JP2004119828A - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP2004119828A
JP2004119828A JP2002283452A JP2002283452A JP2004119828A JP 2004119828 A JP2004119828 A JP 2004119828A JP 2002283452 A JP2002283452 A JP 2002283452A JP 2002283452 A JP2002283452 A JP 2002283452A JP 2004119828 A JP2004119828 A JP 2004119828A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
electrode
electrolyte
electrode plate
round bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002283452A
Other languages
Japanese (ja)
Inventor
Noriaki Kubo
久保 範晃
Tomoyuki Tashiro
田代 智之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2002283452A priority Critical patent/JP2004119828A/en
Publication of JP2004119828A publication Critical patent/JP2004119828A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the high-frequency characteristics of an electrolytic capacitor having improved impedance and ESL characteristics at a high frequency. <P>SOLUTION: The electrode leads having a round rods are connected to a positive electrode foil 2 and a cathode electrode foil 3 respectively and wound with a separator 4 in between to form a capacitor element 1, and the capacitor element 1 is inserted with electrolyte or after impregnation of electrolyte into a case 9 having a bottom. In the electrolytic capacitor with an opening of the case 9 sealed with a sealing member, the rod of each electrode lead has each flat face at the opposite parts, so the impedance and ESL characteristics at the high frequency can be improved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電解コンデンサに関するものであり、特に電解コンデンサの高周波特性の改善に関するものである。
【0002】
【従来の技術】
従来の電解コンデンサは図5および図6に示すように、エッチング処理および酸化皮膜形成処理した陽極箔2と陰極箔3とをセパレータ4を介して巻回したコンデンサ素子1に電解液を含浸して金属ケースに収納し、封口部材により開口部を封止して構成されていた。近年パソコン等の高性能化に伴い、電解コンデンサにおいても高周波における低インピーダンス化が要求されており、陽極箔および陰極箔の両端に、それぞれ接続端子を接続し、4端子形とする技術が提案されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開昭50−110064号公報(第2−3頁、図1−3)
【0004】
【発明が解決しようとする課題】
4端子形とすることで、低インピーダンス化が図れるが、2端子形より、組立精度が必要となるので生産性が低下し、電解コンデンサを取り付ける基板も専用設計しなくてはいけないという問題があった。さらに、スイッチング電源やマイクロプロセッサの作動周波数の高周波化が進み、インピーダンスだけでなく等価直列インダクタンス(ESL)の低減が求められ、4端子形では市場の要求に応えることができず、生産性や基板設計を変更することなく、インピーダンス、ESLの低減が可能な電解コンデンサが求められていた。
【0005】
【課題を解決するための手段】
本発明は上記の課題を解決するもので、電極箔と接続する偏平部とリード線を溶接し偏平部につながる丸棒部からなる電極引出リードを、陽極箔および陰極箔にそれぞれ接続するとともにセパレータを介して巻回してコンデンサ素子とし、該コンデンサ素子に電解質を含浸後または電解質とともに有底のケースに挿入し、該ケースの開口部を封口部材で封止する電解コンデンサにおいて、
各電極引出リードの丸棒部が、対向する部分を平面としたことを特徴とする電解コンデンサである。
【0006】
上記丸棒部の平面が、D形電極板により構成されていることを特徴とする電解コンデンサである。
【0007】
上記電極板間に絶縁性スペーサを設けたことを特徴とする電解コンデンサである。
【0008】
【発明の実施の形態】
本発明による電解コンデンサの電極引出リードは、図1、図2のように、丸棒部6の陽極の電極引出リードと陰極の電極引出リードとの対向する部分を平面としている。丸棒部6の平面部は、D形電極板7を丸棒部6に接続して形成した。電極引出リードを、陽極箔2および陰極箔3それぞれに接続するとともにセパレータ4を介して巻回してコンデンサ素子1とする。コンデンサ素子形成後、電極リードの丸棒部にD形電極板7を加締め、溶接等の方法により接続し、該コンデンサ素子1に電解質として駆動用電解液および/または導電性高分子を含侵後または電解質とともに有底のコンデンサ用ケース8に挿入後、該ケース8の開口部を電極引出リードに挿通した封口ゴムやエポキシ樹脂等の封口部材9で封止して電解コンデンサとする。電極板7および丸棒部6は、アルミニウムまたはアルミニウム合金であり、リード線5は、鉄、鉄合金、銅または銅合金を芯材とし、ニッケル、錫、銀、金等のめっきを施している。
【0009】
【実施例】
電極引出リードの丸棒部に平面長さ7mm、平面と直交する幅が3mm厚さ2.5mmの半楕円形(D形)電極板を接続し、定格6.3V/3300μF、サイズφ10×25mmL、電極板間の距離を表1のように設定したアルミニウム電解コンデンサを各10個作製した。なお、電極引出リードの位置は、ケース直径の1/4および3/4の位置に電極引出リードのリード線が位置するようにした。また、電極引出リードは電極板と丸棒部がアルミニウム、リード線は芯材を銅、表面に錫めっきを施したものを用い、電解質には主溶媒に水、副溶媒にエチレングリコール、主溶質にアジピン酸としたものを用いた。
【0010】
各電解コンデンサの100kHzインピーダンス、4MHzESLを測定し、表1の結果を得た。
【0011】
【表1】

Figure 2004119828
【0012】
上記の表1から明らかなように、本発明による電極引出リードの丸棒部に電極板を接続した実施例1〜4は、電極板を接続していない従来例よりインピーダンス、ESL共に著しく優れた効果が得られる。電極板間隔が狭くなるにつれてインピーダンス、ESLが改善されている。
【0013】
次にD形電極板の形状について検討した。D形電極板を、上記実施例3の半楕円形、φ7mmとした半円形、平面部長さ6mm幅4mmとした半楕円形、7mm×4mmの角柱形とした各電解コンデンサを作製し、静電容量と4MHzESLを測定後、105℃定格印加2000時間の高温負荷試験を実施した。初期ESL値は、平面部6mmの半楕円形が劣り、その他はほぼ同等であった。高温負荷試験の結果、静電容量の変化率は角形が最も悪く、次に半円形が悪かった。原因は特定できなかったが、封口ゴムと電極板との嵌合性の影響と推測される。
上記結果より、少なくとも電極引出リードの対向する面に平面部を設ければ低ESL化の効果が得られ、半円形、半楕円形、角形、直線と曲線の組合せからなる形状等でもよい。なお、長期信頼性を必要とする用途には、封口部材との嵌合性から、電極板の平面部の長さが電極板の幅の2倍を超えた半楕円形や半トラック形等のD形電極板が望ましい。
【0014】
その他の実施例として、電極板間隔を0.5mmとし、図3および図4に示す絶縁性ゴムからなるスペーサをコンデンサ素子上面と電極板および電極板間に設けた電解コンデンサを作製し、4MHzESLを測定後、105℃定格印加試験を実施した。4MHzESLは実施例3より20%改善し、105℃定格印加試験後もESLの増加を抑えることが可能であった。また、電解コンデンサの組立速度を速くしても実施例3よりショート等の組立不良の発生率を低く抑えることができた。
【0015】
実施例では、電解質に水を主溶媒とした駆動用電解液を用いたが、本発明はこれに限定されるものではなく、エチレングリコールやγ−ブチロラクトンを主溶媒とする公知の電解液を用いても同等の効果があり、また、電解質にポリピロールやポリエチレンジオキシエチレン等の固体電解質を用いても同等の効果があることは言うまでもない。
【0016】
そして、その他の実施例では、コンデンサ素子上面と電極板および電極板間に絶縁性ゴムからなるスペーサを設けたが、スペーサは絶縁物であればよく、絶縁性樹脂板や、電極板の下面および対向する平面部に絶縁性樹脂を塗布しても同等の効果がある。また、コンデンサ素子上面と電極板との間に絶縁性樹脂板、電極板間を封口部材の突起物で絶縁してもよい。
【0017】
さらに、電極引出リードの材質は、公知の材料を必要により適宜選択組み合わせればよい。
【0018】
【発明の効果】
以上説明したように本発明による電極引出リードの丸棒部の対向する面が平面となるD形電極板を有する電解コンデンサは、高周波でのインピーダンスとESL特性を改善することができる。さらに、コンデンサ素子上面と電極板および電極板間に絶縁性スペーサを設けることで、平面部を平行に配置しやすくなるので、一層の低ESL化が可能となるとともに、スペーサにより絶縁が保たれるので、ショートを防止しながら製品の小形化が可能となる。また、4端子形とすることなく低インピーダンス、低ESL化が図れるので、基板は4端子を接続するための専用設計が不要となり、端子数を減らすことができるので配線の高密度化も可能となる。
【図面の簡単な説明】
【図1】本発明の実施例による電解コンデンサ素子の概要図である。
【図2】本発明の実施例による電解コンデンサの断面図である。
【図3】本発明の他の実施例によるコンデンサ素子の概要図である。
【図4】本発明の他の実施例による電解コンデンサの断面図である。
【図5】従来の電解コンデンサ素子の概要図である。
【図6】従来の電解コンデンサの断面図である。
【符号の説明】
1 コンデンサ素子
2 陽極箔
3 陰極箔
4 セパレータ
5 リード線
6,6a 丸棒部
7 電極板
8 アルミケース
9 封口部材
10 電極板間隔
11 絶縁性スペーサ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolytic capacitor, and more particularly to improvement of high frequency characteristics of an electrolytic capacitor.
[0002]
[Prior art]
As shown in FIGS. 5 and 6, a conventional electrolytic capacitor is obtained by impregnating an electrolytic solution into a capacitor element 1 in which an anode foil 2 and a cathode foil 3 which have been subjected to an etching process and an oxide film forming process are wound via a separator 4. It was housed in a metal case, and the opening was sealed with a sealing member. In recent years, with high performance of personal computers and the like, electrolytic capacitors have also been required to have low impedance at high frequencies even at high frequencies, and a technology has been proposed in which connection terminals are connected to both ends of an anode foil and a cathode foil to form a four-terminal type. (For example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-50-110064 (page 2-3, FIG. 1-3)
[0004]
[Problems to be solved by the invention]
The four-terminal type can reduce the impedance, but requires higher assembly accuracy than the two-terminal type, which lowers productivity and requires a special design of the board on which the electrolytic capacitor is mounted. Was. Furthermore, the operating frequency of switching power supplies and microprocessors has become higher, and not only the impedance but also the equivalent series inductance (ESL) must be reduced. There has been a demand for an electrolytic capacitor capable of reducing impedance and ESL without changing the design.
[0005]
[Means for Solving the Problems]
The present invention solves the above-mentioned problem, and connects a flat portion to be connected to an electrode foil and an electrode extraction lead composed of a round bar portion connected to a flat portion by welding a lead wire to the anode foil and the cathode foil, respectively, and a separator. Into a capacitor element by winding the capacitor element after impregnating the electrolyte with the electrolyte or with the electrolyte into a bottomed case, and sealing the opening of the case with a sealing member.
The electrolytic capacitor is characterized in that a round bar portion of each electrode lead has a flat surface at the opposing portion.
[0006]
An electrolytic capacitor characterized in that a plane of the round bar portion is constituted by a D-shaped electrode plate.
[0007]
An electrolytic capacitor, wherein an insulating spacer is provided between the electrode plates.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1 and FIG. 2, the electrode lead of the electrolytic capacitor according to the present invention has a flat surface at the portion of the round bar portion 6 where the anode electrode lead and the cathode electrode lead are opposed. The flat portion of the round bar 6 was formed by connecting the D-shaped electrode plate 7 to the round bar 6. The electrode lead is connected to each of the anode foil 2 and the cathode foil 3 and wound around the separator 4 to form the capacitor element 1. After forming the capacitor element, the D-shaped electrode plate 7 is crimped to the round bar portion of the electrode lead and connected by a method such as welding, and the capacitor element 1 is impregnated with a driving electrolyte and / or a conductive polymer as an electrolyte. Afterwards, or after being inserted into the bottomed capacitor case 8 together with the electrolyte, the opening of the case 8 is sealed with a sealing member 9 such as a sealing rubber or epoxy resin inserted through the electrode lead-out lead to obtain an electrolytic capacitor. The electrode plate 7 and the round bar 6 are made of aluminum or aluminum alloy, and the lead wire 5 is made of iron, iron alloy, copper or copper alloy as a core material, and is plated with nickel, tin, silver, gold or the like. .
[0009]
【Example】
A semi-elliptical (D-type) electrode plate having a plane length of 7 mm, a width orthogonal to the plane of 3 mm, and a thickness of 2.5 mm is connected to the round bar portion of the electrode lead, rated at 6.3 V / 3300 μF, size φ10 × 25 mmL Then, ten aluminum electrolytic capacitors each having the distance between the electrode plates set as shown in Table 1 were produced. The electrode lead was positioned such that the lead wire of the electrode lead was located at 1 / and / of the case diameter. The electrode lead is made of aluminum for the electrode plate and round bar, the lead wire is made of copper and tin plated on the surface, the main solvent is water, the secondary solvent is ethylene glycol, and the main solute is used. Adipic acid was used.
[0010]
The 100 kHz impedance and 4 MHz ESL of each electrolytic capacitor were measured, and the results shown in Table 1 were obtained.
[0011]
[Table 1]
Figure 2004119828
[0012]
As is clear from Table 1 above, Examples 1 to 4 in which an electrode plate was connected to the round bar portion of the electrode lead according to the present invention were significantly superior in both impedance and ESL to the conventional example in which no electrode plate was connected. The effect is obtained. As the distance between the electrode plates becomes smaller, the impedance and ESL are improved.
[0013]
Next, the shape of the D-shaped electrode plate was examined. Electrolytic capacitors were manufactured by forming the D-shaped electrode plate in the semi-elliptical shape of Example 3 described above, a semi-circular shape having a diameter of 7 mm, a semi-elliptical shape having a plane length of 6 mm and a width of 4 mm, and a prism having a size of 7 mm × 4 mm. After measuring the capacity and the 4 MHz ESL, a high-temperature load test was performed at a rated application of 105 ° C. for 2000 hours. The initial ESL value was inferior in the semi-elliptical shape of the plane portion of 6 mm, and almost the same in the others. As a result of the high-temperature load test, the change rate of the capacitance was the worst for the square shape, and then worse for the semicircle. Although the cause could not be specified, it is presumed to be due to the effect of the fitting property between the sealing rubber and the electrode plate.
According to the above results, the effect of reducing the ESL can be obtained if at least a flat portion is provided on the surface facing the electrode lead, and a semicircular shape, a semielliptical shape, a square shape, a shape composed of a combination of a straight line and a curve, or the like may be used. In applications requiring long-term reliability, the length of the flat portion of the electrode plate is more than twice the width of the electrode plate, such as a semi-elliptical shape or a semi-track shape, due to the fitting property with the sealing member. D-shaped electrode plates are desirable.
[0014]
As another embodiment, an electrolytic capacitor having an electrode plate interval of 0.5 mm, a spacer made of insulating rubber shown in FIGS. 3 and 4 provided between the upper surface of the capacitor element, the electrode plate, and the electrode plate is manufactured. After the measurement, a 105 ° C. rated application test was performed. The 4 MHz ESL was improved by 20% from that of Example 3, and it was possible to suppress the increase in ESL even after the rated application test at 105 ° C. Further, even when the assembly speed of the electrolytic capacitor was increased, the occurrence rate of assembly failure such as a short circuit could be suppressed lower than that of the third embodiment.
[0015]
In the examples, a driving electrolyte using water as a main solvent was used as an electrolyte, but the present invention is not limited to this, and a known electrolyte using ethylene glycol or γ-butyrolactone as a main solvent was used. It is needless to say that the same effect can be obtained even when a solid electrolyte such as polypyrrole or polyethylenedioxyethylene is used as the electrolyte.
[0016]
In the other embodiments, the spacer made of insulating rubber is provided between the upper surface of the capacitor element and the electrode plate and the electrode plate. However, the spacer may be any insulating material, such as an insulating resin plate, the lower surface of the electrode plate, and the like. The same effect can be obtained by applying an insulating resin to the opposing flat surface. Further, an insulating resin plate may be provided between the upper surface of the capacitor element and the electrode plate, and the electrode plate may be insulated by a projection of the sealing member.
[0017]
Further, as the material of the electrode lead, a known material may be appropriately selected and combined as needed.
[0018]
【The invention's effect】
As described above, the electrolytic capacitor having the D-shaped electrode plate in which the opposite surface of the round bar portion of the electrode lead according to the present invention has a flat surface can improve the high-frequency impedance and ESL characteristics. Further, by providing an insulating spacer between the upper surface of the capacitor element and the electrode plate and the electrode plate, it is easy to arrange the plane portions in parallel, so that the ESL can be further reduced and insulation is maintained by the spacer. Therefore, the size of the product can be reduced while preventing a short circuit. In addition, since low impedance and low ESL can be achieved without using a four-terminal type, a dedicated design for connecting the four terminals is not required on the substrate, and the number of terminals can be reduced, so that the wiring density can be increased. Become.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an electrolytic capacitor element according to an embodiment of the present invention.
FIG. 2 is a sectional view of an electrolytic capacitor according to an embodiment of the present invention.
FIG. 3 is a schematic view of a capacitor element according to another embodiment of the present invention.
FIG. 4 is a sectional view of an electrolytic capacitor according to another embodiment of the present invention.
FIG. 5 is a schematic view of a conventional electrolytic capacitor element.
FIG. 6 is a sectional view of a conventional electrolytic capacitor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Anode foil 3 Cathode foil 4 Separator 5 Lead wire 6, 6a Round bar part 7 Electrode plate 8 Aluminum case 9 Sealing member 10 Electrode plate interval 11 Insulating spacer

Claims (3)

電極箔と接続する偏平部とリード線を溶接し偏平部につながる丸棒部からなる電極引出リードを、陽極箔および陰極箔にそれぞれ接続するとともにセパレータを介して巻回してコンデンサ素子とし、該コンデンサ素子に電解質を含浸後または電解質とともに有底のケースに挿入し、該ケースの開口部を封口部材で封止する電解コンデンサにおいて、
各電極引出リードの丸棒部が、対向する部分を平面としたことを特徴とする電解コンデンサ。
The electrode lead connected to the flat portion connected to the electrode foil and the lead wire formed by welding a lead wire and connected to the flat portion is connected to the anode foil and the cathode foil, respectively, and wound via a separator to form a capacitor element. In an electrolytic capacitor in which the element is impregnated with an electrolyte or inserted together with the electrolyte into a bottomed case, and the opening of the case is sealed with a sealing member,
An electrolytic capacitor, characterized in that a round bar portion of each electrode lead has a flat surface at an opposing portion.
上記丸棒部の平面が、D形電極板により構成されていることを特徴とする請求項1記載の電解コンデンサ。2. The electrolytic capacitor according to claim 1, wherein a plane of said round bar portion is constituted by a D-shaped electrode plate. 上記電極板間に絶縁性スペーサを設けたことを特徴とする請求項1記載の電解コンデンサ。2. The electrolytic capacitor according to claim 1, wherein an insulating spacer is provided between said electrode plates.
JP2002283452A 2002-09-27 2002-09-27 Electrolytic capacitor Pending JP2004119828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283452A JP2004119828A (en) 2002-09-27 2002-09-27 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283452A JP2004119828A (en) 2002-09-27 2002-09-27 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2004119828A true JP2004119828A (en) 2004-04-15

Family

ID=32277311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283452A Pending JP2004119828A (en) 2002-09-27 2002-09-27 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2004119828A (en)

Similar Documents

Publication Publication Date Title
JP4587996B2 (en) Electrolytic capacitor
JP4592792B2 (en) Electrolytic capacitor
US8363385B2 (en) Solid electrolytic capacitor and method of manufacturing thereof
US10629383B2 (en) Solid electrolytic capacitor
JPH05205984A (en) Laminated solid electrolytic capacitor
JP2009099913A (en) Multi terminal type solid-state electrolytic capacitor
US6791822B2 (en) Solid electrolytic capacitor
CN103177880A (en) Solid electrolytic capacitor and method for producing the same
US7957120B2 (en) Capacitor chip and method for manufacturing same
US9679701B2 (en) Tantalum capacitor
JP2003332173A (en) Capacitor element, solid electrolytic capacitor, and substrate with built-in capacitor
TW201409508A (en) Solid electrolytic capacitor
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JP2009021355A (en) Multilayer solid-state electrolytic capacitor
JP6925577B2 (en) Solid electrolytic capacitors
JP2004119828A (en) Electrolytic capacitor
JP2004088073A (en) Solid electrolytic capacitor
JP2004104013A (en) Electrolytic capacitor
CN104240955A (en) Tantalum electrolytic capacitor and manufacturing method thereof
WO2019058535A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP5051851B2 (en) Multilayer solid electrolytic capacitor
JP2008135424A (en) Chip-type solid electrolytic capacitor
JP5734075B2 (en) Solid electrolytic capacitor
JP6435499B2 (en) Electronic component and manufacturing method thereof
JP5326032B1 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Effective date: 20080128

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A02 Decision of refusal

Effective date: 20080804

Free format text: JAPANESE INTERMEDIATE CODE: A02