KR20090015273A - Air supply apparatus for cooling of fuel cell and heating of compression air - Google Patents

Air supply apparatus for cooling of fuel cell and heating of compression air Download PDF

Info

Publication number
KR20090015273A
KR20090015273A KR1020070079476A KR20070079476A KR20090015273A KR 20090015273 A KR20090015273 A KR 20090015273A KR 1020070079476 A KR1020070079476 A KR 1020070079476A KR 20070079476 A KR20070079476 A KR 20070079476A KR 20090015273 A KR20090015273 A KR 20090015273A
Authority
KR
South Korea
Prior art keywords
air
fuel cell
cooling
vortex tube
compressed air
Prior art date
Application number
KR1020070079476A
Other languages
Korean (ko)
Inventor
신준식
이창호
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070079476A priority Critical patent/KR20090015273A/en
Publication of KR20090015273A publication Critical patent/KR20090015273A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

An air supply apparatus for cooling a fuel cell and heating compression air is provided to increase the cooling efficiency of a PEMFC by lowering the temperature of the cooling water, thereby cooling a fuel battery stably, and to improve the reaction efficiency of the fuel battery by supplying the high temperature compression air. An air supply apparatus for cooling a fuel cell and heating compression air comprises a vortex tube(10) for dividing the cold air and the hot air by being supplied with the compression air with a compressor(15); a heat exchanger(18) for cooling the temperature of cooling water by using the cold air of the vortex tube, which is installed at a coolant path transferred to a fuel battery(16) from a radiator(17); and an air path which connects an outlet of warm air of the vortex tube and the fuel battery to supply the hot air to the fuel battery.

Description

연료전지 냉각 및 압축공기 가열을 위한 공기공급장치{Air supply apparatus for cooling of fuel cell and heating of compression air}Air supply apparatus for cooling of fuel cell and heating of compression air

본 발명은 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치에 관한 것으로서, 더욱 상세하게는 보텍스 튜브의 원리를 이용하여 자동차용 PEMFC 타입 연료전지에 고온의 압축공기를 공급함으로써, 연료전지 반응효율을 높이고, 연료전지 냉각수를 보다 냉각하여 냉각효율을 향상시킴으로써, 안정적인 연료전지 냉각 및 냉각시스템의 축소를 통한 원가절감에 기여할 수 있도록 한 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치에 관한 것이다.The present invention relates to an air supply device for fuel cell cooling and compressed air heating, and more particularly, by supplying compressed air at high temperature to an automotive PEMFC type fuel cell using the principle of a vortex tube, thereby improving fuel cell reaction efficiency. The present invention relates to an air supply device for fuel cell cooling and compressed air heating, which contributes to cost reduction through stable fuel cell cooling and reduction of a cooling system by increasing the cooling efficiency of the fuel cell cooling water.

일반적으로 연료전지시스템은 연료가 가지고 있는 화학에너지를 직접 전기에너지로 변환시키는 일종의 발전시스템이다. In general, a fuel cell system is a type of power generation system that converts chemical energy of a fuel directly into electrical energy.

상기 연료전지시스템은 크게 전기에너지를 발생시키는 연료전지스택, 연료전지스택에 연료(수소)를 공급하는 연료공급시스템, 연료전지스택에 전기화학반응에 필요한 산화제인 공기중의 산소를 공급하는 공기공급시스템, 연료전지스택의 반응 열을 시스템 외부로 제거하고 연료전지스택의 운전온도를 제어하는 열 및 물관리 시스템으로 구성된다. The fuel cell system includes a fuel cell stack that generates electric energy largely, a fuel supply system for supplying fuel (hydrogen) to the fuel cell stack, and an air supply for supplying oxygen in the air, which is an oxidant required for an electrochemical reaction, to the fuel cell stack. The system consists of a heat and water management system that removes the reaction heat from the fuel cell stack to the outside of the system and controls the operating temperature of the fuel cell stack.

이와 같은 구성으로 연료전지시스템에서는 연료인 수소와 공기중의 산소에 의한 전기화학반응에 의해 전기를 발생시키고, 반응부산물로 열과 물을 배출하게 된다.With such a configuration, the fuel cell system generates electricity by an electrochemical reaction by hydrogen, which is a fuel, and oxygen in the air, and discharges heat and water as reaction byproducts.

