KR20090015273A - Air supply apparatus for cooling of fuel cell and heating of compression air - Google Patents
Air supply apparatus for cooling of fuel cell and heating of compression air Download PDFInfo
- Publication number
- KR20090015273A KR20090015273A KR1020070079476A KR20070079476A KR20090015273A KR 20090015273 A KR20090015273 A KR 20090015273A KR 1020070079476 A KR1020070079476 A KR 1020070079476A KR 20070079476 A KR20070079476 A KR 20070079476A KR 20090015273 A KR20090015273 A KR 20090015273A
- Authority
- KR
- South Korea
- Prior art keywords
- air
- fuel cell
- cooling
- vortex tube
- compressed air
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 78
- 238000001816 cooling Methods 0.000 title claims abstract description 41
- 238000010438 heat treatment Methods 0.000 title claims abstract description 14
- 230000006835 compression Effects 0.000 title abstract 5
- 238000007906 compression Methods 0.000 title abstract 5
- 239000002826 coolant Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 239000000498 cooling water Substances 0.000 abstract description 8
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000003487 electrochemical reaction Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 2
- 230000036647 reaction Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/70—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
- B60L50/72—Constructional details of fuel cells specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
- B60L58/32—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
- B60L58/33—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
Abstract
Description
본 발명은 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치에 관한 것으로서, 더욱 상세하게는 보텍스 튜브의 원리를 이용하여 자동차용 PEMFC 타입 연료전지에 고온의 압축공기를 공급함으로써, 연료전지 반응효율을 높이고, 연료전지 냉각수를 보다 냉각하여 냉각효율을 향상시킴으로써, 안정적인 연료전지 냉각 및 냉각시스템의 축소를 통한 원가절감에 기여할 수 있도록 한 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치에 관한 것이다.The present invention relates to an air supply device for fuel cell cooling and compressed air heating, and more particularly, by supplying compressed air at high temperature to an automotive PEMFC type fuel cell using the principle of a vortex tube, thereby improving fuel cell reaction efficiency. The present invention relates to an air supply device for fuel cell cooling and compressed air heating, which contributes to cost reduction through stable fuel cell cooling and reduction of a cooling system by increasing the cooling efficiency of the fuel cell cooling water.
일반적으로 연료전지시스템은 연료가 가지고 있는 화학에너지를 직접 전기에너지로 변환시키는 일종의 발전시스템이다. In general, a fuel cell system is a type of power generation system that converts chemical energy of a fuel directly into electrical energy.
상기 연료전지시스템은 크게 전기에너지를 발생시키는 연료전지스택, 연료전지스택에 연료(수소)를 공급하는 연료공급시스템, 연료전지스택에 전기화학반응에 필요한 산화제인 공기중의 산소를 공급하는 공기공급시스템, 연료전지스택의 반응 열을 시스템 외부로 제거하고 연료전지스택의 운전온도를 제어하는 열 및 물관리 시스템으로 구성된다. The fuel cell system includes a fuel cell stack that generates electric energy largely, a fuel supply system for supplying fuel (hydrogen) to the fuel cell stack, and an air supply for supplying oxygen in the air, which is an oxidant required for an electrochemical reaction, to the fuel cell stack. The system consists of a heat and water management system that removes the reaction heat from the fuel cell stack to the outside of the system and controls the operating temperature of the fuel cell stack.
이와 같은 구성으로 연료전지시스템에서는 연료인 수소와 공기중의 산소에 의한 전기화학반응에 의해 전기를 발생시키고, 반응부산물로 열과 물을 배출하게 된다.With such a configuration, the fuel cell system generates electricity by an electrochemical reaction by hydrogen, which is a fuel, and oxygen in the air, and discharges heat and water as reaction byproducts.
상기 연료전지스택은 연료전지 차량의 주동력공급원으로서, 공기 중의 산소와 연료인 수소를 공급받아서 전기를 생산하는 장치이다. 또한, 자동차에 적용되는 연료전지스택은 약 400개 이상의 단위전지로 구성되어 있고, 각 단위전지는 약 0V ~1.23V의 전압을 형성한다.The fuel cell stack is a main power supply source of a fuel cell vehicle, and is an apparatus for producing electricity by receiving oxygen in air and hydrogen as fuel. In addition, a fuel cell stack applied to an automobile is composed of about 400 unit cells or more, and each unit cell forms a voltage of about 0V to 1.33V.
