JP5734075B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP5734075B2
JP5734075B2 JP2011095315A JP2011095315A JP5734075B2 JP 5734075 B2 JP5734075 B2 JP 5734075B2 JP 2011095315 A JP2011095315 A JP 2011095315A JP 2011095315 A JP2011095315 A JP 2011095315A JP 5734075 B2 JP5734075 B2 JP 5734075B2
Authority
JP
Japan
Prior art keywords
anode
terminal
cathode
electrode substrate
cathode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011095315A
Other languages
Japanese (ja)
Other versions
JP2012227433A (en
Inventor
成敏 澤田
成敏 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2011095315A priority Critical patent/JP5734075B2/en
Publication of JP2012227433A publication Critical patent/JP2012227433A/en
Application granted granted Critical
Publication of JP5734075B2 publication Critical patent/JP5734075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、固体電解コンデンサに関し、主として電子機器の電源回路に用いられる固体電解コンデンサに関するものである。   The present invention relates to a solid electrolytic capacitor, and more particularly to a solid electrolytic capacitor used in a power circuit of an electronic device.

近年、デジタル機器は小型化や高性能化が進み、CPU等の動作も高周波数化している。それに伴い、ノイズ除去や電源電圧の平滑化が必要とされ、デカップリング回路における電解コンデンサの役割も重要になってきている。そのため、固体電解コンデンサに対しても、小型で大容量化や低インピーダンス化の要求が強くなっている。   In recent years, digital devices have become smaller and have higher performance, and the operation of CPUs and the like has also increased in frequency. Accordingly, noise removal and power supply voltage smoothing are required, and the role of electrolytic capacitors in decoupling circuits has become important. Therefore, there is an increasing demand for a solid electrolytic capacitor that is small in size and large in capacity and low in impedance.

広範囲の周波数領域で低インピーダンス化を実現するためには、等価直列抵抗(ESR)の低減だけでなく、高い周波数での性能に影響する、等価直列インダクタンス(ESL)の低減を更に進めることが必要となり、種々の固体電解コンデンサやノイズフィルタ等で検討がなされている。   In order to achieve low impedance in a wide frequency range, it is necessary not only to reduce the equivalent series resistance (ESR) but also to further reduce the equivalent series inductance (ESL) that affects the performance at high frequencies. Thus, various solid electrolytic capacitors and noise filters have been studied.

その一つとして、広帯域で周波数特性に優れた電子部品として、伝送線路構造の一つであるストリップライン構造を備えたノイズフィルタ(3端子型固体電解コンデンサ)が開発されている。   As one of them, a noise filter (three-terminal solid electrolytic capacitor) having a stripline structure, which is one of transmission line structures, has been developed as an electronic component having a wide band and excellent frequency characteristics.

ここで、3端子型固体電解コンデンサの構造を図面を用いて説明する。図3は従来の3端子型固体電解コンデンサの構成を示す図であり、図3(a)は、3端子型固体電解コンデンサの断面図、図3(b)は、コンデンサ素子搭載側からみた3端子型固体電解コンデンサの電極基板の平面図、図3(c)はストリップライン構造を表す模式図、図3(d)は、B−B線で切断した断面図である。   Here, the structure of the three-terminal solid electrolytic capacitor will be described with reference to the drawings. FIG. 3 is a diagram showing a configuration of a conventional three-terminal solid electrolytic capacitor. FIG. 3A is a cross-sectional view of the three-terminal solid electrolytic capacitor, and FIG. FIG. 3C is a schematic diagram showing a stripline structure, and FIG. 3D is a cross-sectional view taken along the line BB.

まず、コンデンサ素子103の構造を説明する。図3(a)に示すように、陽極体121はアルミニウムやタンタルなどを拡面化処理した、矩形板状または矩形箔状の弁作用金属からなっている。陽極体121の表面には酸化皮膜による誘電体層を形成している。   First, the structure of the capacitor element 103 will be described. As shown in FIG. 3A, the anode body 121 is made of a valve metal having a rectangular plate shape or a rectangular foil shape, which is obtained by expanding the surface of aluminum or tantalum. A dielectric layer made of an oxide film is formed on the surface of the anode body 121.

陽極体121を絶縁樹脂からなる2つの絶縁部106で3つに区分し、両端部を陽極部101とする。この時、陽極体121の絶縁部106を形成する部分から、陽極部101となる陽極体121の端部までは、誘電体層を拡面化処理した領域を含めてレーザ等で除去している。そして、絶縁部106で挟まれた陽極体121の領域における誘電体層の表面に、導電性高分子層からなる固体電解質層を形成した後、グラファイト層、銀層を順次形成して陰極層を形成し陰極部104としている。次に、陽極部101の両端に金属片102を溶接し、コンデンサ素子103が得られる。   The anode body 121 is divided into three parts by two insulating parts 106 made of insulating resin, and both end parts are referred to as anode parts 101. At this time, the portion from the portion of the anode body 121 where the insulating portion 106 is formed to the end portion of the anode body 121 that becomes the anode portion 101 is removed with a laser or the like including the region where the surface of the dielectric layer is enlarged. . And after forming the solid electrolyte layer which consists of a conductive polymer layer in the surface of the dielectric material layer in the area | region of the anode body 121 pinched | interposed by the insulating part 106, a graphite layer and a silver layer are formed in order and a cathode layer is formed. The cathode part 104 is formed. Next, the metal piece 102 is welded to both ends of the anode part 101, and the capacitor | condenser element 103 is obtained.

次に、金属片102を、電極基板207に設けられた素子側陽極端子108と導電性接着銀ペースト(図示せず)により接続する。さらに、陰極部104と素子側陰極端子209とを導電性接着剤105で接続する。なお、コンデンサ素子103を複数積層する場合は、それぞれの陰極部104の接続も導電性接着剤105を用いる。また、素子側陽極端子108と実装側陽極端子110、及び素子側陰極端子209と実装側陰極端子111はビア112で導通している。しかる後、外装樹脂113を用いて外装している。このようにして、3端子型固体電解コンデンサ300が完成する。   Next, the metal piece 102 is connected to the element side anode terminal 108 provided on the electrode substrate 207 by a conductive adhesive silver paste (not shown). Further, the cathode portion 104 and the element side cathode terminal 209 are connected by the conductive adhesive 105. In the case where a plurality of capacitor elements 103 are stacked, the conductive adhesive 105 is also used for connection of the respective cathode portions 104. Further, the element side anode terminal 108 and the mounting side anode terminal 110 and the element side cathode terminal 209 and the mounting side cathode terminal 111 are electrically connected by the via 112. After that, the exterior resin 113 is used for exterior packaging. In this way, the three-terminal solid electrolytic capacitor 300 is completed.