상기 연료전지스택은 연료전지 차량의 주동력공급원으로서, 공기 중의 산소와 연료인 수소를 공급받아서 전기를 생산하는 장치이다. 또한, 자동차에 적용되는 연료전지스택은 약 400개 이상의 단위전지로 구성되어 있고, 각 단위전지는 약 0V ~1.23V의 전압을 형성한다.The fuel cell stack is a main power supply source of a fuel cell vehicle, and is an apparatus for producing electricity by receiving oxygen in air and hydrogen as fuel. In addition, a fuel cell stack applied to an automobile is composed of about 400 unit cells or more, and each unit cell forms a voltage of about 0V to 1.33V.

현재 자동차용으로 많이 사용되고 있는 연료전지스택은 출력밀도가 높은 고체 고분자 전해질형 연료전지(Proton Exchange Membrane Fuel Cell, PEMFC)이다.The fuel cell stack, which is widely used for automobiles, is a high-density solid polymer electrolyte fuel cell (Proton Exchange Membrane Fuel Cell, PEMFC).

도 1은 PEMFC 적용차량의 일례를 나타내는 구성도로서, 수소탱크로부터 수소가 연료전지에 공급되고, 컴프레서에 의해 압축공기가 연료전지에 공급되며, 상기 수소와 공기의 전기화학반응에 의해 생성된 열을 냉각하기 위해 라디에이터를 지나는 냉각수가 연료전지를 냉각하게 된다. 이때, 연료전지는 전기화학반응에 의해 80℃를 유지한다.1 is a configuration diagram showing an example of a PEMFC applied vehicle, in which hydrogen is supplied from a hydrogen tank to a fuel cell, compressed air is supplied to a fuel cell by a compressor, and heat generated by an electrochemical reaction between the hydrogen and air. Cooling water passing through the radiator cools the fuel cell. At this time, the fuel cell is maintained at 80 ℃ by the electrochemical reaction.

그러나, 상온의 공기에 의하여 냉각되는 라디에터를 지나는 냉각수의 온도와 PEMFC 타입의 연료전지와의 온도차가 적기 때문에, 여름철에는 수많은 셀로 이루어진 연료전지 온도가 국부적으로 과도하게 상승하여 과열되는 등 안정적인 냉각이 이루어지지 않으며, 보다 안정적인 냉각을 위해 냉각핀이나 유로를 복잡하게 만들 어야 하므로, 원가가 상승하게 되는 문제점이 있다.However, due to the small temperature difference between the temperature of the coolant passing through the radiator cooled by air at room temperature and the PEMFC type fuel cell, the temperature of the fuel cell composed of many cells rises excessively locally in summer, resulting in stable cooling. There is a problem in that the cost increases because the cooling fins or the flow path must be complicated for more stable cooling.

또한, 수소연료와 반응시키기 위한 압축공기는 온도가 높을수록 수증기를 많이 함유하여 반응효율이 좋아지는 특성이 있으므로, 압축공기 온도를 증가시킬 필요가 있다.In addition, since the compressed air for reacting with the hydrogen fuel contains a lot of water vapor as the temperature is higher, the reaction efficiency is improved, it is necessary to increase the compressed air temperature.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 보텍스 튜브를 이용하여 상온의 압축공기를 적절한 비율의 냉기와 온기로 분리한 후, 분리된 냉기로 연료전지 냉각수를 보다 냉각하여 냉각효율을 향상시킴으로써, 안정적인 연료전지 냉각 및 냉각시스템의 축소를 통한 원가절감에 기여하고, 분리된 고온의 온기를 연료전지에 공급함으로써, 연료전지 반응효율을 향상시킬 수 있도록 한 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치를 제공하는데 그 목적이 있다.The present invention has been made in view of the above, and after separating the compressed air at room temperature with a proper ratio of cold and warm air using a vortex tube, and further cooling the fuel cell cooling water with the separated cold to improve the cooling efficiency. By contributing to cost reduction through stable fuel cell cooling and reduction of cooling system, and supplying high temperature warmth to fuel cell, fuel cell cooling and compressed air heating can improve fuel cell reaction efficiency. The object is to provide an air supply.

