JP2004124051A - New dendrimer and ion-conductive polymer electrolyte having the same - Google Patents
New dendrimer and ion-conductive polymer electrolyte having the same Download PDFInfo
- Publication number
- JP2004124051A JP2004124051A JP2003144548A JP2003144548A JP2004124051A JP 2004124051 A JP2004124051 A JP 2004124051A JP 2003144548 A JP2003144548 A JP 2003144548A JP 2003144548 A JP2003144548 A JP 2003144548A JP 2004124051 A JP2004124051 A JP 2004124051A
- Authority
- JP
- Japan
- Prior art keywords
- group
- formula
- dendrimer
- ionic species
- represented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- FJFBDPAYOCJPGK-UHFFFAOYSA-N C=C(c1cc(NN)ccc1)c1cc(NI)ccc1 Chemical compound C=C(c1cc(NN)ccc1)c1cc(NI)ccc1 FJFBDPAYOCJPGK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、新規なデンドリマーに関し、さらにそれらを用いた電気化学デバイス、特に電池材料として好適に用いられるイオン伝導性ポリマー電解質に関する。
【0002】
【従来の技術】
イオン伝導性ポリマーは、ポリ(エチレンオキサイド)−アルカリ金属塩複合体のイオン伝導性が報告されて以来注目されている。特に、高エネルギー密度のリチウム電池の固体電解質成分として使用可能である。ポリマー型電解質は、従来の極性の非プロトン性有機液体からなる電解質に比較して、安全性、電解質の漏れ防止、腐食の低減、温度安定性、力学的特性、操作性等において向上が見られる。たとえば、デンドリマー構造を有するポリマーとリチウム無機塩とのポリマー電解質が提案されている。(特許文献1を参照)
【0003】
【特許文献1】
特開平8−69817号公報
【0004】
【発明が解決しようとする課題】
しかし該ポリマー電解質は、溶媒を含んだ状態でしか満足するイオン伝導性が得られておらず、溶媒を含まない固体電解質として十分な性能が得られていないのが現状であり、イオン伝導性と高温作動時の耐熱性、安全性などの面から限界に至っている。
【0005】
本発明は、溶媒を含まない状態でも室温で十分なイオン伝導性を有する新規ポリマーを提供することを目的とする。
【0006】
【課題を解決しようとする手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、式(I−1)または式(I−2)で表される炭素骨格および水素結合性極性基を含有するポリマー鎖を分岐鎖に有する新規なデンドリマーとリチウム塩の複合体が、優れたイオン伝導性を示すことを見出し本発明を完成するに至った。
【0007】
すなわち、本発明は、
(1)式(I−1)または式(I−2)
【0008】
【化5】
【0009】
(式中、m、およびnは、それぞれ独立に1以上の整数を表す。但し、式(I−1)及び式(I−2)は、炭素骨格のみを表記しており各炭素原子上に結合手が4となるように、水素原子、ハロゲン原子、有機基、および金属結合を介した有機基からなる群から選ばれる少なくとも1つの官能基が結合し、または隣接原子と多重結合を形成するものとする。)で表される炭素骨格およびイオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分を少なくとも1以上有するポリマー鎖を分岐鎖に有することを特徴とするデンドリマーに関し、
(2)分岐鎖の1つに式(II)
【0010】
【化6】
【0011】
(式中、R1は、水素原子、または、置換基を有していてもよいC1〜C5アルキル基を表し、Xは、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、C1〜C20炭化水素オキシカルボニル基、ニトリル基、N,N−ジ置換カルボキサミド基、置換基を有していてもよいビニル基、置換基を有していてもよいエチニル基を表す。)で表す繰り返し単位を有することを特徴とする(1)に記載のデンドリマー、
(3)イオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分が、酸素、窒素、およびイオウからなる群から選ばれるヘテロ原子種を含有する極性部分であることを特徴とする(1)または(2)に記載のデンドリマー、
(4)イオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分を含有するポリマー鎖が、式(III)
【0012】
【化7】
【0013】
(式中、R2、R3は、それぞれ独立に、水素原子、または置換基を有していてもよいC1〜C5アルキル基を表し、kは、2〜5のいずれかの整数を表し、R2同士、R3同士は、同一または相異なっていてもよい。)で表す繰り返し単位を有するポリマー鎖であることを特徴とする(1)〜(3)いずれかに記載のデンドリマー、
(5)式(I−1)で表される炭素骨格が式(IV−1)、式(I−2)で表される炭素骨格が式(IV−2)
【0014】
【化8】
【0015】
(式中、R4は、有機基を表し、pおよびqは、それぞれ独立に1以上の整数を表す。但し、式(IV−1)及び式(IV−2)は、炭素骨格のみを表記しており各炭素原子上に結合手が4となるように、水素原子、ハロゲン原子、または有機基および金属結合を介した有機基からなる群から選ばれる少なくとも1つの官能基が結合し、または隣接原子と多重結合を形成しているものとする。)で表わされる繰り返し単位を含有する炭素骨格であることを特徴とする(1)〜(4)のいずれかに記載のデンドリマー、
(6)最終世代に、イオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分を含有するポリマー鎖を有することを特徴とする(1)〜(5)のいずれかに記載のデンドリマー、
(7)重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、1.01〜2.50であることを特徴とする(1)〜(6)のいずれかに記載のデンドリマー、
(8)数平均分子量が、5,000〜20,000,000の範囲であることを特徴とする(1)〜(7)のいずれかに記載のデンドリマーに関し、さらに
(9)少なくとも1種の正に荷電したイオン種と(1)〜(8)のいずれかに記載のデンドリマーとの複合体を有することを特徴とするイオン伝導性ポリマー電解質に関する。
【0016】
【発明の実施の形態】
本発明のデンドリマーは、式(I−1)または式(I−2)で表される炭素骨格およびイオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分を少なくとも1以上有するポリマー鎖を分岐鎖に有することを特徴とする。このようなデンドリマーとして、特に、式(IV−1)または式(IV−2)で表わされる繰り返し単位を分岐鎖に含有するデンドリマーを好ましく例示することができる。
【0017】
式(IV−1)または式(IV−2)で表わされる繰り返し単位中、R4は、有機基を表し、pおよびqは、それぞれ独立に1以上の整数を表す。R4として具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、シクロヘキシル基、フェニル基、ベンジル基、ビニル基、アリル基、エチニル基、プロパルギル基等を例示することができる。また、これらは、適当な炭素原子上に置換基を有していてもよく、そのような置換基として、ハロゲン原子、アルコキシ基、アルキルチオ基、エステル基、アシル基等を例示することができる。また、pおよびqは、それぞれ独立に1以上の整数であれば特に制限されないが、1〜5のいずれかの整数が好ましい。
【0018】
式(I−1)または式(I−2)で表される炭素骨格が、式(IV−1)または式(IV−2)で表わされる炭素骨格の各炭素原子上には、結合手が4となるように水素原子、クロル原子、フッ素原子等のハロゲン原子、メチル基、エチル基、フェニル基等の炭化水素基に代表される有機基、トリメチルシリル基、t−ブチルジメチルシリル基に代表される金属結合を介した有機基によって置換されるか、または隣接炭素原子と多重結合を形成しうる。