현재 자동차용으로 많이 사용되고 있는 연료전지스택은 출력밀도가 높은 고체 고분자 전해질형 연료전지(Proton Exchange Membrane Fuel Cell, PEMFC)이다.The fuel cell stack, which is widely used for automobiles, is a high-density solid polymer electrolyte fuel cell (Proton Exchange Membrane Fuel Cell, PEMFC).
도 1은 PEMFC 적용차량의 일례를 나타내는 구성도로서, 수소탱크로부터 수소가 연료전지에 공급되고, 컴프레서에 의해 압축공기가 연료전지에 공급되며, 상기 수소와 공기의 전기화학반응에 의해 생성된 열을 냉각하기 위해 라디에이터를 지나는 냉각수가 연료전지를 냉각하게 된다. 이때, 연료전지는 전기화학반응에 의해 80℃를 유지한다.1 is a configuration diagram showing an example of a PEMFC applied vehicle, in which hydrogen is supplied from a hydrogen tank to a fuel cell, compressed air is supplied to a fuel cell by a compressor, and heat generated by an electrochemical reaction between the hydrogen and air. Cooling water passing through the radiator cools the fuel cell. At this time, the fuel cell is maintained at 80 ℃ by the electrochemical reaction.
그러나, 상온의 공기에 의하여 냉각되는 라디에터를 지나는 냉각수의 온도와 PEMFC 타입의 연료전지와의 온도차가 적기 때문에, 여름철에는 수많은 셀로 이루어진 연료전지 온도가 국부적으로 과도하게 상승하여 과열되는 등 안정적인 냉각이 이루어지지 않으며, 보다 안정적인 냉각을 위해 냉각핀이나 유로를 복잡하게 만들 어야 하므로, 원가가 상승하게 되는 문제점이 있다.However, due to the small temperature difference between the temperature of the coolant passing through the radiator cooled by air at room temperature and the PEMFC type fuel cell, the temperature of the fuel cell composed of many cells rises excessively locally in summer, resulting in stable cooling. There is a problem in that the cost increases because the cooling fins or the flow path must be complicated for more stable cooling.
또한, 수소연료와 반응시키기 위한 압축공기는 온도가 높을수록 수증기를 많이 함유하여 반응효율이 좋아지는 특성이 있으므로, 압축공기 온도를 증가시킬 필요가 있다.In addition, since the compressed air for reacting with the hydrogen fuel contains a lot of water vapor as the temperature is higher, the reaction efficiency is improved, it is necessary to increase the compressed air temperature.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 보텍스 튜브를 이용하여 상온의 압축공기를 적절한 비율의 냉기와 온기로 분리한 후, 분리된 냉기로 연료전지 냉각수를 보다 냉각하여 냉각효율을 향상시킴으로써, 안정적인 연료전지 냉각 및 냉각시스템의 축소를 통한 원가절감에 기여하고, 분리된 고온의 온기를 연료전지에 공급함으로써, 연료전지 반응효율을 향상시킬 수 있도록 한 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치를 제공하는데 그 목적이 있다.The present invention has been made in view of the above, and after separating the compressed air at room temperature with a proper ratio of cold and warm air using a vortex tube, and further cooling the fuel cell cooling water with the separated cold to improve the cooling efficiency. By contributing to cost reduction through stable fuel cell cooling and reduction of cooling system, and supplying high temperature warmth to fuel cell, fuel cell cooling and compressed air heating can improve fuel cell reaction efficiency. The object is to provide an air supply.
상기한 목적을 달성하기 위한 본 발명은 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치에 있어서,The present invention for achieving the above object in the air supply device for fuel cell cooling and compressed air heating,
컴프레서에 의해 압축공기를 공급받아 차가운 공기와 뜨거운 공기로 분리하는 보텍스튜브; 라디에이터에서 연료전지로 이송되는 냉각수 유로에 설치되고, 상기 보텍스튜브의 차가운 공기를 이용하여 냉각수온도를 냉각하는 열교환기; 및 상기 뜨거운 공기가 연료전지에 공급되도록 보텍스튜브의 온기출구와 연료전지를 연결하는 공기유로;를 포함하여 구성된 것을 특징으로 한다.A vortex tube which receives compressed air by a compressor and separates it into cold air and hot air; A heat exchanger installed in a coolant flow path transferred from a radiator to a fuel cell and cooling the coolant temperature by using cold air of the vortex tube; And an air passage connecting the warm air outlet of the vortex tube and the fuel cell so that the hot air is supplied to the fuel cell.
바람직한 구현예로서, 상기 보텍스튜브는 컴프레서의 압축공기를 공급받기 위한 압축공기유입구와, 상기 열교환기에 차가운 공기를 공급하기 위한 냉기 출구와, 상기 연료전지에 뜨거운 공기를 공급하기 위한 온기 출구를 포함하는 것을 특 징으로 한다.In a preferred embodiment, the vortex tube includes a compressed air inlet for receiving compressed air of a compressor, a cold air outlet for supplying cold air to the heat exchanger, and a warmer outlet for supplying hot air to the fuel cell. It is characterized by.
더욱 바람직한 구현예로서, 상기 보텍스튜브의 내부에는 압축공기를 차가운 공기와 뜨거운 공기로 분리하기 위해 회전실이 형성된 것을 특징으로 한다.In a more preferred embodiment, the interior of the vortex tube is characterized in that the rotating chamber is formed to separate the compressed air into cold air and hot air.
이상에서 본 바와 같이, 본 발명에 따른 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치에 의하면, 연료전지로 들어가는 냉각수 온도를 낮춤으로써, PEMFC 타입 연료전지의 냉각 효율을 증가시켜 연료전지를 안정적으로 냉각할 수 있다.As described above, according to the air supply device for fuel cell cooling and compressed air heating according to the present invention, by lowering the temperature of the coolant entering the fuel cell, it increases the cooling efficiency of the PEMFC type fuel cell to stabilize the fuel cell Can be cooled.
또한, 냉각 효율 향상에 따른 냉각시스템의 크기 축소를 통한 원가를 절감할 수 있고, 연료전지에 고온의 압축공기를 공급함으로써, 연료전지의 반응효율을 향상시킬 수 있다.In addition, it is possible to reduce the cost by reducing the size of the cooling system according to the improvement of the cooling efficiency, and by supplying high-pressure compressed air to the fuel cell, it is possible to improve the reaction efficiency of the fuel cell.
이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 보텍스 튜브를 이용하여 상온의 압축공기를 적절한 비율의 냉기와 온기로 분리한 후, 분리된 냉기로 냉각수를 더욱 냉각시키고, 분리된 고온의 온기를 연료전지에 공급할 수 있도록 한 점에 주안점이 있다.The present invention focuses on the fact that the vortex tube is used to separate the compressed air at room temperature into a proper ratio of cold and warm, and then further cool the coolant with the separated cold, and to supply the separated hot air to the fuel cell. There is this.
보텍스(Vortex)라 함은 소용돌이 또는 나선형 회전이라는 뜻으로서, 1928년 프랑스의 죠지 랭크가 유체역학적 원리를 이용하여 냉매나 전기 또는 화학약품을 사용하지 않고 단지 압축공기(3~10kg/㎠)를 공급하여 매우 짧은 시간에 초저온 공기(-60℃ 이상)를 발생시키는 구성의 보텍스 튜브가 제안되어 사용되었다.Vortex means vortex or spiral rotation. In 1928, George Rank, France, used hydrodynamic principles to supply only compressed air (3-10 kg / ㎠) without using refrigerants, electricity or chemicals. Therefore, a vortex tube of a configuration that generates cryogenic air (above -60 ° C) in a very short time has been proposed and used.
