A
[Problems to be solved by the invention]
Among the above-mentioned prior arts, the method for removing the retaining wall involves excavating the retaining wall from the surface of the ground, so that it is difficult to remove the retaining wall at a deep depth of 30 m or more. There is a problem that there is a limit, and there is a lack of certainty in removing the required area, and the removal cost is high.
[0012]
In addition, in the method of providing the drainage system, there is a problem that the drainage function and the function of the water passage mechanism are deteriorated due to clogging, and the technology has not been established from the viewpoint of permanent groundwater flow maintenance.
[0013]
In addition, the conventional rock crushing method using plasma has not yet managed to control the direction and degree of crushing due to the difference in material between the rock and the impermeable soil retaining wall. There is no specific technology that can be applied to processing.
[0014]
The present invention has been made in view of the above-described conventional problems, and has a low cost. The water-impervious earth retaining wall can be subjected to proper water-permeability treatment, and the water-permeability can be maintained permanently after the water-permeability treatment. The purpose of the present invention is to provide a method for making a retaining wall water-permeable.
[0015]
[Means for Solving the Problems]
The feature of the invention according to claim 1, which solves the conventional problems as described above and achieves the intended purpose, is a concrete or soil cement water-impermeable continuous retaining wall formed in the ground, During or after the construction, a vertical working hole is formed at a desired interval, an impact transmitting material such as water is injected into the working hole, and a plasma generating electrode (hereinafter referred to as a probe) is inserted. An object of the present invention is to supply a power to the probe to generate a shock wave due to plasma, and to crush or degrade the water-impermeable soil retaining wall into a water-permeable state by the shock wave. By doing so, the water-impermeable earth retaining wall can be locally crushed or deteriorated in a short time with a small amount of work, and the cost is high.
[0016]
The feature of the invention described in claim 2 is that, in addition to the configuration of claim 1, when a water-impermeable continuous wall made of concrete or soil cement formed in the ground is formed, the height of the water-permeability treatment in the continuous wall is increased. An object of the present invention is to disperse and embed a shock wave transmission medium having a high shock wave transmission performance by plasma at the position.
[0017]
By doing so, the transmissibility of the shock wave by the plasma is improved, and even a thick earth retaining wall can be subjected to the water permeation treatment with less energy. Further, even in a crushed state in which water permeability cannot be sufficiently secured, crushing using a jet nozzle becomes easy.
[0018]
A feature of the invention described in claim 3 is that, in addition to the configuration described in claim 1 or 2, the working hole of the water-blocking continuous retaining wall is constituted by a sheath tube inserted into the retaining wall. . In this way, the work hole can be formed by a simple operation when constructing the water-impermeable soil retaining wall, and the work hole can be easily installed in a shorter time than when drilling after the construction of the soil retaining wall. Can be.
[0019]
A feature of the invention described in claim 4 is that, in addition to the configuration described in claim 3, a large number of projections for transmitting shock waves due to plasma are protruded at the height of the sheath tube at the scheduled height of the permeation treatment. By doing so, the shock wave can be efficiently transmitted to the outside of the sheath tube, and the crushing efficiency is improved.
[0020]
According to a fifth aspect of the present invention, in addition to the configuration of the fourth aspect, the projection for transmitting the shock wave by the plasma is a hollow tube communicating with the inside of the sheath tube. By doing so, the transmission of the shock wave to the outside of the sheath tube is performed more efficiently.
[0021]
The feature of the invention according to claim 6 is that, in addition to the configuration according to claim 3, 4, or 5, an elastic material layer for absorbing a shock wave due to plasma is provided on the outer peripheral surface of the sheath tube at a desired height position in advance. A work hole is formed by being attached, and the transmission of the shock wave to an adjacent underground structure is blocked by the elastic material layer. This makes it possible to safely perform the permeation treatment without affecting the adjacent underground structure by the shock wave.