具体的には、下式で表せる繰り返し単位を例示することができる。
【0019】
【化9】
【0020】
また、式(IV−1)または式(IV−2)で表わされる繰り返し単位を含有するポリマー鎖は、必要に応じて、2種以上の繰り返し単位を含んでいても構わない。
【0021】
本発明のデンドリマーは、分岐鎖の一つに式(II)で表される繰り返し単位を含有するポリマー鎖を含むデンドリマーを好適に例示することができる。式(II)で表わされる繰り返し単位中、R1は、水素原子、C1〜C5アルキル基を表し、Xは、置換基を有していてもよいアリール基、置換基を有していてよいヘテロアリール基、C1〜C20炭化水素オキシカルボニル基、ニトリル基、N,N−ジ置換カルボキサミド基、置換基を有していてもよいビニル基、置換基を有していてもよいエチニル基を表す。
【0022】
R1として具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、ビニル基、アリル基、エチニル基、プロパルギル基等を例示することができる。また、これらは、適当な炭素原子上に置換基を有していてもよく、そのような置換基として、ハロゲン原子、アルコキシ基、アルキルチオ基、エステル基、アシル基等を例示することができる。
【0023】
また、Xとして具体的には、フェニル基、4−クロロフェニル基、4−メトキシフェニル基、3,4−ジメチルフェニル基等の置換基を有していてもよいアリール基、2−ピリジル基、4−ピリジル基、6−メチル−2−ピリジル基等の置換基を有していてもよいヘテロアリール基、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシカルボニル基、n−ブトキシカルボニル基、t−ブトキシカルボニル基等のアルコキシカルボニル基、ニトリル基、N,N−ジメチルカルボキサミド基等のN,N−ジ置換カルボキサイド基、ビニル基、2−メチル−2−ビニル基等の置換基を有していてもよいビニル基、エチニル基、2−メチルエチニル基の置換基を有していてもよいエチニル基を例示することができる。
また、本発明のデンドリマーは、イオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分を含有するポリマー鎖を分岐鎖に有することを特徴とする。このようなイオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分として酸素、窒素、およびイオウからなる群から選択されるヘテロ原子種含む官能基を好ましく例示することができる。特に、式(III)で表す繰り返し単位を有するポリマー鎖を好ましく例示することができる。
【0024】
式(III)で表わされる繰り返し単位中、R2及びR3は、それぞれ独立に、水素原子、または置換基を有していてもよいC1〜C5アルキル基を表し、nは、2以上の整数を表し、R2同士、R3同士は、同一または相異なっていてもよい。R2及びR3として具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基等を例示することができる。また、これらは、適当な炭素原子上に置換基を有していてもよく、そのような置換基として、ハロゲン原子、アルコキシ基、アルキルチオ基、エステル基、アシル基等を例示することができる。kは1〜5のいずれかの整数を表す。
【0025】
イオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分を含有するポリマー鎖として具体的には、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブチレンオキサイド、ポリブチレンイミン、ポリエピクロロヒドリン、ポリエチレンチオキサイド、ポリエプロピレンチオキサイド、ポリブチレンチオキサイド、アクリロイル誘導体化(アルキレンオキサイド)、ポリシロキサンアクリレート、ポリホスファゼン等を好ましく例示することができる。
【0026】
本発明のデンドリマーは、上記したイオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分を含有するポリマー鎖を分岐鎖の一部に有することを特徴とするが、イオン伝導性ポリマー電解質への使用等を考慮した場合、デンドリマー最終世代に該ポリマー鎖を有するのが好ましい。
本発明のデンドリマーの数平均分子量は5,000〜20,000,000の範囲が好ましく重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、1.01〜2.50さらに1.01〜1.50の範囲であるのが好ましい。またイオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分を含有するポリマー鎖の数平均分子量は150〜10,000の範囲が好ましく、特に150〜5,000、さらに150〜2,000の範囲が好ましい。
本発明のデンドリマーの製造方法としていくつか考えられるが、例えば、下記に示す製造方法を例示することができる。
▲1▼まず、アニオン重合開始剤の存在下、式(V)で表される化合物の単独重合、または、前記化合物と共重合可能な化合物と共重合させたアニオン末端と、式(VI)で表される化合物を反応させ、ポリマー鎖末端に分岐可能な部位を導入する。(式1)
【0027】
【化10】
【0028】
式(V)または式(VI)中、R1は、それぞれ独立に水素原子、または、C1〜C6アルキル基を表し、Xは、置換基を有していてもよいアリール基、置換基を有していてよいヘテロアリール基、C1〜C20炭化水素オキシカルボニル基、ニトリル基、N,N−ジ置換カルボキサミド基、置換基を有していてもよいビニル基、置換基を有していてもよいエチニル基を表し、Yは、アニオン末端に対して安定であり、アニオン末端と反応性を有する官能基に変換可能な官能基を表す。
【0029】
【化11】
【0030】
▲2▼▲1▼で調整されたポリマー(VII)のYをアニオン末端と反応性を有するZに変換した後、式(VI)より誘導されるアニオンと反応性させて、分岐鎖のふえたポリマー鎖(VIII)を得る。(式2)
【0031】
【化12】
【0032】
▲3▼同様の反応を繰り返すことにより、任意の数の末端Yを有するデンドリマーを得ることができる。
▲4▼さらに末端YをZに変換した後、式(IX)
【0033】
【化13】
【0034】
(式中、R5及びR6は、それぞれ独立に置換基を有していてもよいC1〜C5アルキル基を表す。)で表されるアルキレンオキシドをアニオン重合させたアニオン末端と反応させ最終世代にポリアルキレンオキシドを導入したデンドリマーを得ることができる。
本発明のイオン伝導性ポリマー電解質は、少なくとも1種の正に荷電したイオン種と上記したデンドリマーとの複合体を有することを特徴とする。正に荷電したイオン種として具体的には、Li+、Na+、K+、R4N+、Mg2+、Ca2+等のカチオン種を例示することができ、そのようなカチオン種を有する化合物としてI−、CF3SO3 −、ClO4 −、AsF4 −、PF6 −、BF4 −、SCN−、メチド、ビスハロアシル、スルホニルイミド、またはRCO2 −等(Rは、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基等を示す。)のアニオン種と塩を形成する化合物を例示することができ、正に荷電したイオン種と特に分岐鎖中、イオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分を含有するポリマー鎖部位を中心に複合体を形成する。
【0035】
以下、実施例を用いて本発明を詳細に説明するが、本発明の範囲は実施例に限定されるものではない。
【0036】
【実施例】
本発明の実施例に使用した試薬および溶媒の精製法について以下に述べる。
【0037】
使用した溶媒、およびモノマーは、すべて、通常の手順に従って、精製し、窒素雰囲気下、CaH2を用いて蒸留した。テトラヒドロフラン(THF)は、さらに高真空ライン(10−6Torr)でナトリウムナフタレニドから蒸留した。
【0038】
sec−ブチルリチウム(s−BuLi)は、市販のs−BuLiのシクロヘキサン(1.3M;ナカライ社製)を高真空下、ヘプタンで希釈し、小分けしたものを用いた。正確な濃度は、高真空下、THF中−78℃で1,1−ジフェニルエチレン(DPE)との反応により1,1−ジフェニル−3−メチルペンチルリチウムを生成させ、このアニオン特有の赤色が消色するまで標準 n−オクタノール/THFを用いて比色滴定により求めた。
[重合操作方法]
