JP2004119106A - Control valve lead storage battery - Google Patents

Control valve lead storage battery Download PDF

Info

Publication number
JP2004119106A
JP2004119106A JP2002278753A JP2002278753A JP2004119106A JP 2004119106 A JP2004119106 A JP 2004119106A JP 2002278753 A JP2002278753 A JP 2002278753A JP 2002278753 A JP2002278753 A JP 2002278753A JP 2004119106 A JP2004119106 A JP 2004119106A
Authority
JP
Japan
Prior art keywords
positive electrode
shelf
control valve
electrode plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002278753A
Other languages
Japanese (ja)
Inventor
Takehiro Sasaki
佐々木 健浩
Tomoki Fujimori
藤森 智貴
Toshibumi Yoshimine
吉嶺 俊文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002278753A priority Critical patent/JP2004119106A/en
Publication of JP2004119106A publication Critical patent/JP2004119106A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long life and very safe control valve lead storage battery suppressing corrosion of a connecting portion between a positive electrode shelf and an electrode pole part, which occurs when trickle charging is carried out on the control valve lead battery for a long period of time, and suppressing cracks caused by the corrosion. <P>SOLUTION: The battery has a group of electrode plates consisting of rectangular positive electrode plates and negative electrode plates which are arranged via retainers, wherein electrolyte is contained in the group of electrode plates. The control valve lead battery has a shelf portion 14 which is formed by welding current collection lugs 12 of positive electrode plates all together, and has connecting members 13 which are used for connecting electrically electrode poles or connectors welded to the shelf portion. A is ratio S<SB>1</SB>/S<SB>2</SB>, wherein S<SB>1</SB>is the area of the cross section of a boundary portion between the connecting member and the shelf portion, and S<SB>2</SB>is total summation of the area of the cross sections of the current collection lugs. d is the length of a side of the positive electrode plate, where the current collection lug 12 is disposed, h is the length of other side which is approximately orthogonal to above side, and B is ratio h/d. A≥1 when B≥1. A≥2.5B-1.5 when B≥0.8 and B is less than 1. A≥0.625B when B is less than 0.8. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はバックアップ電源等に用いられる制御弁式鉛蓄電池に関するものである。