도 2는 보텍스튜브의 일례를 나타내는 구성도로서, 압축공기가 배관을 통해 보텍스튜브(10)로 공급되면 일차적으로 보텍스 회전실(11)에 투입되어 초고속 회전을 하게 된다.2 is a configuration diagram illustrating an example of a vortex tube, and when compressed air is supplied to the
이 회전공기(1차 보텍스)는 온기 출구(12) 쪽으로 향하다가 일부는 조절밸브(13)에 의해 온기출구로 배출되고, 나머지 공기는 조절밸브(13)에서 회송되어 2차 보텍스를 형성하면서 냉기 출구(14)쪽으로 나가게 되는데, 이때 2차 보텍스의 흐름은 1차 보텍스 흐름의 안쪽에 있는 보다 낮은 압력의 지역을 통과하면서 열량을 잃고 냉기 출구(14)쪽으로 향하게 된다.The rotating air (primary vortex) is directed toward the
회전하는 두개의 공기흐름(동일 방향, 동일 각속도 회전)에 있어서 내부 흐름의 공기 입자(냉기)는 바깥 흐름의 공기 입자(온기)와 1회전하는 시간이 동일(동일 각속도)하므로 실제 운동 속도는 바깥 흐름보다 낮다.In two rotating air streams (same direction, same angular velocity rotation), the air particles (cold air) of the inner stream have the same rotational time as the air particles (warm) of the outer stream (the same angular velocity), so the actual speed of movement is Lower than the flow
이 운동 속도의 차이는 운동 에너지가 줄었음을 의미하며, 이 상실된 운동에너지는 열로 변환되어 바깥 흐름의 공기 온도를 상승시키고, 내부 흐름은 더욱 더 온도가 내려간다. This difference in kinetic speed means that the kinetic energy is reduced, and this lost kinetic energy is converted to heat, raising the temperature of the air in the outer stream and lowering the temperature in the inner stream.
이때, 냉기쪽의 온도와 풍량은 온구쪽에 있는 조절밸브(13)(조절나사)로 쉽게 조절된다.At this time, the temperature and air volume of the cold side is easily adjusted by the control valve 13 (adjustment screw) on the warm side.
나사를 열어 온구쪽으로 많은 바람이 나오게 할 수록 냉기쪽 바람의 양은 줄어드는 대신 그 온도는 더욱 차가워진다.As you open the screw and let more wind out, the amount of cold wind decreases, but the temperature gets colder.
반대로 조절나사를 많이 잠글수록 온구쪽으로 나오는 바람의 양이 줄어들고 냉기쪽으로는 더 많은 바람이 나가게 되며, 이때의 냉기쪽 온도는 점점 덜 차가워진다.On the contrary, the more the adjustment screw is locked, the smaller the amount of wind coming out of the warm air and the more wind goes out of the cold air. At this time, the temperature of the cold air becomes less cold.
공급되는 압축공기의 양에 대비하여 냉기쪽으로 나가는 공기 양의 비율을 "냉비"라 부르는데, 이 비율이 80%일 때 즉, 압축공기 소모량과 냉기쪽 토출 공기량의 비율이 100 : 80 일때 찬바람의 양과 온도 강하를 감안하여 가장 최상의 냉각효과를 볼 수 있으며, 이때의 냉각용량을 공기냉각기의 냉각용량으로 규정한다.The ratio of the amount of air going to the cold air against the amount of compressed air supplied is called "cold rain". When this ratio is 80%, that is, when the ratio of the compressed air consumption and the amount of discharged air to the cold air is 100: 80, Considering the temperature drop, the best cooling effect can be seen, and the cooling capacity at this time is defined as the cooling capacity of the air cooler.
냉비가 50% 이하일 때 제일 낮은 온도가 생산되지만, 풍량은 반비례하여 더욱 작아지므로 특별하게 낮은 온도가 요구되지 않는 일반 냉각의 경우에는 냉비를 너무 낮지 않게 하는 것이 중요하다.The lowest temperature is produced when the cold ratio is less than 50%, but the air volume is inversely smaller, so it is important that the cold ratio is not too low in the case of general cooling, which does not require a particularly low temperature.
도 3은 본 발명의 일실시예에 따른 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치를 나타내는 구성도이다.3 is a block diagram showing an air supply device for fuel cell cooling and compressed air heating according to an embodiment of the present invention.
여기서, 본 발명의 일실시예에 따른 보텍스튜브(10)는 컴프레서(15)로부터 압축공기를 공급받아 뜨거운 공기(110℃)를 연료전지(16)의 공기극(캐소드)으로 보내고, 차가운 공기(-40℃)를 라디에이터(17)를 통과하는 냉각수의 열교환기(18)에 공급된다.Here, the
상기 컴프레서(15)의 공기배출구와 보텍스 튜브(10)의 압축공기 유입구가 배관으로 연결되고, 보텍스튜브(10)의 냉기출구는 라디에이터(17)와 연료전지(16) 사이에 설치된 열교환기(18)와 연결되며, 보텍스튜브(10)의 온기출구는 연료전지의 공기유로와 연결되게 된다.The air outlet of the
상기 냉각수는 연료전지(16)에서 수소와 산소의 전기화학반응 하여 생성된 열을 냉각하기 위해 연료전지(16)의 냉각유로를 지나 연료전지의 열을 흡수한 후, 라디에이터(17)로 공급되고, 라디에이터에서 상온의 공기와 열교환을 통해 1차적으로 냉각된다.The cooling water is supplied to the
이때, 상기 라디에이터(17)에서 냉각된 냉각수가 연료전지(16)의 냉각유로로 다시 공급되기 전에 열교환기를 통해 2차적으로 더 냉각된다.At this time, the coolant cooled in the
상기 열교환기(18)는 보텍스튜브(10)의 차가운 공기를 이용하여 연료전지(16)와 라디에이터(17)를 순환하고 온 냉각수를 더욱 낮은 온도로 냉각하여 냉각 효율을 증가시킴으로써, 안정적인 연료전지(16)의 냉각 및 냉각시스템의 크기를 축소하여 원가를 절감할 수 있다. 이때, 차가운 공기는 열교환기(18)로 공급되어 냉각수 온도를 낮춘후 대기로 방출된다.The
또한, 보텍스튜브(10)의 뜨거운 공기가 연료전지(16)의 공기극에 공급됨으로써, 수증기량이 증가하여 연료전지의 반응효율을 향상시키게 된다.In addition, since hot air of the
이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다.While the invention has been shown and described with respect to certain preferred embodiments thereof, the invention is not limited to these embodiments, and has been claimed by those of ordinary skill in the art to which the invention pertains. It includes all the various forms of embodiments that can be carried out without departing from the spirit.
도 1은 종래의 PEMFC 적용차량의 일례를 나타내는 구성도이고,1 is a configuration diagram showing an example of a conventional PEMFC applied vehicle,
도 2는 보텍스튜브의 일례를 나타내는 구성도이고,2 is a block diagram showing an example of a vortex tube,
도 3은 본 발명의 일실시예에 따른 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치를 나타내는 구성도이다.3 is a block diagram showing an air supply device for fuel cell cooling and compressed air heating according to an embodiment of the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
10 : 보텍스튜브 11 : 회전실10: vortex tube 11: rotating chamber
12 : 온기출구 13 : 조절밸브12: hot air outlet 13: control valve
14 : 냉기출구 15 : 컴프레서14: cold air outlet 15: compressor
16 : 연료전지 17 : 라디에이터16
18 : 열교환기 19 : 수소탱크18: heat exchanger 19: hydrogen tank
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070079476A KR20090015273A (en) | 2007-08-08 | 2007-08-08 | Air supply apparatus for cooling of fuel cell and heating of compression air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070079476A KR20090015273A (en) | 2007-08-08 | 2007-08-08 | Air supply apparatus for cooling of fuel cell and heating of compression air |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20090015273A true KR20090015273A (en) | 2009-02-12 |
Family
ID=40684871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070079476A KR20090015273A (en) | 2007-08-08 | 2007-08-08 | Air supply apparatus for cooling of fuel cell and heating of compression air |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20090015273A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069917A1 (en) * | 2011-11-11 | 2013-05-16 | 주식회사 엘지화학 | System for cooling and cycling battery pack and method therefor |
KR101300092B1 (en) * | 2011-03-31 | 2013-08-30 | 충남대학교산학협력단 | Air supply apparatus for fuel cell and fuel cell system having the same |
US8816692B2 (en) | 2011-12-01 | 2014-08-26 | Lg Chem, Ltd. | Test system for a battery module |
US9063179B2 (en) | 2012-09-26 | 2015-06-23 | Lg Chem, Ltd. | System and method for determining an isolation resistance of a battery pack disposed on a vehicle chassis |
US9164151B2 (en) | 2013-08-07 | 2015-10-20 | Lg Chem, Ltd. | System and method for determining isolation resistances of a battery pack |
KR20180068159A (en) * | 2016-12-13 | 2018-06-21 | 현대자동차주식회사 | Fuel cell symtem |
JP2019164948A (en) * | 2018-03-20 | 2019-09-26 | トヨタ自動車株式会社 | Fuel cell system |
EP3686979A1 (en) * | 2019-01-25 | 2020-07-29 | Airbus Operations GmbH | Fuel cell arrangement with a fluidized tube, fuel cell system and vehicle comprising a fuel cell arrangement |
EP4181248A1 (en) * | 2021-11-12 | 2023-05-17 | LG Electronics, Inc. | Fuel cell apparatus and method for controlling the same |
-
2007
- 2007-08-08 KR KR1020070079476A patent/KR20090015273A/en not_active Application Discontinuation
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101300092B1 (en) * | 2011-03-31 | 2013-08-30 | 충남대학교산학협력단 | Air supply apparatus for fuel cell and fuel cell system having the same |
WO2013069917A1 (en) * | 2011-11-11 | 2013-05-16 | 주식회사 엘지화학 | System for cooling and cycling battery pack and method therefor |
US8716981B2 (en) | 2011-11-11 | 2014-05-06 | Lg Chem, Ltd. | System and method for cooling and cycling a battery pack |
US8816692B2 (en) | 2011-12-01 | 2014-08-26 | Lg Chem, Ltd. | Test system for a battery module |
US9063179B2 (en) | 2012-09-26 | 2015-06-23 | Lg Chem, Ltd. | System and method for determining an isolation resistance of a battery pack disposed on a vehicle chassis |
US9164151B2 (en) | 2013-08-07 | 2015-10-20 | Lg Chem, Ltd. | System and method for determining isolation resistances of a battery pack |
KR20180068159A (en) * | 2016-12-13 | 2018-06-21 | 현대자동차주식회사 | Fuel cell symtem |
JP2019164948A (en) * | 2018-03-20 | 2019-09-26 | トヨタ自動車株式会社 | Fuel cell system |
EP3686979A1 (en) * | 2019-01-25 | 2020-07-29 | Airbus Operations GmbH | Fuel cell arrangement with a fluidized tube, fuel cell system and vehicle comprising a fuel cell arrangement |
DE102019101884A1 (en) * | 2019-01-25 | 2020-07-30 | Airbus Operations Gmbh | Fuel cell arrangement with swirl tube, fuel cell system and vehicle with a fuel cell arrangement |
US11545679B2 (en) | 2019-01-25 | 2023-01-03 | Airbus Operations Gmbh | Fuel cell arrangement having a vortex tube, fuel cell system and vehicle having a fuel cell arrangement |
EP4181248A1 (en) * | 2021-11-12 | 2023-05-17 | LG Electronics, Inc. | Fuel cell apparatus and method for controlling the same |
KR20230069649A (en) * | 2021-11-12 | 2023-05-19 | 엘지전자 주식회사 | Fuel cell apparatus and method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20090015273A (en) | Air supply apparatus for cooling of fuel cell and heating of compression air | |
US6663993B2 (en) | Cooling device for a fuel cell | |
US8011598B2 (en) | SOFC power system with A/C system and heat pump for stationary and transportation applications | |
CN112242539A (en) | Thermal management system for fuel cell stack and vehicle provided with same | |
JP2015002093A (en) | Fuel cell system | |
KR101828938B1 (en) | High efficiency tri-generation systems based on fuel cells | |
KR101237212B1 (en) | Cooling system of fuel cell | |
CN107082006A (en) | Hydrogen cell automobile high pressure hydrogen refrigerating plant | |
JP2015022864A (en) | Fuel cell system | |
CN102292865A (en) | Temperature-controlled battery system | |
US7037610B2 (en) | Humidification of reactant streams in fuel cells | |
CN211829043U (en) | Air system of vehicle fuel cell and vehicle fuel cell | |
CN111106364A (en) | Fuel cell power generation system | |
KR101683715B1 (en) | Pre-cooler for hydrogen filling device | |
KR101126879B1 (en) | Air cooling system of fuel cell | |
KR100957372B1 (en) | Cooling apparatus for hydrogen recirculation blower of fuel cell vehicle | |
KR102496802B1 (en) | Air cooling system for fuel cell | |
US7214438B2 (en) | Fuel cell apparatus with pressurized fuel tank and pressure-reducing unit for supplying fuel at a reduced operating pressure | |
WO2009109744A2 (en) | Heat and process water recovery system | |
JP2005259440A (en) | Fuel cell system | |
WO2021064605A1 (en) | Sofc vehicle cooling structure and sofc vehicle | |
KR20100042189A (en) | Heating system of fuel cell vehicle | |
CN114335593A (en) | Heat radiation system for fuel cell | |
KR101864289B1 (en) | Outlet temperature control device for pre-coller | |
CN220474668U (en) | Passive heat dissipation system of vehicle-mounted fuel cell stack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |