JP2004119215A - Cooling medium for cooling fuel cell - Google Patents

Cooling medium for cooling fuel cell Download PDF

Info

Publication number
JP2004119215A
JP2004119215A JP2002281784A JP2002281784A JP2004119215A JP 2004119215 A JP2004119215 A JP 2004119215A JP 2002281784 A JP2002281784 A JP 2002281784A JP 2002281784 A JP2002281784 A JP 2002281784A JP 2004119215 A JP2004119215 A JP 2004119215A
Authority
JP
Japan
Prior art keywords
fuel cell
cooling
refrigerant
cooling medium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002281784A
Other languages
Japanese (ja)
Inventor
Yoichiro Yoshida
吉田 洋一郎
Mitsugi Iizuka
飯塚 貢
Shunichiro Kuma
隈 俊一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Radiator Co Ltd
Original Assignee
Toyo Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Radiator Co Ltd filed Critical Toyo Radiator Co Ltd
Priority to JP2002281784A priority Critical patent/JP2004119215A/en
Publication of JP2004119215A publication Critical patent/JP2004119215A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly stable cooling medium into which aluminum is not dissolved and corroded, for cooling a fuel cell driven at high temperatures of 90°C or more. <P>SOLUTION: This cooling medium for cooling the fuel cell of the high-temperature driven type is constituted by adding propylene glycol to pure water. Because the cooling medium does not dissolve the aluminum even if it exceeds a constant period of time at 90°C or more like a curve (a) of the figure, electric conductivity is not rapidly elevated. On the other hand, the electric conductivity of a conventional cooling medium is rapidly elevated when the constant period of time is exceeded at 90°C or more like a curve (b). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池を冷却するために使用される冷媒に関し、特に高温駆動型の燃料電池の冷却用冷媒に関する。
【0002】
【従来の技術】
近年、水素などを燃料とする燃料電池の実用化に向けての開発が加速化している。燃料電池は一般家庭用のほかに、自動車などの車両の駆動電源としての用途が極めて大きい。
【0003】
図1は一般的な燃料電池の1例を説明する図である。燃料電池1のスタックは単電池2を多数積層したものであり、単電池2は空気極と燃料極に挟まれたマトリックス(電解質)3と、その両側に配置されたセパレータ4、5を主要な構成部材としている。そしてこの単電池2が複数積層されるごとに冷却用のセパレータ6が配置される。
【0004】
冷却用のセパレータ6には冷媒の入口部7と出口部8が設けられ、入口部7に配管9が接続され、その配管9を通して外部の冷却装置10から供給される冷媒が供給される。また出口部8には配管11が接続され、その配管11を通して熱交換により冷却された冷媒が冷却装置10に戻される。
【0005】
一方、冷却用のスタック6と単電池2の間には冷媒を循環させる連通路が形成され、スタック6に供給された冷媒が単電池2の内部を満遍なく流れ、熱交換して暖められた冷媒が再びスタック6に戻るようになっている。
【0006】
車両搭載用の燃料電池は小型化、軽量化、および厳寒期でも冷却用の冷媒が凍結しないことを要求される。そこで従来から小型化、軽量化を目的として冷却用のスタック6等の構成部材を比較的強度があり軽量なアルミニウム材で構成し、凍結防止を目的として車両のラジエータ等に使用されている不凍液、すなわち純水にエチレングリコールを添加した冷媒を採用している。
【0007】
しかし、これまで開発された車両搭載用の燃料電池では、小型化、軽量化がまだ不十分であるとして、さらなる改良が強く望まれており、その解決法の1つとして燃料電池の単位重量あたりの発電量を向上させる技術が注目されている。しかし単位重量あたりの発電量を大きくすると、各単電池に流れる電流が大きくなり、内部温度が高くなる。そこで最近の開発方向は、単電池のセパレータを構成する分離膜などの耐熱性をさらに向上することによりこの問題を解決することを目指し、実験レベルではすでに目的を達成している。
【0008】
【発明が解決しようとする課題】
しかしながら本発明らの実験によれば、上記のように耐熱性を向上させた高温駆動型の燃料電池を長時間運転すると、小型化、軽量化のために採用したアルミニウム部分の腐蝕が大きくなり、それによって燃料電池の内部における電気絶縁性も大きく低下するという別の問題を生じることが判明した。
【0009】
その原因を詳細に調査・分析したところ、純水にエチレングリコールを添加した冷媒の温度が熱交換によって上昇し、特に90℃以上で長時間運転すると、エチレングリコールが蟻酸に変化し、アルミニウムに対する溶解性が急激に大きくなり、それによってアルミニウムの腐蝕が進行すると共に、溶解したアルミニウムにより電気伝導度が急激に上昇し、燃料電池の内部における電気絶縁性も劣化することが分かった。
そこで本発明は、このような従来の冷媒における問題を解決することを課題とし、そのための高温駆動型の燃料電池の冷却用として好適な冷媒を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決する本発明に係る冷媒は、純水にプロピレングリコールを添加したことを特徴とする高温駆動型の燃料電池の冷却用の冷媒であり、特に90℃以上の高温で駆動される高温駆動型の燃料電池の冷却用冷媒である。なお本発明における「純水」とは、逆浸透膜などを用いた純水製造装置で製造された純水、およびそれに順じる純度を有する水を意味する。
【0011】
本発明に係る冷媒は、例えば90℃以上、好適には100℃以上の高温で運転する高温駆動型の燃料電池の冷却用として優れた効果を奏する。すなわち、本発明の冷媒を燃料電池の冷却用として使用することにより、前記のような高温領域においてもアルミニウムに対する腐蝕が著しく抑制され、それによって燃料電池の内部における電気絶縁性の低下も防止される。
【0012】
冷媒における純水に対するプロピレングリコールの添加割合は純水1重量部当たり0.3〜1.5重量部、好ましくは0.4〜1.0重量部の範囲である。0.3重量部より少ないと耐凍結性が低下し、1.5重量部より多くしても耐凍結性がそれ程大きくならない。なお冷媒の製造方法は、従来法と同様に純水中に適量のプロピレングリコールを混入し攪拌・均一化すればよい。
【0013】
【実施例】
次に本発明の冷媒の実施例を説明する。
図1のような単電池2を複数積層して燃料電池1を組み立て、配管9,11により外部の冷却装置10と接続した。燃料電池1は高温駆動型であり、定格運転で運転継続したときの内部温度は最高100℃程度に達する。なお燃料電池1の内部に形成される冷却路の大部分はアルミニウム材で構成されている。また、配管11には冷媒温度を計測する温度計と冷媒の電気伝導度を計測する電気伝導度計を設置した。
【0014】
冷却装置10には貯留槽と循環ポンプが設けられ、貯留槽に貯留する冷媒は純水1重量部当たりプロピレングリコールを1重量部添加し、均一に混合して調整した。実験は先ず冷却装置10のポンプを起動し、前記貯留部槽の冷媒を燃料電池1に循環した。次に燃料電池1へ燃料を供給して発電状態とし、その出力回路に接続した負荷設備に電力を供給した。電力の供給を継続することにより燃料電池1の内部温度は次第に上昇し、配管11に設けた温度計の温度もそれに応じて上昇した。
【0015】
図2に冷媒の温度を90°C以上にて試験した場合(一例として100°C)の試験時間と電気伝導度計で測定した電気伝導度の関係を(a)曲線で示す。図から分かるように、冷媒の電気伝導度は時間の経過に比例してほぼ直線的に且つ緩やかに上昇するが、T1 時間(この場合400 〜700 時間) を越えても電気伝導度が急激に上昇することはない。このように電気伝導度がT1 時間を越えても急激に上昇しない理由は、その時間に達しても本発明に係る冷媒が安定性を有し、蟻酸に変化することなく、冷却路を構成するアルミニウム材を溶解して腐蝕する作用が著しく小さいためである。
【0016】
【比較例】
一方、比較のために、純水にエチレングリコールを添加した従来の冷媒(例として純水1重量部にエチレングリコールを1重量部添加した不凍液)を使用して実施例と同様な方法で実験した。そのときの試験時間と電気伝導度計で測定した電気伝導度の関係を(b)曲線で示す。図から分かるように、電気伝導度はT1 時間付近までは温度上昇に比例してほぼ直線的に且つ緩やかに上昇するが、それを越えると急激上昇することが分かる。これからエチレングリコールを添加した従来の冷媒は、90°C以上で長時間運転するとアルミニウムを著しく溶解し腐蝕することが分かる。
【0017】
【発明の効果】
以上のように本発明にかかる冷媒は、90℃以上、好適には100℃以上の高温で運転する高温駆動型の燃料電池の冷却用として優れた効果を奏する。すなわち、高温領域においてもアルミニウムに対する腐蝕が著しく抑制され、それによって燃料電池の内部における電気絶縁性の低下も防止できる。
【図面の簡単な説明】
【図1】一般的な燃料電池の1例を説明する図。
【図2】本発明に係る冷媒と従来の冷媒を燃料電池の冷却用として、90°C以上(試験温度100°C)にて使用した場合の時間の経過に対する電気伝導度の変化を示す図。
【符号の説明】
1 燃料電池
2 単電池
3 マトリックス
4 セパレータ
5 セパレータ
6 冷却用のセパレータ
7 入口部
8 出口部
9 配管
10 冷却装置
11 配管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerant used for cooling a fuel cell, and more particularly to a refrigerant for cooling a high-temperature driven fuel cell.
[0002]
[Prior art]
In recent years, the development of fuel cells using hydrogen or the like as fuel has been accelerated. Fuel cells are extremely large in use as driving power sources for vehicles such as automobiles in addition to ordinary households.
[0003]
FIG. 1 is a diagram illustrating an example of a general fuel cell. The stack of the fuel cell 1 is formed by stacking a number of cells 2, and the cell 2 mainly includes a matrix (electrolyte) 3 sandwiched between an air electrode and a fuel electrode, and separators 4 and 5 disposed on both sides of the matrix. It is a constituent member. Each time a plurality of the unit cells 2 are stacked, a cooling separator 6 is disposed.
[0004]
The cooling separator 6 is provided with an inlet portion 7 and an outlet portion 8 for the refrigerant, a pipe 9 is connected to the inlet portion 7, and a refrigerant supplied from an external cooling device 10 is supplied through the pipe 9. A pipe 11 is connected to the outlet 8, and the refrigerant cooled by heat exchange through the pipe 11 is returned to the cooling device 10.
[0005]
On the other hand, a communication path for circulating a refrigerant is formed between the cooling stack 6 and the unit cells 2, and the refrigerant supplied to the stack 6 flows evenly inside the unit cells 2, and the refrigerant exchanged and heated is heated. Return to the stack 6 again.
[0006]
It is required that a fuel cell mounted on a vehicle is reduced in size and weight, and that a cooling refrigerant does not freeze even in a severe cold season. Therefore, conventionally, the components such as the cooling stack 6 are made of a relatively strong and lightweight aluminum material for the purpose of miniaturization and weight reduction, and an antifreeze liquid used for a vehicle radiator or the like for the purpose of preventing freezing, That is, a refrigerant obtained by adding ethylene glycol to pure water is employed.
[0007]
However, it has been strongly desired that further improvements have been made in the vehicle-mounted fuel cells that have not been sufficiently reduced in size and weight, and one of the solutions is to solve the problem per unit weight of the fuel cell. Attention has been focused on technologies for improving the amount of power generation. However, when the amount of power generation per unit weight is increased, the current flowing through each cell increases, and the internal temperature increases. Therefore, a recent development direction aims to solve this problem by further improving the heat resistance of the separation membrane constituting the separator of the unit cell, and has already achieved the objective at the experimental level.
[0008]
[Problems to be solved by the invention]
However, according to the experiments of the present invention, when the high-temperature drive type fuel cell with improved heat resistance as described above is operated for a long time, the corrosion of the aluminum portion employed for miniaturization and weight reduction increases, It has been found that this causes another problem that the electric insulation inside the fuel cell is greatly reduced.
[0009]
When the cause was investigated and analyzed in detail, the temperature of the refrigerant in which ethylene glycol was added to pure water increased due to heat exchange, and especially when operated at 90 ° C or higher for a long time, ethylene glycol changed to formic acid and dissolved in aluminum. It has been found that the electrical conductivity sharply increases, thereby causing the corrosion of aluminum to progress, the electrical conductivity to increase rapidly due to the dissolved aluminum, and the electrical insulation inside the fuel cell to deteriorate.
Accordingly, an object of the present invention is to solve such a problem in the conventional refrigerant, and an object of the present invention is to provide a refrigerant suitable for cooling a high-temperature driven fuel cell.
[0010]
[Means for Solving the Problems]
The refrigerant according to the present invention that solves the above-mentioned problems is a refrigerant for cooling a high-temperature driven fuel cell, which is obtained by adding propylene glycol to pure water, and in particular, a high-temperature refrigerant that is driven at a high temperature of 90 ° C. or higher. It is a cooling refrigerant for a driving type fuel cell. In the present invention, “pure water” refers to pure water produced by a pure water producing apparatus using a reverse osmosis membrane or the like, and water having a purity equivalent thereto.
[0011]
The refrigerant according to the present invention has an excellent effect for cooling a high temperature drive type fuel cell operating at a high temperature of, for example, 90 ° C. or more, preferably 100 ° C. or more. That is, by using the refrigerant of the present invention for cooling a fuel cell, corrosion of aluminum is significantly suppressed even in the high-temperature region as described above, thereby preventing a decrease in electrical insulation inside the fuel cell. .
[0012]
The addition ratio of propylene glycol to pure water in the refrigerant is in the range of 0.3 to 1.5 parts by weight, preferably 0.4 to 1.0 part by weight per 1 part by weight of pure water. If the amount is less than 0.3 part by weight, the freezing resistance decreases, and if the amount is more than 1.5 parts by weight, the freezing resistance does not increase so much. As a method for producing the refrigerant, an appropriate amount of propylene glycol may be mixed into pure water and stirred and homogenized as in the conventional method.
[0013]
【Example】
Next, examples of the refrigerant of the present invention will be described.
The fuel cell 1 was assembled by stacking a plurality of unit cells 2 as shown in FIG. 1 and connected to an external cooling device 10 via pipes 9 and 11. The fuel cell 1 is of a high-temperature drive type, and the internal temperature reaches about 100 ° C. at the maximum when the operation is continued at the rated operation. Most of the cooling passages formed inside the fuel cell 1 are made of an aluminum material. Further, a thermometer for measuring the refrigerant temperature and an electric conductivity meter for measuring the electric conductivity of the refrigerant were installed in the pipe 11.
[0014]
The cooling device 10 was provided with a storage tank and a circulation pump, and the refrigerant stored in the storage tank was adjusted by adding 1 part by weight of propylene glycol per 1 part by weight of pure water and uniformly mixing. In the experiment, first, the pump of the cooling device 10 was started, and the refrigerant in the storage tank was circulated to the fuel cell 1. Next, fuel was supplied to the fuel cell 1 to generate power, and power was supplied to load equipment connected to the output circuit. By continuing to supply power, the internal temperature of the fuel cell 1 gradually increased, and the temperature of the thermometer provided in the pipe 11 also increased accordingly.
[0015]
FIG. 2 shows the relationship between the test time and the electric conductivity measured by an electric conductivity meter when the temperature of the refrigerant is tested at 90 ° C. or higher (as an example, 100 ° C.) by a curve (a). As can be seen, the electrical conductivity of the coolant is almost linearly and gradually increases in proportion to the lapse of time, T 1 hour electrical conductivity even beyond (in this case 400 to 700 hours) is rapidly Never rise. Thus reason the electric conductivity is not rapidly increased even beyond 1 hour T without refrigerant according to the present invention is reached at that time has a stability, changes in formic acid, constituting a cooling passage This is because the effect of dissolving and corroding the aluminum material is extremely small.
[0016]
[Comparative example]
On the other hand, for comparison, an experiment was performed in the same manner as in the example using a conventional refrigerant in which ethylene glycol was added to pure water (for example, an antifreeze liquid in which 1 part by weight of ethylene glycol was added to 1 part by weight of pure water). . The relationship between the test time and the electric conductivity measured by the electric conductivity meter is shown by a curve (b). As can be seen, the electric conductivity up to around 1 hour T is substantially linearly and gradually increases in proportion to the temperature rise, but it can be seen that the rapid rise exceeds it. This indicates that the conventional refrigerant to which ethylene glycol is added significantly dissolves and corrodes aluminum when operated at 90 ° C. or higher for a long time.
[0017]
【The invention's effect】
As described above, the refrigerant according to the present invention has an excellent effect for cooling a high temperature drive type fuel cell operating at a high temperature of 90 ° C. or more, preferably 100 ° C. or more. That is, even in a high-temperature region, corrosion of aluminum is significantly suppressed, thereby preventing a decrease in electric insulation inside the fuel cell.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a general fuel cell.
FIG. 2 is a diagram showing a change in electric conductivity over time when a refrigerant according to the present invention and a conventional refrigerant are used at 90 ° C. or higher (test temperature 100 ° C.) for cooling a fuel cell. .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Single cell 3 Matrix 4 Separator 5 Separator 6 Separator for cooling 7 Inlet part 8 Outlet part 9 Pipe 10 Cooling device 11 Pipe

Claims (2)

純水にプロピレングリコールを添加したことを特徴とする高温駆動型の燃料電池の冷却用冷媒。A refrigerant for cooling a high temperature drive type fuel cell, wherein propylene glycol is added to pure water. 請求項1において、燃料電池が90℃以上の高温で運転されることを特徴とする高温駆動型の燃料電池の冷却用冷媒。2. The cooling medium according to claim 1, wherein the fuel cell is operated at a high temperature of 90 ° C. or higher.
JP2002281784A 2002-09-26 2002-09-26 Cooling medium for cooling fuel cell Pending JP2004119215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281784A JP2004119215A (en) 2002-09-26 2002-09-26 Cooling medium for cooling fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281784A JP2004119215A (en) 2002-09-26 2002-09-26 Cooling medium for cooling fuel cell

Publications (1)

Publication Number Publication Date
JP2004119215A true JP2004119215A (en) 2004-04-15

Family

ID=32276145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281784A Pending JP2004119215A (en) 2002-09-26 2002-09-26 Cooling medium for cooling fuel cell

Country Status (1)

Country Link
JP (1) JP2004119215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951689B2 (en) 2010-09-14 2015-02-10 Suzuki Motor Corporation Fuel cell system including coolant additive and ion exchange resin and fuel-cell vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951689B2 (en) 2010-09-14 2015-02-10 Suzuki Motor Corporation Fuel cell system including coolant additive and ion exchange resin and fuel-cell vehicle

Similar Documents

Publication Publication Date Title
US8980493B2 (en) Fuel cell cooling system
CN111029616A (en) Port transport vehicle fuel cell thermal management system considering service life of galvanic pile
US20090208782A1 (en) Apparatus for optimized cooling of a drive unit and a fuel cell in a fuel cell vehicle
JP2007522623A (en) Subdivided cooling circuit for fuel cell system
US20090053570A1 (en) Fuel cell stack for low temperature start-up and operation
JP2007280827A (en) Temperature control system for fuel cell
CN102306815A (en) Liquid flow cell system
CN101210750A (en) Method for driving air-conditioner by utilizing fuel battery waste heat
JP5195867B2 (en) Fuel cell system and control method thereof
KR20090015273A (en) Air supply apparatus for cooling of fuel cell and heating of compression air
JP2002190313A (en) Polymer electrolyte fuel cell
JP2004119215A (en) Cooling medium for cooling fuel cell
JP2001339808A (en) Device for cooling fuel cell car
JP4136591B2 (en) Cooling liquid, cooling liquid sealing method and cooling system
JP2004296375A (en) Fuel cell cooling system and its cooling liquid degradation prevention method
US6588522B2 (en) Vehicle with a fuel cell system and method for operating the same
WO2022024779A1 (en) Fuel cell system
KR101394732B1 (en) Controlled thermal management system in fuel cell application
CN213304184U (en) Proton exchange membrane fuel cell purging system
CN114079062B (en) Water heat radiation system integrated by fuel cell system
JP5287368B2 (en) Fuel cell system
CN215578641U (en) Fuel cell module and fuel cell vehicle
JP4984546B2 (en) Fuel cell system
JP2002110205A (en) Cooling device for fuel cell
CN110867595A (en) Fuel cell system and fuel cell automobile power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707