【0002】
【従来の技術】
制御弁式鉛蓄電池は数Ah〜数千Ahの広い容量範囲に適用できる。また、比較的安価であることから、コンピュータ用の無停電電源からビル用非常用電源といったバックアップ用電源に広く用いられている。
【0003】
このようなバックアップ用電源において、制御弁式鉛蓄電池はバックアップ放電に備えて、商用電源が正常に供給される間は常に充電される。このような充電はトリクル充電と呼ばれ、電池の自己放電分を補うためになされる。トリクル充電として過充電による電池の性能低下を抑制するために、電池の充電電圧を所定値を越えないよう、定電圧充電が一般に行われている。
【0004】
一方、このようなバックアップ用に用いる制御弁式鉛蓄電池は数年〜十数年といった寿命が要求され、このような長期にわたる使用期間中での安全性が要求される。特に長期にわたって、トリクル充電が行われることによって、正極部材は酸化による腐食を受け続ける。正極部材が腐食を受けることによって、格子骨や集電耳の断面積が減少したり、格子が変形して負極部材と短絡する可能性がある。
【0005】
特に集電耳や骨の断面積が減少することによって、バックアップ放電時や保守点検中に電池を誤って短絡させた場合に、これらの集電耳や骨を溶断させる場合がある。このような集電耳や骨の溶断を抑制に関して、電池の理論容量や活物質量あたりの集電耳断面積や骨断面積を所定範囲内とすることが知られている(例えば、特許文献1および特許文献2参照)。
【0006】
これらの特許文献によれば、初期状態の電池における耳部や骨部の溶断を抑制することができる。しかしながら、数年から数十年といった長期にわたる使用期間において耳部や骨部の溶断を抑制できるかどうかについては記載はない。そこで本発明の発明者らは長期の使用期間を経た場合の耳部や骨部の信頼性について検討を行った。
【0007】
その結果、前記の各特許文献に示された構成によって、耳部や骨部の信頼性は確保されるものの、正極棚部と極柱部品との間で腐食が進行し、この部分が溶断する可能性があることが判ってきた。特に60℃といった高温雰囲気下でトリクル充電を行った場合、正極格子体が変形し、正極棚部と極柱部品との接続部に応力が集中する。その結果、応力の集中した接続部に優先的に腐食が進行した結果、この部分に亀裂が生じたり、断線して電池が容量低下するという問題があった。
【0008】
【特許文献1】
特開昭64−19674号公報(第3頁左下欄第3〜第8行目)
【特許文献2】
特開平2−281558号公報(第3頁左上欄第15〜20行目、同左下欄第1〜第4行目)
【0009】
【発明が解決しようとする課題】
本発明は制御弁式鉛蓄電池を長期間トリクル充電しても、前記したような正極棚と極柱部品の接続部の腐食およびこれによる亀裂といった現象を抑制し、長寿命で安全性に優れた制御弁式鉛蓄電池を提供するものである。
【0010】
【課題を解決するための手段】
前記した課題を解決するために、本発明の請求項1に係る発明は、矩形状の正極板と負極板とをリテーナを介して配置してなる極板群に電解液を含浸保持し、正極板の集電耳を集合溶接した棚部とこの棚部に溶接された極柱あるいは接続体等の電気的接続のための接続部材を備えた制御弁式鉛蓄電池に関し、接続部材と棚部との境界部の断面積(S)の集電耳の断面積の総和(S)に対する比率(S/S)をAとし、正極板の集電耳を設けた辺の長さをd、この辺に概直交するもう一方の辺の長さをhとし、これら2辺の比率(h/d)をBとした場合に、この比率Bに応じて比率Aを以下の範囲内に規定するものである。
【0011】
すなわち、
▲1▼B≧1の場合には、A≧1とする。
【0012】
▲2▼0.8≦B<1の場合、A≧2.5B−1.5とする。
【0013】
▲3▼B<0.8の場合、A≧0.625Bとする。
【0014】
また、本発明の請求項2に係る発明は、請求項1の制御弁式鉛蓄電池において、正極板は鉛合金シートを展開伸長したエキスパンド格子体を備えるとともに、エキスパンド格子体の展開方向と集電耳部の突出方向が同一としたことを特徴とするものである。
【0015】
さらに、本発明の請求項3に係る発明は、請求項1もしくは2の制御弁式鉛蓄電池において、正極の接続部材と棚とがそれぞれ異なる組成の鉛もしくは鉛合金で構成されるものである。
【0016】
【発明の実施の形態】
本発明の実施の形態による制御弁式鉛蓄電池(以下、電池)を図面を参照して説明する。
【0017】
図1に示したように、本発明の電池に用いる極板群1は矩形状の正極板2と負極板3とがリテーナ4を介して配置されている。リテーナ4としては従来と同様、ガラス繊維マット等の耐酸性を有した繊維の不織布を用いることができる。正極板2には図2に示したように格子体10に活物質11が充填されており、その一辺に集電用の耳部12が形成されている。負極板も正極板と同様の構造を有している。