상기한 목적을 달성하기 위한 본 발명은 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치에 있어서,The present invention for achieving the above object in the air supply device for fuel cell cooling and compressed air heating,

컴프레서에 의해 압축공기를 공급받아 차가운 공기와 뜨거운 공기로 분리하는 보텍스튜브; 라디에이터에서 연료전지로 이송되는 냉각수 유로에 설치되고, 상기 보텍스튜브의 차가운 공기를 이용하여 냉각수온도를 냉각하는 열교환기; 및 상기 뜨거운 공기가 연료전지에 공급되도록 보텍스튜브의 온기출구와 연료전지를 연결하는 공기유로;를 포함하여 구성된 것을 특징으로 한다.A vortex tube which receives compressed air by a compressor and separates it into cold air and hot air; A heat exchanger installed in a coolant flow path transferred from a radiator to a fuel cell and cooling the coolant temperature by using cold air of the vortex tube; And an air passage connecting the warm air outlet of the vortex tube and the fuel cell so that the hot air is supplied to the fuel cell.

바람직한 구현예로서, 상기 보텍스튜브는 컴프레서의 압축공기를 공급받기 위한 압축공기유입구와, 상기 열교환기에 차가운 공기를 공급하기 위한 냉기 출구와, 상기 연료전지에 뜨거운 공기를 공급하기 위한 온기 출구를 포함하는 것을 특 징으로 한다.In a preferred embodiment, the vortex tube includes a compressed air inlet for receiving compressed air of a compressor, a cold air outlet for supplying cold air to the heat exchanger, and a warmer outlet for supplying hot air to the fuel cell. It is characterized by.

더욱 바람직한 구현예로서, 상기 보텍스튜브의 내부에는 압축공기를 차가운 공기와 뜨거운 공기로 분리하기 위해 회전실이 형성된 것을 특징으로 한다.In a more preferred embodiment, the interior of the vortex tube is characterized in that the rotating chamber is formed to separate the compressed air into cold air and hot air.

이상에서 본 바와 같이, 본 발명에 따른 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치에 의하면, 연료전지로 들어가는 냉각수 온도를 낮춤으로써, PEMFC 타입 연료전지의 냉각 효율을 증가시켜 연료전지를 안정적으로 냉각할 수 있다.As described above, according to the air supply device for fuel cell cooling and compressed air heating according to the present invention, by lowering the temperature of the coolant entering the fuel cell, it increases the cooling efficiency of the PEMFC type fuel cell to stabilize the fuel cell Can be cooled.

또한, 냉각 효율 향상에 따른 냉각시스템의 크기 축소를 통한 원가를 절감할 수 있고, 연료전지에 고온의 압축공기를 공급함으로써, 연료전지의 반응효율을 향상시킬 수 있다.In addition, it is possible to reduce the cost by reducing the size of the cooling system according to the improvement of the cooling efficiency, and by supplying high-pressure compressed air to the fuel cell, it is possible to improve the reaction efficiency of the fuel cell.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 보텍스 튜브를 이용하여 상온의 압축공기를 적절한 비율의 냉기와 온기로 분리한 후, 분리된 냉기로 냉각수를 더욱 냉각시키고, 분리된 고온의 온기를 연료전지에 공급할 수 있도록 한 점에 주안점이 있다.The present invention focuses on the fact that the vortex tube is used to separate the compressed air at room temperature into a proper ratio of cold and warm, and then further cool the coolant with the separated cold, and to supply the separated hot air to the fuel cell. There is this.

보텍스(Vortex)라 함은 소용돌이 또는 나선형 회전이라는 뜻으로서, 1928년 프랑스의 죠지 랭크가 유체역학적 원리를 이용하여 냉매나 전기 또는 화학약품을 사용하지 않고 단지 압축공기(3~10kg/㎠)를 공급하여 매우 짧은 시간에 초저온 공기(-60℃ 이상)를 발생시키는 구성의 보텍스 튜브가 제안되어 사용되었다.Vortex means vortex or spiral rotation. In 1928, George Rank, France, used hydrodynamic principles to supply only compressed air (3-10 kg / ㎠) without using refrigerants, electricity or chemicals. Therefore, a vortex tube of a configuration that generates cryogenic air (above -60 ° C) in a very short time has been proposed and used.

도 2는 보텍스튜브의 일례를 나타내는 구성도로서, 압축공기가 배관을 통해 보텍스튜브(10)로 공급되면 일차적으로 보텍스 회전실(11)에 투입되어 초고속 회전을 하게 된다.2 is a configuration diagram illustrating an example of a vortex tube, and when compressed air is supplied to the vortex tube 10 through a pipe, the vortex tube 10 is first injected into the vortex rotation chamber 11 to perform ultra-high speed rotation.