アニオン重合は高真空下ブレークシール法を用いた。重合はモノマーを開始剤系に加え所定時間反応した後、メタノールで反応を停止した。
[サイズエクスクルージョンクロマトグラフィー(SEC)の測定]
UV(254nm)及び屈折率検出計を備えたTOSOH−HLC−8020を用いて測定した。カラムは3種のポリスチレンゲルカラム(TSKgelG4000HXL、G3000HXL及びG2000HXL)を用いて行った。キャリア溶媒としてはTHFまたはN,N−ジメチルホルムアミドを用い、流速1.0ml/分で行った。標準試料としてポリスチレンを用い、検量線を作成して、Mn及びMw/Mn値を決定した。TSK−G4000HHRカラムを備えたTOSH−HLC−8020を用いて、分取を行った。溶媒としてTHFを用い、ポリマー濃度は、サンプルの分子量に応じて、10〜20w/v%に調製した。
【0039】
実施例1
スチレン(A)4.82g(46.3mmol)のTHF溶液を−78℃でs−BuLi(1.10mmol)に添加し−78℃で10分間撹拌した。次に、窒素雰囲気下、−78℃で1,1−ビス(3−t−ブチルジメチルシリロキシメチルフェニル)エテン(B)0.619gのTHF溶液を加え、同温度で0.5時間撹拌した後、メタノールを加えて反応を停止し、反応液を大量のメタノールに加え、析出した結晶をロ過し乾燥させポリマー5.30gを得た。先に得られたポリマーのクロロホルム−アセトニトリル混合溶液にLiBr 9.55g及びトリメチルシリルクロライド(TMSCl)14.9gを30℃で加え、同温度で24時間撹拌した。反応液を大量のメタノールに加え、析出したポリマーを濾過し、THF−メタノールを用いて再沈殿させ、ポリマー(C1)5.15gを得た。窒素雰囲気下、−78℃で1,1−ビス(3−t−ブチルジメチルシリロキシメチルフェニル)エテン(B)2.15gのTHF溶液にs−BuLi(1.79mmol)を添加し−78℃で10分間撹拌した。これにポリマー(C1)3.57gのTHF溶液(0.745mmol)に加え、同温度で0.5時間撹拌した。上記と同様の操作を更に2回繰り返し、17分岐のデンドリマー(D11)を得た。更に同様にLiBr、TMSClのクロロホルム−アセトニトリル混合溶液を加え、30℃で24時間撹拌した。反応液を大量のメタノールに加え、析出したポリマーを濾過し、THF−メタノールを用いて再沈殿をし、17分岐で、最外殻にアニオンに対して反応点を有するデンドリマー(D)(Mw/Mn=1.04、Mn=9600)を得た。
【0040】
【化14】
【0041】
(式中、太線は、ポリスチレン鎖、・は、分岐鎖の炭素分岐点を表す。)
THF中のジフェニルメチルカリウム(0.333mmol)にエチレンオキサイド1.83g(41.5mmol)を0℃で加え、室温で6時間反応させてポリエチレンオキサイドカリウムを生成させ、ポリエチレンオキサイドカリウム(Mw=5660、Mw/Mn=1.02)を得た。さらに、0℃で、上記のように調製したポリマー(D)11.6mg(0.0121mmol)を加え、40℃で72時間反応を行い、脱気したメタノールを加えて反応を停止した。大量の水に加えて、析出した結晶を濾過し、目的とするデンドリマー(E)をほぼ定量的に得た。得られたデンドリマーの重量平均分子量は、89,500となり計算値とよく一致した。また、Mw/Mnの値は、1.04であった。
【0042】
【化15】
【0043】
(式中、太線は、ポリスチレン鎖、波線は、ポリエチレンオキシド鎖、・は、分岐鎖の炭素分岐点を表す。)
【0044】
実施例2
実施例1で得られたデンドリマー(E1)0.2gとリチウム ビス(トリフルオロメチルスルホニル)イミド(LiTFSI)0.06gをアルゴン雰囲気下のグローボックス中で、脱水アセトニトリル7mlと脱水メタノール5mlの混合溶媒12mlを加え、室温で攪拌して透明な溶液とした。この溶液を厚さ3mmのシリコンシート上にキャストし、加熱減圧下で溶媒を留去し、厚さ120μmのデンドリマー(E1)−Li塩複合体の薄膜を得た。この薄膜の30℃、40℃、50℃におけるイオン伝導度を測定した。その結果をまとめて表1に示す。
【0045】
実施例3
スチレン(A)10.1g(96.7mmol)のTHF溶液を−78℃でs−BuLi(1.13mmol)に添加し−78℃で10分間撹拌した。次に、窒素雰囲気下、−78℃で1,1−ビス(3−t−ブチルジメチルシリロキシメチルフェニル)エテン(B)0.638gのTHF溶液を加え、同温度で0.5時間撹拌した後、メタノールを加えて反応を停止し、反応液を大量のメタノールに加え、析出した結晶をロ過し乾燥させポリマー10.5gを得た。先に得られたポリマーのクロロホルム−アセトニトリル混合溶液にLiBr 9.66g及びトリメチルシリルクロライド(TMSCl)15.1gを30℃で加え、同温度で24時間撹拌した。反応液を大量のメタノールに加え、析出したポリマーを濾過し、THF−メタノールを用いて再沈殿させ、ポリマー(C2)10.1gを得た。窒素雰囲気下、−78℃で1,1−ビス(3−t−ブチルジメチルシリロキシメチルフェニル)エテン(B)0.846gのTHF溶液にs−BuLi(1.50mmol)を添加し−78℃で10分間撹拌した。これにポリマー(C2)5.83gのTHF溶液(0.627mmol)に加え、同温度で0.5時間撹拌した。上記と同様の操作を更に2回繰り返し、17分岐のデンドリマー(D21)を得た。更に同様にLiBr、TMSClのクロロホルム−アセトニトリル混合溶液を加え、30℃で24時間撹拌した。反応液を大量のメタノールに加え、析出したポリマーを濾過し、THF−メタノールを用いて再沈殿をし、17分岐で、最外殻にアニオンに対して反応点を有するデンドリマー(D22)(Mw/Mn=1.04、Mn=14000)を得た。
【0046】
THF中のジフェニルメチルカリウム(1.33mmol)にエチレンオキサイド1.42g(32.2mmol)を0℃で加え、室温で6時間反応させてポリエチレンオキサイドカリウムを生成させ、ポリエチレンオキサイドカリウム(Mw=1200、Mw/Mn=1.05)を得た。さらに、0℃で、上記のように調製したポリマー(D22)1.97g(0.0693mmol)を加え、40℃で72時間反応を行い、脱気したメタノールを加えて反応を停止した。大量の水に加えて、析出した結晶を濾過し、目的とするデンドリマー(E2)をほぼ定量的に得た。得られたデンドリマーの重量平均分子量は、33,900となり計算値とよく一致した。また、Mw/Mnの値は、1.04であった。
【0047】
実施例4
実施例3で得られたデンドリマー(E2)0.2gと過塩素酸リチウム(LiClO4)0.0142gを脱水アセトン1.5gに加え、室温で攪拌して透明な溶液とした。この溶液をアルミニウム板上にキャストし、加熱減圧下で溶媒を留去し、厚さ100μmのデンドリマー(E2)−Li塩複合体の薄膜を得た。この薄膜の30℃、40℃、50℃におけるイオン伝導度を測定した。その結果をまとめて表1に示す。
【0048】
実施例5
スチレン(A)3.26g(31.3mmol)のTHF溶液を−78℃でリチウムナフタレニド(0.606mmol)に添加し−78℃で10分間撹拌した。次に、窒素雰囲気下、−78℃で1,1−ビス(3−t−ブチルジメチルシリロキシメチルフェニル)エテン(B)0.682gのTHF溶液を加え、同温度で0.5時間撹拌した後、メタノールを加えて反応を停止し、反応液を大量のメタノールに加え、析出した結晶をロ過し乾燥させポリマー3.48gを得た。先に得られたポリマーのクロロホルム−アセトニトリル混合溶液にLiBr 5.16g及びトリメチルシリルクロライド(TMSCl)8.07gを30℃で加え、同温度で24時間撹拌した。反応液を大量のメタノールに加え、析出したポリマーを濾過し、THF−メタノールを用いて再沈殿させ、ポリマー(C3)5.05gを得た。窒素雰囲気下、−78℃で1,1−ビス(3−t−ブチルジメチルシリロキシメチルフェニル)エテン(B)0.604gのTHF溶液にs−BuLi(1.07mmol)を添加し−78℃で10分間撹拌した。これにポリマー(C3)4.96gのTHF溶液(0.447mmol)に加え、同温度で0.5時間撹拌した。上記と同様の操作を更に2回繰り返し、ポリスチレン鎖の量末端に16の分岐鎖を有するデンドリマー(D31)を得た。更に同様にLiBr、TMSClの塩化メチレン溶液を加え、30℃で24時間撹拌した。反応液を大量のメタノールに加え、析出したポリマーを濾過し、THF−メタノールを用いて再沈殿をし、ポリスチレン鎖両末端に32分岐で、最外殻にアニオンに対して反応点を有するデンドリマー(D32)(Mw/Mn=1.07、Mn=21000)を得た。
【0049】