【0018】
これら所定枚数の正極板2と負極板3とを組み合わせ、同極性の耳部、すなわち正極においては耳部12と極柱部品、接続体等、電気的接続のための接続部材13を一体にするための棚部14を形成する。具体的な製造方法の一例としては従来からバーニング溶接と呼ばれているように、集電耳部を櫛歯上の鋳型に配置し、この耳部12に近接した位置に配置する。その後、耳部12周囲と耳部12と接続部材13間の空間に溶融鉛を供給し、この溶融鉛を凝固させて棚部14を形成することができる。
【0019】
本発明においてはこの接続部材13と棚部14との境界部の断面積(S)と耳部12の断面積の総和(S)に対する比率(S/S)を正極板2の縦横寸法比と関連づけて規定するものである。すなわち、前記した比率(S/S)をA、正極板2の耳部12を設けた辺2aの長さをd、この辺2aに概直交するもう一方の辺2bの長さをhとし、これら2辺の比率(h/d)をBとした場合に、Aを正極板2寸法の縦横比Bに応じて規定する。
【0020】
すなわち、
▲1▼B≧1の場合、A≧1とする。
【0021】
▲2▼0.8≦B<1の場合、A≧2.5B−1.5とする。
【0022】
▲3▼B<0.8の場合、A≧0.625Bとする。
【0023】
正極板2が酸化を受けて膨張し、寸法増加した場合、棚部14は耳部12によって図1のX方向に押され、接続部材13と棚部14がその境界部で屈曲させる方向に応力が集中し、腐食が進行しやすくなる。本発明においてはこの境界部の断面積(S)と耳部12の断面積の総和(S)に対する比率(S/S)を限定することによって境界部の応力集中とこれによる腐食の進行を抑制するものである。
【0024】
また、耳部12により棚部14へ加わる応力は正極板2の形状によって大きく変化する。極板面積が同一であっても、その縦横寸法比によって、腐食による寸法変化は異なるためである。例えば縦長極板の場合には縦方向への伸びが横方向に優先して行われる。このような極板において耳部が縦方向に突出するよう配置した場合には耳部が横方向に突出するよう配置した場合に比較して同一腐食条件でも棚部14へ加わる応力は増大する。したがって、正極板の寸法比率(h/d)に応じて比率(S/S)を決定することが必要である。
【0025】
さらに、本発明においては正極板2に用いる格子体として図4に示したような鋳造格子体17に加えて、図3に示したような特にエキスパンド加工時の展開方向が耳部12の突出方向と同一としたエキスパンド格子体15にも適している。このようなエキスパンド格子体15は腐食によって、展開方向、すなわち耳部12の突出方向に優先的に伸びる。したがって、棚部14と接続部に係る応力は高くなるからである。本発明においてはこのように耳部12の突出方向に優先的に伸びる格子体を用いても接続部材13と棚部14の接合部での応力集中とこれによる腐食を抑制することができる。また、棚部14と接続部材とが互いに異なる組成を有する鉛合金を用いる場合にも本発明の構成を適用することができる。
【0026】
【実施例】
図1に示した極板群において、正極板の寸法比率(h/d)と接続部材13と棚部14との境界部の断面積(S)と耳部12の断面積の総和(S)に対する比率(S/S)を変化させて2V65Ahの制御弁式鉛蓄電池(以下、電池を作成した。ここで正極板に用いる格子体として図4に示した鋳造格子体17とそれぞれ図3および図5に示したエキスパンド格子体15およびエキスパンド格子体16を用いた。図3に示したエキスパンド格子体15は前記したように耳部12の突出方向とエキスパンド加工時の展開方向とが同一としたものである。一方、図5に示したエキスパンド格子体16は耳部12の突出方向とエキスパンド加工時の展開方向とが互いに直交するよう構成した。
【0027】
なお、これらの格子体はいずれもPb−0.07質量%Ca−1.6質量%Sn合金を用いた。また、正極の棚部14にPb−0.8質量%Sn、接続部材にPb−2.0質量%Sn合金をそれぞれ用いた。
【0028】
これらの各電池について正極の棚−接続部材の耐久試験を行った。耐久試験として60℃雰囲気下で充電電圧2.275Vでトリクル充電を420日間行い、その後、各電池を分解して正極の接続部材と棚部との接合部の状態を確認した。接合部に亀裂が生じている場合にはこの亀裂によって接合部の断面積がどの程度減少しているかを評価した。その結果を図6〜図7に示した。
【0029】
図6は正極格子体として図3に示した展開方向と耳部の突出方向とが同一としたエキスパンド格子体15を用いた電池の耐久試験結果である。正極の棚と接続部材との間に亀裂がないものは記号○、亀裂によって棚と接続部材とが破断したものは記号×、亀裂が発生しているものの、棚と接続部材との間の接合が維持されているものについては記号●とし、この記号●に添えて残存している棚−接続部材の断面積の比率を百分率で示している。例えば亀裂によって棚−接続部材の断面積が当初の1/2となった場合には50%と示した。
【0030】
図6に示した結果から、正極板2の耳部12を設けた辺2aの長さをd、この辺2aに概直交するもう一方の辺2bの長さをhとし、これら2辺の比率B(=h/d)が1以上の場合、耳部12の断面積の総和(S)に対する比率A(=S/S)を1以上とすることにより、棚−接続部材間の亀裂を抑制することができることがわかる。この亀裂を抑制するためにはBの値によってAを限定することが必要であり、Bが0.8≦B<1の場合、AとBとの関係がA≧2.5B−1.5を満たす範囲内でAを限定する。さらにBがB<0.8の場合、AとBとの関係がA≧0.625Bを満たす範囲内でBを限定する。このようにBに応じてAを限定することにより、トリクル充電によって従来発生する可能性のあった、正極の接続部材と棚との接合への応力集中による腐食と、これによる亀裂の発生を顕著に抑制することができる。
【0031】
図7は正極格子体として図4に示した鋳造格子体17を用いた電池の耐久試験結果である。結果は図6と同じ様式で示した。正極格子体として鋳造格子体17を用いた場合もエキスパンド格子体15を用いた電池と同様の結果が得られた。しかしながら、亀裂の発生する領域において、その亀裂の程度はエキスパンド格子体15を用いたものに比較して緩和されていた。鋳造格子体17は上下方向(耳部の突出方向)に伸びるとともに、横方向にも伸びていたことから、展開方向に優先して伸びるエキスパンド格子体に比較して耳部突出方向の伸びが緩和したためと推測できる。
【0032】
さらに正極格子体として図5に示した比較例のエキスパンド格子体16を用いた電池の耐久試験結果を行ったが棚部−接続部材間の亀裂は発生していなかった。耐久試験後のこれらの電池では鋳造格子体17やエキスパンド格子体15を用いた電池と異なり、極板の横方向への伸びが極板の上下方向の伸びに優先して発生していた。そのため、棚部−接続部材間では腐食および亀裂に至る応力集中がなかったものと推測できる。
【0033】
【発明の効果】
以上、説明してきたように、本発明の構成によれば制御弁式鉛蓄電池を長期間トリクル充電しても、前記したような正極棚と極柱部品の接続部の腐食およびこれによる亀裂といった現象を抑制し、長寿命で安全性に優れた制御弁式鉛蓄電池を提供できることから、工業上、極めて有用である。
【図面の簡単な説明】
【図1】本発明の電池の極板群を示す図
【図2】本発明の電池の正極板を示す図
【図3】本発明の電池に用いるエキスパンド格子体を示す図
【図4】本発明の電池に用いる鋳造格子体を示す図
【図5】比較例によるエキスパンド格子体を示す図
【図6】本発明例と比較例の電池の正極の棚−接続部材の耐久試験結果を示す図
【図7】本発明例と比較例の電池の正極の棚−接続部材の耐久試験結果を示す図
【符号の説明】
1  極板群
2  正極板
2a 辺
2b 辺
3  負極板
4  リテーナ
10  格子体
11  活物質
12  耳部
13  接続部材
14  棚部
15  エキスパンド格子体
16  エキスパンド格子体
17  鋳造格子体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control valve type lead storage battery used for a backup power supply or the like.
[0002]
[Prior art]
The control valve type lead storage battery can be applied to a wide capacity range of several Ah to several thousand Ah. Further, since they are relatively inexpensive, they are widely used as backup power supplies such as uninterruptible power supplies for computers to emergency power supplies for buildings.
[0003]
In such a backup power supply, the control valve-type lead storage battery is always charged while the commercial power is normally supplied in preparation for the backup discharge. Such charging is called trickle charging, and is performed to compensate for the self-discharge of the battery. In order to suppress the performance degradation of the battery due to overcharge as trickle charging, constant voltage charging is generally performed so that the charging voltage of the battery does not exceed a predetermined value.