이 회전공기(1차 보텍스)는 온기 출구(12) 쪽으로 향하다가 일부는 조절밸브(13)에 의해 온기출구로 배출되고, 나머지 공기는 조절밸브(13)에서 회송되어 2차 보텍스를 형성하면서 냉기 출구(14)쪽으로 나가게 되는데, 이때 2차 보텍스의 흐름은 1차 보텍스 흐름의 안쪽에 있는 보다 낮은 압력의 지역을 통과하면서 열량을 잃고 냉기 출구(14)쪽으로 향하게 된다.The rotating air (primary vortex) is directed toward the warm air outlet 12, and part of it is discharged to the warm air outlet by the control valve 13, and the remaining air is returned from the control valve 13 to form a secondary vortex. Exit to exit 14, where the flow of the secondary vortex passes through the lower pressure region inside the primary vortex flow and loses heat and is directed towards the cold air outlet 14.

회전하는 두개의 공기흐름(동일 방향, 동일 각속도 회전)에 있어서 내부 흐름의 공기 입자(냉기)는 바깥 흐름의 공기 입자(온기)와 1회전하는 시간이 동일(동일 각속도)하므로 실제 운동 속도는 바깥 흐름보다 낮다.In two rotating air streams (same direction, same angular velocity rotation), the air particles (cold air) of the inner stream have the same rotational time as the air particles (warm) of the outer stream (the same angular velocity), so the actual speed of movement is Lower than the flow

이 운동 속도의 차이는 운동 에너지가 줄었음을 의미하며, 이 상실된 운동에너지는 열로 변환되어 바깥 흐름의 공기 온도를 상승시키고, 내부 흐름은 더욱 더 온도가 내려간다. This difference in kinetic speed means that the kinetic energy is reduced, and this lost kinetic energy is converted to heat, raising the temperature of the air in the outer stream and lowering the temperature in the inner stream.

이때, 냉기쪽의 온도와 풍량은 온구쪽에 있는 조절밸브(13)(조절나사)로 쉽게 조절된다.At this time, the temperature and air volume of the cold side is easily adjusted by the control valve 13 (adjustment screw) on the warm side.

나사를 열어 온구쪽으로 많은 바람이 나오게 할 수록 냉기쪽 바람의 양은 줄어드는 대신 그 온도는 더욱 차가워진다.As you open the screw and let more wind out, the amount of cold wind decreases, but the temperature gets colder.

반대로 조절나사를 많이 잠글수록 온구쪽으로 나오는 바람의 양이 줄어들고 냉기쪽으로는 더 많은 바람이 나가게 되며, 이때의 냉기쪽 온도는 점점 덜 차가워진다.On the contrary, the more the adjustment screw is locked, the smaller the amount of wind coming out of the warm air and the more wind goes out of the cold air. At this time, the temperature of the cold air becomes less cold.

공급되는 압축공기의 양에 대비하여 냉기쪽으로 나가는 공기 양의 비율을 "냉비"라 부르는데, 이 비율이 80%일 때 즉, 압축공기 소모량과 냉기쪽 토출 공기량의 비율이 100 : 80 일때 찬바람의 양과 온도 강하를 감안하여 가장 최상의 냉각효과를 볼 수 있으며, 이때의 냉각용량을 공기냉각기의 냉각용량으로 규정한다.The ratio of the amount of air going to the cold air against the amount of compressed air supplied is called "cold rain". When this ratio is 80%, that is, when the ratio of the compressed air consumption and the amount of discharged air to the cold air is 100: 80, Considering the temperature drop, the best cooling effect can be seen, and the cooling capacity at this time is defined as the cooling capacity of the air cooler.

냉비가 50% 이하일 때 제일 낮은 온도가 생산되지만, 풍량은 반비례하여 더욱 작아지므로 특별하게 낮은 온도가 요구되지 않는 일반 냉각의 경우에는 냉비를 너무 낮지 않게 하는 것이 중요하다.The lowest temperature is produced when the cold ratio is less than 50%, but the air volume is inversely smaller, so it is important that the cold ratio is not too low in the case of general cooling, which does not require a particularly low temperature.

도 3은 본 발명의 일실시예에 따른 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치를 나타내는 구성도이다.3 is a block diagram showing an air supply device for fuel cell cooling and compressed air heating according to an embodiment of the present invention.

여기서, 본 발명의 일실시예에 따른 보텍스튜브(10)는 컴프레서(15)로부터 압축공기를 공급받아 뜨거운 공기(110℃)를 연료전지(16)의 공기극(캐소드)으로 보내고, 차가운 공기(-40℃)를 라디에이터(17)를 통과하는 냉각수의 열교환기(18)에 공급된다.Here, the vortex tube 10 according to an embodiment of the present invention receives compressed air from the compressor 15 and sends hot air (110 ° C.) to the cathode (cathode) of the fuel cell 16, and cool air (−). 40 ° C.) is supplied to the heat exchanger 18 of cooling water passing through the radiator 17.

상기 컴프레서(15)의 공기배출구와 보텍스 튜브(10)의 압축공기 유입구가 배관으로 연결되고, 보텍스튜브(10)의 냉기출구는 라디에이터(17)와 연료전지(16) 사이에 설치된 열교환기(18)와 연결되며, 보텍스튜브(10)의 온기출구는 연료전지의 공기유로와 연결되게 된다.The air outlet of the compressor 15 and the compressed air inlet of the vortex tube 10 are connected by a pipe, and the cold air outlet of the vortex tube 10 is a heat exchanger 18 installed between the radiator 17 and the fuel cell 16. And the warm air outlet of the vortex tube 10 are connected to the air flow path of the fuel cell.

상기 냉각수는 연료전지(16)에서 수소와 산소의 전기화학반응 하여 생성된 열을 냉각하기 위해 연료전지(16)의 냉각유로를 지나 연료전지의 열을 흡수한 후, 라디에이터(17)로 공급되고, 라디에이터에서 상온의 공기와 열교환을 통해 1차적으로 냉각된다.The cooling water is supplied to the radiator 17 after absorbing the heat of the fuel cell through the cooling passage of the fuel cell 16 to cool the heat generated by the electrochemical reaction between hydrogen and oxygen in the fuel cell 16. In the radiator, it is primarily cooled through heat exchange with air at room temperature.

이때, 상기 라디에이터(17)에서 냉각된 냉각수가 연료전지(16)의 냉각유로로 다시 공급되기 전에 열교환기를 통해 2차적으로 더 냉각된다.At this time, the coolant cooled in the radiator 17 is further cooled through the heat exchanger before being supplied back to the cooling flow path of the fuel cell 16.

상기 열교환기(18)는 보텍스튜브(10)의 차가운 공기를 이용하여 연료전지(16)와 라디에이터(17)를 순환하고 온 냉각수를 더욱 낮은 온도로 냉각하여 냉각 효율을 증가시킴으로써, 안정적인 연료전지(16)의 냉각 및 냉각시스템의 크기를 축소하여 원가를 절감할 수 있다. 이때, 차가운 공기는 열교환기(18)로 공급되어 냉각수 온도를 낮춘후 대기로 방출된다.The heat exchanger 18 circulates the fuel cell 16 and the radiator 17 by using cold air of the vortex tube 10 and cools the cooled water to a lower temperature to increase cooling efficiency, thereby providing a stable fuel cell. The cost can be reduced by reducing the size of the cooling system and cooling system. At this time, the cool air is supplied to the heat exchanger (18) to lower the cooling water temperature is discharged to the atmosphere.

또한, 보텍스튜브(10)의 뜨거운 공기가 연료전지(16)의 공기극에 공급됨으로써, 수증기량이 증가하여 연료전지의 반응효율을 향상시키게 된다.In addition, since hot air of the vortex tube 10 is supplied to the cathode of the fuel cell 16, the amount of water vapor is increased to improve the reaction efficiency of the fuel cell.

이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다.While the invention has been shown and described with respect to certain preferred embodiments thereof, the invention is not limited to these embodiments, and has been claimed by those of ordinary skill in the art to which the invention pertains. It includes all the various forms of embodiments that can be carried out without departing from the spirit.

도 1은 종래의 PEMFC 적용차량의 일례를 나타내는 구성도이고,1 is a configuration diagram showing an example of a conventional PEMFC applied vehicle,

도 2는 보텍스튜브의 일례를 나타내는 구성도이고,2 is a block diagram showing an example of a vortex tube,

도 3은 본 발명의 일실시예에 따른 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치를 나타내는 구성도이다.3 is a block diagram showing an air supply device for fuel cell cooling and compressed air heating according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : 보텍스튜브 11 : 회전실10: vortex tube 11: rotating chamber

12 : 온기출구 13 : 조절밸브12: hot air outlet 13: control valve

14 : 냉기출구 15 : 컴프레서14: cold air outlet 15: compressor

16 : 연료전지 17 : 라디에이터16 fuel cell 17 radiator

18 : 열교환기 19 : 수소탱크18: heat exchanger 19: hydrogen tank

Claims (3)

연료전지 냉각 및 압축공기 가열을 위한 공기공급장치에 있어서,In the air supply device for fuel cell cooling and compressed air heating, 컴프레서에 의해 압축공기를 공급받아 차가운 공기와 뜨거운 공기로 분리하는 보텍스튜브;A vortex tube which receives compressed air by a compressor and separates it into cold air and hot air; 라디에이터에서 연료전지로 이송되는 냉각수 유로에 설치되고, 상기 보텍스튜브의 차가운 공기를 이용하여 냉각수온도를 냉각하는 열교환기; 및A heat exchanger installed in a coolant flow path transferred from a radiator to a fuel cell and cooling the coolant temperature by using cold air of the vortex tube; And 상기 뜨거운 공기가 연료전지에 공급되도록 보텍스튜브의 온기출구와 연료전지를 연결하는 공기유로;An air passage connecting the warm air outlet of the vortex tube and the fuel cell such that the hot air is supplied to the fuel cell; 를 포함하여 구성된 것을 특징으로 하는 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치.Air supply device for fuel cell cooling and compressed air heating, characterized in that configured to include. 청구항 1에 있어서,The method according to claim 1, 상기 보텍스튜브는 컴프레서의 압축공기를 공급받기 위한 압축공기유입구와, 상기 열교환기에 차가운 공기를 공급하기 위한 냉기 출구와, 상기 연료전지에 뜨거운 공기를 공급하기 위한 온기 출구를 포함하는 것을 특징으로 하는 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치.The vortex tube includes a compressed air inlet for receiving compressed air of a compressor, a cold air outlet for supplying cool air to the heat exchanger, and a warmer outlet for supplying hot air to the fuel cell. Air supply for cell cooling and compressed air heating. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2, 상기 보텍스튜브의 내부에는 압축공기를 차가운 공기와 뜨거운 공기로 분리하기 위해 회전실이 형성된 것을 특징으로 하는 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치.The air supply device for fuel cell cooling and compressed air heating, characterized in that the rotating chamber is formed inside the vortex tube to separate the compressed air into cold air and hot air.
KR1020070079476A 2007-08-08 2007-08-08 Air supply apparatus for cooling of fuel cell and heating of compression air KR20090015273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070079476A KR20090015273A (en) 2007-08-08 2007-08-08 Air supply apparatus for cooling of fuel cell and heating of compression air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070079476A KR20090015273A (en) 2007-08-08 2007-08-08 Air supply apparatus for cooling of fuel cell and heating of compression air

Publications (1)

Publication Number Publication Date
KR20090015273A true KR20090015273A (en) 2009-02-12

Family

ID=40684871

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070079476A KR20090015273A (en) 2007-08-08 2007-08-08 Air supply apparatus for cooling of fuel cell and heating of compression air

Country Status (1)