THF中のジフェニルメチルカリウム(1.53mmol)にエチレンオキサイド1.54g(34.9mmol)を0℃で加え、室温で6時間反応させてポリエチレンオキサイドカリウムを生成させ、ポリエチレンオキサイドカリウム(Mw=1200、Mw/Mn=1.05)を得た。さらに、0℃で、上記のように調製したポリマー(D32)0.840g(0.0398mmol)を加え、40℃で72時間反応を行い、脱気したメタノールを加えて反応を停止した。大量のメタノールに加えて、析出した結晶を濾過し、目的とするデンドリマー(E3)をほぼ定量的に得た。得られたデンドリマーの重量平均分子量は、58,300となり計算値とよく一致した。また、Mw/Mnの値は、1.04であった。
【0050】
実施例6
実施例5で得られたデンドリマー(E3)0.2gと過塩素酸リチウム(LiClO4)0.0158gを脱水アセトン1.5gに加え、室温で攪拌して透明な溶液とした。この溶液をアルミニウム板上にキャストし、加熱減圧下で溶媒を留去し、厚さ100μmのデンドリマー(E3)−Li塩複合体の薄膜を得た。この薄膜の30℃、40℃、50℃におけるイオン伝導度を測定した。その結果をまとめて表1に示す。
【0051】
実施例7
スチレン(A)5.05g(48.5mmol)のTHF溶液を−78℃でs−BuLi(0.474mmol)に添加し−78℃で10分間撹拌した。次に、窒素雰囲気下、−78℃で1,1−ビス(3−t−ブチルジメチルシリロキシメチルフェニル)エテン(B)0.267gのTHF溶液を加え、同温度で0.5時間撹拌した後、メタノールを加えて反応を停止し、反応液を大量のメタノールに加え、析出した結晶をロ過し乾燥させポリマー5.20gを得た。先に得られたポリマーのクロロホルム−アセトニトリル混合溶液にLiBr 4.12g及びトリメチルシリルクロライド(TMSCl)6.44gを30℃で加え、同温度で24時間撹拌した。反応液を大量のメタノールに加え、析出したポリマーを濾過し、THF−メタノールを用いて再沈殿させ、ポリマー(C4)5.05gを得た。窒素雰囲気下、−78℃で1,1−ビス(3−t−ブチルジメチルシリロキシメチルフェニル)エテン(B)0.604gのTHF溶液にs−BuLi(1.07mmol)を添加し−78℃で10分間撹拌した。これにポリマー(C4)4.96gのTHF溶液(0.447mmol)に加え、同温度で0.5時間撹拌した。上記と同様の操作を更に3回繰り返し、33分岐のデンドリマー(D41)を得た。更に同様にLiBr、TMSClのクロロホルム−アセトニトリル混合溶液を加え、30℃で24時間撹拌した。反応液を大量のメタノールに加え、析出したポリマーを濾過し、THF−メタノールを用いて再沈殿をし、33分岐で、最外殻にアニオンに対して反応点を有するデンドリマー(D42)(Mw/Mn=1.04、Mn=15000)を得た。
【0052】
THF中のジフェニルメチルカリウム(3.65mmol)にエチレンオキサイド3.81g(86.5mmol)を0℃で加え、室温で6時間反応させてポリエチレンオキサイドカリウムを生成させ、ポリエチレンオキサイドカリウム(Mw=1200、Mw/Mn=1.05)を得た。さらに、0℃で、上記のように調製したポリマー(D42)1.97g(0.0921mmol)を加え、40℃で72時間反応を行い、脱気したメタノールを加えて反応を停止した。大量の水に加えて、析出した結晶を濾過し、目的とするデンドリマー(E4)をほぼ定量的に得た。得られたデンドリマーの重量平均分子量は、59,900となり計算値とよく一致した。また、Mw/Mnの値は、1.04であった。
【0053】
実施例8
実施例7で得られたデンドリマー(E4)0.2gとリチウム ビス(トリフルオロメチルスルホニル)イミド(LiTFSI)0.0441g、または過塩素酸リチウム(LiClO4)0.0160gを脱水アセトン1.5gに加え、または0.0757gをアルゴン雰囲気下のグローボックス中で、脱水アセトン1.5gに加え、室温で攪拌して透明な溶液とした。この溶液をアルミニウム板上にキャストし、加熱減圧下で溶媒を留去し、厚さ100μmのデンドリマー(E4)−Li塩複合体の薄膜を得た。この薄膜の30℃、40℃、50℃におけるイオン伝導度を測定した。その結果をまとめて表1に示す。
【0054】
【表1】
【0055】
【発明の効果】
以上のようにして得られたイオン種と複合体を形成し得る極性部分またはイオン種を溶媒和し得る極性部分を含有するポリマー鎖を分岐鎖に有するデンドリマーは、特に該極性部分にリチウム塩を包含させることにより、室温で良好なイオン伝導性を示し、電池等の電気デバイスの電解質として利用することができ産業上の有用性は高いといえる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to novel dendrimers, and more particularly to an ion conductive polymer electrolyte suitably used as an electrochemical device using the same, particularly as a battery material.
[0002]
[Prior art]
Ion conductive polymers have received attention since the ionic conductivity of poly (ethylene oxide) -alkali metal salt complexes was reported. In particular, it can be used as a solid electrolyte component of a high energy density lithium battery. Compared to conventional electrolytes composed of polar aprotic organic liquids, polymer electrolytes show improvements in safety, prevention of electrolyte leakage, reduction of corrosion, temperature stability, mechanical properties, operability, etc. . For example, a polymer electrolyte of a polymer having a dendrimer structure and a lithium inorganic salt has been proposed. (See Patent Document 1)
[0003]
[Patent Document 1]
JP-A-8-69817
[0004]
[Problems to be solved by the invention]
However, the polymer electrolyte has not achieved satisfactory ionic conductivity only in a state containing a solvent, and at present, sufficient performance has not been obtained as a solid electrolyte containing no solvent. It has reached its limits in terms of heat resistance and safety during high-temperature operation.
[0005]
An object of the present invention is to provide a novel polymer having sufficient ionic conductivity at room temperature even without a solvent.
[0006]
[Means to solve the problem]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a polymer chain containing a carbon skeleton and a hydrogen-bonding polar group represented by the formula (I-1) or (I-2) has a branched chain. The present inventors have found that a novel composite of a dendrimer and a lithium salt has excellent ionic conductivity and completed the present invention.
[0007]
That is, the present invention
(1) Formula (I-1) or Formula (I-2)
[0008]
Embedded image
[0009]
(In the formula, m and n each independently represent an integer of 1 or more. However, in the formulas (I-1) and (I-2), only the carbon skeleton is described, and At least one functional group selected from the group consisting of a hydrogen atom, a halogen atom, an organic group, and an organic group via a metal bond is bonded to form a bond of 4, or forms a multiple bond with an adjacent atom. The polymer has at least one polar portion capable of forming a complex with the carbon skeleton and the ionic species or a polar portion capable of solvating the ionic species in the branched chain. Regarding dendrimers,
(2) Formula (II) as one of the branched chains
[0010]
Embedded image
[0011]
(Where R1Represents a hydrogen atom or a C1-C5 alkyl group which may have a substituent, and X represents an aryl group which may have a substituent or a heteroaryl which may have a substituent. And a C1-C20 hydrocarbonoxycarbonyl group, a nitrile group, an N, N-disubstituted carboxamide group, a vinyl group optionally having a substituent, and an ethynyl group optionally having a substituent. The dendrimer according to (1), which has a repeating unit represented by the formula (1):
(3) The polar portion capable of forming a complex with the ionic species or the polar portion capable of solvating the ionic species is a polar portion containing a heteroatom species selected from the group consisting of oxygen, nitrogen, and sulfur. The dendrimer according to (1) or (2),
(4) A polymer chain containing a polar portion capable of forming a complex with an ionic species or a polar portion capable of solvating an ionic species has a formula (III)
[0012]
Embedded image
[0013]
(Where R2, R3Each independently represents a hydrogen atom or a C1 to C5 alkyl group which may have a substituent; k represents an integer of any of 2 to 5;2Each other, R3Each may be the same or different. (1) to (3), wherein the dendrimer has a repeating unit represented by the following formula:
(5) The carbon skeleton represented by the formula (I-1) is represented by the formula (IV-1), and the carbon skeleton represented by the formula (I-2) is represented by the formula (IV-2)
[0014]
Embedded image
[0015]
(Where R4Represents an organic group, and p and q each independently represent an integer of 1 or more. However, in the formulas (IV-1) and (IV-2), only a carbon skeleton is described, and a hydrogen atom, a halogen atom, an organic group, and a metal are added such that a bond is 4 on each carbon atom. It is assumed that at least one functional group selected from the group consisting of organic groups via a bond is bonded or forms a multiple bond with an adjacent atom. The dendrimer according to any one of (1) to (4), which is a carbon skeleton containing a repeating unit represented by the following formula:
(6) The final generation has a polymer chain containing a polar portion capable of forming a complex with the ionic species or a polar portion capable of solvating the ionic species. The dendrimer according to
(7) The method according to any one of (1) to (6), wherein a ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1.01 to 2.50. The dendrimer described,
(8) The dendrimer according to any one of (1) to (7), wherein the number average molecular weight is in the range of 5,000 to 20,000,000.
(9) An ion-conductive polymer electrolyte comprising a complex of at least one positively charged ionic species and the dendrimer according to any one of (1) to (8).
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The dendrimer of the present invention has at least one polar moiety capable of forming a complex with the carbon skeleton and the ionic species represented by the formula (I-1) or (I-2) or at least one polar moiety capable of solvating the ionic species. It is characterized by having the above-mentioned polymer chain in the branched chain. As such a dendrimer, a dendrimer containing a repeating unit represented by the formula (IV-1) or (IV-2) in a branched chain can be preferably exemplified.
[0017]
In the repeating unit represented by the formula (IV-1) or (IV-2), R4Represents an organic group, and p and q each independently represent an integer of 1 or more. R4Specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, n-hexyl, cyclohexyl Phenyl group, benzyl group, vinyl group, allyl group, ethynyl group, propargyl group and the like. Further, these may have a substituent on an appropriate carbon atom, and examples of such a substituent include a halogen atom, an alkoxy group, an alkylthio group, an ester group, an acyl group and the like. In addition, p and q are not particularly limited as long as they are each independently an integer of 1 or more, and any one of 1 to 5 is preferable.
[0018]
The carbon skeleton represented by the formula (I-1) or (I-2) has a bond on each carbon atom of the carbon skeleton represented by the formula (IV-1) or (IV-2). As represented by 4, a hydrogen atom, a chloro atom, a halogen atom such as a fluorine atom, an organic group represented by a hydrocarbon group such as a methyl group, an ethyl group and a phenyl group, a trimethylsilyl group, and a t-butyldimethylsilyl group are represented. May be substituted by an organic group through a metal bond or form multiple bonds with adjacent carbon atoms.
Specifically, a repeating unit represented by the following formula can be exemplified.
[0019]
Embedded image
[0020]
Further, the polymer chain containing the repeating unit represented by the formula (IV-1) or (IV-2) may contain two or more kinds of repeating units as necessary.
[0021]
As the dendrimer of the present invention, a dendrimer including a polymer chain containing a repeating unit represented by the formula (II) in one of the branched chains can be preferably exemplified. In the repeating unit represented by the formula (II), R1Represents a hydrogen atom, a C1-C5 alkyl group, and X represents an aryl group which may have a substituent, a heteroaryl group which may have a substituent, a C1-C20 hydrocarbonoxycarbonyl group, a nitrile. Group, an N, N-disubstituted carboxamide group, a vinyl group which may have a substituent, and an ethynyl group which may have a substituent.
[0022]
R1Specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, vinyl, allyl, ethynyl And propargyl groups. Further, these may have a substituent on an appropriate carbon atom, and examples of such a substituent include a halogen atom, an alkoxy group, an alkylthio group, an ester group, an acyl group and the like.
[0023]
Specific examples of X include an aryl group which may have a substituent such as a phenyl group, a 4-chlorophenyl group, a 4-methoxyphenyl group, a 3,4-dimethylphenyl group, a 2-pyridyl group, A heteroaryl group which may have a substituent such as -pyridyl group, 6-methyl-2-pyridyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an isopropoxycarbonyl group, an n-butoxycarbonyl Groups, alkoxycarbonyl groups such as t-butoxycarbonyl group, etc., nitrile groups, N, N-disubstituted carboxide groups such as N, N-dimethylcarboxamide group, substituent groups such as vinyl group and 2-methyl-2-vinyl group Examples of the ethynyl group which may have a substituent of a vinyl group, an ethynyl group, and a 2-methylethynyl group which may have It can be.
Further, the dendrimer of the present invention is characterized in that a branched polymer chain contains a polar portion capable of forming a complex with an ionic species or a polar portion capable of solvating an ionic species. Preferred examples of the polar portion capable of forming a complex with such an ionic species or the polar portion capable of solvating the ionic species include a functional group containing a heteroatom species selected from the group consisting of oxygen, nitrogen, and sulfur. it can. Particularly, a polymer chain having a repeating unit represented by the formula (III) can be preferably exemplified.
[0024]
In the repeating unit represented by the formula (III), R2And R3Each independently represents a hydrogen atom or a C1 to C5 alkyl group which may have a substituent; n represents an integer of 2 or more;2Each other, R3Each may be the same or different. R2And R3Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, and an n-pentyl group. Further, these may have a substituent on an appropriate carbon atom, and examples of such a substituent include a halogen atom, an alkoxy group, an alkylthio group, an ester group, an acyl group and the like. k represents an integer of any of 1 to 5.
[0025]
Specific examples of the polymer chain containing a polar portion capable of forming a complex with an ionic species or a polar portion capable of solvating an ionic species include polyethylene oxide, polypropylene oxide, polybutylene oxide, polybutyleneimine, and polyepichlorohydrin. Preferred examples include phosphorus, polyethylene thiooxide, polypropylene thiooxide, polybutylene oxide, acryloyl derivatized (alkylene oxide), polysiloxane acrylate, polyphosphazene, and the like.
[0026]
The dendrimer of the present invention is characterized in that it has a polymer chain containing a polar portion capable of forming a complex with the above ionic species or a polar portion capable of solvating the ionic species in a part of the branched chain. In consideration of use for a conductive polymer electrolyte and the like, it is preferable to have the polymer chain in the final generation of dendrimer.
The number average molecular weight of the dendrimer of the present invention is preferably in the range of 5,000 to 20,000,000, and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1.01 to 2.0. It is more preferably in the range of 1.01 to 1.50. Further, the number average molecular weight of the polymer chain containing a polar portion capable of forming a complex with the ionic species or a polar portion capable of solvating the ionic species is preferably in the range of 150 to 10,000, particularly preferably 150 to 5,000, and more preferably 150 to 5,000. The range of 150 to 2,000 is preferred.
Several methods for producing the dendrimer of the present invention are conceivable. For example, the following production methods can be exemplified.
{Circle around (1)} First, in the presence of an anionic polymerization initiator, homopolymerization of the compound represented by the formula (V), or an anion end copolymerized with a compound copolymerizable with the compound, and an anion terminal represented by the formula (VI) The compound represented is reacted to introduce a branchable site at the polymer chain end. (Equation 1)
[0027]
Embedded image
[0028]
In the formula (V) or the formula (VI), R1Each independently represents a hydrogen atom or a C1 to C6 alkyl group, and X represents an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a C1 to C20 hydrocarbon. Represents an oxycarbonyl group, a nitrile group, an N, N-disubstituted carboxamide group, a vinyl group optionally having a substituent, or an ethynyl group optionally having a substituent; Represents a functional group that is stable and can be converted to a functional group that is reactive with the anion end.
[0029]
Embedded image
[0030]
(2) After converting Y of the polymer (VII) prepared in (1) into Z having reactivity with the anion terminal, the polymer (VII) was reacted with an anion derived from the formula (VI) to increase the number of branched chains. A polymer chain (VIII) is obtained. (Equation 2)
[0031]
Embedded image
[0032]
(3) By repeating the same reaction, a dendrimer having an arbitrary number of terminal Y can be obtained.
{Circle around (4)} After further converting the terminal Y into Z, the formula (IX)
[0033]
Embedded image
[0034]
(Where R5And R6Represents a C1 to C5 alkyl group which may have a substituent. The alkylene oxide represented by the formula (1) can be reacted with an anionic terminal obtained by anionic polymerization to obtain a dendrimer having a polyalkylene oxide introduced into the final generation.
The ion-conductive polymer electrolyte of the present invention is characterized by having a complex of at least one positively charged ionic species and the above-mentioned dendrimer. As the positively charged ionic species, specifically, Li+, Na+, K+, R4N+, Mg2+, Ca2+And the like. Examples of the compound having such a cationic species include I−, CF3SO3 −, ClO4 −, AsF4 −, PF6 −, BF4 −, SCN−, Methide, bishaloacyl, sulfonylimide, or RCO2 −(R represents an alkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, etc.), and a compound that forms a salt with an anionic species, such as a positively charged ionic species and particularly a branched chain A complex is formed around a polymer chain site containing a polar portion capable of forming a complex with an ionic species or a polar portion capable of solvating an ionic species.
[0035]
Hereinafter, the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited to the examples.
[0036]
【Example】
The method of purifying the reagent and the solvent used in the examples of the present invention will be described below.
[0037]
All solvents and monomers used were purified and CaH under nitrogen atmosphere according to standard procedures.2Distilled using. Tetrahydrofuran (THF) has been added to the high vacuum line (10-6(Torr) from sodium naphthalenide.
[0038]
As sec-butyllithium (s-BuLi), commercially available s-BuLi cyclohexane (1.3M; manufactured by Nacalai Co.) was diluted with heptane under a high vacuum, and used in small portions. The precise concentration is that the reaction with 1,1-diphenylethylene (DPE) at -78 ° C. in THF under high vacuum produces 1,1-diphenyl-3-methylpentyllithium, and the red color peculiar to this anion disappears. The color was determined by colorimetric titration using standard Δn-octanol / THF until coloration.
[Polymerization operation method]
For the anionic polymerization, a break seal method under a high vacuum was used. In the polymerization, the monomer was added to the initiator system and reacted for a predetermined time, and then the reaction was stopped with methanol.
[Measurement of size exclusion chromatography (SEC)]
The measurement was performed using TOSOH-HLC-8020 equipped with UV (254 nm) and a refractive index detector. The column was used using three kinds of polystyrene gel columns (TSKgelG4000HXL, G3000HXL and G2000HXL). The reaction was performed at a flow rate of 1.0 ml / min using THF or N, N-dimethylformamide as a carrier solvent. A calibration curve was prepared using polystyrene as a standard sample, and Mn and Mw / Mn values were determined. The fractionation was performed using TOSH-HLC-8020 equipped with a TSK-G4000HHR column. THF was used as a solvent, and the polymer concentration was adjusted to 10 to 20 w / v% according to the molecular weight of the sample.
[0039]
Example 1
A THF solution of 4.82 g (46.3 mmol) of styrene (A) was added to s-BuLi (1.10 mmol) at -78 ° C, and the mixture was stirred at -78 ° C for 10 minutes. Next, in a nitrogen atmosphere, a THF solution of 0.619 g of 1,1-bis (3-t-butyldimethylsilyloxymethylphenyl) ethene (B) was added at −78 ° C., and the mixture was stirred at the same temperature for 0.5 hour. Thereafter, methanol was added to stop the reaction, the reaction solution was added to a large amount of methanol, and the precipitated crystals were filtered and dried to obtain 5.30 g of a polymer. LiBr was added to the chloroform-acetonitrile mixed solution of the polymer obtained above. 9.55 g and 14.9 g of trimethylsilyl chloride (TMSCl) were added at 30 ° C., and the mixture was stirred at the same temperature for 24 hours. The reaction solution was added to a large amount of methanol, and the precipitated polymer was filtered and reprecipitated using THF-methanol to obtain 5.15 g of a polymer (C1). Under a nitrogen atmosphere, s-BuLi (1.79 mmol) was added to a THF solution of 2.15 g of 1,1-bis (3-t-butyldimethylsilyloxymethylphenyl) ethene (B) at −78 ° C. at −78 ° C. For 10 minutes. This was added to a THF solution (0.745 mmol) of 3.57 g of the polymer (C1), and the mixture was stirred at the same temperature for 0.5 hour. The same operation as described above was further repeated twice to obtain a 17-branched dendrimer (D11). Further, similarly, a mixed solution of LiBr and TMSCl in chloroform-acetonitrile was added, and the mixture was stirred at 30 ° C. for 24 hours. The reaction solution was added to a large amount of methanol, the precipitated polymer was filtered, reprecipitated using THF-methanol, and a 17-branch dendrimer (D) (Mw / Mn = 1.04, Mn = 9600).
[0040]
Embedded image
[0041]
(In the formula, the thick line represents a polystyrene chain, and represents the carbon branch point of the branched chain.)
1.83 g (41.5 mmol) of ethylene oxide was added to diphenylmethylpotassium (0.333 mmol) in THF at 0 ° C., and reacted at room temperature for 6 hours to produce potassium polyethylene oxide. The potassium polyethylene oxide (Mw = 5660, (Mw / Mn = 1.02). Further, 11.6 mg (0.0121 mmol) of the polymer (D) prepared as described above was added at 0 ° C., the reaction was performed at 40 ° C. for 72 hours, and degassed methanol was added to stop the reaction. In addition to a large amount of water, the precipitated crystals were filtered to obtain the desired dendrimer (E) almost quantitatively. The weight average molecular weight of the obtained dendrimer was 89,500, which was in good agreement with the calculated value. Further, the value of Mw / Mn was 1.04.
[0042]
Embedded image
[0043]
(In the formula, a thick line represents a polystyrene chain, a wavy line represents a polyethylene oxide chain, and represents a carbon branch point of a branched chain.)
[0044]
Example 2
0.2 g of the dendrimer (E1) obtained in Example 1 and 0.06 g of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) were mixed in a glow box under an argon atmosphere in a mixed solvent of 7 ml of dehydrated acetonitrile and 5 ml of dehydrated methanol. 12 ml was added and stirred at room temperature to form a clear solution. This solution was cast on a silicon sheet having a thickness of 3 mm, and the solvent was distilled off under reduced pressure under heating to obtain a thin film of a dendrimer (E1) -Li salt composite having a thickness of 120 μm. The ionic conductivity at 30 ° C., 40 ° C., and 50 ° C. of the thin film was measured. Table 1 summarizes the results.