図3(b)は、従来技術の電極基板207をコンデンサ素子を搭載する側から見た平面図であり、素子側陰極端子209を、コンデンサ素子の陰極部と対向する、ほぼ同等の領域(図中ハッチング部分)に形成している。素子側陽極端子108及び素子側陰極端子209はビア112を介して、他方の面に設けた実装側陽極端子及び実装側陰極端子に導通している。   FIG. 3B is a plan view of the electrode substrate 207 of the prior art as viewed from the side on which the capacitor element is mounted. The element-side cathode terminal 209 faces the cathode part of the capacitor element and is substantially equivalent (see FIG. 3B). Middle hatched part). The element-side anode terminal 108 and the element-side cathode terminal 209 are electrically connected to the mounting-side anode terminal and the mounting-side cathode terminal provided on the other surface through the via 112.

この3端子型固体電解コンデンサ300は、陰極部104が形成されている部分が伝送線路構造の一つであるストリップライン構造となっている。ストリップライン構造とは模式図の図3(c)に示すような構造であり、コンデンサ素子の陽極体の中央部が導体316に相当し、酸化皮膜による誘電体層は誘電体317に相当し、固体電解質層や陰極部が導体(GND)318に相当する。ストリップライン構造を用いることによって高周波側でも低インピーダンス化が図れる。このような技術は特許文献1に開示されている。   The three-terminal solid electrolytic capacitor 300 has a stripline structure in which a portion where the cathode portion 104 is formed is one of transmission line structures. The stripline structure is a structure as shown in FIG. 3C of the schematic diagram, where the central part of the anode body of the capacitor element corresponds to the conductor 316, and the dielectric layer formed by the oxide film corresponds to the dielectric 317. The solid electrolyte layer and the cathode portion correspond to the conductor (GND) 318. By using the stripline structure, the impedance can be reduced even on the high frequency side. Such a technique is disclosed in Patent Document 1.

なお、図3(d)は図3(a)のB−B線で切断した断面図であり、陽極部101が導体に相当し、外装樹脂113は誘電体に相当するが、電極基板207の断面部分には導体(GND)に相当するものが存在していない。したがって、3端子型固体電解コンデンサ300において、陽極部や陽極端子近傍となるこの領域は伝送線路構造を有していない。   3D is a cross-sectional view taken along the line BB in FIG. 3A. The anode portion 101 corresponds to a conductor and the exterior resin 113 corresponds to a dielectric. There is no conductor corresponding to the conductor (GND) in the cross section. Therefore, in the three-terminal solid electrolytic capacitor 300, this region which is in the vicinity of the anode part and the anode terminal does not have a transmission line structure.

また、特許文献2(特に図7)には、3端子型固体電解コンデンサにおいて、補強材として用いている陽極端子部分まで延長した補強板を金属板とし、導電性ペーストで陰極部に電気的に接続することによって、伝送線路構造のノイズフィルタ効果を高めるような技術が記載されている。   Further, in Patent Document 2 (particularly FIG. 7), in a three-terminal solid electrolytic capacitor, a reinforcing plate extending to an anode terminal portion used as a reinforcing material is a metal plate, and the cathode portion is electrically connected with a conductive paste. A technique is described that enhances the noise filter effect of the transmission line structure by connecting.

特開2002−164760号公報JP 2002-164760 A 特開2004−55699号公報JP 2004-55699 A

これまでの技術的検討により、100MHz〜1GHz程度の高周波領域といわれる周波数領域でのノイズ除去効果を向上させるため、先に述べた伝送線路構造を用いることが有効である。しかし、先行技術に記載されている技術においても、部材や製造工数の増加を生ずることなく、陽極部や陽極端子近傍の更なるインピーダンスを低減することは困難であるという課題がある。   It is effective to use the transmission line structure described above in order to improve the noise removal effect in a frequency region called a high frequency region of about 100 MHz to 1 GHz by technical studies so far. However, even in the technology described in the prior art, there is a problem that it is difficult to further reduce the impedance in the vicinity of the anode portion and the anode terminal without increasing the number of members and manufacturing steps.

したがって、本発明は、部材や製造工数を増加させず、特に高周波領域での低ESL化を図り、より低インピーダンス化へ対応した固体電解コンデンサを提供することを目的とする。   Accordingly, an object of the present invention is to provide a solid electrolytic capacitor that does not increase the number of members and manufacturing man-hours, achieves low ESL particularly in a high-frequency region, and supports lower impedance.

上記課題を解決するために、本発明の固体電解コンデンサは、電極基板の一方の面に素子側陽極端子及び素子側陰極端子を有し、前記電極基板の他方の面にビアを介して、前記素子側陽極端子と導通する実装側陽極端子と、前記素子側陰極端子と導通する実装側陰極端子を有し、
矩形板状または矩形箔状で表面を拡面化した弁作用金属からなる陽極体を絶縁樹脂からなる2つの絶縁部で区分した両端部からなる陽極部を備え、前記絶縁部で挟まれた領域に、誘電体層、固体電解質層、陰極層を順次形成し、前記電極基板の一方の面に、前記陰極層を陰極部とするコンデンサ素子を搭載し、
前記陽極部と前記素子側陽極端子並びに前記陰極部と前記素子側陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装してなる固体電解コンデンサであって、
前記素子側陰極端子を、前記電極基板の一方の面の前記素子側陽極端子を除いた、前記陽極部に対向する領域を含む領域に設けることにより、前記陽極部と前記陽極部に対向する位置の素子側陰極端子と、前記陽極部と前記陽極部に対向する位置の素子側陰極端子の間にある外装樹脂とが伝送線路構造を形成することを特徴とする。
In order to solve the above problems, the solid electrolytic capacitor of the present invention has an element-side anode terminal and an element-side cathode terminal on one surface of an electrode substrate, and vias a via on the other surface of the electrode substrate, A mounting-side anode terminal electrically connected to the element-side anode terminal, and a mounting-side cathode terminal electrically connected to the element-side cathode terminal;
A rectangular plate or rectangular foil-shaped anode body made of a valve action metal whose surface is enlarged, and having an anode part composed of both ends divided by two insulating parts made of insulating resin, and a region sandwiched between the insulating parts In addition, a dielectric layer, a solid electrolyte layer, and a cathode layer are sequentially formed, and a capacitor element having the cathode layer as a cathode portion is mounted on one surface of the electrode substrate,
The anode part and the element side anode terminal and the cathode part and the element side cathode terminal are respectively electrically connected, and the capacitor element is packaged with an exterior resin,
By providing the element-side cathode terminal in a region including a region facing the anode part, excluding the element-side anode terminal on one surface of the electrode substrate, the anode part and the anode part are opposed to each other. and the element-side cathode terminal position, and the exterior resin and forming a transmission line structure is between the element-side cathode terminal of the position opposing the anode portion and the anode portion.

また、本発明の固体電解コンデンサは、電極基板の一方の面に素子側陽極端子及び素子側陰極端子を有し、前記電極基板の他方の面にビアを介して、前記素子側陽極端子と導通する実装側陽極端子と、前記素子側陰極端子と導通する実装側陰極端子を有し、
矩形板状または矩形箔状で表面を拡面化した弁作用金属からなる陽極体を絶縁樹脂からなる絶縁部で区分した一方の端部を陽極部とし、他方の領域の表面に、誘電体層、固体電解質層、陰極層を順次形成し、前記電極基板の一方の面に、前記陰極層を陰極部とするコンデンサ素子を搭載し、
前記陽極部と前記素子側陽極端子と前記陰極部と前記素子側陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装してなる固体電解コンデンサであって、
前記素子側陰極端子を、前記電極基板の一方の面の前記素子側陽極端子を除いた、前記陽極部に対向する領域を含む領域に設けることにより、前記陽極部と前記陽極部に対向する位置の素子側陰極端子と、前記陽極部と前記陽極部に対向する位置の素子側陰極端子の間にある外装樹脂とが伝送線路構造を形成することを特徴とする。
The solid electrolytic capacitor of the present invention has an element-side anode terminal and an element-side cathode terminal on one surface of the electrode substrate, and is electrically connected to the element-side anode terminal through a via on the other surface of the electrode substrate. A mounting-side anode terminal that is electrically connected to the element-side cathode terminal,
An anode body made of a valve metal having a rectangular plate shape or a rectangular foil shape whose surface is enlarged is divided by an insulating portion made of an insulating resin, and one end portion is defined as an anode portion, and a dielectric layer is formed on the surface of the other region. The solid electrolyte layer and the cathode layer are sequentially formed, and a capacitor element having the cathode layer as a cathode portion is mounted on one surface of the electrode substrate,
The anode part, the element side anode terminal, the cathode part and the element side cathode terminal are each electrically connected, and the solid electrolytic capacitor formed by sheathing the capacitor element with an exterior resin,
By providing the element-side cathode terminal in a region including a region facing the anode part, excluding the element-side anode terminal on one surface of the electrode substrate, the anode part and the anode part are opposed to each other. and the element-side cathode terminal position, and the exterior resin and forming a transmission line structure is between the element-side cathode terminal of the position opposing the anode portion and the anode portion.

また、本発明の固体電解コンデンサは、前記伝送線路構造がマイクロストリップライン構造であることを特徴とする。   In the solid electrolytic capacitor of the present invention, the transmission line structure is a microstrip line structure.

本発明による固体電解コンデンサは、電極基板のコンデンサ素子を搭載する面において素子側陽極端子を除いた領域に、素子側陰極端子を形成することによって、陽極部と外装樹脂と素子側陰極端子により伝送線路構造を形成することができる。それにより部材や製造工数を増加させず、特に高周波領域での低ESL化を図り、より低インピーダンス化へ対応した固体電解コンデンサの提供が可能となる。   The solid electrolytic capacitor according to the present invention is formed by forming an element-side cathode terminal in a region excluding the element-side anode terminal on the surface of the electrode substrate on which the capacitor element is mounted, thereby transmitting the anode part, the exterior resin, and the element-side cathode terminal. A line structure can be formed. As a result, it is possible to provide a solid electrolytic capacitor corresponding to a lower impedance without increasing the number of members and manufacturing man-hours and reducing the ESL particularly in the high frequency region.

本発明の実施の形態1に関わる3端子型固体電解コンデンサの構成を示す図であり、図1(a)は、3端子型固体電解コンデンサの断面図、図1(b)は、コンデンサ素子搭載側からみた3端子型固体電解コンデンサの電極基板の平面図、図1(c)は、A−A線で切断した断面図、図1(d)は、マイクロストリップライン構造を表す模式図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the 3 terminal type solid electrolytic capacitor in connection with Embodiment 1 of this invention, Fig.1 (a) is sectional drawing of a 3 terminal type solid electrolytic capacitor, FIG.1 (b) is a capacitor | condenser element mounting. FIG. 1C is a cross-sectional view taken along line AA, and FIG. 1D is a schematic diagram showing a microstrip line structure as viewed from the side. 本発明の実施の形態2に関わる固体電解コンデンサの構成を示す図であり、図2(a)は、固体電解コンデンサの断面図、図2(b)は、コンデンサ素子搭載側からみた固体電解コンデンサの電極基板の平面図。It is a figure which shows the structure of the solid electrolytic capacitor in connection with Embodiment 2 of this invention, Fig.2 (a) is sectional drawing of a solid electrolytic capacitor, FIG.2 (b) is the solid electrolytic capacitor seen from the capacitor | condenser element mounting side FIG. 従来の3端子型固体電解コンデンサの構成を示す図であり、図3(a)は、3端子型固体電解コンデンサの断面図、図3(b)は、コンデンサ素子搭載側からみた3端子型固体電解コンデンサの電極基板の平面図、図3(c)はストリップライン構造を表す模式図、図3(d)は、B−B線で切断した断面図。It is a figure which shows the structure of the conventional 3 terminal type solid electrolytic capacitor, Fig.3 (a) is sectional drawing of a 3 terminal type solid electrolytic capacitor, FIG.3 (b) is 3 terminal type solid seen from the capacitor | condenser element mounting side. The top view of the electrode substrate of an electrolytic capacitor, FIG.3 (c) is a schematic diagram showing stripline structure, FIG.3 (d) is sectional drawing cut | disconnected by the BB line. 従来の固体電解コンデンサの構成を示す図であり、図4(a)は、固体電解コンデンサの断面図、図4(b)は、コンデンサ素子搭載側からみた固体電解コンデンサの電極基板の平面図。It is a figure which shows the structure of the conventional solid electrolytic capacitor, Fig.4 (a) is sectional drawing of a solid electrolytic capacitor, FIG.4 (b) is a top view of the electrode substrate of the solid electrolytic capacitor seen from the capacitor | condenser element mounting side.

本発明の実施の形態を図面を参照して説明する。   Embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1に関わる3端子型固体電解コンデンサの構成を示す図であり、図1(a)は、3端子型固体電解コンデンサの断面図、図1(b)は、コンデンサ素子搭載側からみた3端子型固体電解コンデンサの電極基板の平面図、図1(c)は、A−A線で切断した断面図、図1(d)は、マイクロストリップライン構造を表す模式図である。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration of a three-terminal solid electrolytic capacitor according to Embodiment 1 of the present invention. FIG. 1 (a) is a cross-sectional view of the three-terminal solid electrolytic capacitor, and FIG. FIG. 1C is a cross-sectional view taken along the line AA, and FIG. 1D shows a microstrip line structure, as viewed from the capacitor element mounting side. It is a schematic diagram.

図1(a)に示すように、コンデンサ素子103は図3に示す従来技術と同様の構造となっており、陽極体121はアルミニウムやタンタルなどを拡面化処理した弁作用金属からなっている。この時、陽極体121の表面には酸化皮膜からなる誘電体層が形成されている。   As shown in FIG. 1A, the capacitor element 103 has a structure similar to that of the prior art shown in FIG. 3, and the anode body 121 is made of a valve action metal obtained by surface-enhancing aluminum, tantalum, or the like. . At this time, a dielectric layer made of an oxide film is formed on the surface of the anode body 121.

陽極体121を絶縁樹脂からなる2つの絶縁部106で3つに区分し、両端部を陽極部101とする。この時、陽極部101と絶縁部106を形成する領域は、誘電体層をレーザ等で除去している。そして、陽極体121の2つの絶縁部106で挟まれた領域における誘電体層の表面に、導電性高分子層からなる固体電解質層を形成した後、グラファイト層、銀層を順次形成して陰極層を形成し、陰極部104としている。次に、陽極部101の端部に金属片102を超音波溶接や電気溶接やレーザ溶接等で溶接し、コンデンサ素子103が得られる。   The anode body 121 is divided into three parts by two insulating parts 106 made of insulating resin, and both end parts are referred to as anode parts 101. At this time, the dielectric layer is removed by laser or the like in the region where the anode portion 101 and the insulating portion 106 are formed. And after forming the solid electrolyte layer which consists of a conductive polymer layer in the surface of the dielectric material layer in the area | region pinched | interposed by the two insulation parts 106 of the anode body 121, a graphite layer and a silver layer are formed in order, and a cathode A layer is formed as the cathode portion 104. Next, the metal piece 102 is welded to the end portion of the anode portion 101 by ultrasonic welding, electric welding, laser welding, or the like, and the capacitor element 103 is obtained.

コンデンサ素子103と電極基板107の接続も従来技術と同様であり、陽極部101の両端に接合してある金属片102を、電極基板107に設けられた素子側陽極端子108と導電性接着銀ペースト(図示せず)により接続する。続いて、陰極部104と素子側陰極端子109とを導電性接着剤105で接続する。なお、コンデンサ素子103を複数積層する場合の陰極部104同士の接続も、従来技術と同様に導電性接着剤105を用いる。陽極部101と金属片102は電気溶接やレーザ溶接等で接合する。また、素子側陽極端子108と実装側陽極端子110、及び素子側陰極端子109と実装側陰極端子111はビア112で導通している。しかる後、エポキシ樹脂などからなる外装樹脂113を用いて外装している。このようにして、3端子型固体電解コンデンサ100が完成する。   The connection between the capacitor element 103 and the electrode substrate 107 is the same as in the prior art, and the metal piece 102 bonded to both ends of the anode portion 101 is connected to the element-side anode terminal 108 provided on the electrode substrate 107 and the conductive adhesive silver paste. (Not shown). Subsequently, the cathode portion 104 and the element-side cathode terminal 109 are connected by the conductive adhesive 105. Note that the conductive adhesive 105 is also used for connection between the cathode portions 104 when a plurality of capacitor elements 103 are stacked, as in the prior art. The anode part 101 and the metal piece 102 are joined by electric welding, laser welding, or the like. In addition, the element-side anode terminal 108 and the mounting-side anode terminal 110 and the element-side cathode terminal 109 and the mounting-side cathode terminal 111 are electrically connected by a via 112. After that, it is packaged using an exterior resin 113 made of epoxy resin or the like. In this way, the three-terminal solid electrolytic capacitor 100 is completed.

ここで、本発明における従来技術との違いを説明する。図1(b)はコンデンサ素子103を搭載する前の電極基板107を示している。本発明では、電極基板107のコンデンサ素子103を搭載する面において、素子側陽極端子108を除いた部分(図中ハッチング部分)に素子側陰極端子109を形成している。つまり、コンデンサ素子103を搭載した場合に、陰極部104から両側に伸びている陽極部101に対向する領域や素子側陽極端子108の周囲まで、素子側陰極端子109の面積を大きくして形成している。   Here, the difference with the prior art in this invention is demonstrated. FIG. 1B shows the electrode substrate 107 before the capacitor element 103 is mounted. In the present invention, the element-side cathode terminal 109 is formed in a portion (hatched portion in the figure) excluding the element-side anode terminal 108 on the surface on which the capacitor element 103 of the electrode substrate 107 is mounted. That is, when the capacitor element 103 is mounted, the element side cathode terminal 109 is formed to have a large area up to the area facing the anode part 101 extending from the cathode part 104 to both sides and the periphery of the element side anode terminal 108. ing.

さらに、上記について断面構造をもって説明する。図1(c)は、図1(a)のA−A線の断面図である。素子側陰極端子109の面積を拡大させているため、陽極部101に対向している領域が、擬似的に、図1(d)に示すような伝送線路構造(マイクロストリップライン構造)をとることが可能となる。具体的には、図1(c)と図1(d)において、陽極部101が導体116に相当し、外装樹脂113は誘電体117に相当し、素子側陰極端子109が導体118(GND)に相当する。この伝送線路構造により、従来技術では対応できなかった陽極部や陽極端子近傍でのESLの低減に効果を発揮し、インピーダンスを低減した3端子型固体電解コンデンサ100の提供が可能となる。また、素子側陰極端子109を拡大した構造をとっているため、部材の増加や高さ寸法の増加も発生せず、また、組立時の作業工程や製造コストの増加も生じない。   Further, the above will be described with a cross-sectional structure. FIG.1 (c) is sectional drawing of the AA line of Fig.1 (a). Since the area of the element-side cathode terminal 109 is enlarged, the region facing the anode portion 101 has a pseudo transmission line structure (microstrip line structure) as shown in FIG. Is possible. Specifically, in FIGS. 1C and 1D, the anode portion 101 corresponds to the conductor 116, the exterior resin 113 corresponds to the dielectric 117, and the element-side cathode terminal 109 corresponds to the conductor 118 (GND). It corresponds to. With this transmission line structure, it is possible to provide a three-terminal solid electrolytic capacitor 100 having an effect of reducing ESL in the vicinity of the anode portion and the anode terminal, which cannot be handled by the prior art, and having reduced impedance. In addition, since the element-side cathode terminal 109 is enlarged, there is no increase in the number of members and an increase in height, and no increase in work process and manufacturing cost during assembly.

なお、電極基板107の短辺側の端部(素子側陽極端子108から電極基板107の短辺の間)における素子側陰極端子109の形成範囲については、必要なレベルのESL低減が可能であれば、適宜小さくしてよい。   In addition, regarding the formation range of the element-side cathode terminal 109 at the end portion on the short side of the electrode substrate 107 (between the element-side anode terminal 108 and the short side of the electrode substrate 107), a necessary level of ESL reduction can be achieved. If necessary, it may be appropriately reduced.

電極基板107は、ガラスエポキシ樹脂等で形成される。また、コンデンサ素子搭載側の面にある素子側陽極端子108及び素子側陰極端子109と、外部基板に実装する面にある実装側陽極端子110及び実装側陰極端子111は、銅箔、又は銅めっき等で形成される。前述の素子側接続電極端子と実装側電極端子を導通させるビア112も銅めっき等で形成している。   The electrode substrate 107 is formed of glass epoxy resin or the like. Further, the element side anode terminal 108 and the element side cathode terminal 109 on the surface on the capacitor element mounting side, and the mounting side anode terminal 110 and the mounting side cathode terminal 111 on the surface to be mounted on the external substrate are copper foil or copper plating. Etc. are formed. The via 112 for conducting the element side connection electrode terminal and the mounting side electrode terminal is also formed by copper plating or the like.

(実施の形態2)
本発明の実施の形態2は、本発明の構造を2端子の固体電解コンデンサに適用したものである。
(Embodiment 2)
In the second embodiment of the present invention, the structure of the present invention is applied to a two-terminal solid electrolytic capacitor.

図2は、本発明の実施の形態2に関わる固体電解コンデンサの構成を示す図であり、図2(a)は、固体電解コンデンサの断面図、図2(b)は、コンデンサ素子搭載側からみた固体電解コンデンサの電極基板の平面図である。   FIG. 2 is a diagram showing a configuration of a solid electrolytic capacitor according to Embodiment 2 of the present invention. FIG. 2 (a) is a cross-sectional view of the solid electrolytic capacitor, and FIG. 2 (b) is from the capacitor element mounting side. It is the top view of the electrode substrate of the seen solid electrolytic capacitor.

図2(a)に示すように、酸化皮膜による誘電体層を形成した陽極体121を絶縁樹脂からなる絶縁部106で区分し、一方を陽極部101とする。この場合も、3端子型固体電解コンデンサと同様に、陽極体121の陽極部101と絶縁部106を形成する領域は、誘電体層をレーザ等で除去している。そして、他方の陽極体121の誘電体層の表面に固体電解質層を形成し、さらに、固体電解質層の表面に陰極層としてグラファイト層および銀ペースト層を形成して陰極部104を形成する。   As shown in FIG. 2A, an anode body 121 on which a dielectric layer made of an oxide film is formed is divided by an insulating portion 106 made of an insulating resin, and one side is used as an anode portion 101. Also in this case, as in the case of the three-terminal solid electrolytic capacitor, the dielectric layer is removed by a laser or the like in the region where the anode 101 and the insulating portion 106 of the anode 121 are formed. Then, a solid electrolyte layer is formed on the surface of the dielectric layer of the other anode body 121, and further, a graphite layer and a silver paste layer are formed as a cathode layer on the surface of the solid electrolyte layer to form the cathode portion 104.

続いて、陽極部101の端部に金属片102を接合させて、コンデンサ素子103とする。接合は超音波溶接や電気溶接やレーザ溶接等を用いる。   Subsequently, a metal piece 102 is joined to the end of the anode portion 101 to form a capacitor element 103. For joining, ultrasonic welding, electric welding, laser welding, or the like is used.

その後、陰極部104に導電性接着剤105を塗布して、コンデンサ素子103を積層する。続いて、陽極部101と金属片102を電気溶接やレーザ溶接等で接合して、コンデンサ素子積層体が完成する。   Thereafter, the conductive adhesive 105 is applied to the cathode portion 104, and the capacitor element 103 is laminated. Subsequently, the anode part 101 and the metal piece 102 are joined by electric welding, laser welding, or the like to complete the capacitor element laminate.

次に、陽極部101と陰極部104とを電極基板107の素子側陽極端子108と素子側陰極端子109に、それぞれ導電性接着銀ペースト(図示せず)や導電性接着剤105を介して接合する。素子側陽極端子108と実装側陽極端子110、及び素子側陰極端子109と実装側陰極端子111はビア112で導通している。しかる後、エポキシ樹脂などからなる外装樹脂113を用いて外装している。このようにして、固体電解コンデンサ200が完成する。   Next, the anode part 101 and the cathode part 104 are joined to the element side anode terminal 108 and the element side cathode terminal 109 of the electrode substrate 107 through a conductive adhesive silver paste (not shown) or a conductive adhesive 105, respectively. To do. The element side anode terminal 108 and the mounting side anode terminal 110, and the element side cathode terminal 109 and the mounting side cathode terminal 111 are electrically connected by a via 112. After that, it is packaged using an exterior resin 113 made of epoxy resin or the like. In this way, the solid electrolytic capacitor 200 is completed.

本発明の2端子の固体電解コンデンサ200も、図2(b)に示すように、コンデンサ素子103を搭載する電極基板107の面において、素子側陽極端子108を除いた部分(図中ハッチング部分)に素子側陰極端子109を形成している。つまり、陰極部104から伸びている陽極部101に対向する領域や素子側陽極端子108の周囲まで、素子側陰極端子109の面積を大きくして形成している。   As shown in FIG. 2B, the two-terminal solid electrolytic capacitor 200 of the present invention also has a portion excluding the element-side anode terminal 108 on the surface of the electrode substrate 107 on which the capacitor element 103 is mounted (hatched portion in the figure). An element-side cathode terminal 109 is formed on the substrate. That is, the area of the element-side cathode terminal 109 is increased to the area facing the anode section 101 extending from the cathode section 104 and the periphery of the element-side anode terminal 108.

断面構造も前述した実施の形態1と同様であり、素子側陰極端子109の面積を拡大しているため、陽極部101に対向した構造となり、図2(a)のA−A線の断面では、擬似的に、図1(d)に示すような伝送線路構造(マイクロストリップライン構造)をとることが可能となる。この伝送線路構造により、従来技術では対応できなかった陽極部近傍でのESLの低減に効果を発揮し、インピーダンスを低減した2端子の固体電解コンデンサの提供が可能となる。また、素子側陰極端子109を拡大した構造のため、部材の増加や高さ寸法の増加も発生せず、また、組立時の作業工程や製造コストの増加も生じない。   The cross-sectional structure is also the same as that of the first embodiment described above, and since the area of the element-side cathode terminal 109 is enlarged, the structure faces the anode portion 101. In the cross section taken along the line AA in FIG. In a pseudo manner, it is possible to adopt a transmission line structure (microstrip line structure) as shown in FIG. With this transmission line structure, it is possible to provide a two-terminal solid electrolytic capacitor having an effect of reducing ESL in the vicinity of the anode portion, which could not be dealt with by the prior art, and having reduced impedance. Further, since the element-side cathode terminal 109 is enlarged, there is no increase in the number of members or height, and no increase in the work process and manufacturing cost during assembly.

なお、素子側陽極端子108から電極基板107の短辺の間における素子側陰極端子109の形成範囲についても、実施例1と同様に必要なレベルのESL低減が可能であれば、適宜小さくしてよい。   It should be noted that the formation range of the element-side cathode terminal 109 between the element-side anode terminal 108 and the short side of the electrode substrate 107 is appropriately reduced if the required level of ESL can be reduced as in the first embodiment. Good.

素子側陽極端子108及び素子側陰極端子109、実装側陽極端子110及び実装側陰極端子111、ビア112も銅箔、又は銅めっき等で形成される。   The element-side anode terminal 108 and the element-side cathode terminal 109, the mounting-side anode terminal 110, the mounting-side cathode terminal 111, and the via 112 are also formed of copper foil or copper plating.

(実施例1)
陽極体は、表面がエッチングにより拡面化されたアルミニウム箔を用いた。陽極体の形状は長さ6.0mm、幅3.5mm、厚さ350μmである。その陽極体の表面には、酸化皮膜による誘電体層を形成した。陽極体を絶縁樹脂からなる2つの絶縁部で3つに区分し、両端部を陽極部とした。尚、陽極体の表面における、絶縁部の形成部分から陽極部の端部までの領域は、誘電体層をレーザにて除去した。
Example 1
As the anode body, an aluminum foil whose surface was enlarged by etching was used. The anode body has a length of 6.0 mm, a width of 3.5 mm, and a thickness of 350 μm. A dielectric layer made of an oxide film was formed on the surface of the anode body. The anode body was divided into three by two insulating portions made of an insulating resin, and both end portions were anode portions. The dielectric layer was removed with a laser in the region from the insulating portion formation portion to the end portion of the anode portion on the surface of the anode body.

次に、2つの絶縁部で挟まれた陽極体の中央部の誘電体層の表面に、固体電解質層として、ベンゼンスルホン酸鉄塩を酸化剤とし、3,4−エチレンジオキシチオフェンをモノマーとした化学酸化重合により、導電性高分子ポリチオフェンの層を形成した。さらにその表面にグラファイト層及び銀ペースト層を形成して、陰極部を形成した。   Next, on the surface of the dielectric layer at the center of the anode body sandwiched between the two insulating portions, as a solid electrolyte layer, iron benzenesulfonate is used as an oxidizing agent, and 3,4-ethylenedioxythiophene is used as a monomer. A layer of conductive polymer polythiophene was formed by chemical oxidative polymerization. Further, a graphite layer and a silver paste layer were formed on the surface to form a cathode part.

しかる後、2つの陽極部の端部に、厚さ60μmの銅板に銀めっきが施されている金属片を超音波溶接により接合し、コンデンサ素子を得た。このコンデンサ素子の陰極部に導電性接着剤を塗布してコンデンサ素子を3枚積層した後、150℃で60分間、乾燥することにより、陰極部同士を電気的に接合した。   Thereafter, a metal piece in which a silver plate was applied to a copper plate having a thickness of 60 μm was joined to the end portions of the two anode portions by ultrasonic welding to obtain a capacitor element. After applying a conductive adhesive to the cathode part of this capacitor element and laminating three capacitor elements, the cathode parts were electrically joined by drying at 150 ° C. for 60 minutes.

さらに、陽極部の端部と金属片をレーザ溶接により接合して3枚積層したコンデンサ素子積層体を製作した。   Further, a capacitor element laminate was fabricated in which the end of the anode part and the metal piece were joined by laser welding to laminate three pieces.

電極基板は、コンデンサ素子を搭載する面において素子側陽極端子を除いた領域に、素子側陰極端子を形成した。なお、電極基板の基体の材質は、ガラスエポキシ樹脂とし、長さが8.5mm、幅が5.3mm、厚さが100μmのものを用いた。素子側陽極端子及び素子側陰極端子は銅めっきで形成し、めっき厚20μmとした。ビアは同様に銅めっきで形成し、素子側電極端子と実装側電極端子をそれぞれ電気的に導通させた。   In the electrode substrate, the element-side cathode terminal was formed in a region excluding the element-side anode terminal on the surface on which the capacitor element was mounted. The base material of the electrode substrate was a glass epoxy resin having a length of 8.5 mm, a width of 5.3 mm, and a thickness of 100 μm. The element side anode terminal and the element side cathode terminal were formed by copper plating, and the plating thickness was 20 μm. Similarly, the via was formed by copper plating, and the element side electrode terminal and the mounting side electrode terminal were electrically connected to each other.

続いて、作製したコンデンサ素子積層体の陽極部及び陰極部を、素子側陽極端子及び素子側陰極端子に、それぞれ銀を含む導電性接着剤を介して接続した。   Subsequently, the anode part and the cathode part of the produced capacitor element laminate were connected to the element-side anode terminal and the element-side cathode terminal via a conductive adhesive containing silver, respectively.

その後、電極基板に搭載したコンデンサ素子を、ガラスフィラーを含んだエポキシ樹脂からなる外装樹脂でモールド成形し外装した。これにより、本発明の3端子型固体電解コンデンサを得た。作製数量は100個とした。   Thereafter, the capacitor element mounted on the electrode substrate was molded and packaged with an exterior resin made of an epoxy resin containing a glass filler. As a result, a three-terminal solid electrolytic capacitor of the present invention was obtained. The production quantity was 100.

(実施例2)
実施例2は、コンデンサ素子が2端子構造であることと、電極基板も2端子構造にした以外は、前述の実施例1と同様としている。すなわち、電極基板のコンデンサ素子を搭載する面において素子側陽極端子を除いた領域に、素子側陰極端子を形成した構造とし、本発明の2端子の固体電解コンデンサを得た。作製数量は100個とした。
(Example 2)
Example 2 is the same as Example 1 except that the capacitor element has a two-terminal structure and the electrode substrate also has a two-terminal structure. That is, the element-side cathode terminal was formed in a region excluding the element-side anode terminal on the surface of the electrode substrate on which the capacitor element was mounted, and a two-terminal solid electrolytic capacitor of the present invention was obtained. The production quantity was 100.

(比較例1)
比較例1の3端子型固体電解コンデンサは、電極基板の素子側陰極端子の領域を、コンデンサ素子の陰極部と対向する、ほぼ同等の領域に形成した以外は、本発明の実施例1と同様の構成である。作製数量は100個とした。
(Comparative Example 1)
The three-terminal solid electrolytic capacitor of Comparative Example 1 is the same as Example 1 of the present invention except that the element-side cathode terminal area of the electrode substrate is formed in a substantially equivalent area facing the cathode part of the capacitor element. It is the composition. The production quantity was 100.

(比較例2)
図4は、従来の固体電解コンデンサの構成を示す図であり、図4(a)は、固体電解コンデンサの断面図、図4(b)は、コンデンサ素子搭載側からみた固体電解コンデンサの電極基板の平面図である。図4(a)、図4(b)に示すように、比較例2の2端子の固体電解コンデンサ400は、コンデンサ素子103と、電極基板207が2端子構造であり、電極基板207の素子側陰極端子209の領域を、コンデンサ素子103の陰極部104と対向する、ほぼ同等の領域に形成した以外は、本発明の実施例2と同様の構成である。なお、作製数量は100個とした。
(Comparative Example 2)
4A and 4B are diagrams showing a configuration of a conventional solid electrolytic capacitor. FIG. 4A is a cross-sectional view of the solid electrolytic capacitor, and FIG. 4B is an electrode substrate of the solid electrolytic capacitor as viewed from the capacitor element mounting side. FIG. 4A and 4B, the two-terminal solid electrolytic capacitor 400 of Comparative Example 2 has a capacitor element 103 and an electrode substrate 207 having a two-terminal structure, and the element side of the electrode substrate 207 is the element side. The structure is the same as that of the second embodiment of the present invention except that the area of the cathode terminal 209 is formed in a substantially equivalent area facing the cathode portion 104 of the capacitor element 103. The production quantity was 100.

実施例1、実施例2、比較例1、比較例2の各々のESLの値を表1に示す。ESLの値は、3端子型固体電解コンデンサにおいてはネットワークアナライザにより減衰特性(S21)を測定し、算出した。また、2端子の固体電解コンデンサにおいては、インピーダンスアナライザを用いて測定した。測定周波数は1GHzとし、測定数は100個である。   Table 1 shows the ESL values of Example 1, Example 2, Comparative Example 1, and Comparative Example 2. The value of ESL was calculated by measuring attenuation characteristics (S21) with a network analyzer in a three-terminal solid electrolytic capacitor. For a two-terminal solid electrolytic capacitor, measurement was performed using an impedance analyzer. The measurement frequency is 1 GHz and the number of measurements is 100.

Figure 0005734075
Figure 0005734075

表1の結果より、実施例1、実施例2のESLの値が、比較例1、比較例2より減少しており、本発明の効果が確認できた。   From the results shown in Table 1, the ESL values of Examples 1 and 2 were lower than those of Comparative Examples 1 and 2, and the effects of the present invention could be confirmed.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なし得るであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, the present invention also includes various variations and modifications that could be made by those skilled in the art.

100、300 3端子型固体電解コンデンサ
101 陽極部
102 金属片
103 コンデンサ素子
104 陰極部
105 導電性接着剤
106 絶縁部
107、207 電極基板
108 素子側陽極端子
109、209 素子側陰極端子
110 実装側陽極端子
111 実装側陰極端子
112 ビア
113 外装樹脂
116、316 導体
117、317 誘電体
118、318 導体(GND)
121 陽極体
200、400 固体電解質コンデンサ
100, 300 Three-terminal type solid electrolytic capacitor 101 Anode part 102 Metal piece 103 Capacitor element 104 Cathode part 105 Conductive adhesive 106 Insulating part 107, 207 Electrode substrate 108 Element side anode terminal 109, 209 Element side cathode terminal 110 Mounting side anode Terminal 111 Mounting side cathode terminal 112 Via 113 Exterior resin 116, 316 Conductor 117, 317 Dielectric 118, 318 Conductor (GND)
121 Anode body 200, 400 Solid electrolyte capacitor

Claims (3)

電極基板の一方の面に素子側陽極端子及び素子側陰極端子を有し、前記電極基板の他方の面にビアを介して、前記素子側陽極端子と導通する実装側陽極端子と、前記素子側陰極端子と導通する実装側陰極端子を有し、
矩形板状または矩形箔状で表面を拡面化した弁作用金属からなる陽極体を絶縁樹脂からなる2つの絶縁部で区分した両端部からなる陽極部を備え、前記絶縁部で挟まれた領域に、誘電体層、固体電解質層、陰極層を順次形成し、前記電極基板の一方の面に、前記陰極層を陰極部とするコンデンサ素子を搭載し、
前記陽極部と前記素子側陽極端子並びに前記陰極部と前記素子側陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装してなる固体電解コンデンサであって、
前記素子側陰極端子を、前記電極基板の一方の面の前記素子側陽極端子を除いた、前記陽極部に対向する領域を含む領域に設けることにより、前記陽極部と前記陽極部に対向する位置の素子側陰極端子と、前記陽極部と前記陽極部に対向する位置の素子側陰極端子の間にある外装樹脂とが伝送線路構造を形成することを特徴とする固体電解コンデンサ。
A mounting-side anode terminal that has an element-side anode terminal and an element-side cathode terminal on one surface of the electrode substrate, and is electrically connected to the element-side anode terminal through a via on the other surface of the electrode substrate; A mounting-side cathode terminal that is electrically connected to the cathode terminal;
A rectangular plate or rectangular foil-shaped anode body made of a valve action metal whose surface is enlarged, and having an anode part composed of both ends divided by two insulating parts made of insulating resin, and a region sandwiched between the insulating parts In addition, a dielectric layer, a solid electrolyte layer, and a cathode layer are sequentially formed, and a capacitor element having the cathode layer as a cathode portion is mounted on one surface of the electrode substrate,
The anode part and the element side anode terminal and the cathode part and the element side cathode terminal are respectively electrically connected, and the capacitor element is packaged with an exterior resin,
By providing the element-side cathode terminal in a region including a region facing the anode part, excluding the element-side anode terminal on one surface of the electrode substrate, the anode part and the anode part are opposed to each other. the solid electrolytic capacitor and the element-side cathode terminal position, the exterior resin is between the element-side cathode terminal of the position opposing the anode portion and the anode portion and forming a transmission line structure.
電極基板の一方の面に素子側陽極端子及び素子側陰極端子を有し、前記電極基板の他方の面にビアを介して、前記素子側陽極端子と導通する実装側陽極端子と、前記素子側陰極端子と導通する実装側陰極端子を有し、
矩形板状または矩形箔状で表面を拡面化した弁作用金属からなる陽極体を絶縁樹脂からなる絶縁部で区分した一方の端部を陽極部とし、他方の領域の表面に、誘電体層、固体電解質層、陰極層を順次形成し、前記電極基板の一方の面に、前記陰極層を陰極部とするコンデンサ素子を搭載し、
前記陽極部と前記素子側陽極端子と前記陰極部と前記素子側陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装してなる固体電解コンデンサであって、
前記素子側陰極端子を、前記電極基板の一方の面の前記素子側陽極端子を除いた、前記陽極部に対向する領域を含む領域に設けることにより、前記陽極部と前記陽極部に対向する位置の素子側陰極端子と、前記陽極部と前記陽極部に対向する位置の素子側陰極端子の間にある外装樹脂とが伝送線路構造を形成することを特徴とする固体電解コンデンサ。
A mounting-side anode terminal that has an element-side anode terminal and an element-side cathode terminal on one surface of the electrode substrate, and is electrically connected to the element-side anode terminal through a via on the other surface of the electrode substrate; A mounting-side cathode terminal that is electrically connected to the cathode terminal;
An anode body made of a valve metal having a rectangular plate shape or a rectangular foil shape whose surface is enlarged is divided by an insulating portion made of an insulating resin, and one end portion is defined as an anode portion, and a dielectric layer is formed on the surface of the other region. The solid electrolyte layer and the cathode layer are sequentially formed, and a capacitor element having the cathode layer as a cathode portion is mounted on one surface of the electrode substrate,
The anode part, the element side anode terminal, the cathode part and the element side cathode terminal are each electrically connected, and the solid electrolytic capacitor formed by sheathing the capacitor element with an exterior resin,
By providing the element-side cathode terminal in a region including a region facing the anode part, excluding the element-side anode terminal on one surface of the electrode substrate, the anode part and the anode part are opposed to each other. the solid electrolytic capacitor and the element-side cathode terminal position, the exterior resin is between the element-side cathode terminal of the position opposing the anode portion and the anode portion and forming a transmission line structure.
前記伝送線路構造がマイクロストリップライン構造であることを特徴とする請求項1または2に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the transmission line structure is a microstrip line structure.
JP2011095315A 2011-04-21 2011-04-21 Solid electrolytic capacitor Active JP5734075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011095315A JP5734075B2 (en) 2011-04-21 2011-04-21 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011095315A JP5734075B2 (en) 2011-04-21 2011-04-21 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2012227433A JP2012227433A (en) 2012-11-15
JP5734075B2 true JP5734075B2 (en) 2015-06-10

Family

ID=47277244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011095315A Active JP5734075B2 (en) 2011-04-21 2011-04-21 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5734075B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200409153A (en) * 2002-09-04 2004-06-01 Nec Corp Strip line element, printed circuit board carrying member, circuit board, semiconductor package and method for forming same
JP4677775B2 (en) * 2004-11-29 2011-04-27 Tdk株式会社 Solid electrolytic capacitor
JP4803744B2 (en) * 2007-05-22 2011-10-26 Necトーキン株式会社 Thin solid electrolytic capacitor
JP2010213017A (en) * 2009-03-11 2010-09-24 Nec Tokin Corp Low-pass filter

Also Published As

Publication number Publication date
JP2012227433A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
KR101451685B1 (en) Solid electrolytic condenser
EP3226270B1 (en) Solid electrolytic capacitor
JPWO2004023597A1 (en) Strip line type element, printed wiring board mounting member, circuit board, semiconductor package, and method for forming the same
JP2006324555A (en) Laminated capacitor and its manufacturing method
JP2007116064A (en) Laminated solid electrolytic capacitor
JP2009099913A (en) Multi terminal type solid-state electrolytic capacitor
JP4688675B2 (en) Multilayer solid electrolytic capacitor
JP2013131627A (en) Solid electrolytic capacitor and manufacturing method of the same
JP2005005642A (en) Chip type solid electrolytic capacitor and its manufacturing method
US8320106B2 (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
JP2012222262A (en) Chip type solid electrolytic capacitor and manufacturing method of the same
JP5734075B2 (en) Solid electrolytic capacitor
JP4671347B2 (en) Solid electrolytic capacitor
US9214284B2 (en) Decoupling device with three-dimensional lead frame and fabricating method thereof
JP6925577B2 (en) Solid electrolytic capacitors
JP4936458B2 (en) Multilayer solid electrolytic capacitor
JPWO2006093296A1 (en) Transmission line type noise filter, manufacturing method thereof, and printed circuit board
JP5051851B2 (en) Multilayer solid electrolytic capacitor
JP5346847B2 (en) Solid electrolytic capacitor
US8724295B2 (en) Solid electrolytic capacitor
JP5210672B2 (en) Capacitor parts
JP5371865B2 (en) 3-terminal capacitor
JP5190947B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010147274A (en) Solid electrolytic capacitor
JP2010213017A (en) Low-pass filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150414

R150 Certificate of patent or registration of utility model

Ref document number: 5734075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250