JP2004123461A - Method for drawing glass member - Google Patents

Method for drawing glass member Download PDF

Info

Publication number
JP2004123461A
JP2004123461A JP2002290999A JP2002290999A JP2004123461A JP 2004123461 A JP2004123461 A JP 2004123461A JP 2002290999 A JP2002290999 A JP 2002290999A JP 2002290999 A JP2002290999 A JP 2002290999A JP 2004123461 A JP2004123461 A JP 2004123461A
Authority
JP
Japan
Prior art keywords
glass
peripheral surface
capillary
stretching
glass member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002290999A
Other languages
Japanese (ja)
Inventor
Keiji Mishima
三島 慶次
Katsuya Kamitsukuri
神作 克也
Shigeru Tokita
戸木田 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2002290999A priority Critical patent/JP2004123461A/en
Publication of JP2004123461A publication Critical patent/JP2004123461A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0256Drawing hollow fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • C03B23/0476Re-forming tubes or rods by drawing onto a forming die, e.g. a mandrel or a wire

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for drawing a glass member by which the number of crystal grains generated can be reduced to improve the dimensional accuracy, damages on another member to be attached to the surface of the drawn glass product can be suppressed, and decrease in the transmittance of the glass product is suppressed. <P>SOLUTION: In the method for drawing a glass member by heating and drawing a glass tube 11 having a specified outer diameter and an inner diameter to manufacture a glass capillary, the inner face 11a and the outer face 11b of the glass tube 11 are polished to obtain ≤0.05 μm arithmetic average roughness Ra before drawing on each face. The number of crystal grains (projections) generated by devitrification on the inner and outer faces of the glass capillary by drawing can be decreased by polishing the surfaces. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス部材を加熱して延伸成形するガラス部材の延伸加工方法に関する。
【0002】
【従来の技術】
光ファイバの先端を他の光部品に結合する際、光ファイバ先端部の補強のために円筒形のキャピラリが用いられる。キャピラリの材質としては、金属やセラミックスも用いられるが、光ファイバと熱膨張係数が近いなどの利点を有するガラスが用いられる。このようなガラス製キャピラリは次のような工程で製造される。
【0003】
まず、ホウケイ酸ガラスを砥石により円柱状に切削加工し、そのガラスに、光ファイバが挿入されて接着剤で固定される取付孔をドリルや真空成型法により加工する。こうして所定の外径および内径を有する円筒状に作られたガラス管11(図4参照)を加熱装置12により750℃〜1000℃に加熱して延伸成形することにより、細い円筒状のガラス管13(図4参照)が得られる。このガラス管13を所定の長さに切断することにより、高精度なガラス製キャピラリが完成する。
【0004】
真空成型法としては、所定の外径をもつ心棒を中心にガラス管を多重に重ね、この多重管を真空中で加熱して融着一体化させ、最後に心棒を抜き取って所望の内径をもつガラス管を得る方法が知られている(例えば、特許文献1)。
【0005】
また、失透を起こし易い性質を有する結晶性ガラスからなる予備成形体を得るための延伸成形方法が知られている(例えば、特許文献2)。
【0006】
【特許文献1】
特公昭60−33771号公報
【特許文献2】
特開平9−86944号公報
【0007】
【発明が解決しようとする課題】
ところで、上述した従来のガラス製キャピラリの製造方法では、ホウケイ酸ガラスは上記加熱によりガラス管の内周面および外周面に結晶化(失透)が起こり易く、その外周面および内周面に失透による結晶粒子(突起)が多数発生してしまう。このように結晶粒子が多数発生している様子が、図1上欄の外径写真で示されている。この写真は、上述した従来のガラス製キャピラリの製造方法により作製したガラス製キャピラリ(従来例)の外周面を走査電子顕微鏡により撮影したもので、その写真サイズは横が0.21mm、縦が0.16mmである。また、その撮影に使ったガラス製キャピラリは、上記加熱時の温度である延伸温度が850℃で、ガラス供給速度が約1mm/minで、延伸速度が約2500mm/minの条件で延伸成形して作製されたものである。
【0008】
また、図1では、失透による結晶粒子(突起)の発生数を定量的に示すために、「失透面積率」なる量を用いている。この「失透面積率」は、図1上欄の写真の全面積に対する結晶粒子(黒色部分)15の全面積を比率で求めたものである。つまり、その写真をメッシュ状に細分し、細分化された各区分を結晶粒子のある「黒」か同粒子のない「白」のいずれかで分類して集計するなどの方法で結晶粒子15を計数して得たものである。こうして求めた上記従来例の「失透面積率」は5.0%である。なお、その写真で示す従来例の外周面の算術平均粗さRaは0.38μmである。また、上記従来例の内周面の写真は示していないが、その内周面の表面粗さは外周面とほぼ同じであり、その内周面には外周面とほぼ同様の「失透面積率」で結晶粒子15が発生している。
【0009】
このように上述した従来のガラス製キャピラリの製造方法により作製したガラス製キャピラリでは、外周面および内周面に失透による結晶粒子(突起)15が多数発生しているために、以下の問題が生じる。
【0010】
(1)キャピラリの内径および外径の寸法精度が低下する。
(2)内周面に発生する多数の結晶粒子15が光ファイバを傷つけてしまう。(3)多数の結晶粒子15によりキャピラリの透過率が低下してしまい、内部を透視できるという特徴が失われてしまう。
【0011】
このような問題は、上述した従来のガラス製キャピラリの製造方法に、上記特許文献1や特許文献2の技術を適用したとしても十分には解決されない。
本発明は、このような従来の問題点に着目してなされたもので、その目的は結晶粒子の発生数を低減して寸法精度を向上し、延伸成形により作られるガラス製品の表面に取り付ける他の部材が傷つけられるのを抑制でき、また、ガラス製品の透過率の低下を抑制できるガラス部材の延伸加工方法を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る発明は、ガラス部材を加熱して延伸成形するガラス部材の延伸加工方法であって、前記延伸成形前に、前記ガラス部材の表面を算術平均粗さRaが0.05μm以下になるように研磨することを要旨とする。
【0013】
この構成によれば、延伸成形前に、ガラス部材の表面を算術平均粗さRaが0.05μm以下になるように研磨する。この研磨によって、延伸成形により作られるガラス製品の表面における失透による結晶粒子(突起)の発生数が、上記従来例よりもはるかに低減されることが判明した。このように失透による結晶粒子(突起)の発生数が低減されるので、ガラス製品の寸法精度が向上する。また、ガラス製品の表面の結晶粒子で他の部材が傷つけられるのを抑制できるとともに、ガラス製品の透過率の低下を抑制できる。
【0014】
なお、ここにいう「ガラス部材」とは、断面が円形のガラス管に限らず、断面が任意形状のガラス管或いはガラス製の中実の棒などを含む意味で用いる。また、ここにいう「表面」とは、ガラス部材が管の場合には、その内周面および外周面を意味し、ガラス部材が中実の棒である場合には、その外周面を意味する。
【0015】
請求項2に係る発明は、請求項1に記載のガラス部材の延伸加工方法において、前記ガラス部材は前記延伸成形により毛細管を作るためのガラス管であり、前記延伸成形前に、前記ガラス管の内周面および外周面をそれぞれ、算術平均粗さRaが0.05μm以下になるように研磨することを要旨とする。
【0016】
この構成によれば、延伸成形前にガラス管の内周面および外周面をそれぞれ、算術平均粗さRaが0.05μm以下になるように研磨することで、失透による結晶粒子(突起)の発生数が低減されるので、延伸成形により製造される毛細管の寸法精度が向上する。また、毛細管の内周に光ファイバ等の他の部材を挿入して固定する際に、他の部材が結晶粒子で傷つけられるのを抑制できるとともに、毛細管の透過率の低下を抑制できる。
【0017】
請求項3に係る発明は、請求項2に記載のガラス部材の延伸加工方法において、前記ガラス管は、円柱状のガラス素材の外周面を残りの削り代が20μm程度になるまで砥石で研削する工程と、この研削後に前記ガラス素材の外周面を、研磨剤を用いたバフ研磨により算術平均粗さRaが0.05μm以下になるように研磨する工程と、前記ガラス素材にドリル或いは真空成形法により孔を加工する工程と、該孔加工で作られた孔の内周面を、研磨剤を用いたブラシにより算術平均粗さRaが0.05μm以下になるように研磨する工程とで作製されることを要旨とする。
【0018】
この構成によれば、円柱状のガラス素材の外周面を残りの削り代が20μm程度になるまで砥石で研削してから、その外周面を研磨剤を用いたバフ研磨により算術平均粗さRaが0.05μm以下になるように研磨するので、ガラス素材の外周面を短時間で所定の算術平均粗さに加工することができる。また、ガラス素材にドリル或いは真空成形法により孔加工をして作られたガラス管の孔の内周面を、研磨剤を用いたブラシにより算術平均粗さRaが0.05μm以下になるように研磨するので、ガラス管の内周面も短時間で所定の算術平均粗さに加工することができる。
【0019】
請求項4に係る発明は、請求項2又は3に記載のガラス部材の延伸加工方法において、前記ブラシは金属ワイヤに合成繊維を植え付けたもので、このブラシを前記ガラス管の孔に挿入し、研磨剤をかけながら前記ブラシを回転させることにより前記ガラス管の内周面を研磨することを要旨とする。
【0020】
この構成によれば、金属ワイヤに合成繊維を植え付けたブラシをガラス管の孔に挿入し、研磨剤をかけながらブラシを回転させることによりガラス管の内周面を研磨するので、その内周面を容易にかつ短時間で所定の算術平均粗さに加工することができる。
【0021】
請求項5に係る発明は、請求項2〜4のいずれか一項に記載のガラス部材の延伸加工方法において、前記毛細管はその内周面に光ファイバが接着固定されるガラス製キャピラリであることを要旨とする。
【0022】
この構成によれば、内周面に光ファイバが接着固定されるガラス製キャピラリの内周面および外周面における失透による結晶粒子(突起)の発生数が、低減される。このように失透による結晶粒子の発生数が低減されるので、延伸成形により作られるガラス製キャピラリの内周に光ファイバを挿入して固定する際に、光ファイバが結晶粒子で傷つけられるのを抑制できるとともに、ガラス製キャピラリの透過率の低下を抑制できる。
【0023】
【発明の実施の形態】
以下、本発明に係るガラス部材の延伸加工方法を具体化したガラス製キャピラリの製造方法の一実施形態を図面に基づいて説明する。
【0024】
図2および図3は、本実施形態の製造方法により作製される毛細管としてのガラス製キャピラリ21を示している。このガラス製キャピラリ21の中心部には、図示を省略した外径が0.125mm(125μm)の光ファイバが挿入され、接着剤で固定される光ファイバ用の取付孔22が形成されている。その取付孔22の内径Aは、0.126mm程度であり、その外径Bは0.25〜3mm程度である。
【0025】
次に、図2および図3に示すガラス製キャピラリ21の製造方法を説明する。この製造方法は以下の工程からなる。
(工程1)円柱状のガラス素材(図示省略)の外周面を所定の外径になるまで研削する工程。ここでは、円柱状のガラス素材の外周面を残りの削り代が20μm程度になるまで砥石で研削する。このように研削された状態では、ガラス素材の外周面の算術平均粗さRaは0.5μm程度である。
【0026】
(工程2)ガラス素材に所定の内径の孔を加工して図4に示すガラス部材としてのガラス管11を作製する工程。ここでは、ドリル或いは真空成形法により孔を加工する。このように加工された孔の内周面の算術平均粗さRaは1.0μm程度である。
【0027】
(工程3)ガラス管11の内周面11aを、算術平均粗さRaが0.05μm以下になるまで研磨する工程。ここでは、酸化セリウムなどの研磨剤を用いたブラシによりその内周面の算術平均粗さRaが0.05μm以下になるように研磨する。
【0028】
(工程4)ガラス管11の外周面11bを、算術平均粗さRaが0.05μm以下になるまで研磨する工程。ここでは、酸化セリウムなどの研磨剤を用いたバフ研磨により算術平均粗さRaが0.05μm以下になるように研磨する。なお、工程3と工程4はどちらを先に行ってもよい。
【0029】
(工程5)ガラス管11を加熱装置12により所定の温度で加熱して延伸成形して細い円筒状のガラス管13を作製する。
(工程6)上記工程5で作製される細い円筒状のガラス管13を所定の長さに切断する工程。これにより、図2および図3に示す高精度なガラス製キャピラリ21が完成する。
【0030】
上記工程5では、例えば、外径が50mmのガラス管11を用い、延伸率50倍で延伸成形すると、外径が1mmのガラス管13が得られる。また、光ファイバ保持用のガラス製キャピラリ21を作製する場合には、その取付孔22の仕上がり径が0.126mmになるようにするためには、延伸前のガラス管11の内径をおよそ6.3mmとなるように加工しておく必要がある。ガラス製キャピラリ21は外径が125μm(0.125mm)の光ファイバを保持するためのものであるため、延伸後の内径は0.126mmに規定される。しかし、ガラス製キャピラリ21の外径の仕上がり寸法は1mmに限らない。原材料であるガラス素材の外径と仕上がり外径の比で延伸率を決定し、ついで原材料の内径を所定値になるように加工する。その所定値は、決定された延伸率で延伸成形した後の内径が0.126mmになるような値である。上述した延伸率50倍の場合にはおよそ6.3mmである。
【0031】
また、工程3で用いるブラシは、金属ワイヤに合成繊維を植え付けたものである。このブラシを延伸前のガラス管11の孔(内周面11a)に挿入し、酸化セリウムなどの研磨剤をかけながら回転させることによってガラス管11の内周面11aを研磨する。
【0032】
以上のように構成された一実施形態によれば、以下の作用効果を奏する。
・延伸成形前に、ガラス管11の内周面11aおよび外周面11bをそれぞれ、算術平均粗さRaが0.05μm以下になるように研磨する。これにより、延伸成形により作製されるガラス製キャピラリ21の内周面および外周面における失透による結晶粒子(突起)の発生数が、上記従来例よりもはるかに低減されることが判明した。その発生数がきわめて少ない様子が、図1下欄の外径写真で示されている。この写真は、ガラス製キャピラリ21の外周面を、走査電子顕微鏡により上記従来例と同じ写真サイズで撮影したものである。また、その撮影に使ったガラス製キャピラリ21は、延伸温度が850℃で、ガラス供給速度が約1mm/minで、延伸速度が約2500mm/minの条件で延伸成形して作製されたものである。
【0033】
また、図1では、失透による結晶粒子(突起)の発生数を定量的に示すために、上述した「失透面積率」なる量を用いている。この「失透面積率」は、図1下欄の写真の全面積に対する結晶粒子(黒色部分)25の全面積を比率で求めたものである。つまり、その写真をメッシュ状に細分し、細分化された各区分を結晶粒子のある「黒」か同粒子のない「白」のいずれかで分類して集計するなどの方法で結晶粒子25を計数して得たものである。こうして求めたガラス製キャピラリ21の外周面の「失透面積率」は0.1%であり、上記従来例の5.0%よりもはるかに小さい値である。
【0034】
なお、その写真で示すガラス製キャピラリ21の外周面の算術平均粗さRaは0.04μmである。また、ガラス製キャピラリ21の内周面の写真は示していないが、その内周面の表面粗さは外周面とほぼ同じであり、その内周面には外周面とほぼ同様の「失透面積率」で結晶粒子25が発生している。
【0035】
このように本実施形態によれば、ガラス製キャピラリ21の外周面および内周面における失透による結晶粒子(突起)25の発生数を低減することができる。これにより、ガラス製キャピラリ21の内径および外径の寸法精度を向上することができる。また、ガラス製キャピラリ21の取付孔22に挿入されて接着剤で固定される光ファイバが結晶粒子で傷つけられるのを抑制でき、また、キャピラリ21の透過率の低下を抑制できる。
【0036】
・上記工程1で円柱状のガラス素材(図示省略)の外周面を残りの削り代が20μm程度になるまで砥石で研削してから、上記工程4でその外周面(ガラス管11の外周面11a)を酸化セリウムなどの研磨剤を用いたバフ研磨により算術平均粗さRaが0.05μm以下になるように研磨する。このため、その外周面を短時間で所定の算術平均粗さに加工することができる。
【0037】
・上記工程2でガラス素材にドリル或いは真空成形法により孔加工をして作られたガラス管11の孔の内周面11aを、上記工程3で、研磨剤を用いたブラシにより算術平均粗さRaが0.05μm以下になるように研磨する。このため、その内周面11aを容易にかつ短時間で所定の算術平均粗さに加工することができる。
【0038】
・上記工程3において、ガラス管11の内周面11aを、酸化セリウムなどの研磨剤を用いたブラシによりその内周面の算術平均粗さRaが0.05μm以下になるように研磨する。その研磨を、金属ワイヤに合成繊維を植え付けたブラシをガラス管11の孔に挿入し、研磨剤をかけながらブラシを回転させることによりガラス管11の内周面11aを研磨するので、その内周面を容易にかつ短時間で所定の算術平均粗さに加工することができる。
【0039】
[ 変形例]
なお、この発明は以下のように変更して具体化することもできる。
・上記一実施形態では、ガラス部材としてのガラス管11を延伸成形して毛細管としてのガラス製キャピラリ21を作る方法について説明したが、本発明は加熱して延伸加工するガラス素材全般に適用が可能である。例えば、断面が円形以外の任意形状のガラス管や、ガラス製の中実の棒などのガラス部材を加熱して延伸成形する際に、延伸成形前に、ガラス部材の表面を算術平均粗さRaが0.05μm以下になるように研磨する場合にも、本発明は適用可能である。この場合にも、上記一実施形態と同様の作用効果が得られる。
【0040】
・上記一実施形態では、光ファイバを保持するための毛細管で、孔径が0.126mm程度であるガラス製キャピラリの製造方法に本発明を適用した例を示したが、キャピラリよりも孔径の大きいガラスチューブの製造に本発明を適用することもできる。
【0041】
・上記一実施形態の工程1では、円柱状のガラス素材の外周面を残りの削り代が20μm程度になるまで砥石で研削するようにしているが、その残りの削り代は20μmに限らず、適宜な値に変更可能である。
【0042】
・上記一実施形態の工程3では、ガラス管11の内周面11aを、酸化セリウムなどの研磨剤を用いたブラシにより算術平均粗さRaが0.05μm以下になるように研磨しているが、このとき用いる研磨剤は酸化セリウムに限らない。同様に、工程4で用いる研磨剤も酸化セリウムに限らない。
【0043】
・上記一実施形態の工程3および工程4で行う研磨を、ケミカル研磨或いは熱研磨で行うようにしてもよい。
【0044】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、失透による結晶粒子(突起)の発生数が低減されるので、延伸成形により製造されるガラス製品の寸法精度が向上する。また、ガラス製品の表面の結晶粒子で他の部材が傷つけられるのを抑制できるとともに、ガラス製品の透過率の低下を抑制できる。
【0045】
請求項2に係る発明によれば、延伸成形により製造される毛細管の寸法精度が向上する。また、毛細管の内周に光ファイバ等の他の部材を挿入して固定する際に、他の部材が結晶粒子で傷つけられるのを抑制できるとともに、毛細管の透過率の低下を抑制できる。
【0046】
請求項3に係る発明によれば、ガラス管の外周面を短時間で所定の算術平均粗さに加工することができるとともに、ガラス管の内周面も短時間で所定の算術平均粗さに加工することができる。
【0047】
請求項4に係る発明によれば、ガラス管の内周面を容易にかつ短時間で所定の算術平均粗さに加工することができる。
請求項5に係る発明によれば、延伸成形により作られるガラス製キャピラリの内周に光ファイバを挿入して固定する際に、光ファイバが結晶粒子で傷つけられるのを抑制できるとともに、ガラス製キャピラリの透過率の低下を抑制できる。
【図面の簡単な説明】
【図1】一実施形態により製造されるキャピラリと従来例により製造されるキャピラリとを比較するための電子顕微鏡写真などの各種データを示す説明図。
【図2】一実施形態により製造されるキャピラリを示す側面図。
【図3】図2のキャピラリを示す正面図。
【図4】キャピラリの製造方法を示す概略説明図。
【符号の説明】
11,13…ガラス管、11a…内周面、11b…外周面、21…毛細管としてのガラス製キャピラリ。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for stretching a glass member by heating and stretching the glass member.
[0002]
[Prior art]
When coupling the tip of the optical fiber to another optical component, a cylindrical capillary is used to reinforce the tip of the optical fiber. As the material of the capillary, metal or ceramics may be used, but glass having an advantage such as a thermal expansion coefficient close to that of the optical fiber is used. Such a glass capillary is manufactured by the following steps.
[0003]
First, borosilicate glass is cut into a columnar shape by a grindstone, and a mounting hole in which an optical fiber is inserted and fixed with an adhesive is formed in the glass by drilling or vacuum forming. The cylindrical glass tube 11 (see FIG. 4) having a predetermined outer diameter and inner diameter is heated to 750 ° C. to 1000 ° C. by the heating device 12 and stretched to form a thin cylindrical glass tube 13. (See FIG. 4) is obtained. By cutting the glass tube 13 into a predetermined length, a high-precision glass capillary is completed.
[0004]
As a vacuum forming method, glass tubes are stacked in layers around a mandrel having a predetermined outer diameter, and the multi-tube is heated and fused in a vacuum, and finally the mandrel is removed to have a desired inner diameter. A method for obtaining a glass tube is known (for example, Patent Document 1).
[0005]
In addition, a stretch forming method for obtaining a preformed body made of crystalline glass having a property of easily causing devitrification is known (for example, Patent Document 2).
[0006]
[Patent Document 1]
Japanese Patent Publication No. 60-33771 [Patent Document 2]
Japanese Patent Application Laid-Open No. 9-86944
[Problems to be solved by the invention]
In the above-mentioned conventional method for manufacturing a glass capillary, borosilicate glass is liable to crystallize (devitrify) on the inner and outer peripheral surfaces of the glass tube due to the above-mentioned heating, and loses on the outer and inner peripheral surfaces thereof. Many crystal grains (projections) are generated due to transmission. The appearance of such a large number of crystal grains is shown in the outer diameter photograph in the upper column of FIG. This photograph was taken by a scanning electron microscope of the outer peripheral surface of a glass capillary (conventional example) manufactured by the above-described conventional method of manufacturing a glass capillary. The photograph size was 0.21 mm in width and 0 mm in height. .16 mm. The glass capillary used for the photographing was stretch-molded under the conditions of a stretching temperature of 850 ° C., a glass supply rate of about 1 mm / min, and a stretching rate of about 2500 mm / min. It was produced.
[0008]
Further, in FIG. 1, an amount called “devitrification area ratio” is used to quantitatively indicate the number of crystal particles (projections) generated by devitrification. The “devitrification area ratio” is obtained by calculating the ratio of the total area of the crystal particles (black portion) 15 to the total area of the photograph in the upper column of FIG. In other words, the photograph is subdivided into meshes, and the subdivided sections are classified into either “black” with crystal particles or “white” without the particles, and the crystal particles 15 are collected and aggregated. It is obtained by counting. The “devitrification area ratio” of the above conventional example thus obtained is 5.0%. The arithmetic mean roughness Ra of the outer peripheral surface of the conventional example shown in the photograph is 0.38 μm. Further, although a photograph of the inner peripheral surface of the conventional example is not shown, the surface roughness of the inner peripheral surface is substantially the same as the outer peripheral surface, and the inner peripheral surface has the same “devitrification area” as the outer peripheral surface. The crystal grains 15 are generated at the “rate”.
[0009]
As described above, in the glass capillary manufactured by the above-described conventional method for manufacturing a glass capillary, a large number of crystal particles (projections) 15 are generated on the outer peripheral surface and the inner peripheral surface due to devitrification. Occurs.
[0010]
(1) The dimensional accuracy of the inner diameter and the outer diameter of the capillary is reduced.
(2) Many crystal grains 15 generated on the inner peripheral surface damage the optical fiber. (3) The transmittance of the capillary is reduced due to the large number of crystal particles 15, and the feature that the inside can be seen through is lost.
[0011]
Such a problem cannot be sufficiently solved even if the techniques of Patent Documents 1 and 2 are applied to the above-mentioned conventional method of manufacturing a glass capillary.
The present invention has been made in view of such conventional problems, and has as its object to reduce the number of crystal grains generated, improve dimensional accuracy, and to attach to the surface of a glass product made by stretch molding. It is an object of the present invention to provide a method for stretching a glass member, which can suppress damage to the member and suppress a decrease in transmittance of the glass product.
[0012]
[Means for Solving the Problems]
In order to solve the above problem, the invention according to claim 1 is a method for stretching a glass member by heating and stretching the glass member, wherein the surface of the glass member is subjected to arithmetic mean roughness before the stretching. The gist is that polishing is performed so that Ra is 0.05 μm or less.
[0013]
According to this configuration, before the stretch molding, the surface of the glass member is polished so that the arithmetic average roughness Ra is 0.05 μm or less. It has been found that the number of crystal grains (projections) caused by devitrification on the surface of a glass product formed by stretching is significantly reduced by this polishing as compared with the above-described conventional example. Since the number of crystal particles (projections) generated by devitrification is reduced in this way, the dimensional accuracy of the glass product is improved. In addition, it is possible to suppress damage to other members due to crystal particles on the surface of the glass product, and to suppress a decrease in transmittance of the glass product.
[0014]
The term “glass member” used herein is not limited to a glass tube having a circular cross section, but includes a glass tube having an arbitrary cross section or a solid rod made of glass. In addition, the “surface” here means the inner peripheral surface and the outer peripheral surface when the glass member is a tube, and the outer peripheral surface when the glass member is a solid rod. .
[0015]
According to a second aspect of the present invention, in the method for stretching a glass member according to the first aspect, the glass member is a glass tube for forming a capillary by the stretch molding, and the glass tube is formed before the stretch molding. The gist is that the inner peripheral surface and the outer peripheral surface are each polished such that the arithmetic average roughness Ra is 0.05 μm or less.
[0016]
According to this configuration, the inner peripheral surface and the outer peripheral surface of the glass tube are polished so that the arithmetic average roughness Ra is 0.05 μm or less before the stretch molding, whereby crystal particles (projections) due to devitrification are formed. Since the number of occurrences is reduced, the dimensional accuracy of the capillary manufactured by stretch molding is improved. In addition, when another member such as an optical fiber is inserted into and fixed to the inner periphery of the capillary, the other member can be prevented from being damaged by the crystal particles, and a decrease in the transmittance of the capillary can be suppressed.
[0017]
According to a third aspect of the present invention, in the method for stretching a glass member according to the second aspect, the glass tube grinds an outer peripheral surface of the cylindrical glass material with a grindstone until a remaining cutting allowance is about 20 μm. A step of polishing the outer peripheral surface of the glass material after the grinding by buffing using an abrasive so that an arithmetic average roughness Ra becomes 0.05 μm or less; and a drill or vacuum forming method for the glass material. And a step of polishing the inner peripheral surface of the hole formed by the hole processing with a brush using an abrasive so that the arithmetic average roughness Ra becomes 0.05 μm or less. The point is that
[0018]
According to this configuration, the outer peripheral surface of the columnar glass material is ground with a grindstone until the remaining shaving amount becomes about 20 μm, and then the outer peripheral surface is subjected to buff polishing using an abrasive to obtain an arithmetic average roughness Ra. Since the polishing is performed so as to be 0.05 μm or less, the outer peripheral surface of the glass material can be processed to a predetermined arithmetic average roughness in a short time. Also, the inner peripheral surface of the hole of the glass tube formed by drilling the glass material by drilling or vacuum forming is adjusted so that the arithmetic average roughness Ra is 0.05 μm or less by a brush using an abrasive. Since the polishing is performed, the inner peripheral surface of the glass tube can be processed to a predetermined arithmetic average roughness in a short time.
[0019]
According to a fourth aspect of the present invention, in the method for stretching a glass member according to the second or third aspect, the brush is obtained by implanting a synthetic fiber in a metal wire, and the brush is inserted into a hole of the glass tube. The gist is to grind the inner peripheral surface of the glass tube by rotating the brush while applying an abrasive.
[0020]
According to this configuration, the brush in which the synthetic fiber is implanted in the metal wire is inserted into the hole of the glass tube, and the inner surface of the glass tube is polished by rotating the brush while applying an abrasive. Can be easily and quickly processed to a predetermined arithmetic average roughness.
[0021]
According to a fifth aspect of the present invention, in the method for stretching a glass member according to any one of the second to fourth aspects, the capillary is a glass capillary to which an optical fiber is adhered and fixed to an inner peripheral surface thereof. Is the gist.
[0022]
According to this configuration, the number of crystal particles (projections) generated by devitrification on the inner peripheral surface and the outer peripheral surface of the glass capillary to which the optical fiber is adhered and fixed to the inner peripheral surface is reduced. Since the number of crystal particles generated by devitrification is reduced in this way, when the optical fiber is inserted into and fixed to the inner periphery of a glass capillary formed by stretching, the optical fiber is not damaged by the crystal particles. It is possible to suppress the decrease in the transmittance of the glass capillary while suppressing the decrease.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method for manufacturing a glass capillary that embodies a method for stretching a glass member according to the present invention will be described with reference to the drawings.
[0024]
2 and 3 show a glass capillary 21 as a capillary tube manufactured by the manufacturing method of the present embodiment. At the center of the glass capillary 21, an optical fiber having an outer diameter of 0.125 mm (125 μm), not shown, is inserted, and a mounting hole 22 for the optical fiber, which is fixed with an adhesive, is formed. The inner diameter A of the mounting hole 22 is about 0.126 mm, and the outer diameter B is about 0.25 to 3 mm.
[0025]
Next, a method of manufacturing the glass capillary 21 shown in FIGS. 2 and 3 will be described. This manufacturing method includes the following steps.
(Step 1) A step of grinding the outer peripheral surface of a cylindrical glass material (not shown) until it has a predetermined outer diameter. Here, the outer peripheral surface of the cylindrical glass material is ground with a grindstone until the remaining shaving allowance is about 20 μm. In such a ground state, the arithmetic average roughness Ra of the outer peripheral surface of the glass material is about 0.5 μm.
[0026]
(Step 2) A step of forming a glass tube 11 as a glass member shown in FIG. 4 by processing a hole having a predetermined inner diameter in a glass material. Here, the holes are processed by a drill or a vacuum forming method. The arithmetic average roughness Ra of the inner peripheral surface of the hole thus processed is about 1.0 μm.
[0027]
(Step 3) A step of polishing the inner peripheral surface 11a of the glass tube 11 until the arithmetic average roughness Ra becomes 0.05 μm or less. Here, the inner peripheral surface is polished by a brush using an abrasive such as cerium oxide so that the arithmetic average roughness Ra is 0.05 μm or less.
[0028]
(Step 4) A step of polishing the outer peripheral surface 11b of the glass tube 11 until the arithmetic average roughness Ra becomes 0.05 μm or less. Here, the polishing is performed by buffing using an abrasive such as cerium oxide so that the arithmetic average roughness Ra becomes 0.05 μm or less. Either step 3 or step 4 may be performed first.
[0029]
(Step 5) The glass tube 11 is heated at a predetermined temperature by the heating device 12 and stretch-formed to produce a thin cylindrical glass tube 13.
(Step 6) A step of cutting the thin cylindrical glass tube 13 produced in the above step 5 into a predetermined length. Thus, the high-precision glass capillary 21 shown in FIGS. 2 and 3 is completed.
[0030]
In step 5 described above, for example, a glass tube 11 having an outer diameter of 1 mm is obtained by using a glass tube 11 having an outer diameter of 50 mm and stretching at a stretching ratio of 50 times. In the case where the glass capillary 21 for holding the optical fiber is manufactured, the inner diameter of the glass tube 11 before stretching is set to about 6.6 so that the finished diameter of the mounting hole 22 becomes 0.126 mm. It is necessary to process it to 3 mm. Since the glass capillary 21 is for holding an optical fiber having an outer diameter of 125 μm (0.125 mm), the inner diameter after stretching is defined as 0.126 mm. However, the finished dimension of the outer diameter of the glass capillary 21 is not limited to 1 mm. The stretching ratio is determined based on the ratio of the outer diameter of the glass material as the raw material to the finished outer diameter, and then the inner diameter of the raw material is processed to a predetermined value. The predetermined value is a value such that the inner diameter after stretching at the determined stretching ratio is 0.126 mm. In the case of the above-mentioned stretching ratio of 50 times, it is about 6.3 mm.
[0031]
The brush used in step 3 is a brush obtained by implanting a synthetic fiber in a metal wire. The brush is inserted into a hole (inner peripheral surface 11a) of the glass tube 11 before stretching, and is rotated while applying an abrasive such as cerium oxide to polish the inner peripheral surface 11a of the glass tube 11.
[0032]
According to the embodiment configured as described above, the following operational effects can be obtained.
Before the stretch molding, the inner peripheral surface 11a and the outer peripheral surface 11b of the glass tube 11 are polished so that the arithmetic average roughness Ra is 0.05 μm or less. Thus, it has been found that the number of crystal particles (projections) generated by devitrification on the inner peripheral surface and the outer peripheral surface of the glass capillary 21 produced by the stretch molding is far reduced as compared with the above conventional example. The appearance of the extremely small number of occurrences is shown in the outer diameter photograph in the lower column of FIG. In this photograph, the outer peripheral surface of the glass capillary 21 is photographed by a scanning electron microscope at the same photograph size as that of the conventional example. The glass capillary 21 used for the photographing was produced by stretching under the conditions of a stretching temperature of 850 ° C., a glass supply speed of about 1 mm / min, and a stretching speed of about 2500 mm / min. .
[0033]
Also, in FIG. 1, the above-mentioned “devitrification area ratio” is used to quantitatively indicate the number of crystal particles (projections) generated by devitrification. The “devitrification area ratio” is obtained by calculating the ratio of the total area of the crystal particles (black portion) 25 to the total area of the photograph in the lower column of FIG. That is, the photograph is subdivided into a mesh shape, and the subdivided sections are classified as either “black” with crystal particles or “white” without the particles, and the crystal particles 25 are classified and aggregated. It is obtained by counting. The “devitrification area ratio” of the outer peripheral surface of the glass capillary 21 thus obtained is 0.1%, which is much smaller than the above-mentioned conventional example of 5.0%.
[0034]
The arithmetic average roughness Ra of the outer peripheral surface of the glass capillary 21 shown in the photograph is 0.04 μm. Although a photograph of the inner peripheral surface of the glass capillary 21 is not shown, the surface roughness of the inner peripheral surface is almost the same as the outer peripheral surface, and the inner peripheral surface has substantially the same “devitrification” as the outer peripheral surface. Crystal grains 25 are generated at the “area ratio”.
[0035]
As described above, according to the present embodiment, the number of crystal particles (projections) 25 generated by devitrification on the outer peripheral surface and the inner peripheral surface of the glass capillary 21 can be reduced. Thereby, the dimensional accuracy of the inner diameter and the outer diameter of the glass capillary 21 can be improved. Further, it is possible to prevent the optical fiber that is inserted into the mounting hole 22 of the glass capillary 21 and fixed by the adhesive from being damaged by the crystal particles, and to suppress a decrease in the transmittance of the capillary 21.
[0036]
In step 1, the outer peripheral surface of the cylindrical glass material (not shown) is ground with a grindstone until the remaining allowance is about 20 μm, and then in step 4, the outer peripheral surface (the outer peripheral surface 11a of the glass tube 11) is ground. ) Is polished by buff polishing using an abrasive such as cerium oxide so that the arithmetic average roughness Ra is 0.05 μm or less. Therefore, the outer peripheral surface can be processed to a predetermined arithmetic average roughness in a short time.
[0037]
In the above step 2, the inner peripheral surface 11a of the hole of the glass tube 11 formed by drilling or drilling the glass material by a drilling method or a vacuum forming method is used. Polishing is performed so that Ra is 0.05 μm or less. Therefore, the inner peripheral surface 11a can be easily and quickly processed to a predetermined arithmetic average roughness.
[0038]
In the above step 3, the inner peripheral surface 11a of the glass tube 11 is polished by a brush using an abrasive such as cerium oxide so that the arithmetic average roughness Ra of the inner peripheral surface is 0.05 μm or less. The polishing is performed by inserting a brush in which a synthetic wire is implanted into a metal wire into a hole of the glass tube 11 and rotating the brush while applying an abrasive to polish the inner peripheral surface 11a of the glass tube 11. The surface can be easily and quickly processed to a predetermined arithmetic average roughness.
[0039]
[Modifications]
The present invention can be embodied with the following modifications.
In the above-described embodiment, the method of forming the glass capillary 21 as the capillary by stretching the glass tube 11 as the glass member has been described. However, the present invention can be applied to all glass materials that are heated and drawn. It is. For example, when a glass member such as a glass tube having an arbitrary shape other than a circular cross section or a solid rod made of glass is stretched by heating, the surface of the glass member is subjected to arithmetic average roughness Ra before stretching. The present invention is also applicable to a case where the polishing is performed so that the thickness is 0.05 μm or less. In this case, the same operation and effect as those of the above embodiment can be obtained.
[0040]
In the above-described embodiment, an example in which the present invention is applied to a method for manufacturing a glass capillary having a hole diameter of about 0.126 mm, which is a capillary for holding an optical fiber, is described. The invention can also be applied to the manufacture of tubes.
[0041]
In Step 1 of the above embodiment, the outer peripheral surface of the cylindrical glass material is ground with a grindstone until the remaining shaving allowance is about 20 μm, but the remaining shaving allowance is not limited to 20 μm. It can be changed to an appropriate value.
[0042]
In step 3 of the embodiment, the inner peripheral surface 11a of the glass tube 11 is polished by a brush using an abrasive such as cerium oxide so that the arithmetic average roughness Ra is 0.05 μm or less. However, the abrasive used at this time is not limited to cerium oxide. Similarly, the abrasive used in step 4 is not limited to cerium oxide.
[0043]
The polishing performed in step 3 and step 4 of the above embodiment may be performed by chemical polishing or thermal polishing.
[0044]
【The invention's effect】
As described above, according to the first aspect of the present invention, the number of crystal particles (projections) generated by devitrification is reduced, so that the dimensional accuracy of a glass product manufactured by stretch molding is improved. In addition, it is possible to suppress damage to other members due to crystal particles on the surface of the glass product, and to suppress a decrease in transmittance of the glass product.
[0045]
According to the second aspect of the invention, the dimensional accuracy of a capillary manufactured by stretch molding is improved. In addition, when another member such as an optical fiber is inserted into and fixed to the inner periphery of the capillary, the other member can be prevented from being damaged by the crystal particles, and a decrease in the transmittance of the capillary can be suppressed.
[0046]
According to the invention according to claim 3, the outer peripheral surface of the glass tube can be processed to the predetermined arithmetic average roughness in a short time, and the inner peripheral surface of the glass tube also has the predetermined arithmetic average roughness in a short time. Can be processed.
[0047]
According to the invention of claim 4, the inner peripheral surface of the glass tube can be easily and quickly processed to a predetermined arithmetic average roughness.
According to the invention according to claim 5, when the optical fiber is inserted into and fixed to the inner periphery of the glass capillary formed by the stretch molding, the optical fiber can be prevented from being damaged by the crystal particles, and the glass capillary can be suppressed. Can be suppressed from decreasing.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing various data such as an electron micrograph for comparing a capillary manufactured according to an embodiment with a capillary manufactured according to a conventional example.
FIG. 2 is a side view showing a capillary manufactured according to one embodiment.
FIG. 3 is a front view showing the capillary of FIG. 2;
FIG. 4 is a schematic explanatory view showing a method for manufacturing a capillary.
[Explanation of symbols]
11, 13: glass tube, 11a: inner peripheral surface, 11b: outer peripheral surface, 21: glass capillary as a capillary tube.

Claims (5)

ガラス部材を加熱して延伸成形するガラス部材の延伸加工方法であって、
前記延伸成形前に、前記ガラス部材の表面を算術平均粗さRaが0.05μm以下になるように研磨することを特徴とするガラス部材の延伸加工方法。
A method for stretching a glass member in which the glass member is stretched by heating the glass member,
A method for stretching a glass member, wherein the surface of the glass member is polished so that an arithmetic average roughness Ra is 0.05 μm or less before the stretch molding.
前記ガラス部材は前記延伸成形により毛細管を作るためのガラス管であり、前記延伸成形前に、前記ガラス管の内周面および外周面をそれぞれ、算術平均粗さRaが0.05μm以下になるように研磨することを特徴とする請求項1に記載のガラス部材の延伸加工方法。The glass member is a glass tube for making a capillary tube by the stretch molding, and before the stretch molding, the inner peripheral surface and the outer peripheral surface of the glass tube are each such that the arithmetic average roughness Ra is 0.05 μm or less. The method for stretching a glass member according to claim 1, wherein the glass member is polished. 前記ガラス管は、円柱状のガラス素材の外周面を残りの削り代が20μm程度になるまで砥石で研削する工程と、この研削後に前記ガラス素材の外周面を、研磨剤を用いたバフ研磨により算術平均粗さRaが0.05μm以下になるように研磨する工程と、前記ガラス素材にドリル或いは真空成形法により孔を加工する工程と、該孔加工で作られた孔の内周面を、研磨剤を用いたブラシにより算術平均粗さRaが0.05μm以下になるように研磨する工程とで作製されることを特徴とする請求項2に記載のガラス部材の延伸加工方法。The glass tube is a step of grinding the outer peripheral surface of the cylindrical glass material with a grindstone until the remaining cutting allowance is about 20 μm, and after this grinding, the outer peripheral surface of the glass material is subjected to buff polishing using an abrasive. A step of polishing so that the arithmetic average roughness Ra becomes 0.05 μm or less, a step of processing a hole in the glass material by a drill or a vacuum forming method, and an inner peripheral surface of the hole formed by the hole processing, Polishing the glass member with a brush using an abrasive so that the arithmetic average roughness Ra becomes 0.05 μm or less. 前記ブラシは金属ワイヤに合成繊維を植え付けたもので、このブラシを前記ガラス管の孔に挿入し、研磨剤をかけながら前記ブラシを回転させることにより前記ガラス管の内周面を研磨することを特徴とする請求項2又は3に記載のガラス部材の延伸加工方法。The brush is made by implanting a synthetic fiber into a metal wire.The brush is inserted into a hole of the glass tube, and the inner surface of the glass tube is polished by rotating the brush while applying an abrasive. The method for stretching a glass member according to claim 2 or 3, wherein 前記毛細管はその内周面に光ファイバが接着固定されるガラス製キャピラリであることを特徴とする請求項2〜4のいずれか一項に記載のガラス部材の延伸加工方法。The method for stretching a glass member according to any one of claims 2 to 4, wherein the capillary is a glass capillary to which an optical fiber is adhered and fixed to an inner peripheral surface thereof.
JP2002290999A 2002-10-03 2002-10-03 Method for drawing glass member Pending JP2004123461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290999A JP2004123461A (en) 2002-10-03 2002-10-03 Method for drawing glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290999A JP2004123461A (en) 2002-10-03 2002-10-03 Method for drawing glass member

Publications (1)

Publication Number Publication Date
JP2004123461A true JP2004123461A (en) 2004-04-22

Family

ID=32282709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290999A Pending JP2004123461A (en) 2002-10-03 2002-10-03 Method for drawing glass member

Country Status (1)

Country Link
JP (1) JP2004123461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200109078A1 (en) * 2018-10-09 2020-04-09 Heraeus Quarzglas Gmbh & Co. Kg Capillary tube and method of producing the same
CN112645570A (en) * 2019-10-10 2021-04-13 Hoya株式会社 Round rod formed glass and manufacturing method thereof
JP7495784B2 (en) 2019-10-10 2024-06-05 Hoya株式会社 Round rod molded glass and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200109078A1 (en) * 2018-10-09 2020-04-09 Heraeus Quarzglas Gmbh & Co. Kg Capillary tube and method of producing the same
CN111018327A (en) * 2018-10-09 2020-04-17 贺利氏石英玻璃有限两合公司 Capillary tube and method for manufacturing the same
CN111018327B (en) * 2018-10-09 2022-06-28 贺利氏石英玻璃有限两合公司 Capillary tube and method for manufacturing the same
CN112645570A (en) * 2019-10-10 2021-04-13 Hoya株式会社 Round rod formed glass and manufacturing method thereof
JP2021062981A (en) * 2019-10-10 2021-04-22 Hoya株式会社 Round bar molded glass and method for producing the same
JP7495784B2 (en) 2019-10-10 2024-06-05 Hoya株式会社 Round rod molded glass and its manufacturing method

Similar Documents

Publication Publication Date Title
TWI462170B (en) Silicon wafer wiping device and silicon wafer manufacturing method and by etching silicon wafer
TW406326B (en) Method for manufacturing semiconductor wafers
JP4915146B2 (en) Wafer manufacturing method
JP6252098B2 (en) Square mold substrate
JP2011134828A (en) Semiconductor wafer and method of manufacturing the same
JP2011134432A (en) Magnetic recording medium glass substrate and method of manufacturing the same
JPH01147403A (en) Molded glass lens
JP2007277043A (en) Cutting method of glass substrate and optical filter
JP2003054965A (en) Method for press-molding glass and method for manufacturing glass substrate for hard disk using the same method
JP2004123461A (en) Method for drawing glass member
CN110270889A (en) A kind of production method and system of glassware
CN102059747A (en) Method for forming sapphire square hole
JP5074845B2 (en) Semiconductor wafer grinding method and semiconductor wafer processing method
JP4103808B2 (en) Wafer grinding method and wafer
JP3528166B2 (en) Manufacturing method of high flatness wafer
JP4085643B2 (en) Method for manufacturing hemispherical lens
JP6948988B2 (en) Photomask substrate and its manufacturing method
JP2956109B2 (en) Manufacturing method of precision mold
JP2604488B2 (en) Bonded wafer and manufacturing method thereof
US20200270174A1 (en) Method for manufacturing disk-shaped glass substrate, method for manufacturing thin glass substrate, method for manufacturing light-guiding plate, and disk-shaped glass substrate
JP3128928B2 (en) Lens molding die and lens molding method
WO2022219955A1 (en) Method for manufacturing semiconductor wafer
JP7131724B1 (en) Semiconductor wafer manufacturing method
JP7003178B2 (en) Manufacturing method of disk-shaped glass substrate, manufacturing method of thin glass substrate, manufacturing method of light guide plate and disk-shaped glass substrate
TWI329044B (en) Grinding wheel and grinding method