[0045]
Example 3
A THF solution of 10.1 g (96.7 mmol) of styrene (A) was added to s-BuLi (1.13 mmol) at -78 ° C, and the mixture was stirred at -78 ° C for 10 minutes. Next, a THF solution of 0.638 g of 1,1-bis (3-t-butyldimethylsilyloxymethylphenyl) ethene (B) was added at −78 ° C. under a nitrogen atmosphere, and the mixture was stirred at the same temperature for 0.5 hour. Thereafter, methanol was added to stop the reaction, the reaction solution was added to a large amount of methanol, and the precipitated crystals were filtered and dried to obtain 10.5 g of a polymer. LiBr was added to the chloroform-acetonitrile mixed solution of the polymer obtained above. 9.66 g and 15.1 g of trimethylsilyl chloride (TMSCl) were added at 30 ° C., and the mixture was stirred at the same temperature for 24 hours. The reaction solution was added to a large amount of methanol, and the precipitated polymer was filtered and reprecipitated using THF-methanol to obtain 10.1 g of a polymer (C2). Under a nitrogen atmosphere, s-BuLi (1.50 mmol) was added to a THF solution of 0.846 g of 1,1-bis (3-t-butyldimethylsilyloxymethylphenyl) ethene (B) at −78 ° C. at −78 ° C. For 10 minutes. This was added to a THF solution (0.627 mmol) of 5.83 g of the polymer (C2), and the mixture was stirred at the same temperature for 0.5 hour. The same operation as described above was further repeated twice to obtain a 17-branched dendrimer (D21). Further, similarly, a mixed solution of LiBr and TMSCl in chloroform-acetonitrile was added, and the mixture was stirred at 30 ° C. for 24 hours. The reaction solution was added to a large amount of methanol, the precipitated polymer was filtered, reprecipitated using THF-methanol, and a dendrimer (D22) (Mw / Mn = 1.04, Mn = 14000).
[0046]
1.42 g (32.2 mmol) of ethylene oxide was added to diphenylmethylpotassium (1.33 mmol) in THF at 0 ° C., and reacted at room temperature for 6 hours to produce polyethylene oxide potassium, and polyethylene oxide potassium (Mw = 1200, (Mw / Mn = 1.05). Furthermore, 1.97 g (0.0693 mmol) of the polymer (D22) prepared as described above was added at 0 ° C., the reaction was carried out at 40 ° C. for 72 hours, and the reaction was stopped by adding degassed methanol. In addition to a large amount of water, the precipitated crystals were filtered to obtain a target dendrimer (E2) almost quantitatively. The weight average molecular weight of the obtained dendrimer was 33,900, which was in good agreement with the calculated value. Further, the value of Mw / Mn was 1.04.
[0047]
Example 4
0.2 g of the dendrimer (E2) obtained in Example 3 and lithium perchlorate (LiClO4) 0.0142 g was added to 1.5 g of dehydrated acetone and stirred at room temperature to form a clear solution. This solution was cast on an aluminum plate, and the solvent was distilled off under reduced pressure under heating to obtain a thin film of a dendrimer (E2) -Li salt composite having a thickness of 100 μm. The ionic conductivity at 30 ° C., 40 ° C. and 50 ° C. of this thin film was measured. Table 1 summarizes the results.
[0048]
Example 5
A THF solution of 3.26 g (31.3 mmol) of styrene (A) was added to lithium naphthalenide (0.606 mmol) at -78 ° C, and the mixture was stirred at -78 ° C for 10 minutes. Next, a THF solution of 0.682 g of 1,1-bis (3-t-butyldimethylsilyloxymethylphenyl) ethene (B) was added at −78 ° C. under a nitrogen atmosphere, and the mixture was stirred at the same temperature for 0.5 hour. Thereafter, methanol was added to stop the reaction, the reaction solution was added to a large amount of methanol, and the precipitated crystals were filtered and dried to obtain 3.48 g of a polymer. LiBr was added to the chloroform-acetonitrile mixed solution of the polymer obtained above. 5.16 g and 8.07 g of trimethylsilyl chloride (TMSCl) were added at 30 ° C., and the mixture was stirred at the same temperature for 24 hours. The reaction solution was added to a large amount of methanol, and the precipitated polymer was filtered and reprecipitated using THF-methanol to obtain 5.05 g of a polymer (C3). Under a nitrogen atmosphere, s-BuLi (1.07 mmol) was added to a THF solution of 0.604 g of 1,1-bis (3-t-butyldimethylsilyloxymethylphenyl) ethene (B) at −78 ° C. at −78 ° C. For 10 minutes. This was added to a THF solution (0.447 mmol) of 4.96 g of the polymer (C3), and the mixture was stirred at the same temperature for 0.5 hour. The same operation as described above was further repeated twice to obtain a dendrimer (D31) having 16 branched chains at the ends of the polystyrene chains. Further, similarly, a methylene chloride solution of LiBr and TMSCl was added, and the mixture was stirred at 30 ° C. for 24 hours. The reaction solution was added to a large amount of methanol, and the precipitated polymer was filtered and reprecipitated using THF-methanol. D32) (Mw / Mn = 1.07, Mn = 21000) was obtained.
[0049]
1.54 g (34.9 mmol) of ethylene oxide was added to diphenylmethylpotassium (1.53 mmol) in THF at 0 ° C., and reacted at room temperature for 6 hours to produce potassium polyethylene oxide. The potassium polyethylene oxide (Mw = 1200, (Mw / Mn = 1.05). Further, 0.840 g (0.0398 mmol) of the polymer (D32) prepared as described above was added at 0 ° C., the reaction was performed at 40 ° C. for 72 hours, and the reaction was stopped by adding degassed methanol. In addition to a large amount of methanol, the precipitated crystals were filtered to obtain a target dendrimer (E3) almost quantitatively. The weight average molecular weight of the obtained dendrimer was 58,300, which was in good agreement with the calculated value. Further, the value of Mw / Mn was 1.04.
[0050]
Example 6
0.2 g of the dendrimer (E3) obtained in Example 5 and lithium perchlorate (LiClO4) 0.0158 g was added to 1.5 g of dehydrated acetone and stirred at room temperature to form a clear solution. This solution was cast on an aluminum plate, and the solvent was distilled off under reduced pressure under heating to obtain a thin film of a dendrimer (E3) -Li salt composite having a thickness of 100 μm. The ionic conductivity at 30 ° C., 40 ° C. and 50 ° C. of this thin film was measured. Table 1 summarizes the results.
[0051]
Example 7
A THF solution of 5.05 g (48.5 mmol) of styrene (A) was added to s-BuLi (0.474 mmol) at −78 ° C., and the mixture was stirred at −78 ° C. for 10 minutes. Next, in a nitrogen atmosphere, a THF solution of 0.267 g of 1,1-bis (3-t-butyldimethylsilyloxymethylphenyl) ethene (B) was added at −78 ° C., and the mixture was stirred at the same temperature for 0.5 hour. Thereafter, methanol was added to stop the reaction, the reaction solution was added to a large amount of methanol, and the precipitated crystals were filtered and dried to obtain 5.20 g of a polymer. LiBr was added to the chloroform-acetonitrile mixed solution of the polymer obtained above. 4.12 g and trimethylsilyl chloride (TMSCl) 6.44 g were added at 30 ° C., and the mixture was stirred at the same temperature for 24 hours. The reaction solution was added to a large amount of methanol, and the precipitated polymer was filtered and reprecipitated using THF-methanol to obtain 5.05 g of a polymer (C4). Under a nitrogen atmosphere, s-BuLi (1.07 mmol) was added to a THF solution of 0.604 g of 1,1-bis (3-t-butyldimethylsilyloxymethylphenyl) ethene (B) at −78 ° C. at −78 ° C. For 10 minutes. This was added to a THF solution (0.447 mmol) of 4.96 g of the polymer (C4), and the mixture was stirred at the same temperature for 0.5 hour. The same operation as above was repeated three more times to obtain a 33-branched dendrimer (D41). Further, similarly, a mixed solution of LiBr and TMSCl in chloroform-acetonitrile was added, and the mixture was stirred at 30 ° C. for 24 hours. The reaction solution was added to a large amount of methanol, and the precipitated polymer was filtered and reprecipitated using THF-methanol. The dendrimer (D42) having 33 branches and having a reaction point for anions in the outermost shell (Mw / Mn = 1.04, Mn = 15000).
[0052]
3.81 g (86.5 mmol) of ethylene oxide was added to diphenylmethylpotassium (3.65 mmol) in THF at 0 ° C., and reacted at room temperature for 6 hours to produce polyethylene oxide potassium, and polyethylene oxide potassium (Mw = 1200, (Mw / Mn = 1.05). Furthermore, 1.97 g (0.0921 mmol) of the polymer (D42) prepared as described above was added at 0 ° C., the reaction was carried out at 40 ° C. for 72 hours, and degassed methanol was added to stop the reaction. In addition to a large amount of water, the precipitated crystals were filtered to obtain a target dendrimer (E4) almost quantitatively. The weight average molecular weight of the obtained dendrimer was 59,900, which was in good agreement with the calculated value. Further, the value of Mw / Mn was 1.04.
[0053]
Example 8
0.2 g of the dendrimer (E4) obtained in Example 7 and 0.0441 g of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) or lithium perchlorate (LiClO)4) 0.0160 g was added to 1.5 g of dehydrated acetone, or 0.0757 g was added to 1.5 g of dehydrated acetone in a glow box under an argon atmosphere, and stirred at room temperature to obtain a clear solution. This solution was cast on an aluminum plate, and the solvent was distilled off under reduced pressure under heating to obtain a thin film of a dendrimer (E4) -Li salt composite having a thickness of 100 µm. The ionic conductivity at 30 ° C., 40 ° C., and 50 ° C. of the thin film was measured. Table 1 summarizes the results.
[0054]
[Table 1]
[0055]
【The invention's effect】
The dendrimer having a polymer chain containing a polar portion capable of forming a complex with the ionic species or a polar portion capable of solvating the ionic species in the branched chain obtained as described above, particularly a lithium salt in the polar portion. By including it, it shows good ionic conductivity at room temperature, and can be used as an electrolyte of an electric device such as a battery, and it can be said that industrial utility is high.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003144548A JP4139735B2 (en) | 2002-05-22 | 2003-05-22 | Novel dendrimers and ion-conducting polymer electrolytes having them |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002147767 | 2002-05-22 | ||
JP2003144548A JP4139735B2 (en) | 2002-05-22 | 2003-05-22 | Novel dendrimers and ion-conducting polymer electrolytes having them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004124051A true JP2004124051A (en) | 2004-04-22 |
JP4139735B2 JP4139735B2 (en) | 2008-08-27 |
Family
ID=32300153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003144548A Expired - Fee Related JP4139735B2 (en) | 2002-05-22 | 2003-05-22 | Novel dendrimers and ion-conducting polymer electrolytes having them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4139735B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009506505A (en) * | 2005-08-29 | 2009-02-12 | イドロ−ケベック | Method for purifying electrolyte, electrolyte obtained by this method, power generation device and use |
JP2014043487A (en) * | 2012-08-24 | 2014-03-13 | Nissan Chem Ind Ltd | Hyperbranched polymer having ethylene oxide chain and use thereof |
US11371015B2 (en) | 2013-02-28 | 2022-06-28 | Hideaki Sakai | Graft polymer, temperature-responsive substrate for cell culture using the same and production method therefor, as well as liquid chromatographic carrier having the novel graft polymer immomibilized thereon and liquid chromatographic method using the same |
CN115734979A (en) * | 2020-07-07 | 2023-03-03 | 于利希研究中心股份有限公司 | Improved synthesis process for the production of ordered multiblock copolymers with controlled molecular weight distribution |
-
2003
- 2003-05-22 JP JP2003144548A patent/JP4139735B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009506505A (en) * | 2005-08-29 | 2009-02-12 | イドロ−ケベック | Method for purifying electrolyte, electrolyte obtained by this method, power generation device and use |
US10147978B2 (en) | 2005-08-29 | 2018-12-04 | Hydro-Quebec | Electrolyte purification method using calcium carbide, and electrolytes thus obtained |
US10811731B2 (en) | 2005-08-29 | 2020-10-20 | Hydro-Quebec | Electrolyte purification method using calcium carbide, and electrolytes thus obtained |
JP2014043487A (en) * | 2012-08-24 | 2014-03-13 | Nissan Chem Ind Ltd | Hyperbranched polymer having ethylene oxide chain and use thereof |
US11371015B2 (en) | 2013-02-28 | 2022-06-28 | Hideaki Sakai | Graft polymer, temperature-responsive substrate for cell culture using the same and production method therefor, as well as liquid chromatographic carrier having the novel graft polymer immomibilized thereon and liquid chromatographic method using the same |
CN115734979A (en) * | 2020-07-07 | 2023-03-03 | 于利希研究中心股份有限公司 | Improved synthesis process for the production of ordered multiblock copolymers with controlled molecular weight distribution |
Also Published As
Publication number | Publication date |
---|---|
JP4139735B2 (en) | 2008-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102287715B1 (en) | A novel cross-linker for the preparation of a new family of single ion conduction polymers for electrochemical devices and such polymers | |
Hu et al. | Poly (ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery | |
Rolland et al. | Single-ion diblock copolymers for solid-state polymer electrolytes | |
Kim et al. | Preparation of solid-state composite electrolytes based on organic/inorganic hybrid star-shaped polymer and PEG-functionalized POSS for all-solid-state lithium battery applications | |
Kim et al. | Star‐shaped polymers having side chain poss groups for solid polymer electrolytes; synthesis, thermal behavior, dimensional stability, and ionic conductivity | |
JP3392687B2 (en) | Block-graft copolymer and polymer solid electrolyte prepared using the same | |
KR20160079574A (en) | Polymer, electrolyte comprising the polymer, and lithium secondary battery comprising the electrolyte | |
JP2005350673A (en) | Polysiloxane compound and solid polymer electrolytic composition using the same | |
EP2969917A2 (en) | Polymerized ionic liquid block copolymers as battery membranes | |
US6956083B2 (en) | Single ion conductor cross-linked polymeric networks | |
JPH10510090A (en) | Ion conductive polymer | |
CN101906195A (en) | Star polymer and manufacture method thereof | |
JP5000109B2 (en) | Binder for electrode preparation, electrode and polymer battery | |
JP3105137B2 (en) | Composite solid electrolyte | |
CN103872377A (en) | Polymer electrolyte | |
JP4139735B2 (en) | Novel dendrimers and ion-conducting polymer electrolytes having them | |
Itoh et al. | Ionic conductivity of the hyperbranched polymer-lithium metal salt systems | |
JP2006344504A (en) | Terminal hyperbranched solid polyelectrolyte | |
US9221844B2 (en) | Metal bis(malonato) borate monomers, polymers and copolymers derived therefrom, methods of making the monomers and polymers, and articles derived therefrom | |
KR101663411B1 (en) | Electrolyte for secondary cell | |
JP4389454B2 (en) | Polymer solid electrolyte | |
JP2003327687A (en) | Novel dendrimer and ion conductive polymer electrolyte having the same | |
JP2004006067A (en) | Ion conductive polyelectrolyte | |
JP2004002500A (en) | Highly branched graft copolymer and ion conductive polymer electrolyte made thereof | |
JP7374974B2 (en) | Polymer and its manufacturing method, electrolyte composition, and battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051215 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060828 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071022 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071219 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080317 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080501 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080526 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080609 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |