JP2004123435A - Black silica glass component and its manufacturing process - Google Patents
Black silica glass component and its manufacturing process Download PDFInfo
- Publication number
- JP2004123435A JP2004123435A JP2002288946A JP2002288946A JP2004123435A JP 2004123435 A JP2004123435 A JP 2004123435A JP 2002288946 A JP2002288946 A JP 2002288946A JP 2002288946 A JP2002288946 A JP 2002288946A JP 2004123435 A JP2004123435 A JP 2004123435A
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- sprayed
- black
- film
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Glass Melting And Manufacturing (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、黒色石英ガラスを溶射した石英ガラス部品に関し、特に半導体製造分野で使用される各種加熱処理装置の構成部材に好適な石英ガラス部品、及びその製造方法に関するものである。
【0002】
【従来の技術】
半導体製造に用いられる酸化拡散処理装置、CVD処理装置、ランプアニール装置等はシリコンウエハをチャンバーやベルジャー内で加熱する構造を有しており、そのチャンバーやベルジャーの材質としては石英ガラスが主に使用されている。これらの装置では、装置から熱が放散されることによる熱効率の低下、及びそれに起因する単位時間当りの処理数量(スループット)の低下が大きな問題となっている。
【0003】
これらの問題を解決する手段として、石英ガラス自身を黒色化して遮光性、あるいは遠赤外線放射性を高めることにより熱効率を向上する方法、或いは昇温速度を高速化する方法等が提案されている。(例えば、特許文献1参照)
石英ガラス自身を黒色化する方法としては、V、Mo、Nbの化合物あるいは炭素等を石英ガラス原料に添加混合して加熱溶融する方法が知られている。(例えば、特許文献2、3、4参照)この様な黒色石英ガラスでは、黒色化のために添加した物質の酸化を防ぐ必要があるため、還元雰囲気あるいは真空中で溶融することが必要であった。(例えば、特許文献5参照)
この様な従来の黒色石英ガラスでは、半導体製造装置で高温で使用した場合、黒色化のために添加した金属元素がチャンバー内を汚染するという問題があった。またこの様な方法で製造した当該黒色石英ガラス部品では、半導体製造装置の高温になる部分で使用した場合、結晶化して劣化し易いという問題があった。
【0004】
そこでこの様な問題の解決法として、黒色石英ガラスと透明石英ガラスを積層して耐熱性の型に充填し、真空炉で加熱溶融することにより黒色石英ガラスの表面を透明石英ガラスで覆うことが提案されている。(例えば、特許文献6参照)しかしこの様な方法で透明石英ガラス内部に積層した黒色石英ガラスでは、結晶化が必ずしも十分に抑制されなかった。また真空炉での製造が必要であるため、製法が煩雑であり、得られる部品の大きさに制限があり、なおかつ複雑な形状の部品には対応できなかった。
【0005】
一方、黒色石英ガラスの製法として、加熱炉内に設置した石英ガラスを1900℃以上の高温に加熱し、その上面に石英ガラス粉もしくは水晶粉を供給しながら酸水素火炎もしくは電気アーク火炎で加熱融着して肉盛りする方法の応用が考えられる。(例えば、特許文献7参照)しかし酸水素炎を用いる方法では、黒色石英ガラスの結晶化の問題は解決されない。またこの方法では、肉盛部の厚みや幅の精度が制御できないため、肉盛りの後で機械加工が必須であり、また大きな石英ガラス部品を製造することが困難であった。
【0006】
【特許文献1】
特開2002−75901公報
【特許文献2】
特開昭54−157121公報
【特許文献3】
特開平5−262535公報
【特許文献4】
特開平5−306142公報
【特許文献5】
特開平5−262535公報
【特許文献6】
2000−256037公報
【特許文献7】
特許3114835公報
【0007】
【発明が解決しようとする課題】
従来、黒色石英ガラス部品は、高温に加熱される部分に用いた場合、結晶化によって劣化し易いという問題があった。また従来黒色石英ガラス部品は真空炉等で溶融して製造されていたために、品種ごとに型や製造条件の最適化が必要であり、なおかつ得られる部品の大きさ、形状に制限があった。本発明の目的は、様々な形状及び仕様に柔軟に対応出来、なおかつ結晶化による劣化のない黒色の石英ガラス部品及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上述のような現状に鑑み、鋭意検討を行った結果、石英ガラス基材の表面に黒色の石英ガラス溶射膜を不活性ガス、或いは不活性ガスと水素ガス及び/又は炭化水素ガスの混合ガスを用いたプラズマ溶射により形成した石英ガラス部品では、遮光性、遮熱性が従来の黒色石英ガラス部品と同等以上の性能を有し、なおかつ結晶化による劣化がないことを見出し、本発明を完成するに至ったものである。
【0009】
以下本発明を詳細に説明する。
【0010】
本発明の石英ガラス部品は、石英ガラス基材上に黒色石英ガラスの溶射膜が形成されている石英ガラス部品である。
【0011】
石英ガラス部品は、酸化拡散処理装置、CVD処理装置、ランプアニール装置等に用いるチャンバーやベルジャーに用いるため、石英ガラス基材上とは、少なくとも石英ガラス部品をそれらの装置で用いる場合において特に遮光、遮熱が必要な部分を含まなければならない。但し、それ以外の部分に黒色石英ガラスが溶射されていることを妨げるものではない。黒色石英ガラス溶射膜を石英ガラス基材の全面にあるいは一部に形成したものは、遮光性や遮熱性だけでなく、遠赤外線放射性も有するものである。
【0012】
用いる石英ガラス基材の形状には制限はなく、本発明では平板状、ドーム状、リング状、管状などいかなる形状にも対応できる。
【0013】
石英ガラス基材の材質は特に制限はないが、強度と純度が要求される半導体製造装置に用いる為、天然水晶を精製し酸水素溶融炉やプラズマ溶融炉で溶融して形成された石英ガラス材料や、四塩化珪素を酸水素炎で加水分解して得られた合成石英ガラス材料などの高純度の石英ガラス材であることが好ましい。
【0014】
また石英ガラス基材の透明性は、透明、不透明いずれも用いることが可能である。不透明石英ガラスを石英ガラス基材として用いれば、赤外線を散乱させ、可視光も通さないことから、熱遮蔽効果が特に高まる。
【0015】
石英ガラス基材の厚みは特に制限はないが、溶射膜の成膜時にプラズマジェットの圧力で破壊しない為には0.5mm以上あることが好ましく、溶射時の熱衝撃で割れないためには30mm以下であることが好ましい。
【0016】
次に本発明の石英ガラスは、石英ガラス基材上に黒色石英ガラスの溶射膜が形成されているものである。黒色石英ガラスとは、石英ガラスが黒色を呈し、黒色であることによって可視光、紫外光、赤外光を透過しないものをいう。黒色とは、目視で純粋に黒色であることには限定されず、暗緑色、暗紫色等、異なる色調を含むもので黒色と同様の光遮蔽効果を有するものを含むものである。光透過率としては185〜25000nmの波長における透過率が1%以下であるものが好ましい。また黒色石英ガラス溶射膜の黒色化元素としてNb、V、Mo及びCからなる群より選ばれる1種以上の元素が含まれていることが好ましい。溶射膜中の黒色化元素の添加量は特に制限しないが、溶射膜中で0.1wt%以上10wt%以下用いれば十分である。
【0017】
また黒色石英ガラス溶射膜の膜厚は黒色化元素や添加量に異なるが、0.3mm以上あることが遮光性や遠赤外線放射性を出すために好ましい。
【0018】
本発明の黒色石英ガラスの溶射膜は、従来の黒色石英ガラスに比べて結晶化の問題がないことがひとつの特徴である。黒色石英ガラスの溶射膜を有する石英ガラス部品は、確かな理由は定かではないが、酸化雰囲気中での加熱によって結晶化による劣化が観測されなかった。考えられる理由としては、本発明の黒色石英ガラス部分は溶射膜であるため、従来の溶融石英ガラスとは組織構造が異なること、或いは不活性ガス、或いは不活性ガスと水素ガス及び/又は炭化水素ガスの混合ガスのプラズマ溶射による膜であるため、溶射膜中に還元性ガスが取り込まれ、それが結晶化を抑制していることが考えられる。
【0019】
次に本発明の石英ガラス部品は、前記黒色石英ガラス溶射膜の上に透明石英ガラス溶射膜及び/又は不透明石英ガラス溶射膜が積層されている石英ガラス部品である。
【0020】
黒色石英ガラス溶射膜に石英ガラス溶射膜を積層することで黒色化元素によるチャンバー内汚染の防止効果を高めることが出来る。黒色石英ガラス溶射膜のチャンバー内汚染の保護性能を特に高いものとするには、黒色石英ガラスの溶射膜の上に、石英ガラス溶射膜の膜厚を0.3mm以上とすることが好ましい。積層する溶射膜の膜厚には制限はないが、1〜3mm以内で十分である。この様に石英ガラス溶射膜を積層することによって、黒色石英ガラス溶射膜の機械的な摩耗により不純物が混入することが防げ、なおかつ基材からの不純物が熱的に拡散することを防止するバリヤにもなる。
【0021】
積層する石英ガラスは、透明、不透明いずれも用いることができる。不透明石英ガラスは何らかの元素を添加して不透明化したものでも、気泡を有することによって不透明にしたものでも良いが、不純物の拡散防止という目的からは、気泡によって不透明化したものを用いることが好ましい。
【0022】
黒色石英ガラス溶射膜に不透明石英ガラス溶射膜を積層したものでは、赤外線を散乱させ、可視光を通さないことから、熱遮蔽効果をさらに高めることが可能である。これらの石英ガラスの溶射膜の積層は、黒色石英ガラスの溶射膜の結晶化の機会をさらに低減する効果も期待できる。
【0023】
次に本発明の石英ガラス部品の製造方法を説明する。
【0024】
本発明の石英ガラス部品は、不活性ガス、或いは不活性ガスと水素ガス及び/又は炭化水素ガスの混合ガスをプラズマガスとしたプラズマ溶射法を用い、プラズマジェットにより石英ガラス基材又は形成された溶射膜の表面を溶融しながら溶射することによって製造出来る。
【0025】
本発明では不活性ガス単独、或いは不活性ガスと水素ガス及び/又は炭化水素ガスの混合ガスをプラズマガスとしたプラズマ溶射成膜する。この様な酸素を含まない、或いは還元性ガスを含むプラズマガスによる溶射では、黒色化のために添加した元素、或いは化合物(例えばNbO2)を酸化することなく良好な黒色石英ガラス溶射膜を得ることができる。また通常の分析法では確認し難いが、これらのガス成分、特に還元性の水素ガスが溶射膜中に極微量取込まれることによって、黒色化添加物に起因する結晶化が抑制されると考えられる。また、炭化水素ガスを加える事により炭素が石英と反応して放散することを抑制することができる。
【0026】
不活性ガスとしては、ヘリウム、ネオン、アルゴン等が例示できるが、工業的にはアルゴンを用いることが好ましい。また、水素ガスを加える場合、その濃度は5〜50%、特に5〜30%の範囲が好ましい。また、炭化水素ガスとしては、メタン、エタン、プロパン、エチレン、アセチレン等が例示できるが、その濃度は5〜50%、特に5〜30%の範囲が好ましい。
【0027】
また本発明では、プラズマジェットにより石英ガラス基材表面を溶融しながら溶射する。石英ガラスの溶融温度は1800℃以上である。溶射膜を形成する際、プラズマジェットを石英ガラス基材表面に照射し、当該表面を溶融させながら原料粉末を供給して溶射を行うことにより、溶射された原料粉末をプラズマジェットで溶融した場所に衝突させ、十分な密着性を得て堆積することが出来る。一旦溶射膜の溶射層が形成された後は、引き続き溶射膜をその上に積層する際に、プラズマジェットを溶射層表面に照射し、当該表面を溶融させながら原料を供給することにより、溶射層間の密着性を高められる。
【0028】
プラズマジェットを石英ガラス基材に照射する溶射ガンと基材の距離は、用いる装置によって異なるが、例えば図1に示すような通常のプラズマ溶射装置の場合、石英ガラス基材と溶射ガン先端にある粉末供給口の溶射距離は50mm程度、溶射パワーを35kW以上とするような条件が例示できる。一方、減圧プラズマ溶射法を用いれば、プラズマジェットの形状が長くなる為、石英ガラス基材と溶射ガンの距離が100mm以上であっても石英ガラス基材表面を溶融することは可能である。
【0029】
特に大型の石英ガラス部品を製造する場合、プラズマ溶射法の中でも複トーチ型プラズマ溶射装置(特公平6−22719、溶射技術 Vol.11,No.1,p.1〜8(1991年)他参照)を用いて層流のプラズマジェットで溶射することが好ましい。図2に複トーチ型プラズマ溶射装置の概要を示す。複トーチ型プラズマ溶射装置では、長さが数百mmの層流炎プラズマ(通常は乱流状態で50mm程度)が形成出来るため、溶射距離が100mmでも本発明の溶射膜を形成することが出来る。
【0030】
プラズマ溶射の際に用いる溶射粉末としては、石英ガラス粉末又は水晶粉末に上記元素又は上記元素の化合物の微粉末をまぶして添着したもの、石英ガラス微粉末又は水晶微粉末に上記元素又は上記元素の化合物の微粉末をボールミル等で混合しスプレードライ法で得られた顆粒を焼結したもの、石英ガラス粉末又は水晶粉末に上記黒色化元素を含む化合物を添加してバルクの黒色化ガラスにした後に粉砕したもの等を用いることができる。
【0031】
溶射粉末の粒径は、平均粒径20μm以上100μm以下であることが好ましい。平均粒径20μm未満では十分な流動性がないためプラズマ中に原料を均一に導入することが難しく、均一な溶射膜が得られ難い。平均粒径が100μmを越えると溶融に時間がかかり不均一となり易く、還元性ガスが石英ガラスの中に取込まれ難いと考えられる。また黒色石英ガラス溶射膜表面に凹凸や斑点が生じたり、溶射ガンの線速度が遅くなることで基材の変形が起こり易い。
【0032】
黒色石英ガラス溶射膜の上に、透明或いは不透明石英ガラスを溶射して積層する方法は、上記と同様の石英ガラス粉末、または水晶粉で、黒色化元素、黒色化元素化合物を添加しないものを用いれば良い。溶射条件としては、上記の黒色石英ガラスと同様の条件を用いれば良いが、不透明石英ガラスとするためには、溶射距離を長くする、溶射ガンの移動速度を速くする、投入パワーを低くする等で不透明化することが出来る。
【0033】
石英ガラス基材の一部に黒色石英ガラス溶射膜を形成する場合、石英ガラス基材に段差をつけておいて低い部分に黒色石英ガラス溶射膜を成膜することで段差のない黒色石英ガラス溶射部品を製造することもできる。図3に示すように石英ガラス基材の同一面に黒色石英ガラス溶射膜及び透明石英ガラス溶射膜を形成することにより、段差がない黒色石英ガラス溶射部品を製造することができる。この様な石英ガラス部品は、曲面で加工に手間がかかるような部分でも溶射のみで対応でき、後で加工する必要がない
【0034】
【実施例】
本発明を実施例に基づき更に詳細に説明するが本発明はこれらの実施例のみに限定されるものではない。
【0035】
実施例1
幅40mm長さ600mm厚み2mmの透明石英ガラス基材の上に、図2に示すような複トーチ型プラズマ溶射装置を用いて黒色石英ガラス溶射膜を形成した。プラズマガスとして純アルゴンガスを用い流量を10SLMとして、23kWの電力を投入することで長さ約300mmの層流のプラズマジェットを生成した。溶射距離を100mmとして基材の長さ方向の端から端まで溶射ガンを100mm/sの速度で移動することで透明石英ガラス基材の全面を加熱した。加熱を全面に渡って2回行うことで予熱温度を900℃とした。
【0036】
次に、プラズマガスをアルゴンガスに水素ガスを10%混合したガスに変え、溶射粉末をアルゴンガスに10g/分の速度で供給して黒色溶射膜を形成した。溶射粉末はニオブ(Nb)を0.8wt%添加した黒色石英ガラス材を粉砕し、粒径が30μm以上65μm以下となるように篩い分け、10%フッ酸に1時間浸漬後、純水でリンスして乾燥したものを用いた。溶射距離は100mmとして、原料粉末の溶射中にプラズマジェットのフレームが石英ガラス基材に触れる条件で、石英ガラス基材の表面を溶融しながら溶射膜を形成した。溶射は、基材の長さ方向の端から端まで溶射ガンを100mm/sの速度で透明石英ガラス基材上に溶射し、溶射を全面に渡って5回行うことで膜厚1mmの黒色石英ガラス溶射膜を得た。溶射直後の基材温度は1000℃であった。得られた溶射膜の表面には密着性が不十分な粒状物が溶射膜表面に付着していた為、溶射粉末を供給することなくさらに1回、溶射膜表面の全面に原料を供給しないプラズマジェットを照射し、表面に剥離し易い粒状付着物のない黒色石英ガラス溶射部品を製造した。
【0037】
得られた黒色石英ガラス溶射部品は、色むらがなく全面で黒色を呈し、185〜25000nmの波長域で光透過度を測定したところ、いずれの波長の透過率も0.5%以下であった。また、X線回折では結晶性物質は観測されず、ガラス状態であった。
【0038】
実施例2
幅150mm長さ200mm厚み4mmの透明石英ガラス基材を用い、図2に示すような複トーチ型プラズマ溶射装置を用いて黒色石英ガラス溶射膜を形成した。プラズマガスとして純アルゴンガスを用い流量を10SLMとして、23kWの電力を投入することで長さ約300mmの層流のプラズマジェットを生成した。溶射距離を100mmとして基材の長手方向の端から端まで溶射ガンを100mm/sの速度で移動することで透明石英ガラス基材の全面を加熱した。加熱を全面に渡って2回行うことで予熱温度を950℃とした。
【0039】
次に、プラズマガスをアルゴンガスに水素ガスを10%混合したガスに変え、溶射粉末をアルゴンガスに10g/分の速度で供給して、溶射距離を100mmとして基材の長さ方向の端から端まで溶射ガンを100mm/sの速度で移動して透明石英ガラス基材に溶射した。溶射を全面に渡って7回行うことで膜厚1.4mmの黒色石英ガラス溶射膜を得た。溶射粉末は、バナジウム(V)を3wt%添加した黒色石英ガラス材を粉砕し、粒径が30μm以上65μm以下となるように篩い分け、10%フッ酸に1時間浸漬後、純水でリンスして乾燥したものを用いた。溶射直後の基材温度は1050℃であった。
【0040】
次に溶射粉末を平均粒径が40μmの高純度水晶粉末に交換し、上記の黒色石英ガラス溶射膜と同じ条件で溶射し、最後に、溶射粉末を供給することなく溶射ガンを100mm/sの速度で移動して溶射膜表面の全面をプラズマジェットで照射することで、表面が平滑な透明石英ガラス溶射膜(膜厚1mm)を積層した。
【0041】
得られた黒色石英ガラス溶射部品は、色むらがなく全面で黒色を呈し、185〜25000nmの波長域で光透過度を測定したところ、いずれの波長でもほとんど透過率は零であった。また、X線回折を調べたところ、黒色石英ガラス溶射膜及び透明石英ガラス溶射膜がガラス状態であることが確認された。
【0042】
実施例3
外径が20mm厚み1mmで長さが550mmの透明石英ガラス管の外周の半分を内径が20mmで半割の石英管でマスクし、複トーチ型プラズマ溶射装置を用いて黒色石英ガラス溶射膜を形成した。プラズマガスとして純アルゴンガスを用い流量を10SLMとして、23kWの電力を投入することで長さ約300mmの層流のプラズマジェットを生成した。溶射距離を100mmとして透明石英ガラス管の長さ方向の端から端まで溶射ガンを100mm/sの速度で移動回転させることで透明石英ガラス管の全面を加熱した。加熱を全面に渡って2回行うことで予熱温度を900℃とした。
【0043】
次に、プラズマガスをアルゴンガスに水素ガスを10%混合したガスに変え、溶射粉末をアルゴンガスに10g/分の速度で供給して、溶射距離を100mmとして基材の長手方向の端から端まで溶射ガンを100mm/sの速度で移動回転させ、透明石英ガラス管のマスクされてない部分にのみ溶射膜を形成した。溶射を5回行うことで膜厚1mmの黒色石英ガラス溶射膜を得た。溶射粉末は、モリブデン(Mo)を5wt%添加した黒色石英ガラス材を粉砕し、粒径が30μm以上65μm以下となるように篩い分け、10%フッ酸に1時間浸漬後、純水でリンスして乾燥したものを用いた。溶射直後の基材温度は1050℃であった。
【0044】
次に溶射粉末を平均粒径が40μmの高純度水晶粉末に交換し、マスクに用いていた半割の石英管を取り外し、先の黒色石英ガラス溶射膜形成部を内径が22mmで半割の石英管でマスクし、上記の黒色石英ガラス溶射膜形成の際にマスクしていた部分に同じ条件で膜厚1mmの透明石英ガラス溶射膜を形成した。
【0045】
最後に石英管のマスクを外し、溶射粉末を供給することなく溶射ガンを100mm/sの速度で振幅させながら20度ピッチで全周をプラズマジェットで照射することにより、黒色石英ガラス溶射膜部と透明石英ガラス溶射膜部の段差のない石英ガラス部品を製造した。
【0046】
得られた黒色石英ガラス溶射部品は、色むらがなく黒色を呈し、185〜25000nmの波長域で光透過度を測定したところ、いずれの波長でもほとんど透過率は零であった。また、X線回折を調べたところ、黒色石英ガラス溶射膜及び透明石英ガラス溶射膜いずれもガラス状態であることが確認された。
【0047】
実施例4
直径250mmφ厚み2mmtの不透明石英ガラス円板(東ソークオーツ社製OP−3ガラス)を基材に用い、図2に示す様な複トーチ型プラズマ溶射装置を用いて黒色石英ガラス溶射膜を形成した。プラズマガスとしてアルゴンガスを用い流量を10SLMとして、25kWの電力を投入することで長さ約300mmの層流のプラズマジェットを生成した。溶射距離を100mmとして溶射ガンを120mm/sの速度で350mmの幅に渡って振幅させながら移動し、不透明石英ガラス基材の全面を加熱した。加熱を全面に渡って2回行うことで予熱温度を850℃とした。
【0048】
次に、プラズマガスをアルゴンガスにメタンガスを10%混合したガスに変え、溶射粉末をアルゴンガスに10g/分の速度で、溶射距離を100mmとして溶射ガンを120mm/sの速度で350mmの幅に渡って振りながら移動させ、溶射を全面に渡って5回行うことで膜厚1mmの黒色石英ガラス溶射膜を得た。溶射粉末は、カーボン(C)を3wt%添加した黒色石英ガラス材を粉砕し、粒径が30μm以上65μm以下となるように篩い分け、10%フッ酸に1時間浸漬後、純水でリンスして乾燥したものを用いた。黒色石英ガラス溶射直後の基材温度は1000℃であった。
【0049】
次に溶射粉末を平均粒径が40μmの高純度水晶粉末に交換し、プラズマガスをアルゴンガスに水素ガスを10%混合したガスに変え、黒色石英ガラス溶射膜上に透明石英ガラス溶射膜を形成した。電力、溶射粉末供給量、溶射距離は上記の黒色石英ガラス溶射と同じ条件としたが、溶射ガンの移動速度は200mm/sとし、350mmの幅に渡って振幅させながら移動させ全面に渡って5回繰り返した。最後に、溶射粉末を供給することなく溶射ガンを120mm/sの速度で350mmの幅に渡って振幅させながら移動させ、溶射膜表面の全面をプラズマジェットで照射した。得られた石英ガラス部品は、表面が平らで空孔率が30%の不透明石英ガラスの上に黒色石英ガラスの溶射層があり、その上に不透明石英ガラスの溶射膜が積層された石英ガラス部品が得られた。
【0050】
得られた黒色石英ガラス溶射部品は、色むらがなく黒色を呈し、185〜25000nmの波長域で光透過度を測定したところ、いずれの波長でもほとんど透過率は零であった。また、X線回折を調べたところ、黒色石英ガラス溶射膜及び不透明石英ガラス溶射膜いずれもガラス状態であることが確認された。
【0051】
比較例1
バナジウム(V)を3wt%添加した黒色石英ガラス材を粉砕し、粒径が30μm以上65μm以下となるように篩い分けたものをプレス成型したもの、及び透明石英ガラス上に積層したものを夫々真空溶融炉中で加熱溶解し、全体が黒色の石英ガラス、及び透明石英ガラス上に黒色石英ガラスが積層された石英ガラスの塊を製造した。これらの塊を切断、研磨し、石英ガラス部品とした。
【0052】
実施例1から実施例4で得られた本発明の石英ガラス部品と、上記の全体が黒色の石英ガラス部品、積層石英ガラス部品を電気炉に入れ、大気中、1200℃で3日間保持した。冷却後ガラスを取り出して状態を観察したところ、実施例1から実施例4の石英ガラス部品ではX線回折によって結晶化は認められなかった。また実施例1から実施例3については目視によっても透明石英ガラス部分で失透して結晶化したところはなく、黒色石英ガラスの溶射膜にも大きな変化は見られず、耐熱性が良い石英ガラス部品であった。
【0053】
一方、真空溶融炉で製造した積層石英ガラス部品は、透明石英ガラスと黒色石英ガラスの界面に幾つかの失透部が観測された。また全体が黒色の石英ガラスでは、所々に斑点が見られ、黒色化のために添加した化合物の酸化が観測された。
【0054】
【発明の効果】
本発明の黒色石英ガラスを溶射した石英ガラス部品及びその製造方法は、以下の効果を有する。
(1)黒色石英ガラスが被覆されているため、光透過率が低く遮熱性に優れている。
(2)従来の溶融黒色石英ガラスとは異なり、熱を加えた際に結晶化による劣化がない。
(3)黒色石英ガラスの上に透明又は不透明石英ガラスが溶射されたものは、基材或いは黒色石英ガラスに由来する不純物拡散の問題が特に小さい。
(4)様々な形状の石英ガラス部品を簡便に製造することができる。
【図面の簡単な説明】
【図1】本発明の黒色石英ガラス溶射膜を形成するためのプラズマ溶射装置の一例である。
【図2】本発明の黒色石英ガラス溶射膜を形成するためのプラズマ溶射装置の別の一例である。
【図3】本発明の黒色石英ガラス溶射膜と透明石英ガラス溶射膜を石英ガラス基材の同一面に形成した黒色石英ガラス溶射部品の一例である。
【符号の説明】
10、20: カソード
11、21: アノード
12、22: プラズマガス
13、23: 粉末供給口
14、24: 溶射距離
15、25: 基材
16、26: 溶射膜
17、28: 直流電源
18、29: プラズマジェット
27: カソード保護用アルゴンガス
30: 石英ガラス基材
31: 黒色石英ガラス溶射膜
32: 透明石英ガラス溶射膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a quartz glass part sprayed with black quartz glass, and more particularly to a quartz glass part suitable as a constituent member of various heat treatment apparatuses used in a semiconductor manufacturing field, and a method of manufacturing the same.
[0002]
[Prior art]
Oxidation diffusion processing equipment, CVD processing equipment, lamp annealing equipment, etc. used in semiconductor manufacturing have a structure in which a silicon wafer is heated in a chamber or bell jar, and quartz glass is mainly used as the material of the chamber and bell jar. Have been. In these apparatuses, a serious problem is a reduction in thermal efficiency due to the dissipation of heat from the apparatus, and a reduction in the processing quantity (throughput) per unit time due to the reduction.
[0003]
As means for solving these problems, a method of improving thermal efficiency by blackening quartz glass itself to enhance light shielding properties or far-infrared radiation, or a method of increasing a heating rate have been proposed. (For example, see Patent Document 1)
As a method of blackening the quartz glass itself, a method of adding a V, Mo, Nb compound, carbon, or the like to a quartz glass raw material, mixing and heating and melting the quartz glass material is known. (For example, see Patent Documents 2, 3, and 4) In such a black quartz glass, it is necessary to prevent oxidation of a substance added for blackening, and thus it is necessary to melt in a reducing atmosphere or vacuum. Was. (For example, see Patent Document 5)
In such a conventional black quartz glass, when used at a high temperature in a semiconductor manufacturing apparatus, there is a problem that a metal element added for blackening contaminates the inside of the chamber. Further, the black quartz glass component manufactured by such a method has a problem that when used in a high temperature portion of a semiconductor manufacturing apparatus, it is easily crystallized and deteriorated.
[0004]
Therefore, as a solution to such a problem, black quartz glass and transparent quartz glass are laminated, filled in a heat-resistant mold, and heated and melted in a vacuum furnace to cover the surface of the black quartz glass with transparent quartz glass. Proposed. However, in the case of black quartz glass laminated inside transparent quartz glass by such a method, crystallization was not necessarily sufficiently suppressed. Further, since the production in a vacuum furnace is required, the production method is complicated, the size of the obtained parts is limited, and it is not possible to cope with parts having a complicated shape.
[0005]
On the other hand, as a method for producing black quartz glass, quartz glass placed in a heating furnace is heated to a high temperature of 1900 ° C. or more, and fused with an oxyhydrogen flame or an electric arc flame while supplying quartz glass powder or quartz powder to the upper surface. An application of the method of wearing and overlaying is considered. However, the method using oxyhydrogen flame does not solve the problem of crystallization of black quartz glass. Further, in this method, since the accuracy of the thickness and width of the build-up portion cannot be controlled, machining is required after the build-up, and it has been difficult to manufacture a large quartz glass part.
[0006]
[Patent Document 1]
JP-A-2002-75901
[Patent Document 2]
JP-A-54-157121
[Patent Document 3]
JP-A-5-262535
[Patent Document 4]
JP-A-5-306142
[Patent Document 5]
JP-A-5-262535
[Patent Document 6]
2000-256037
[Patent Document 7]
Japanese Patent No. 3114835
[0007]
[Problems to be solved by the invention]
Conventionally, when a black quartz glass part is used in a portion heated to a high temperature, there has been a problem that it is easily deteriorated by crystallization. In addition, since black quartz glass parts have conventionally been produced by melting in a vacuum furnace or the like, it is necessary to optimize the mold and manufacturing conditions for each product type, and the size and shape of the obtained parts are limited. An object of the present invention is to provide a black quartz glass part which can flexibly correspond to various shapes and specifications and does not deteriorate due to crystallization, and a method of manufacturing the same.
[0008]
[Means for Solving the Problems]
The present inventor has conducted intensive studies in view of the above-mentioned situation, and as a result, has found that a black quartz glass sprayed film is formed on a surface of a quartz glass substrate by an inert gas, or an inert gas and a hydrogen gas and / or a hydrocarbon. The quartz glass parts formed by plasma spraying using a gas mixture of gas have the same or better light-shielding and heat-shielding properties as conventional black quartz glass parts, and have been found to be free from deterioration due to crystallization. The invention has been completed.
[0009]
Hereinafter, the present invention will be described in detail.
[0010]
The quartz glass part of the present invention is a quartz glass part in which a sprayed film of black quartz glass is formed on a quartz glass substrate.
[0011]
Quartz glass parts are used for chambers and bell jars used in oxidation diffusion processing equipment, CVD processing equipment, lamp annealing equipment, etc. Must include parts requiring thermal insulation. However, this does not prevent the black quartz glass from being sprayed on other portions. When the sprayed black quartz glass film is formed on the entire surface or a part of the quartz glass substrate, it has far-infrared radiation as well as light-shielding and heat-shielding properties.
[0012]
The shape of the quartz glass substrate to be used is not limited, and the present invention can correspond to any shape such as a flat plate, a dome, a ring, and a tube.
[0013]
The material of the quartz glass substrate is not particularly limited, but it is a quartz glass material formed by purifying natural quartz and melting it in an oxyhydrogen melting furnace or a plasma melting furnace for use in a semiconductor manufacturing apparatus requiring strength and purity. Alternatively, a high-purity quartz glass material such as a synthetic quartz glass material obtained by hydrolyzing silicon tetrachloride with an oxyhydrogen flame is preferable.
[0014]
The transparency of the quartz glass substrate can be either transparent or opaque. When opaque quartz glass is used as a quartz glass substrate, infrared rays are scattered and visible light is not transmitted, so that the heat shielding effect is particularly enhanced.
[0015]
The thickness of the quartz glass substrate is not particularly limited, but is preferably 0.5 mm or more so as not to be broken by the pressure of the plasma jet at the time of forming the sprayed film, and 30 mm or more so as not to be broken by thermal shock at the time of spraying. The following is preferred.
[0016]
Next, the quartz glass of the present invention has a sprayed film of black quartz glass formed on a quartz glass substrate. The black quartz glass refers to a quartz glass that exhibits a black color and does not transmit visible light, ultraviolet light, and infrared light due to being black. The term “black” is not limited to pure black by visual observation, but includes those having different color tones such as dark green and dark purple and having the same light shielding effect as black. The light transmittance is preferably 1% or less at a wavelength of 185 to 25000 nm. Further, it is preferable that at least one element selected from the group consisting of Nb, V, Mo and C is included as a blackening element of the sprayed black quartz glass film. The addition amount of the blackening element in the sprayed film is not particularly limited, but it is sufficient to use 0.1 wt% or more and 10 wt% or less in the sprayed film.
[0017]
The thickness of the sprayed black quartz glass film differs depending on the blackening element and the amount of addition, but is preferably 0.3 mm or more in order to exhibit light shielding properties and far-infrared radiation.
[0018]
One of the features of the sprayed film of black quartz glass of the present invention is that there is no problem of crystallization as compared with the conventional black quartz glass. For a quartz glass part having a sprayed film of black quartz glass, although the exact reason is not clear, deterioration due to crystallization was not observed by heating in an oxidizing atmosphere. Possible reasons are that the black quartz glass part of the present invention is a sprayed film, and therefore has a different tissue structure from the conventional fused quartz glass, or an inert gas, or an inert gas and a hydrogen gas and / or a hydrocarbon. Since the film is formed by plasma spraying of a mixed gas of gases, it is conceivable that reducing gas is taken into the sprayed film, which suppresses crystallization.
[0019]
Next, the quartz glass part of the present invention is a quartz glass part in which a transparent quartz glass sprayed film and / or an opaque quartz glass sprayed film are laminated on the black quartz glass sprayed film.
[0020]
By laminating the sprayed quartz glass film on the sprayed black quartz glass film, the effect of preventing contamination in the chamber due to the blackening element can be enhanced. In order to particularly enhance the protection performance of the sprayed black quartz glass film in the chamber, the thickness of the sprayed quartz glass film on the sprayed black quartz glass film is preferably 0.3 mm or more. Although there is no limitation on the thickness of the sprayed film to be laminated, a thickness of 1 to 3 mm is sufficient. By laminating the sprayed quartz glass film in this manner, impurities can be prevented from being mixed due to mechanical abrasion of the sprayed black quartz glass film, and a barrier that prevents impurities from the base material from being thermally diffused can be obtained. Also.
[0021]
The quartz glass to be laminated can be either transparent or opaque. The opaque quartz glass may be made opaque by adding some element or made opaque by having bubbles, but it is preferable to use opaque quartz glass for the purpose of preventing diffusion of impurities.
[0022]
When the opaque quartz glass sprayed film is laminated on the black quartz glass sprayed film, infrared rays are scattered and visible light is not transmitted, so that the heat shielding effect can be further enhanced. The lamination of these sprayed films of quartz glass can also be expected to have the effect of further reducing the chance of crystallization of the sprayed film of black quartz glass.
[0023]
Next, a method for manufacturing a quartz glass component of the present invention will be described.
[0024]
The quartz glass component of the present invention is formed of a quartz glass substrate or formed by a plasma jet using a plasma spraying method using an inert gas or a mixed gas of an inert gas and a hydrogen gas and / or a hydrocarbon gas as a plasma gas. It can be manufactured by spraying while melting the surface of the sprayed film.
[0025]
In the present invention, a plasma sprayed film is formed by using an inert gas alone or a mixed gas of an inert gas, a hydrogen gas and / or a hydrocarbon gas as a plasma gas. In such thermal spraying using a plasma gas containing no oxygen or containing a reducing gas, it is possible to obtain a good black quartz glass sprayed film without oxidizing an element or compound (eg, NbO2) added for blackening. Can be. Although it is difficult to confirm by ordinary analysis methods, it is thought that crystallization caused by the blackening additive is suppressed by introducing a trace amount of these gas components, particularly reducing hydrogen gas, into the sprayed film. Can be Further, by adding the hydrocarbon gas, it is possible to suppress the carbon from reacting with the quartz and dissipating.
[0026]
Examples of the inert gas include helium, neon, argon and the like, but it is preferable to use argon industrially. When hydrogen gas is added, the concentration is preferably in the range of 5 to 50%, particularly preferably 5 to 30%. Examples of the hydrocarbon gas include methane, ethane, propane, ethylene, and acetylene, and the concentration thereof is preferably 5 to 50%, particularly preferably 5 to 30%.
[0027]
In the present invention, the quartz glass substrate surface is sprayed while being melted by the plasma jet. The melting temperature of quartz glass is 1800 ° C. or higher. When forming a sprayed film, the surface of the quartz glass substrate is irradiated with a plasma jet, and the raw material powder is supplied and sprayed while melting the surface, so that the sprayed raw material powder is melted by the plasma jet. Collision can be performed with sufficient adhesion. Once the sprayed layer of the sprayed film is formed, when the sprayed film is successively laminated thereon, the surface of the sprayed layer is irradiated with a plasma jet and the raw material is supplied while melting the surface, so that the sprayed layer is formed. Can be improved in adhesion.
[0028]
The distance between the spray gun that irradiates the plasma jet onto the quartz glass substrate and the substrate varies depending on the apparatus used. For example, in the case of a normal plasma spray apparatus as shown in FIG. 1, the distance is between the quartz glass substrate and the tip of the spray gun. Examples of such conditions include a spraying distance of the powder supply port of about 50 mm and a spraying power of 35 kW or more. On the other hand, if the reduced pressure plasma spraying method is used, since the shape of the plasma jet becomes longer, it is possible to melt the surface of the quartz glass substrate even if the distance between the quartz glass substrate and the spray gun is 100 mm or more.
[0029]
Particularly when manufacturing large quartz glass parts, among plasma spraying methods, see a double torch type plasma spraying apparatus (Japanese Patent Publication No. 6-22719, thermal spraying technology Vol. 11, No. 1, p. 1 to 8 (1991), etc.). ) Is preferably used for thermal spraying with a laminar plasma jet. FIG. 2 shows an outline of a double torch type plasma spraying apparatus. In the double torch type plasma spraying apparatus, since a laminar flame plasma having a length of several hundred mm (usually about 50 mm in a turbulent state) can be formed, the sprayed film of the present invention can be formed even when the spray distance is 100 mm. .
[0030]
As the thermal spraying powder used in the case of plasma spraying, a fine powder of the above-mentioned element or a compound of the above-mentioned element is sprinkled and attached to quartz glass powder or quartz powder, and the above-mentioned element or the above-mentioned element is added to quartz glass fine powder or quartz fine powder. After mixing the compound fine powder with a ball mill or the like and sintering the granules obtained by the spray drying method, adding the compound containing the blackening element to quartz glass powder or quartz powder to form a bulk blackened glass, A crushed product or the like can be used.
[0031]
The average particle diameter of the sprayed powder is preferably 20 μm or more and 100 μm or less. If the average particle diameter is less than 20 μm, it is difficult to uniformly introduce the raw material into the plasma due to insufficient fluidity, and it is difficult to obtain a uniform sprayed film. If the average particle size exceeds 100 μm, it takes a long time to melt and tends to be non-uniform, and it is considered that the reducing gas is difficult to be taken into quartz glass. In addition, irregularities and spots are generated on the surface of the sprayed black quartz glass film, and the base material is easily deformed due to a reduced linear velocity of the spray gun.
[0032]
The method of spraying transparent or opaque quartz glass on the sprayed black quartz glass film and laminating it uses the same quartz glass powder or quartz powder as above but without adding a blackening element or a blackening element compound. Good. As the thermal spraying conditions, the same conditions as those for the above-mentioned black quartz glass may be used.However, in order to obtain opaque quartz glass, the spraying distance is increased, the moving speed of the spray gun is increased, the input power is reduced, and the like. Can be made opaque.
[0033]
When forming a sprayed black quartz glass film on a part of a quartz glass substrate, a step is formed on the quartz glass substrate, and a black quartz glass sprayed film is formed on a lower part to spray black quartz glass without steps. Parts can also be manufactured. As shown in FIG. 3, by forming a black quartz glass sprayed film and a transparent quartz glass sprayed film on the same surface of a quartz glass substrate, a black quartz glass sprayed part having no steps can be manufactured. Such a quartz glass part can be processed only by thermal spraying even on a curved surface where processing is troublesome, there is no need to process later
[0034]
【Example】
The present invention will be described in more detail based on examples, but the present invention is not limited to only these examples.
[0035]
Example 1
A black quartz glass sprayed film was formed on a transparent quartz glass substrate having a width of 40 mm, a length of 600 mm, and a thickness of 2 mm using a double torch type plasma spraying apparatus as shown in FIG. A pure argon gas was used as the plasma gas, the flow rate was 10 SLM, and a power of 23 kW was applied to generate a laminar plasma jet having a length of about 300 mm. The entire surface of the transparent quartz glass substrate was heated by moving the spraying gun at a speed of 100 mm / s from one end of the substrate to the other in the length direction with the spraying distance being 100 mm. The preheating temperature was set to 900 ° C. by performing heating twice over the entire surface.
[0036]
Next, the plasma gas was changed to a gas in which hydrogen gas was mixed with argon gas at 10%, and the sprayed powder was supplied to argon gas at a rate of 10 g / min to form a black sprayed film. The sprayed powder is obtained by crushing a black quartz glass material to which 0.8 wt% of niobium (Nb) is added, sieving so that the particle diameter is 30 μm or more and 65 μm or less, immersing in 10% hydrofluoric acid for 1 hour, and rinsing with pure water. And dried. The spraying distance was 100 mm, and a sprayed film was formed while melting the surface of the quartz glass substrate under the condition that the plasma jet frame touched the quartz glass substrate during the spraying of the raw material powder. Thermal spraying is performed by spraying a spraying gun at a rate of 100 mm / s onto the transparent quartz glass substrate from one end to the other in the longitudinal direction of the base material, and performing the spraying five times over the entire surface to obtain a 1 mm-thick black quartz. A glass sprayed film was obtained. The substrate temperature immediately after the thermal spraying was 1000 ° C. Since particles having insufficient adhesion were adhered to the surface of the sprayed film obtained on the surface of the sprayed film, the plasma was not supplied to the entire surface of the sprayed film once more without supplying the sprayed powder. Irradiated with a jet to produce a sprayed black quartz glass part having no particulate matter that easily peeled off on the surface.
[0037]
The resulting black quartz glass sprayed part had black color on the entire surface without color unevenness, and the light transmittance was measured in a wavelength range of 185 to 25000 nm. The transmittance at any wavelength was 0.5% or less. . No crystalline substance was observed by X-ray diffraction, and the substance was in a glassy state.
[0038]
Example 2
Using a transparent quartz glass substrate having a width of 150 mm, a length of 200 mm, and a thickness of 4 mm, a sprayed black quartz glass film was formed using a double torch type plasma spraying apparatus as shown in FIG. A pure argon gas was used as the plasma gas, the flow rate was 10 SLM, and a power of 23 kW was applied to generate a laminar plasma jet having a length of about 300 mm. The entire surface of the transparent quartz glass substrate was heated by moving the spraying gun at a speed of 100 mm / s from one end of the substrate to the other in the longitudinal direction with the spraying distance being 100 mm. The preheating temperature was set to 950 ° C. by performing heating twice over the entire surface.
[0039]
Next, the plasma gas was changed to a gas in which hydrogen gas was mixed with argon gas at 10%, and the sprayed powder was supplied to the argon gas at a rate of 10 g / min. The spraying gun was moved to the end at a speed of 100 mm / s to spray the transparent quartz glass substrate. Thermal spraying was performed seven times over the entire surface to obtain a sprayed black quartz glass film having a thickness of 1.4 mm. The sprayed powder is obtained by crushing a black quartz glass material to which 3 wt% of vanadium (V) is added, sieving so that the particle diameter is 30 μm or more and 65 μm or less, immersing in 10% hydrofluoric acid for 1 hour, and rinsing with pure water. And dried. The substrate temperature immediately after thermal spraying was 1050 ° C.
[0040]
Next, the sprayed powder was replaced with a high-purity quartz powder having an average particle size of 40 μm, and sprayed under the same conditions as the above-mentioned black quartz glass sprayed film. Finally, the spray gun was set at 100 mm / s without supplying the sprayed powder. By moving at a speed and irradiating the entire surface of the sprayed film surface with a plasma jet, a transparent quartz glass sprayed film (film thickness: 1 mm) having a smooth surface was laminated.
[0041]
The black quartz glass sprayed part obtained had black color on the entire surface without color unevenness, and the light transmittance was measured in a wavelength range of 185 to 25000 nm. As a result, the transmittance was almost zero at any wavelength. In addition, X-ray diffraction analysis confirmed that the sprayed black quartz glass film and the sprayed transparent quartz glass film were in a glassy state.
[0042]
Example 3
A transparent quartz glass tube having an outer diameter of 20 mm, a thickness of 1 mm, and a length of 550 mm is masked by a half quartz tube having an inner diameter of 20 mm and a black quartz glass sprayed film using a double torch type plasma spraying device. did. A pure argon gas was used as the plasma gas, the flow rate was 10 SLM, and a power of 23 kW was applied to generate a laminar plasma jet having a length of about 300 mm. The entire surface of the transparent quartz glass tube was heated by moving and rotating the spraying gun at a speed of 100 mm / s from one end of the transparent quartz glass tube to the other in the longitudinal direction with the spraying distance being 100 mm. The preheating temperature was set to 900 ° C. by performing heating twice over the entire surface.
[0043]
Next, the plasma gas was changed to a gas in which hydrogen gas was mixed with argon gas at 10%, and the sprayed powder was supplied to the argon gas at a rate of 10 g / min. The spray gun was moved and rotated at a speed of 100 mm / s until the sprayed film was formed only on the unmasked portion of the transparent quartz glass tube. By performing the thermal spraying five times, a sprayed black quartz glass film having a thickness of 1 mm was obtained. The thermal spray powder is obtained by crushing a black quartz glass material to which molybdenum (Mo) is added at 5 wt%, sieving so that the particle size is 30 μm to 65 μm, immersing in 10% hydrofluoric acid for 1 hour, and rinsing with pure water. And dried. The substrate temperature immediately after thermal spraying was 1050 ° C.
[0044]
Next, the sprayed powder was replaced with a high-purity quartz powder having an average particle size of 40 μm, the quartz tube used for the mask was removed, and the black quartz glass sprayed film forming portion was made of quartz having an inner diameter of 22 mm and a half of quartz. A transparent quartz glass sprayed film having a thickness of 1 mm was formed under the same conditions on the portion masked when forming the sprayed black quartz glass film by masking with a tube.
[0045]
Finally, by removing the mask of the quartz tube and irradiating the entire circumference with a plasma jet at a pitch of 20 degrees while oscillating the spray gun at a speed of 100 mm / s without supplying the spray powder, the sprayed black quartz glass film portion is formed. A quartz glass part having no step in the transparent quartz glass sprayed film portion was manufactured.
[0046]
The black quartz glass sprayed part obtained was black without color unevenness, and its light transmittance was measured in a wavelength range of 185 to 25000 nm. The transmittance was almost zero at any wavelength. When X-ray diffraction was examined, it was confirmed that both the sprayed black quartz glass film and the sprayed transparent quartz glass film were in a glass state.
[0047]
Example 4
An opaque quartz glass disk (OP-3 glass manufactured by Tosoh Quartz Co., Ltd.) having a diameter of 250 mm and a thickness of 2 mmt was used as a base material, and a black quartz glass sprayed film was formed using a double torch type plasma spraying apparatus as shown in FIG. An argon gas was used as the plasma gas, the flow rate was 10 SLM, and a power of 25 kW was applied to generate a laminar plasma jet having a length of about 300 mm. The spraying gun was moved at a speed of 120 mm / s while oscillating over a width of 350 mm at a spraying distance of 100 mm, and the entire surface of the opaque quartz glass substrate was heated. The preheating temperature was set to 850 ° C. by performing heating twice over the entire surface.
[0048]
Next, the plasma gas was changed to a gas in which methane gas was mixed with argon gas at 10%, the sprayed powder was mixed with argon gas at a rate of 10 g / min, the spray distance was set to 100 mm, and the spray gun was set to a width of 350 mm at a speed of 120 mm / s. It was moved while shaking, and spraying was performed 5 times over the entire surface to obtain a sprayed black quartz glass film having a thickness of 1 mm. The thermal spray powder is obtained by crushing a black quartz glass material to which 3 wt% of carbon (C) is added, sieving so that the particle diameter is 30 μm or more and 65 μm or less, immersing in 10% hydrofluoric acid for 1 hour, and rinsing with pure water. And dried. The substrate temperature immediately after spraying the black quartz glass was 1000 ° C.
[0049]
Next, the sprayed powder was exchanged for a high-purity quartz powder having an average particle diameter of 40 μm, and the plasma gas was changed to a mixture of argon gas and hydrogen gas at 10% to form a transparent quartz glass sprayed film on the black quartz glass sprayed film. did. The power, the amount of the sprayed powder, and the spraying distance were the same as those for the above-mentioned black quartz glass spraying, but the moving speed of the spraying gun was 200 mm / s. Repeated times. Finally, the spray gun was moved at a speed of 120 mm / s while swinging over a width of 350 mm without supplying the spray powder, and the entire surface of the sprayed film was irradiated with a plasma jet. The obtained quartz glass part is a quartz glass part having a sprayed layer of black quartz glass on an opaque quartz glass having a flat surface and a porosity of 30%, on which a sprayed film of opaque quartz glass is laminated. was gotten.
[0050]
The black quartz glass sprayed part obtained was black without color unevenness, and its light transmittance was measured in a wavelength range of 185 to 25000 nm. The transmittance was almost zero at any wavelength. When X-ray diffraction was examined, it was confirmed that both the sprayed black quartz glass film and the sprayed opaque quartz glass film were in a glass state.
[0051]
Comparative Example 1
A black quartz glass material to which 3 wt% of vanadium (V) is added is pulverized, sieved to have a particle size of 30 μm or more and 65 μm or less, and press-formed and laminated on a transparent quartz glass are vacuum evacuated. The mixture was heated and melted in a melting furnace to produce a quartz glass entirely black and a lump of quartz glass in which black quartz glass was laminated on transparent quartz glass. These lumps were cut and polished to obtain quartz glass parts.
[0052]
The quartz glass part of the present invention obtained in Examples 1 to 4, the above-described whole black quartz glass part, and the laminated quartz glass part were placed in an electric furnace and kept at 1200 ° C. in the atmosphere for three days. After cooling, the glass was taken out and observed, and no crystallization was observed by X-ray diffraction in the quartz glass parts of Examples 1 to 4. Further, in Examples 1 to 3, there was no visible devitrification in the transparent quartz glass portion and no crystallization, and no significant change was observed in the sprayed film of black quartz glass. Parts.
[0053]
On the other hand, in the laminated quartz glass component manufactured in the vacuum melting furnace, some devitrified portions were observed at the interface between the transparent quartz glass and the black quartz glass. In addition, spots were observed in some places in the black quartz glass as a whole, and oxidation of the compound added for blackening was observed.
[0054]
【The invention's effect】
The quartz glass component sprayed with black quartz glass and the method of manufacturing the same according to the present invention have the following effects.
(1) Since it is coated with black quartz glass, it has low light transmittance and excellent heat shielding properties.
(2) Unlike conventional fused black quartz glass, there is no deterioration due to crystallization when heat is applied.
(3) When a transparent or opaque quartz glass is sprayed on a black quartz glass, the problem of diffusion of impurities derived from the base material or the black quartz glass is particularly small.
(4) Quartz glass parts of various shapes can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is an example of a plasma spraying apparatus for forming a sprayed black quartz glass film of the present invention.
FIG. 2 is another example of a plasma spraying apparatus for forming a sprayed black quartz glass film of the present invention.
FIG. 3 is an example of a black quartz glass sprayed part in which a black quartz glass sprayed film and a transparent quartz glass sprayed film of the present invention are formed on the same surface of a quartz glass substrate.
[Explanation of symbols]
10, 20: cathode
11, 21: Anode
12, 22: Plasma gas
13, 23: Powder supply port
14, 24: Spray distance
15, 25: base material
16, 26: Thermal spray coating
17, 28: DC power supply
18, 29: Plasma jet
27: Argon gas for cathode protection
30: quartz glass substrate
31: Sprayed coating of black quartz glass
32: Sprayed transparent quartz glass film
Claims (4)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002288946A JP2004123435A (en) | 2002-10-01 | 2002-10-01 | Black silica glass component and its manufacturing process |
TW92107659A TW200307652A (en) | 2002-04-04 | 2003-04-03 | Quartz glass thermal sprayed parts and method for producing the same |
DE60324625T DE60324625D1 (en) | 2002-04-04 | 2003-04-03 | Thermally sprayed quartz glass parts and manufacturing processes |
EP20030007424 EP1352986B8 (en) | 2002-04-04 | 2003-04-03 | Quartz glass thermal sprayed parts and method for producing the same |
KR1020030021003A KR100913116B1 (en) | 2002-04-04 | 2003-04-03 | Quartz glass spray parts and the manufaturing method thereof |
CNB031091563A CN100350571C (en) | 2002-04-04 | 2003-04-03 | Silex glass spraying component and manufacturing method thereof |
US10/405,226 US7081290B2 (en) | 2002-04-04 | 2003-04-03 | Quartz glass thermal sprayed parts and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002288946A JP2004123435A (en) | 2002-10-01 | 2002-10-01 | Black silica glass component and its manufacturing process |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004123435A true JP2004123435A (en) | 2004-04-22 |
Family
ID=32281301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002288946A Pending JP2004123435A (en) | 2002-04-04 | 2002-10-01 | Black silica glass component and its manufacturing process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004123435A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022215664A1 (en) * | 2021-04-09 | 2022-10-13 | Agc株式会社 | Substrate with inorganic film, and manufacturing method therefor |
-
2002
- 2002-10-01 JP JP2002288946A patent/JP2004123435A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022215664A1 (en) * | 2021-04-09 | 2022-10-13 | Agc株式会社 | Substrate with inorganic film, and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7081290B2 (en) | Quartz glass thermal sprayed parts and method for producing the same | |
KR102243956B1 (en) | Chamber coatings | |
JP2006188412A (en) | Process for treating synthetic silica powder and synthetic silica powder treated by the same | |
US6680455B2 (en) | Plasma resistant quartz glass jig | |
US9051203B2 (en) | Black synthetic quartz glass with transparent layer and method for producing the same | |
KR20050095846A (en) | Corrosion-resistant member and method for producing same | |
JP3368547B2 (en) | Opaque quartz glass and method for producing the same | |
JP2003049265A (en) | Film deposition method for photocatalytic titanium dioxide film | |
JP2004123435A (en) | Black silica glass component and its manufacturing process | |
JP4062236B2 (en) | ISLAND PROJECT MODIFIED COMPONENT, ITS MANUFACTURING METHOD, AND DEVICE USING THE SAME | |
JPH11310423A (en) | Synthetic quartz glass and its production | |
WO2013171955A1 (en) | Silica vessel for drawing up monocrystalline silicon and method for producing same | |
JPH1111956A (en) | Production of quartz glass crucible and device therefor | |
EP4202507A1 (en) | Optical filter, method for producing same and sterilization device | |
JP2007537128A (en) | Heat treatment of silicon carbide | |
JP4367142B2 (en) | Corrosion resistant member and manufacturing method thereof | |
JP2006008452A (en) | Manufacturing method for highly pure quartz glass | |
JP2005097722A (en) | Corrosion resistant member, and method for manufacturing the same | |
KR101642327B1 (en) | Apparatus for manufacturing high purity quartz glass | |
TW202229186A (en) | Black quartz glass and method of manufacturing same | |
JP2022162943A (en) | Synthetic quartz glass etching part | |
JP2002220240A (en) | Method of producing quartz glass by hot forming | |
JP3341361B2 (en) | Manufacturing method of ultrafine particle dispersion material | |
JP4997421B2 (en) | Method for producing visible light responsive photocatalyst | |
TW202432471A (en) | Method for preparing Yttrium oxide thermal spray coating film and Yttrium oxide thermal spray coating film prepared thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050825 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20080222 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20080304 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20080424 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090106 |