Country Link
KR (1) KR20090015273A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069917A1 (en) * 2011-11-11 2013-05-16 주식회사 엘지화학 System for cooling and cycling battery pack and method therefor
KR101300092B1 (en) * 2011-03-31 2013-08-30 충남대학교산학협력단 Air supply apparatus for fuel cell and fuel cell system having the same
US8816692B2 (en) 2011-12-01 2014-08-26 Lg Chem, Ltd. Test system for a battery module
US9063179B2 (en) 2012-09-26 2015-06-23 Lg Chem, Ltd. System and method for determining an isolation resistance of a battery pack disposed on a vehicle chassis
US9164151B2 (en) 2013-08-07 2015-10-20 Lg Chem, Ltd. System and method for determining isolation resistances of a battery pack
KR20180068159A (en) * 2016-12-13 2018-06-21 현대자동차주식회사 Fuel cell symtem
JP2019164948A (en) * 2018-03-20 2019-09-26 トヨタ自動車株式会社 Fuel cell system
EP3686979A1 (en) * 2019-01-25 2020-07-29 Airbus Operations GmbH Fuel cell arrangement with a fluidized tube, fuel cell system and vehicle comprising a fuel cell arrangement
EP4181248A1 (en) * 2021-11-12 2023-05-17 LG Electronics, Inc. Fuel cell apparatus and method for controlling the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300092B1 (en) * 2011-03-31 2013-08-30 충남대학교산학협력단 Air supply apparatus for fuel cell and fuel cell system having the same
WO2013069917A1 (en) * 2011-11-11 2013-05-16 주식회사 엘지화학 System for cooling and cycling battery pack and method therefor
US8716981B2 (en) 2011-11-11 2014-05-06 Lg Chem, Ltd. System and method for cooling and cycling a battery pack
US8816692B2 (en) 2011-12-01 2014-08-26 Lg Chem, Ltd. Test system for a battery module
US9063179B2 (en) 2012-09-26 2015-06-23 Lg Chem, Ltd. System and method for determining an isolation resistance of a battery pack disposed on a vehicle chassis
US9164151B2 (en) 2013-08-07 2015-10-20 Lg Chem, Ltd. System and method for determining isolation resistances of a battery pack
KR20180068159A (en) * 2016-12-13 2018-06-21 현대자동차주식회사 Fuel cell symtem
JP2019164948A (en) * 2018-03-20 2019-09-26 トヨタ自動車株式会社 Fuel cell system
EP3686979A1 (en) * 2019-01-25 2020-07-29 Airbus Operations GmbH Fuel cell arrangement with a fluidized tube, fuel cell system and vehicle comprising a fuel cell arrangement
DE102019101884A1 (en) * 2019-01-25 2020-07-30 Airbus Operations Gmbh Fuel cell arrangement with swirl tube, fuel cell system and vehicle with a fuel cell arrangement
US11545679B2 (en) 2019-01-25 2023-01-03 Airbus Operations Gmbh Fuel cell arrangement having a vortex tube, fuel cell system and vehicle having a fuel cell arrangement
EP4181248A1 (en) * 2021-11-12 2023-05-17 LG Electronics, Inc. Fuel cell apparatus and method for controlling the same
KR20230069649A (en) * 2021-11-12 2023-05-19 엘지전자 주식회사 Fuel cell apparatus and method thereof

Similar Documents

Publication Publication Date Title
KR20090015273A (en) Air supply apparatus for cooling of fuel cell and heating of compression air
US6663993B2 (en) Cooling device for a fuel cell
US8011598B2 (en) SOFC power system with A/C system and heat pump for stationary and transportation applications
CN112242539A (en) Thermal management system for fuel cell stack and vehicle provided with same
JP2015002093A (en) Fuel cell system
KR101828938B1 (en) High efficiency tri-generation systems based on fuel cells
KR101237212B1 (en) Cooling system of fuel cell
CN107082006A (en) Hydrogen cell automobile high pressure hydrogen refrigerating plant
JP2015022864A (en) Fuel cell system
CN102292865A (en) Temperature-controlled battery system
US7037610B2 (en) Humidification of reactant streams in fuel cells
CN211829043U (en) Air system of vehicle fuel cell and vehicle fuel cell
CN111106364A (en) Fuel cell power generation system
KR101683715B1 (en) Pre-cooler for hydrogen filling device
KR101126879B1 (en) Air cooling system of fuel cell
KR100957372B1 (en) Cooling apparatus for hydrogen recirculation blower of fuel cell vehicle
KR102496802B1 (en) Air cooling system for fuel cell
US7214438B2 (en) Fuel cell apparatus with pressurized fuel tank and pressure-reducing unit for supplying fuel at a reduced operating pressure
WO2009109744A2 (en) Heat and process water recovery system
JP2005259440A (en) Fuel cell system
WO2021064605A1 (en) Sofc vehicle cooling structure and sofc vehicle
KR20100042189A (en) Heating system of fuel cell vehicle
CN114335593A (en) Heat radiation system for fuel cell
KR101864289B1 (en) Outlet temperature control device for pre-coller
CN220474668U (en) Passive heat dissipation system of vehicle-mounted fuel cell stack

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application