JP2004124131A - High strength austenitic stainless steel strip having excellent bending workability - Google Patents

High strength austenitic stainless steel strip having excellent bending workability Download PDF

Info

Publication number
JP2004124131A
JP2004124131A JP2002287530A JP2002287530A JP2004124131A JP 2004124131 A JP2004124131 A JP 2004124131A JP 2002287530 A JP2002287530 A JP 2002287530A JP 2002287530 A JP2002287530 A JP 2002287530A JP 2004124131 A JP2004124131 A JP 2004124131A
Authority
JP
Japan
Prior art keywords
bending workability
stainless steel
austenitic stainless
strength
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002287530A
Other languages
Japanese (ja)
Other versions
JP4234969B2 (en
Inventor
Ikuya Kurosaki
黒崎 郁也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Metal Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Metal Manufacturing Co Ltd filed Critical Nikko Metal Manufacturing Co Ltd
Priority to JP2002287530A priority Critical patent/JP4234969B2/en
Publication of JP2004124131A publication Critical patent/JP2004124131A/en
Application granted granted Critical
Publication of JP4234969B2 publication Critical patent/JP4234969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength austenitic stainless steel strip which has excellent bending workability by clarifying indexes for satisfying high strength and high bending workability. <P>SOLUTION: In the high strength austenitic stainless steel strip having excellent bending workability, the crystal grain size after final recrystallization annealing is 1 to 10 μm, and the ratio (YS/Ms)between 0.2% yield stress (=YS (MPa)) and a martensite content (=Ms (%)) is ≥25. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器部品に使用されるコネクタ、及び接点に使用される部品等のばね性が必要な部品に好適な、ばね用ステンレス鋼帯に関する。
【0002】
【従来の技術】
各種電子機器部品に使用されるコネクタ、及び接点に使用される部品等の基本的な特性として高強度でばね性が要求されており、近年の電子機器の小型化に伴ない,その電子部品の薄肉化も著しく,端子,コネクターなどの金属部材も過酷でかつ複雑な曲げ加工が行なわれるため,より高強度で曲げ加工性が良好な材料が望まれている。
【0003】
高強度と曲げ加工性を必要とする材料の一つとしては、SUS304あるいはSUS301等の加工硬化型オーステナイト系ステンレス鋼が使用されている。これらステンレス鋼は,溶体化処理後にオーステナイト相を呈し,その後の冷間圧延で加工誘起マルテンサイトを生成させて高強度を得ようとするものである。また、オーステナイト母相を2μm以下に微細化し,これを熱処理によってマルテンサイト相に変態させて高強度化する。(例えば、特許文献1参照)
しかしながら、オーステナイト系ステンレス鋼がこの機構を用いた場合、マルテンサイトの生成が多くなると、高強度化は図れるものの、曲げ加工性は悪くなる。従って、必要な特性である高強度と高曲げ加工性の両特性を満たすためには、高強度と高曲げ加工性の両特性を満たすことを示す指標が必要となるが、現状では、その指標は不明であった。
【0004】
【特許文献1】
特開平11−80906号公報
【0005】
【発明が解決しようとする課題】
本発明は、高強度かつ高曲げ加工性を満たすための指標を明確にし、曲げ加工性に優れた高強度オーステナイト系ステンレス鋼帯を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、オーステナイト系ステンレス鋼が高強度かつ高曲げ加工性を満たす条件を鋭意研究した結果、0.2%耐力とマルテンサイト量の関係により高強度でかつ高曲げ加工性を満たす条件を見出した。また、結晶粒微細化と加工硬化による0.2%耐力の上昇とを上記の条件と組合せることによって高強度でかつ高曲げ加工性を有するオーステナイト系ステンレス鋼を見出した。
【0007】
すなわち、本発明は
(1)最終の再結晶焼鈍後の結晶粒径が1〜10μmであり,かつ,0.2%耐力(=YS(MPa))とマルテンサイト量(=Ms(%))の比率(YS/Ms)が25以上であることを特徴とする曲げ加工性に優れた高強度オーステナイト系ステンレス鋼帯、
(2)請求項1に記載の該素材において,最終の再結晶焼鈍後の結晶粒径が1〜10μmであり,かつ,再結晶焼鈍,冷間圧延,あるいは冷間圧延後に歪取り焼鈍されたステンレス鋼帯の引張強さと0.2%耐力(=TS(MPa))の比率(YS/TS)が0.8以上であることを特徴とする,曲げ加工性に優れた高強度オーステナイト系ステンレス鋼帯、
(3)上記の(1)乃至(2)に記載のコネクタ,あるいはスイッチなどの接点部品に使用される曲げ加工性に優れた高強度オーステナイト系ステンレス鋼帯、である。
【0008】
【発明の実施の形態】
以下に限定の理由を説明する。
(1)マルテンサイト生成量と0.2%耐力の関係
加工硬化型オーステナイト系ステンレス鋼は溶体化処理状態でオーステナイト相を呈し, その後の冷間加工で加工誘起マルテンサイトを生成させて,高強度が得られる。強度とマルテンサイト量は冷間加工に依存し、強加工することによりマルテンサイ量を増大させ、高強度を得ることができる。しかしながら、マルテンサイ量を増大させると曲げ加工性を悪くしてしまう。マルテンサイト量の加工度に対する増加率は0.2%耐力の加工度に対する増加率より大きいため、強加工した場合には0.2%耐力とマルテンサイト量の比率(YS/Ms)の値が低下することになる。
【0009】
Ms量が多く生成して0.2%耐力とマルテンサイト量の比率(YS/Ms)が25未満の場合、良好な曲げ加工性が得られない。
従って、良好な曲げ加工性が得られるように0.2%耐力とマルテンサイト量の比率(YS/Ms)を25以上にするためには、マルテンサイト量(Ms)の生成を制限するか、YSを大きくすることが考えられる。
【0010】
強度と曲げ加工性の良否を判断する指標として,冷間圧延の加工度があるが,Ms量は冷間圧延の加工度だけでなく,結晶粒の影響も受けるため,冷間圧延の加工度からMs量は一義的には決まらない。従って,冷間圧延の加工度は,強度,曲げ加工性を評価するある程度の指標とはなるものの,高強度かつ曲げ加工性の良否を判断することはできない。本発明の0.2%耐力とマルテンサイト量の比率(YS/Ms)は,後述する結晶粒径を組み合わせて評価することにより,高強度と曲げ加工性を両立した材料(ステンレス)を生み出し新たな指標である。
【0011】
(2)結晶粒
加工以外に材料を高強度化する方法として結晶粒微細化が挙げられる。結晶粒微細化と加工誘起マルテンサイトの生成を組合せることにより、曲げ加工性を考慮しながら高強度化が図れる。
最終の再結晶焼鈍後の結晶粒を10μm以下にしたのは、所定の高強度を得るためである。最終の再結晶焼鈍後の結晶粒が10μmを超えると結晶が大きくなり,高強度の効果が少なくなる。
また,再結晶焼鈍後の結晶粒を1μm以上にしたのは,結晶粒が1μm未満になると,曲げ性が悪くなるからである。最終の再結晶焼鈍後の結晶粒が1μm未満では,耐力,引張り強さは高くなるが,曲げ性が悪くなり,高強度,かつ高曲げ性を両立できない。
【0012】
(3)結晶粒とMs量の関係
結晶粒が1μm未満まで微細になると,加工誘起マルテンサイトの発生量が減少する,すなわち,加工によりMs量が増加しにくくなる。結晶粒が1μm未満の材料を加工し,0.2%耐力と引張り強さを十分高くした場合においてもMs量は高くならず,0.2%耐力とマルテンサイト量の比率(YS/Ms)は高くなるが,曲げ性が悪いため,高強度と高曲げ性の両立はできない。
結晶粒径が1μm以上の場合は,結晶粒径が1μm未満の場合と比較すると,加工による曲げ性の低下が少なく,適当な加工度で材料を加工することで,高強度と高曲げ性が両立できる。
【0013】
(4)引張強さと0.2%耐力の関係
0.2%耐力は材料の強度を表す特性値であるが,厳密に強度を考慮する場合,どの程度の応力まで弾性的に変形するかが問題となり,0.2%耐力ではなく,0.05%耐力等さらに微小な塑性領域での耐力値が必要となってくる。好ましくは0.01%耐力等さらに繊細な指標が必要であるが,簡便的に0.2%耐力と引張強さの比率を求めることによっても可能である。すなわち0.2%耐力と引張強さの比率の大きい材料は0.2%耐力の値が引張強さに近い値となり、弾性域が高い応力まで維持される。
0.2%耐力と引張強さの比率(YS/TS)が0.8以上にすることは、圧延,再結晶焼鈍の加工条件を選択し、組み合わせることができる。オーステナイト系ステンレスをベースとして成分等の調整によっても0.2%耐力と引張強さの比率(YS/TS)が0.8以上可能である。
さらに、上述の(1)のマルテンサイト量と0.2%耐力の比率、(2)の結晶粒微細化を組み合わせることによって高強度でかつ高曲げ加工性を有するオーステナイト系ステンレス鋼を得ることができる。
【0014】
【実施例】
実施例に用いたオーステナイト系ステンレス鋼はSUS301である。JISに基いた成分の範囲において溶解鋳造によって得られたSUS301のインゴットを熱間圧延し、溶体化処理後,冷間圧延と再結晶焼鈍を繰返し,最終圧延にて板厚0.06〜0.1mmまで加工した。マルテンサイト量は最終圧延の加工度を変えることで生成する量を調整した。圧延後の再結晶焼鈍にて焼鈍温度を変えることによって結晶粒の大きさを調整した。
【0015】
以下の方法にて効果を評価した。
(1)マルテンサイト量
マルテンサイト量は、オーステナイト相が非磁性であるのに対してマルテンサイト相は常磁性であることを利用し材料の磁性の強さを磁気誘導によるフェライト含有量計(フェライトスコープとも言う)で測定することにより、マルテンサイト相への変態量,すなわち体積率で求められる。
(2)曲げ加工性(MBR/t)
一般的な90°W曲げ試験により測定した。曲げ部分の半径(R)と板厚(t)に対して,曲げ部分の半径(R)を小さくしていき,曲げ部分に亀裂が見られない最小の曲げ部半径(MBR)を板厚(t)で除した値をMBR/tとする。測定は曲げ軸が圧延方向と平行方向となるBad way方向でおこなった。
【0016】
【表1】

Figure 2004124131
【0017】
表1の結果に見られるように、結晶粒1μm以上では,同じ加工度40%で比較すると、本発明のほうが、比較例より強度が大きくなっている。例えば、発明例No.1、3、4と比較例No.9とを比べると発明例のほうが大きい。また,同じ加工度40%の比較例No.13では,強度は発明例よりも大きいが,結晶粒が1μm未満となっており,曲げ加工性が悪い。
また、曲げ加工性については発明例No.1〜No.7は0.2%耐力とマルテンサイト量の比率(YS/Ms)が25以上であり、良好な値を示しているが、比較例では、No.9、10、12が25未満のため、曲げ加工性が悪い。
また、強度について,発明例No.1〜No.7は0.2%耐力が1000MPaを大きく越えているが,比較例No.8、11、13は,加工度が0%であり,0.2%耐力が1000MPaより低い。さらに,比較例No.9,14も0.2%耐力が1000MPaより低くなっており,これは,No.9では結晶粒が大きいため,No.14では,結晶粒が微細になり過ぎたため,低加工度では十分な0.2%耐力の上昇が得られないためである。
【0018】
【発明の効果】
オーステナイト系ステンレスを適正に圧延,再結晶焼鈍を組み合わせた加工した場合,高強度と高曲げ加工性を同時に満たすことができる。この範囲は,最終の再結晶焼鈍において結晶粒径を微細にしてマルテンサイト量と引張り強さの比率で規定することが可能である。
また、さらに0.2%耐力と引張強さの比率で規定することにより、高強度と高曲げ加工性の両立できる加工度が可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stainless steel strip for a spring, which is suitable for a component that requires spring property, such as a connector used for various electronic device components and a component used for a contact.
[0002]
[Prior art]
High strength and resiliency are required as basic characteristics of connectors used for various electronic equipment parts and parts used for contact points. Since the metal members such as terminals and connectors are remarkably thinned and severe and complicated bending is performed, materials having higher strength and good bending workability are desired.
[0003]
As one of the materials requiring high strength and bending workability, a work hardening type austenitic stainless steel such as SUS304 or SUS301 is used. These stainless steels exhibit an austenitic phase after solution treatment, and then form cold-rolled work-induced martensite to obtain high strength. Further, the austenite matrix is refined to 2 μm or less and transformed into a martensite phase by heat treatment to increase the strength. (For example, see Patent Document 1)
However, when austenitic stainless steel uses this mechanism, if the generation of martensite increases, the bending workability deteriorates, although high strength can be achieved. Therefore, in order to satisfy both the required properties of high strength and high bending workability, an index that satisfies both properties of high strength and high bending workability is required. Was unknown.
[0004]
[Patent Document 1]
JP-A-11-80906 [0005]
[Problems to be solved by the invention]
An object of the present invention is to clarify an index for satisfying high strength and high bending workability, and to provide a high-strength austenitic stainless steel strip excellent in bending workability.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the conditions under which austenitic stainless steel satisfies high strength and high bending workability. As a result, the conditions satisfying high strength and high bending workability due to the relationship between 0.2% proof stress and the amount of martensite are obtained. Was found. Further, an austenitic stainless steel having high strength and high bending workability was found by combining grain refinement and 0.2% proof stress increase by work hardening with the above conditions.
[0007]
That is, according to the present invention, (1) the crystal grain size after the final recrystallization annealing is 1 to 10 μm, and the 0.2% proof stress (= YS (MPa)) and the amount of martensite (= Ms (%)) A high-strength austenitic stainless steel strip excellent in bending workability, wherein the ratio (YS / Ms) is 25 or more;
(2) In the material according to claim 1, the crystal grain size after the final recrystallization annealing is 1 to 10 μm, and the material is subjected to recrystallization annealing, cold rolling, or strain relief annealing after cold rolling. A high-strength austenitic stainless steel excellent in bending workability, characterized in that the ratio (YS / TS) of the tensile strength of the stainless steel strip to the 0.2% proof stress (= TS (MPa)) is 0.8 or more. Steel strip,
(3) A high-strength austenitic stainless steel strip excellent in bending workability used for the contact parts such as the connector or the switch according to the above (1) or (2).
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The reason for the limitation will be described below.
(1) Relationship between the amount of martensite formation and 0.2% proof stress Work-hardening austenitic stainless steel exhibits an austenite phase in a solution-treated state, and then forms work-induced martensite in the subsequent cold working to achieve high strength. Is obtained. The strength and the amount of martensite depend on the cold working. By performing the strong working, the amount of martens can be increased and a high strength can be obtained. However, when the amount of martensis is increased, bending workability is deteriorated. The rate of increase of the amount of martensite with respect to the degree of work is greater than the rate of increase of the degree of workability with 0.2% proof stress. Will decrease.
[0009]
If the amount of Ms is large and the ratio between the 0.2% proof stress and the amount of martensite (YS / Ms) is less than 25, good bending workability cannot be obtained.
Therefore, in order to obtain the ratio (YS / Ms) of 0.2% proof stress and the amount of martensite (YS / Ms) of 25 or more so as to obtain good bending workability, it is necessary to limit the generation of the amount of martensite (Ms) or It is conceivable to increase YS.
[0010]
As an index for judging the strength and bending workability, there is a degree of cold rolling, but the Ms amount is affected not only by the degree of cold rolling but also by the crystal grains. Therefore, the Ms amount cannot be uniquely determined. Therefore, although the working degree of cold rolling can be an index for evaluating strength and bending workability, it is not possible to judge whether high strength and bending workability are good. The ratio (YS / Ms) between the 0.2% proof stress and the amount of martensite of the present invention is evaluated by combining the crystal grain sizes described later to produce a material (stainless steel) having both high strength and bending workability. It is a good index.
[0011]
(2) A method of increasing the strength of a material other than the crystal grain processing includes grain refinement. By combining the refinement of crystal grains and the generation of work-induced martensite, it is possible to increase the strength while considering bending workability.
The crystal grains after the final recrystallization annealing are reduced to 10 μm or less in order to obtain a predetermined high strength. If the crystal grains after the final recrystallization annealing exceed 10 μm, the crystals become large, and the effect of high strength is reduced.
The reason for making the crystal grains after recrystallization annealing 1 μm or more is that if the crystal grains are less than 1 μm, the bendability deteriorates. If the crystal grains after the final recrystallization annealing are less than 1 μm, the proof stress and tensile strength will be high, but the bendability will be poor, and both high strength and high bendability cannot be achieved.
[0012]
(3) Relationship between crystal grains and Ms amount When the crystal grains are finer than 1 μm, the amount of work-induced martensite decreases, that is, the Ms amount hardly increases due to processing. Even when a material having crystal grains of less than 1 μm is processed and the 0.2% proof stress and the tensile strength are sufficiently increased, the Ms amount does not increase, and the ratio between the 0.2% proof stress and the amount of martensite (YS / Ms). However, since the bending property is poor, it is impossible to achieve both high strength and high bending property.
When the crystal grain size is 1 μm or more, the bendability due to processing is less reduced than when the crystal grain size is less than 1 μm, and high strength and high bendability are achieved by processing the material with an appropriate degree of processing. Can be compatible.
[0013]
(4) Relationship between tensile strength and 0.2% proof stress 0.2% proof stress is a characteristic value that indicates the strength of a material. When strictly considering strength, how much stress can be elastically deformed is determined. This becomes a problem, and it is necessary to provide not only 0.2% proof stress but also 0.05% proof stress or a proof stress value in a finer plastic region. Preferably, a more delicate index such as 0.01% proof stress is required, but it is also possible to simply obtain the ratio between 0.2% proof stress and tensile strength. That is, for a material having a large ratio between the 0.2% proof stress and the tensile strength, the value of the 0.2% proof stress is close to the tensile strength, and the elastic region is maintained at a high stress.
Making the ratio of 0.2% proof stress to tensile strength (YS / TS) 0.8 or more can be combined by selecting the processing conditions of rolling and recrystallization annealing. The ratio (YS / TS) of 0.2% proof stress and tensile strength can be 0.8 or more even by adjusting components and the like based on austenitic stainless steel.
Further, by combining the above-described (1) martensite content and the ratio of 0.2% proof stress and (2) grain refinement, it is possible to obtain an austenitic stainless steel having high strength and high bending workability. it can.
[0014]
【Example】
The austenitic stainless steel used in the examples is SUS301. A SUS301 ingot obtained by melting and casting in the range of components based on JIS is hot-rolled, and after solution treatment, cold rolling and recrystallization annealing are repeated, and a sheet thickness of 0.06-0. It was processed to 1 mm. The amount of martensite was adjusted by changing the working ratio of the final rolling. The size of crystal grains was adjusted by changing the annealing temperature in recrystallization annealing after rolling.
[0015]
The effect was evaluated by the following method.
(1) Amount of martensite The amount of martensite is determined by utilizing the fact that the austenite phase is non-magnetic while the martensite phase is paramagnetic, and the magnetic strength of the material is measured using a ferrite content meter (ferrite) by magnetic induction. (Also referred to as a scope) to obtain a transformation amount into a martensite phase, that is, a volume ratio.
(2) Bending workability (MBR / t)
It was measured by a general 90 ° W bending test. The radius (R) of the bent portion is reduced with respect to the radius (R) and the plate thickness (t) of the bent portion, and the minimum bent portion radius (MBR) at which no crack is seen in the bent portion is determined by the plate thickness ( The value divided by t) is defined as MBR / t. The measurement was performed in the Bad way direction in which the bending axis was parallel to the rolling direction.
[0016]
[Table 1]
Figure 2004124131
[0017]
As can be seen from the results in Table 1, when the crystal grain size is 1 μm or more, the strength of the present invention is higher than that of the comparative example when compared at the same working ratio of 40%. For example, Invention Example No. Nos. 1, 3, and 4 and Comparative Example Nos. In comparison with No. 9, the invention example is larger. Also, in Comparative Example No. having the same working ratio of 40%. In No. 13, although the strength is higher than that of the invention example, the crystal grains are less than 1 μm, and the bending workability is poor.
Regarding bending workability, Invention Example No. 1 to No. No. 7 has a 0.2% proof stress and the ratio of martensite (YS / Ms) of 25 or more, indicating a good value. Since 9, 10, and 12 are less than 25, bending workability is poor.
In addition, regarding the strength, Invention Example No. 1 to No. In Comparative Example No. 7, the 0.2% proof stress greatly exceeded 1000 MPa. 8, 11, and 13 have a workability of 0% and a 0.2% proof stress lower than 1000 MPa. Furthermore, in Comparative Example No. In Examples 9 and 14, the 0.2% proof stress was lower than 1000 MPa. No. 9 has large crystal grains. In No. 14, since the crystal grains were too fine, a sufficient increase of 0.2% proof stress could not be obtained at a low workability.
[0018]
【The invention's effect】
When austenitic stainless steel is processed by combining rolling and recrystallization annealing properly, high strength and high bending workability can be satisfied at the same time. This range can be defined by the ratio of the amount of martensite to the tensile strength by reducing the crystal grain size in the final recrystallization annealing.
Further, by defining the ratio between the 0.2% proof stress and the tensile strength, it is possible to achieve a workability capable of achieving both high strength and high bending workability.

Claims (3)

最終の再結晶焼鈍後の結晶粒径が1〜10μmであり,かつ,0.2%耐力(=YS(MPa))とマルテンサイト量(=Ms(%))の比率(YS/Ms)が25以上であることを特徴とする曲げ加工性に優れた高強度オーステナイト系ステンレス鋼帯。The crystal grain size after the final recrystallization annealing is 1 to 10 μm, and the ratio (YS / Ms) between the 0.2% proof stress (= YS (MPa)) and the amount of martensite (= Ms (%)) is A high-strength austenitic stainless steel strip excellent in bending workability characterized by being 25 or more. 請求項1に記載の該素材において,最終の再結晶焼鈍後の結晶粒径が1〜10μmであり,かつ,再結晶焼鈍,冷間圧延,あるいは冷間圧延後に歪取り焼鈍されたステンレス鋼帯の引張強さと0.2%耐力(=TS(MPa))の比率(YS/TS)が0.8以上であることを特徴とする,曲げ加工性に優れた高強度オーステナイト系ステンレス鋼帯。2. The stainless steel strip according to claim 1, wherein the grain size after the final recrystallization annealing is 1 to 10 μm, and the strain relief annealing is performed after recrystallization annealing, cold rolling, or cold rolling. A high-strength austenitic stainless steel strip excellent in bending workability, characterized in that the ratio (YS / TS) of tensile strength to 0.2% proof stress (= TS (MPa)) is 0.8 or more. 請求項1乃至2に記載のコネクタ,あるいはスイッチなどの接点部品に使用される曲げ加工性に優れた高強度オーステナイト系ステンレス鋼帯。A high-strength austenitic stainless steel strip excellent in bending workability used for a contact part such as a connector or a switch according to claim 1 or 2.
JP2002287530A 2002-09-30 2002-09-30 High-strength austenitic stainless steel strip with excellent bending workability Expired - Fee Related JP4234969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002287530A JP4234969B2 (en) 2002-09-30 2002-09-30 High-strength austenitic stainless steel strip with excellent bending workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002287530A JP4234969B2 (en) 2002-09-30 2002-09-30 High-strength austenitic stainless steel strip with excellent bending workability

Publications (2)

Publication Number Publication Date
JP2004124131A true JP2004124131A (en) 2004-04-22
JP4234969B2 JP4234969B2 (en) 2009-03-04

Family

ID=32280271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002287530A Expired - Fee Related JP4234969B2 (en) 2002-09-30 2002-09-30 High-strength austenitic stainless steel strip with excellent bending workability

Country Status (1)

Country Link
JP (1) JP4234969B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249564A (en) * 2005-03-14 2006-09-21 Nikko Kinzoku Kk Sus301 stainless steel strip having excellent balance in bending workability and strength and method for producing the same
JP2008038191A (en) * 2006-08-04 2008-02-21 Nippon Metal Ind Co Ltd Austenitic stainless steel and its production method
JP2010516890A (en) * 2007-01-17 2010-05-20 オウトクンプ オサケイティオ ユルキネン Method for manufacturing austenitic steel articles
JP2012177170A (en) * 2011-02-28 2012-09-13 National Institute For Materials Science High strength nonmagnetic austenitic stainless steel material, and method of manufacturing the same
JP2012180542A (en) * 2011-02-28 2012-09-20 National Institute For Materials Science Non-magnetic high-strength molded product and method for manufacturing the same
CN112427484A (en) * 2020-11-11 2021-03-02 南京工程学院 Method for manufacturing stainless spring steel wire through recrystallization annealing regulation and control

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249564A (en) * 2005-03-14 2006-09-21 Nikko Kinzoku Kk Sus301 stainless steel strip having excellent balance in bending workability and strength and method for producing the same
JP2008038191A (en) * 2006-08-04 2008-02-21 Nippon Metal Ind Co Ltd Austenitic stainless steel and its production method
JP2010516890A (en) * 2007-01-17 2010-05-20 オウトクンプ オサケイティオ ユルキネン Method for manufacturing austenitic steel articles
EP2106453A4 (en) * 2007-01-17 2017-01-11 Outokumpu Oyj Method for manufacturing an austenitic steel object
JP2012177170A (en) * 2011-02-28 2012-09-13 National Institute For Materials Science High strength nonmagnetic austenitic stainless steel material, and method of manufacturing the same
JP2012180542A (en) * 2011-02-28 2012-09-20 National Institute For Materials Science Non-magnetic high-strength molded product and method for manufacturing the same
CN112427484A (en) * 2020-11-11 2021-03-02 南京工程学院 Method for manufacturing stainless spring steel wire through recrystallization annealing regulation and control

Also Published As

Publication number Publication date
JP4234969B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
KR102190538B1 (en) Austenitic stainless-steel sheet and process for producing high-elastic-limit nonmagnetic steel material therefrom
KR100682802B1 (en) Ultra-high strength metastable austenitic stainless steel containing Ti and a method of producing the same
JP5215855B2 (en) Fe-based alloy and manufacturing method thereof
JP2009209448A (en) Ferrite-austenite stainless steel sheet excellent in ridging resistance and workability and method of manufacturing the same
CN109266955A (en) High strength cold rolled steel plate
JP5376927B2 (en) Manufacturing method of high proportional limit steel plate with excellent bending workability
WO2019176283A1 (en) Martensitic stainless steel sheet, method for manufacturing same, and spring member
JP2003193202A (en) High elasticity metastable austenitic stainless steel sheet and production method therefor
JP5347600B2 (en) Austenitic stainless steel and method for producing austenitic stainless steel sheet
JP2012211348A (en) Cold-rolled stainless steel sheet excellent in high temperature settling resistance, and manufacturing method therefor
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP2008038191A (en) Austenitic stainless steel and its production method
JP2004124131A (en) High strength austenitic stainless steel strip having excellent bending workability
JP5100144B2 (en) Steel plate for spring, spring material using the same, and manufacturing method thereof
JP2010209449A (en) Stainless steel sheet having excellent shape fixability and workability, method for producing the same and article
JP6308849B2 (en) High elastic limit nonmagnetic austenitic stainless steel sheet and method for producing the same
TWI271438B (en) Metastable austenite series stainless steel strap with excellent fatigue resistance
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JP2010053387A (en) Hot-rolled steel sheet excellent in press-formability and magnetic characteristic and production method therefor
JPH11140598A (en) High strength stainless steel strip with high spring limit value, and its production
JP6111109B2 (en) Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same
JP4331731B2 (en) Austenitic stainless steel and springs made of that steel
WO2012160594A1 (en) Austenitic stainless steel for spring, and stainless processing material for spring
JP4640628B2 (en) Precipitation hardened martensitic steel with excellent cold workability and high fatigue strength
JP2006207005A (en) Metastable austenitic stainless steel strip having excellent fatigue property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees