JPH0532422B2 - - Google Patents

Info

Publication number
JPH0532422B2
JPH0532422B2 JP13878783A JP13878783A JPH0532422B2 JP H0532422 B2 JPH0532422 B2 JP H0532422B2 JP 13878783 A JP13878783 A JP 13878783A JP 13878783 A JP13878783 A JP 13878783A JP H0532422 B2 JPH0532422 B2 JP H0532422B2
Authority
JP
Japan
Prior art keywords
lithium salt
polymer
inorganic lithium
examples
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13878783A
Other languages
Japanese (ja)
Other versions
JPS6031555A (en
Inventor
Junko Shigehara
Hidetoshi Tsuchida
Norihisa Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13878783A priority Critical patent/JPS6031555A/en
Publication of JPS6031555A publication Critical patent/JPS6031555A/en
Publication of JPH0532422B2 publication Critical patent/JPH0532422B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、一般式(1)で示される側鎖にオリゴエ
チレンオキシドを有する(メタ)アクリレート系
(共)重合体と、LiClO4またはLiBF4(または
LiPF6)の中から選ばれる無機リチウム塩とを、
99/1〜50/50の重量比で混合して成る親規なハ
イブリド系イオン伝導体に関する。 〔ここにRはHまたはCH3,R′は炭素数1〜6
のアルキル基、nは5〜20の整数、xは100〜50
%,x+y=100%〕 高分子−無機リチウム塩ハイブリドイオン伝導
体は、高いイオン伝導性を保持しながら良好な成
形性が得られるよう発案されたものであり、特に
エレクトロニクス用部材としての用途から考え、
薄膜化可能なことが重要な問題となる。高分子量
のポリエチレンオキシドに、所定量のLiClO4
分散した固体電解質〔J.E.Westonら,Solid
State Ionics,,347(1981)〕などの報告があ
るが、これらはいずれも可とう性に乏しい上、伝
導度は10-7〜10-4S/cmに止まる。 本発明のハイブリド系固体イオン伝導体は側鎖
にガラス転移点の非常に低いオリゴエチレンオキ
シドをリチウムイオンとの相互作用基として持
ち、成膜性保持のため(メタ)アクリレート系主
鎖を有する式(1)の構成のポリマーと、無機リチウ
ム塩とのハイブリドであるため、高いイオン伝導
度と良好な膜形成能を兼ね備えているところに特
徴がある。 式(1)において、(メタ)アクリレートアルキル
オエステル共重合単位は、成膜性変化のため導入
されたものであり、y=0%であつても良く、ま
た膜を固くするにはR′は長鎖のアルキルを用い
てyを50%に近くすれば良い。R=H,CH3で相
違はほとんど無いが、R=CH3の方が若干固い膜
が得られる。 本発明で得られる無機リチウム塩は、LiClO4
LiBF4,LiPF6の中から選ばれ、大巾な相違は無
いが、式(1)のポリマーとの相溶性およびハイブリ
ドのイオン伝導性から鑑み、LiClO4とLiPF6
LiBF4に優れる。 本発明のハイブリド系固体イオン伝導体は式(1)
のポリマーと既述のリチウム塩を、テトラヒドロ
フラン、メタノール、アセトンなどに均一溶解し
てキヤスト成膜するか、R′が炭素数2以下のア
ルキル基であつてy=15%以下であれば、ポリマ
ーと無機リチウム塩を200℃程度に加熱、均一混
合して、溶融キヤストが可能であり、また加圧お
よび/または加熱成形が可能である。但し、
LiClO4を用いるときは爆発の危険があるので、
加熱温度に注意する必要がある。また、あらかじ
め式(1)に相当する単量体の混合物と無機リチウム
塩を混練しておき、不活性雰囲気下に加熱すれば
自然重合が起こり、目的のハイブリド系固体イオ
ン伝導体が得られる。 なお、ここで用いられる当該ポリマーまたは自
然重合で得られるハイブリド中のポリマーは、分
子量1万から50万の範囲にある。 式(1)のポリマーと無機リチウム塩の混合比は、
99/1〜50/50の重量比であれば所定の性能を発
揮するが、無機リチウム塩の割合を増加するとゆ
るやかにイオン伝導度は増加するので、なるべく
50/50に近づけるのが好ましい。但しこの範囲を
越えて無機リチウム塩量を増加すると微結晶生成
により膜がもろくなる。 なお、本発明のイオン伝導体は、固体電解質と
して、電解コンデンサー、電池、エレクトロクロ
ニツク表示装置等に組込むことができる。また、
非帯電性材料としても使用できる。 次に実施例により本発明のハイブリド系固体イ
オン伝導体を説明するが、それに先立ち式(1)のポ
リマー及びそれに相当するx単位部分の単量体の
合成を実験例に示す。 実験例 1 分子量250(n≒5)の片末端メチルエーテルオ
リゴエチレンオキシド20gを、無水THF200mlに
溶解し、沸点還流下に金属リチウム5gを加え
た。1日反応後、過剰の金属リチウムを除去し0
℃に冷却しながらメタアクリル酸クロリド10gを
THF50mlで希釈した溶液を滴下し、0℃にて2
時間、常温で5時間反応させた。100ml程度に減
圧濃縮して、直径10cm長さ30cmの塩基性アルミナ
カラム中を、CHCl3にて展開して過剰のメタアク
リル酸クロリドと副生したLiClを除去し片末端メ
チルエーテルオリゴエチレンオキシドメタクリレ
ートのCHCl3溶液を得た。この溶液少量を分取し
て分析した結果、収量は約22gであり核磁気共鳴
より a:2.0(3H)、b、c:5.5、6.1(2H)、d:4.2
(2H)、e:3.6(18H)、f:3.3(3H)ppm(CDCl3
中)が認められることから、式(2)の構造を確認し
た。 実験例 2〜5 実験例1と全く同様に、但し分子量350,(n≒
8)(実施例2)、550(n≒13(実験例3)、750(n
≒17)(実験例4)、900(n≒20)(実験例5)の
片末端メチルエーテルオリゴエチレンオキシド20
gずつを用いて、該当するメタクリレートモノマ
ーを得た。収量はそれぞれ21g、20g、19g、19
gであり、eプロトン比が異なる他は、実験例1
と同様の核磁気共鳴スペクトルを与えた。 実験例 6〜10 実験例1〜6と同様に、但しアクリル酸クロリ
ドを用い、分子量250(実験例6)、350(実験例
7)、550(実験例8)、750(実験例9)、900(実験
例10)の片末端メチルエーテルオリゴエチレンオ
キシド20gずつを用いて該当するアクリレートモ
ノマー21g、20g、19.5g、19g、18.7gを得
た。実験例1〜5と比較して、式(2)におけるaプ
ロトンの消失のほかは、同様の核磁気共鳴スペク
トルを与えた。 実験例 11〜20 実験例1〜10にて得たモノマー溶液からCHCl3
を留去し、そのまま、あるいはコモノマーととも
に第一表に示すモノマー仕込で、脱気下に12時間
60℃にて重合し、生成物を水溶液中に透析した
後、減圧乾固して相当する共重合体を第一表の通
りに得た。 重合体中のx%〔式(1)参照〕は、核磁気共鳴法
によつて求めた。
The present invention relates to a (meth)acrylate (co)polymer having oligoethylene oxide in the side chain represented by general formula (1), LiClO 4 or LiBF 4 (or
an inorganic lithium salt selected from LiPF 6 ),
This invention relates to a conventional hybrid ion conductor formed by mixing in a weight ratio of 99/1 to 50/50. [Here, R is H or CH 3 , R' is a carbon number of 1 to 6
an alkyl group, n is an integer of 5 to 20, x is 100 to 50
%, x + y = 100%] The polymer-inorganic lithium salt hybrid ion conductor was devised to provide good moldability while maintaining high ionic conductivity, and is particularly suitable for use as electronics components. thought,
An important issue is that it can be made into a thin film. A solid electrolyte in which a predetermined amount of LiClO 4 is dispersed in high molecular weight polyethylene oxide [JEWeston et al., Solid
State Ionics, 2 , 347 (1981)], but all of these have poor flexibility and have a conductivity of only 10 -7 to 10 -4 S/cm. The hybrid solid ionic conductor of the present invention has oligoethylene oxide, which has a very low glass transition point, in its side chain as a group that interacts with lithium ions, and has a (meth)acrylate main chain to maintain film-forming properties. Since it is a hybrid of a polymer having the structure 1) and an inorganic lithium salt, it is characterized by having both high ionic conductivity and good film-forming ability. In formula (1), the (meth)acrylate alkyl ester copolymer unit is introduced to change the film formability, and y may be 0%, and R′ y should be close to 50% by using a long-chain alkyl. There is almost no difference between R=H and CH 3 , but a slightly harder film can be obtained with R=CH 3 . The inorganic lithium salt obtained in the present invention includes LiClO 4 ,
They were selected from LiBF 4 and LiPF 6 , and although there are no major differences, LiClO 4 and LiPF 6 are selected from the viewpoint of compatibility with the polymer of formula (1) and ionic conductivity of the hybrid.
Superior to LiBF 4 . The hybrid solid ionic conductor of the present invention has the formula (1)
The polymer and the above-mentioned lithium salt can be uniformly dissolved in tetrahydrofuran, methanol, acetone, etc. to form a cast film, or if R' is an alkyl group having 2 or less carbon atoms and y = 15% or less, the polymer It is possible to melt-cast by heating and homogeneously mixing the inorganic lithium salt and the inorganic lithium salt to about 200°C, and it is also possible to pressurize and/or heat mold. however,
There is a risk of explosion when using LiClO 4 , so
It is necessary to pay attention to the heating temperature. Alternatively, if a mixture of monomers corresponding to formula (1) and an inorganic lithium salt are kneaded in advance and heated in an inert atmosphere, spontaneous polymerization occurs and the desired hybrid solid ionic conductor is obtained. The polymer used here or the polymer in the hybrid obtained by natural polymerization has a molecular weight in the range of 10,000 to 500,000. The mixing ratio of the polymer in formula (1) and the inorganic lithium salt is
A weight ratio of 99/1 to 50/50 will exhibit the specified performance, but as the proportion of inorganic lithium salt increases, the ionic conductivity will gradually increase.
It is preferable to approach 50/50. However, if the amount of inorganic lithium salt is increased beyond this range, the film becomes brittle due to the formation of microcrystals. The ion conductor of the present invention can be incorporated into electrolytic capacitors, batteries, electrochronic display devices, etc. as a solid electrolyte. Also,
It can also be used as a non-static material. Next, the hybrid solid ion conductor of the present invention will be explained with reference to Examples, but first, the synthesis of the polymer of formula (1) and the monomer of the x unit portion corresponding thereto will be shown in Experimental Examples. Experimental Example 1 20 g of one-end methyl ether oligoethylene oxide having a molecular weight of 250 (n≈5) was dissolved in 200 ml of anhydrous THF, and 5 g of metallic lithium was added under boiling reflux. After one day of reaction, remove excess metallic lithium and
Add 10 g of methacrylic acid chloride while cooling to ℃.
A solution diluted with 50 ml of THF was added dropwise, and
The reaction was allowed to proceed at room temperature for 5 hours. Concentrate under reduced pressure to about 100 ml, develop with CHCl 3 in a basic alumina column with a diameter of 10 cm and a length of 30 cm to remove excess methacrylic acid chloride and by-produced LiCl, and obtain one-terminated methyl ether oligoethylene oxide methacrylate. A CHCl3 solution was obtained. As a result of fractionating and analyzing a small amount of this solution, the yield was approximately 22 g, which was determined by nuclear magnetic resonance. a: 2.0 (3H), b, c: 5.5, 6.1 (2H), d: 4.2
(2H), e: 3.6 (18H), f: 3.3 (3H) ppm (CDCl 3
The structure of formula (2) was confirmed. Experimental Examples 2 to 5 Exactly the same as Experimental Example 1, except that the molecular weight was 350, (n≒
8) (Example 2), 550 (n≒13 (Experimental Example 3), 750 (n
≒17) (Experimental Example 4), 900 (n≒20) (Experimental Example 5) one-terminal methyl ether oligoethylene oxide 20
The corresponding methacrylate monomers were obtained using 1 g each. Yields are 21g, 20g, 19g, and 19g, respectively.
g, and the e proton ratio is different, as in Experimental Example 1.
gave a similar nuclear magnetic resonance spectrum. Experimental Examples 6 to 10 Same as Experimental Examples 1 to 6, except that acrylic acid chloride was used, and the molecular weight was 250 (Experimental Example 6), 350 (Experimental Example 7), 550 (Experimental Example 8), 750 (Experimental Example 9), 900 (Experiment Example 10) was used to obtain 21 g, 20 g, 19.5 g, 19 g, and 18.7 g of the corresponding acrylate monomers using 20 g of one-end methyl ether oligoethylene oxide. Compared to Experimental Examples 1 to 5, similar nuclear magnetic resonance spectra were given except for the disappearance of the a proton in formula (2). Experimental Examples 11-20 CHCl 3 from the monomer solutions obtained in Experimental Examples 1-10
was distilled off, and the monomers shown in Table 1 were prepared as such or together with comonomers for 12 hours under degassing.
Polymerization was carried out at 60°C, and the product was dialyzed into an aqueous solution and then dried under reduced pressure to obtain the corresponding copolymer as shown in Table 1. x% in the polymer [see formula (1)] was determined by nuclear magnetic resonance method.

【表】 なお、これら(共)重合体の分子量は光散乱法
より、それぞれ15000(実施例11)、22000(12)、
13000(13)、10100(14)、35000(15)、78000(16)

170000(17)、495000(18)、32000(19)、43000(20

であつた。 実施例 1〜10 実験例1〜10のモノマーCHCl3溶液を減圧留去
してTHF溶媒に変え、無機リチウム塩と第二表
に示す割合で混合し、テフロン板上に展開して
THFを蒸発させ、減圧下に12時間、60℃で12時
間静置して重合した。得られた薄膜のイオン伝導
度は、グラフアイト/膜/グラフアイトのセル構
成で、100〜2万Hzの交流電圧印加による電流を
測定して複素インピーダンスプロツトを行い、決
定した。結果を第二表にまとめた。 なお、得られた膜の一部を水に溶解、透析を二
日間行つてポリマーのみの溶液を得、光散乱法よ
り分子量を求めたところ、それぞれ18000(実施例
1)、23000(2)、26000(3)、34000(4)、17000
(5)、38000(6)、71000(7)、122000(8)、
65000(9)、44000(10)であつた。
[Table] The molecular weights of these (co)polymers were determined by light scattering to be 15,000 (Example 11), 22,000 (12), and 22,000 (12), respectively.
13000 (13), 10100 (14), 35000 (15), 78000 (16)
,
170000 (17), 495000 (18), 32000 (19), 43000 (20
)
It was hot. Examples 1 to 10 The monomer CHCl 3 solutions of Experimental Examples 1 to 10 were distilled off under reduced pressure to change to THF solvent, mixed with inorganic lithium salt in the ratio shown in Table 2, and spread on a Teflon plate.
THF was evaporated and polymerization was carried out by standing under reduced pressure for 12 hours and at 60°C for 12 hours. The ionic conductivity of the obtained thin film was determined by measuring the current by applying an alternating current voltage of 100 to 20,000 Hz and performing a complex impedance plot using a graphite/membrane/graphite cell configuration. The results are summarized in Table 2. A portion of the obtained membrane was dissolved in water and dialyzed for two days to obtain a solution containing only the polymer, and the molecular weight was determined by light scattering method, and the results were 18,000 (Example 1), 23,000 (2), and 23,000 (2), respectively. 26000 (3), 34000 (4), 17000
(5), 38000 (6), 71000 (7), 122000 (8),
They were 65,000 (9) and 44,000 (10).

【表】 実施例 11〜20 実験例11〜20のポリマーを、第三表に示す通り
無機リチウム塩とTHF中またはメタノール中に
混合し、テフロン板上に展開して溶媒をゆつくり
蒸発させた後、60℃にて減圧乾固し、実施例1〜
10と同様にイオン伝導度を測定して第三表に示し
た。
[Table] Examples 11 to 20 The polymers of Experimental Examples 11 to 20 were mixed with an inorganic lithium salt in THF or methanol as shown in Table 3, and spread on a Teflon plate to slowly evaporate the solvent. After that, it was dried under reduced pressure at 60°C, and Example 1~
The ionic conductivity was measured in the same manner as in 10 and is shown in Table 3.

【表】 実施例 21〜26 実験例11、13、15、16〜18のポリマーに所定量
のLiPF6を加えて、窒素下に200℃程度に加温し
て混練し、テフロン板上に溶融キヤストした。冷
却後、実験例1〜10と同様にイオン伝導度を測定
し、第四表に示した。
[Table] Examples 21 to 26 A predetermined amount of LiPF 6 was added to the polymers of Experimental Examples 11, 13, 15, and 16 to 18, heated to about 200°C under nitrogen, kneaded, and melted on a Teflon plate. I casted it. After cooling, the ionic conductivity was measured in the same manner as in Experimental Examples 1 to 10 and is shown in Table 4.

【表】【table】

【表】 実施例 27〜32 実施例21〜26のハイブリドを、キヤストせずに
そのまま冷却して不定形固体とした。これを適当
に細片状とし、約5Kg/cm2の圧力をかけながら60
℃に加温して成膜し、イオン伝導度を実施例1〜
10と同様に測定して第五表に示した。
[Table] Examples 27 to 32 The hybrids of Examples 21 to 26 were cooled as they were without being cast to form an amorphous solid. Cut this into thin pieces and apply a pressure of about 5 kg/cm 2 to
A film was formed by heating to ℃, and the ionic conductivity was measured in Example 1~
Measurements were made in the same manner as in 10 and shown in Table 5.

Claims (1)

【特許請求の範囲】 1 一般式 [ここに、Rは、HまたはCH3、R′は、炭素数
1〜6のアルキル基、nは、5〜20の整数、x
は、100〜50%、x+y=100%、分子量は、1万
〜50万] で示されるポリマーと、LiClO4、LiBF4および
LiPF6の中から選ばれる無機リチウム塩とを99/
1〜50/50の重量比で混合して成るハイブリド系
イオン伝導体。
[Claims] 1. General formula [Here, R is H or CH 3 , R' is an alkyl group having 1 to 6 carbon atoms, n is an integer of 5 to 20, x
is 100 to 50%, x+y=100%, molecular weight is 10,000 to 500,000] and LiClO 4 , LiBF 4 and
Inorganic lithium salt selected from LiPF 6 and 99/
A hybrid ion conductor made by mixing in a weight ratio of 1 to 50/50.
JP13878783A 1983-07-29 1983-07-29 Hybrid ion conductor composed of oxyethylene (meth) acrylate polymer and inogranic lithium salt Granted JPS6031555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13878783A JPS6031555A (en) 1983-07-29 1983-07-29 Hybrid ion conductor composed of oxyethylene (meth) acrylate polymer and inogranic lithium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13878783A JPS6031555A (en) 1983-07-29 1983-07-29 Hybrid ion conductor composed of oxyethylene (meth) acrylate polymer and inogranic lithium salt

Publications (2)

Publication Number Publication Date
JPS6031555A JPS6031555A (en) 1985-02-18
JPH0532422B2 true JPH0532422B2 (en) 1993-05-17

Family

ID=15230196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13878783A Granted JPS6031555A (en) 1983-07-29 1983-07-29 Hybrid ion conductor composed of oxyethylene (meth) acrylate polymer and inogranic lithium salt

Country Status (1)

Country Link
JP (1) JPS6031555A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114257A (en) * 1984-06-29 1986-01-22 Mitsubishi Rayon Co Ltd Lithium-containing resin composition and production thereof
JPS6394501A (en) * 1986-10-09 1988-04-25 宇部興産株式会社 Manufacture of ion conducting solid electrolytic shield
JPS63218751A (en) * 1987-03-06 1988-09-12 Nok Corp Acrylic elastomer composition
JPH0725840B2 (en) * 1989-05-15 1995-03-22 富士写真フイルム株式会社 Polymer solid electrolyte and method for producing the same
EP1376620A4 (en) 2001-03-28 2006-06-07 Nippon Oil Corp Process for producing solid polymer electrolyte
CN101385094B (en) 2006-09-11 2011-05-18 旭化成株式会社 Polymeric electrolyte, method for production thereof, and electrochemical element
KR101100539B1 (en) 2006-09-11 2011-12-29 아사히 가세이 가부시키가이샤 Novel polymer electrolyte and electrochemical device

Also Published As

Publication number Publication date
JPS6031555A (en) 1985-02-18

Similar Documents

Publication Publication Date Title
US8137849B2 (en) Phosphate-based acrylate crosslinking agent for polymer electrolyte and a composition containing the same
US5731104A (en) Batteries, conductive compositions, and conductive films containing organic liquid electrolytes and plasticizers
US5548055A (en) Single-ion conducting solid polymer electrolytes
US6015638A (en) Batteries, conductive compositions, and conductive films containing organic liquid electrolytes and plasticizers
EP0842216B1 (en) Rechargeable battery polymeric electrolyte
US7378193B2 (en) Polysiloxane-based compound and solid polymer electrolyte composition using the same
JP3328262B2 (en) Crosslinking agent for solid polymer electrolyte, crosslinked solid polymer electrolyte and lithium polymer secondary battery manufactured using the same
US20190051939A1 (en) Poly(lithium acrylate) and other materials for membranes and other applications
JP3669944B2 (en) Polyalkylene oxide solid polymer electrolyte composition
EP0269018A2 (en) Solid polymer electrolyte composition
KR100634382B1 (en) Cyclic siloxane-based compounds and solid polymer electrolyte composite containing the same
JPH0799645B2 (en) Polymer solid electrolyte
EP0787749B1 (en) Novel allyl ethers, polymers and polymeric solid electrolytes
US20200280095A1 (en) Electrolyte composition
JPH0532422B2 (en)
JP3105137B2 (en) Composite solid electrolyte
US5219681A (en) Lithium cell
US9359454B2 (en) Method for making solid electrolyte
JP3843505B2 (en) Polymer electrolyte and battery
JPH10223044A (en) Polymer solid electrolyte gel
JP3601200B2 (en) Polymer electrolyte and method for producing the same
JP2007188889A (en) Solid polymer electrolyte
Ponkratov et al. Synthesis of New Lithium-Conducting Copolymers and the Influence of Their Structure and Composition on Ionic Conductivity
JP4069147B2 (en) Polymer solid electrolyte
JPH0725840B2 (en) Polymer solid electrolyte and method for producing the same