[0022]
A feature of the invention according to claim 7 is that, in addition to the configuration according to claim 1 to 5, the shock wave due to the plasma is formed at the height of the work hole where the water is to be permeated and below and / or above it. An object of the present invention is to supply power to a probe in a state where the transmission of the shock wave is cut off by partitioning with a plug made of an absorbing material to generate a shock wave due to plasma. By doing so, it is possible to limit the range in which the water permeation treatment is to be performed, and it is possible to locally perform efficient water permeation treatment, and thus to safely perform the treatment without affecting adjacent underground structures. It can be carried out.
[0023]
The feature of the invention described in claim 8 is that, in addition to the configuration described in claim 7, the plug made of a material that absorbs shock waves is formed of an expandable and contractible hollow bag formed of an elastic material such as rubber. The object of the present invention is to close a working hole by injecting a fluid composed of a gas or a liquid into the stopper to thereby inflate the working hole. By doing so, the work of limiting the range of the water permeation treatment using the plug can be performed more easily and with good workability.
[0024]
According to a ninth aspect of the present invention, in addition to the configuration according to the first to seventh or eighth aspects, after crushing the water-impermeable soil retaining wall by generating a shock wave by plasma, the remaining working hole is passed through. The purpose of the present invention is to remove clogging caused by fine grains of soil in a crushed portion by water injection and / or suction. By doing so, the water permeability after the crushing operation is completely ensured, and the clogging with the lapse of time can be removed, and the durability of the water permeability can be ensured.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0026]
1 and 2 show an example in which the present invention is applied to a water-impervious earth retaining wall using a column of soil cement. In the figure, reference numeral 1 denotes an underground structure such as a tunnel, and 2 denotes an underground construction for excavation work. It is a water-impervious earth retaining wall used. Prior to the construction of the underground structure 1, the water-impervious retaining wall 2 uses a solidifying agent injection device equipped with an auger screw and a drilling / stirring bit in the ground on both sides thereof to continuously connect the soil cement columns 2a, 2a,. It was formed.
[0027]
At the time of forming the soil cement column 2a, a sheath pipe 3 is inserted into the center of the soil cement column at a desired interval before solidification of the soil cement to a depth reaching a groundwater vein which has been investigated in advance by boring or the like. The sheath tube 3 is made of a plastic or ceramic material, and its hollow interior is used as a working hole 4 for permeation treatment.
[0028]
The permeation treatment is performed after the completion of the construction of the underground structure 1 using the work holes 4 set in advance in this manner, and in the treatment, the principle of the plasma crushing apparatus shown in the above-described conventional example is used. The impact transmitting material 5 is injected into the working hole 4 as shown in FIG. As the impact transmitting material 5, water or water having viscosity such as bentonite mud can be used.
[0029]
Next, the probe 6 is inserted into the shock transmitting member 5, and a pulse current is supplied from the power supply device to the probe 6 to generate plasma. The shock wave generated at that time reaches the soil cement column 2a via the shock transmitting material 5, and locally crushes it. As a result, groundwater can pass through the cracks generated in the soil cement column 2a.
[0030]
In this operation, the crushing position can be changed by adjusting the amount of the shock transmitting material 5 or adjusting the insertion depth of the probe 6.
[0031]
After the cracks were locally generated in this manner, the probe was pulled out, and water was injected or pumped into the working hole 4 as shown in FIG. 3. Removes clogging inside and ensures water permeability.
[0032]
In the case of a crushed state in which water permeability cannot be sufficiently secured, as shown in FIG. 4, a jet nozzle 7 is inserted into the sheath tube 3, and pressurized jet water is jetted to the deteriorated portion to be crushed.
[0033]
Furthermore, after the water permeability is sufficiently ensured, the clogging of the water-permeable portion generated over time is removed by periodically performing the above-described clogging removal operation by water injection and suction through the sheath tube 3. Sex can be revived.
[0034]
The above-described example can be similarly applied to a water-impermeable soil retaining wall using a continuous underground wall made of cast-in-place concrete.
[0035]
In the above-described embodiment, the working hole 4 is formed by embedding the sheath tube 3. However, without using the sheath tube 3, the working hole 4 is formed by boring and drilling after forming the water-impermeable soil retaining wall 2. May be.
[0036]
Further, in the above-described embodiment, at the time of constructing the water-blocking earth retaining wall 2, as shown in FIG. It is preferable to disperse by adsorbing on a water-absorbing polymer. The symbol a in FIG. 5 indicates the propagation state of the shock wave. By doing so, the transmissibility of the shock wave by the plasma around the shock wave transmission medium 10 is increased, and the range of the water permeation treatment can be widened or limited.
[0037]
When the above-mentioned sheath tube 3 is used, it is preferable that a large number of projections 11 are integrally provided at the height of the sheath tube 3 at the scheduled height of the water permeation treatment as shown in FIG. The projection 11 is made of a material having a high shock wave transmission performance like the sheath tube 3, and a hollow material is used to communicate with the inside of the sheath tube 3, and the shock transmitting material 5 injected into the sheath tube 3 is used. Preferably, they are filled together. By doing so, the shock wave is transmitted around the protrusion 11 as shown in FIG. 7, the transmission efficiency of the shock wave is improved, and the water permeation treatment performance is improved.
[0038]
Further, in the case where the sheath tube 3 is used, the height position adjacent to the underground structure 1 is set so that the shock wave generated by the above-described permeation treatment does not affect the underground structure 1 constructed as shown in FIG. It is preferable to provide a vibration absorbing material layer 12 made of an elastic material such as rubber or a hollow material filled with air on the outer periphery of the device. Thereby, the shock wave generated at the time of the permeation treatment is absorbed, and the influence on the underground building 1 is eliminated.
[0039]
Also, there are cases where it is necessary to limit the permeation treatment to a certain range, such as when the permeation treatment is performed on the upper and lower parts except for the part adjacent to the underground building 1. As shown in FIG. 9, plugs 13 and 13 having vibration absorbing properties which are expanded by filling with gas are fixed to the lower and upper portions of the probe 6 in advance, and air is filled through an air supply pipe leading to the ground. To separate the upper and lower portions of the probe in the working hole 4. When the shock wave is generated by the plasma in this way, the transmission of the shock wave is blocked by the plugs 13, 13, and the permeation treatment is performed only between the plugs 13, 13.
[0040]
It is not always necessary to use a pair of the plugs 13, 13 above and below the probe, and may be used only on the side where the transmission of the shock wave is to be cut off, such as only the lower side or the upper side of the probe 6.
[0041]
As a result, in the case where the permeation treatment is performed at the upper and lower positions while eliminating the influence on the underground structure 1, as shown in FIG. Then, as shown in FIG. 11, the probe 6 is moved to a position higher than the underground building 1, and the plugs 13, 13 are similarly expanded and cut off to perform a water permeation treatment.
[0042]
The method of using the plugs 13, 13 described above is effective in both cases where the working hole 4 is formed by the sheath tube 3 and where the working hole 4 is formed by directly piercing the formed retaining wall without using the sheath tube. It is a target.
[0043]
The above-described example shows a case where the present invention is applied to a water-impervious retaining wall made of soil cement pillars. In addition, a water-impervious retaining wall made of an underground continuous wall formed by cast-in-place concrete (RC construction) is also used. It can be implemented similarly.
[0044]
【The invention's effect】
As described above, in the method for permeating a water-impermeable soil retaining wall according to the present invention, a vertically-oriented working hole is formed in the water-impermeable continuous retaining wall, and the working hole is used to generate a shock wave by plasma. By providing the impact, the water-impermeable soil retaining wall can be crushed or deteriorated in a water-permeable state in a short time with a small amount of work, and the cost is high.
[0045]
Further, at the time of forming the water-impervious continuous wall, by dispersing and embedding a shock wave transmitting medium having a high performance of transmitting a shock wave by plasma at a scheduled height position of the water permeation treatment in the continuous wall, the shock wave generated by the plasma is dispersed. The transmissivity is improved, and the permeation treatment can be performed with less energy even with a thick retaining wall.
[0046]
Further, by forming the working hole with a sheath tube inserted into the retaining wall, the working hole can be formed by a simple operation when constructing the water-impermeable retaining wall, and the working hole is formed after the retaining wall is constructed. Work holes can be easily installed in a shorter time than in the case.
[0047]
Furthermore, by providing a large number of projections for transmitting the shock wave due to the plasma at the height of the permeation treatment scheduled for the sheath tube, the shock wave can be efficiently propagated to the outside of the sheath tube, and the crushing efficiency can be improved. improves. Further, by making the projection a hollow tube communicating with the inside of the sheath tube, the transmission of the shock wave to the outside of the sheath tube is more efficiently performed.
[0048]
Furthermore, by forming a working hole on the outer peripheral surface of the sheath tube by previously applying an elastic material layer that absorbs a shock wave due to plasma at a desired height position, the shock wave can be transmitted to the adjacent underground structure. The treatment is shut off and the treatment can be performed safely without affecting the permeation treatment.
[0049]
In addition, the range of the water-permeability treatment is limited by separating the working hole at the height of the water-permeability treatment and the lower part and / or the upper part thereof with a plug made of a material absorbing a shock wave by plasma. can do.
[0050]
Furthermore, after crushing the impermeable retaining wall by generating a shock wave by plasma, clogging of the crushed portion is removed by water injection and / or suction through the remaining working hole, and the water permeability after the crushing operation is completely completed. And clogging over time can be removed, so that the water permeability can be maintained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example in which the present invention is applied to a water-impervious earth retaining wall using a column of soil cement.
FIG. 2 is a partial perspective view showing a state of a water permeation treatment by the same plasma.
FIG. 3 is a partial perspective view showing a state of permeation treatment by pouring and draining water according to the first embodiment.
FIG. 4 is a partial perspective view showing a state of permeation treatment using jet water according to the first embodiment.
FIG. 5 is a cross-sectional view showing a state of vibration transmission when a shock wave transmitting medium is dispersed and embedded in a soil cement column in the embodiment shown in FIG.
FIG. 6 is a perspective view showing a state where a projection is provided on a sheath tube in the embodiment shown in FIG. 1;
FIG. 7 is a perspective view showing the state of vibration transmission in the same embodiment. FIG. 8 is a sectional view showing a state in which an elastic material layer is provided on the outer periphery of a sheath tube in the embodiment shown in FIG. FIG. 6 is a cross-sectional view showing a state where plugs are installed on upper and lower sides of a probe in the embodiment shown in FIG.
FIG. 10 is a cross-sectional view showing a state where the lower side of the underground structure is subjected to permeation treatment using the plug according to the first embodiment.
FIG. 11 is a cross-sectional view showing a state in which the lower side of the underground building is subjected to permeation treatment using the plug and the upper side is treated.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Underground structure 2 Waterproof soil retaining wall 2a Soil cement column 3 Sheath tube 4 Working hole 5 Shock transmitting material 6 Probe 7 Jet nozzle 10 Shock wave transmitting medium 11 Projection 12 Vibration absorbing material layer 13 Plug

Claims (9)

地中に造成されたコンクリート又はソイルセメント製の遮水性連続土留め壁に、その構築時又は構築後に、所望の間隔を隔てて縦向きの作業孔を形成し、該作業孔に水等の衝撃伝達材を注入するとともにプラズマ発生用電極(以下プローブと記す)を挿入し、該プローブに電力を供給してプラズマによる衝撃波を発生させ、該衝撃波により前記遮水性土留め壁を透水可能な状態に破砕又は劣化させることを特徴としてなる遮水性土留め壁の透水化処理方法。At the time of or after construction, a vertical working hole is formed at a desired interval on the concrete or soil-cemented water-blocking continuous earth retaining wall formed in the ground, and the working hole is subjected to impact of water or the like. A transmitting material is injected and a plasma generating electrode (hereinafter, referred to as a probe) is inserted, and power is supplied to the probe to generate a shock wave due to the plasma. A method for permeating water-impermeable soil retaining walls, characterized by crushing or degrading. 地中に造成されるコンクリート又はソイルセメント製の遮水性連続壁の造成時に、該連続壁中の透水化処理予定高さ位置に、プラズマによる衝撃波の伝達性能の高い衝撃波伝達媒体を分散させて埋設しておく請求項1に記載の遮水性土留め壁の透水化処理方法。During the construction of a concrete or soil-cemented water-impermeable continuous wall formed in the ground, a shock wave transmission medium having a high shock wave transmission performance by plasma is dispersed and buried at the scheduled height position of the water permeation treatment in the continuous wall. The method for permeating a water-impermeable earth retaining wall according to claim 1. 遮水性連続土留め壁の作業孔は、該土留め壁に挿入した鞘管をもって構成する請求項1又は2に記載の遮水性土留め壁の透水化処理方法。The method for permeabilizing a water-impervious retaining wall according to claim 1 or 2, wherein the working hole of the water-impervious continuous retaining wall comprises a sheath tube inserted into the retaining wall. 鞘管の透水化処理予定高さ位置に、プラズマによる衝撃波を伝達させる突起を多数突設した請求項3に記載の遮水性土留め壁の透水化処理方法。4. The method for permeabilizing a water-impervious earth retaining wall according to claim 3, wherein a number of projections for transmitting a shock wave due to plasma are protrudingly provided at the height of the permeation-promoting scheduled surface of the sheath tube. プラズマによる衝撃波を伝達させる突起は、該鞘管内に連通した中空管である請求項4に記載の遮水性土留め壁の透水化処理方法。5. The method according to claim 4, wherein the projection for transmitting the shock wave due to the plasma is a hollow pipe communicating with the inside of the sheath pipe. 鞘管外周面に、その所望の高さ位置にプラズマによる衝撃波を吸収する弾性材層を予め被着させて作業孔を構成させ、該弾性材層によって隣接する地下構造物に対する前記衝撃波の伝達を遮断させるようにしてなる請求項3、4又は5に記載の遮水性土留め壁の透水化処理方法。On the outer peripheral surface of the sheath tube, an elastic material layer for absorbing a shock wave due to plasma is previously applied to a desired height position to form a working hole, and the transmission of the shock wave to an adjacent underground structure is performed by the elastic material layer. The method for permeabilizing a water-impervious earth retaining wall according to claim 3, wherein the water-impervious earth retaining wall is blocked. 作業孔の透水化処理予定高さ位置とその下方及び/又は上方とを、プラズマによる衝撃波を吸収する材料からなる栓体をもって仕切ることにより該衝撃波の伝達を遮断させた状態でプローブに電力を供給し、プラズマによる衝撃波を発生させる請求項1〜5又は6に記載の遮水性土留め壁の透水化処理方法。Power is supplied to the probe in a state in which the transmission of the shock wave is cut off by partitioning the work hole at the scheduled height position and the lower part and / or upper part thereof with a plug made of a material that absorbs a shock wave due to plasma. The method for permeabilizing a water-impervious earth retaining wall according to claim 1, wherein a shock wave is generated by plasma. 衝撃波を吸収する材料からなる栓体が、ゴム等の弾性材をもって成形された膨縮自在な中空袋状をなし、該栓体に気体又は液体からなる流体を圧入することにより膨張させて作業孔を閉鎖する請求項7に記載の遮水性土留め壁の透水化処理方法。A plug made of a material that absorbs shock waves is formed into an inflatable hollow bag shape formed of an elastic material such as rubber, and is expanded by press-fitting a gas or liquid fluid into the plug, thereby expanding the working hole. The method for permeabilizing a water-impervious earth retaining wall according to claim 7. プラズマによる衝撃波を発生させることによって遮水性土留め壁を破砕させた後、残った作業孔を通して注水及び又は吸引することにより破砕部分の目詰まりを除去する請求項1〜7又は8に記載の遮水性土留め壁の透水化処理方法。The crushed portion of the crushed portion is removed by crushing the water-blocking earth retaining wall by generating a shock wave by plasma and then pouring and / or sucking through the remaining working hole. A method for permeating water-based soil retaining walls.
JP2002292017A 2002-10-04 2002-10-04 Treatment method for permeabilizing impervious earth retaining wall Pending JP2004124575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292017A JP2004124575A (en) 2002-10-04 2002-10-04 Treatment method for permeabilizing impervious earth retaining wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292017A JP2004124575A (en) 2002-10-04 2002-10-04 Treatment method for permeabilizing impervious earth retaining wall

Publications (1)

Publication Number Publication Date
JP2004124575A true JP2004124575A (en) 2004-04-22

Family

ID=32283400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292017A Pending JP2004124575A (en) 2002-10-04 2002-10-04 Treatment method for permeabilizing impervious earth retaining wall

Country Status (1)

Country Link
JP (1) JP2004124575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214980A (en) * 2011-03-31 2012-11-08 Ohbayashi Corp Construction method for underground wall and extraction method for core material of the underground wall
CN113447516A (en) * 2021-06-19 2021-09-28 辽宁石油化工大学 Experimental research method for thermal crushing of hydrated mud shale

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214980A (en) * 2011-03-31 2012-11-08 Ohbayashi Corp Construction method for underground wall and extraction method for core material of the underground wall
CN113447516A (en) * 2021-06-19 2021-09-28 辽宁石油化工大学 Experimental research method for thermal crushing of hydrated mud shale
CN113447516B (en) * 2021-06-19 2024-03-19 辽宁石油化工大学 Experimental research method for thermal crushing of hydrated shale

Similar Documents

Publication Publication Date Title
US5927907A (en) Method and apparatus for preventing liquefaction of ground caused by violent earthquake
JP2009179945A (en) Well conduit for road and its construction method
JP4485674B2 (en) Method for constructing continuous underground wall, method for lowering groundwater level, and method for restoring groundwater level
JP2004124575A (en) Treatment method for permeabilizing impervious earth retaining wall
JP2008002199A (en) Ground reinforcing method of excavated batholith
JP3245537B2 (en) Method of forming permeable section in continuous underground wall
KR101392995B1 (en) Construction method for retaining of earth
Milanovic Prevention and remediation in karst engineering
JP5409302B2 (en) Water flow structure to prevent groundwater flow obstruction, method to prevent groundwater flow obstruction
JPH03281826A (en) Excavation method in cohesive soil ground
KR100652187B1 (en) Grouting method to the underdrain-installed point in a hillside road
JP2009062792A (en) Ground vibration propagation restraining structure and its construction method
JP2005282130A (en) Ground excavation method
JP2005146756A (en) Earth retaining impervious wall construction method and earth retaining impervious wall formed by it
JP4982632B2 (en) Liquefaction countermeasure method under breakwater
JP3318495B2 (en) Method of forming a permeable layer on soil cement underground wall
CN115387369B (en) Flexible seepage-proofing structure combining seepage-proofing wall and curtain grouting and construction method thereof
JP2006029020A (en) Construction method of large cross section tunnel
JPH11513086A (en) Novel sewage wall, method of forming the sewage wall, and members used therefor
JP2004218308A (en) Construction method for rainwater permeating pot
JP5461960B2 (en) Well installation method and well
JP3264437B2 (en) Water shielding device and method of measuring water permeability
JPH0776827A (en) Construction of permeable layer in underground continuous wall
JPH11241593A (en) Ground collapse preventing method in shield construction
JPH11229366A (en) Preventing method for collapse of natural ground