[0004]
On the other hand, such a control valve type lead storage battery used for backup needs to have a life of several years to several tens of years, and safety during such a long use period is required. Particularly, the trickle charging is performed over a long period of time, so that the positive electrode member continues to be corroded by oxidation. When the positive electrode member is corroded, there is a possibility that the cross-sectional area of the lattice bone or the current collecting ear is reduced, or the lattice is deformed and short-circuited with the negative electrode member.
[0005]
In particular, when the cross-sectional area of the current collecting ears and bones is reduced, these current collecting ears and bones may be blown when a battery is erroneously short-circuited during backup discharge or maintenance and inspection. Regarding the suppression of such melting of the current collecting ears and bones, it is known that the current collecting ear cross-sectional area and the bone cross-sectional area per theoretical capacity and active material amount of the battery are within a predetermined range (for example, see Patent Document 1). 1 and Patent Document 2).
[0006]
According to these patent documents, it is possible to suppress the fusing of the ear and the bone in the battery in the initial state. However, there is no description as to whether the fusion of the ear and bone can be suppressed over a long period of use such as several years to several decades. Therefore, the inventors of the present invention have studied the reliability of the ear and bone after a long use period.
[0007]
As a result, due to the configuration shown in each of the above-mentioned patent documents, although the reliability of the ears and bones is ensured, the corrosion progresses between the positive electrode shelf and the pole column parts, and this part is blown out. It turned out that there was a possibility. In particular, when trickle charging is performed in a high-temperature atmosphere such as 60 ° C., the positive electrode grid body is deformed, and stress is concentrated on the connection between the positive electrode shelf and the pole column component. As a result, there is a problem that as a result of corrosion progressing preferentially at the connection portion where the stress is concentrated, a crack is generated at this portion or the battery is disconnected due to disconnection.
[0008]
[Patent Document 1]
JP-A-64-19674 (page 3, lower left column, lines 3 to 8)
[Patent Document 2]
JP-A-2-281558 (page 3, upper left column, lines 15-20, lower left column, lines 1-4)
[0009]
[Problems to be solved by the invention]
The present invention suppresses the above-described phenomena such as corrosion of the connection portion between the positive electrode shelf and the pole column component and cracks caused by the trickle charge of the control valve type lead storage battery for a long period of time, and has a long life and excellent safety. A control valve type lead storage battery is provided.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention provides an electrode plate group in which a rectangular positive electrode plate and a negative electrode plate are arranged via a retainer, by impregnating and holding an electrolytic solution, The present invention relates to a control valve type lead-acid battery including a shelf in which current collecting ears of a plate are collectively welded and a connecting member for electrical connection such as a pole or a connector welded to the shelf. A is the ratio (S 1 / S 2 ) of the cross-sectional area (S 1 ) of the boundary portion to the total cross-sectional area (S 2 ) of the current collecting ears, and the length of the side of the positive electrode plate where the current collecting ears are provided is d, when the length of the other side substantially orthogonal to this side is h, and the ratio (h / d) of these two sides is B, the ratio A is defined within the following range according to the ratio B: Is what you do.
[0011]
That is,
{Circle around (1)} When B ≧ 1, A ≧ 1.
[0012]
(2) If 0.8 ≦ B <1, A ≧ 2.5B−1.5.
[0013]
(3) When B <0.8, A ≧ 0.625B.
[0014]
According to a second aspect of the present invention, in the control valve type lead-acid battery of the first aspect, the positive electrode plate includes an expanded lattice body in which a lead alloy sheet is developed and elongated, and a direction in which the expanded lattice body is developed and current collection. The protruding direction of the ears is the same.
[0015]
Further, according to a third aspect of the present invention, in the control valve type lead-acid battery of the first or second aspect, the connecting member of the positive electrode and the shelf are made of lead or a lead alloy having different compositions.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
A control valve type lead storage battery (hereinafter, battery) according to an embodiment of the present invention will be described with reference to the drawings.
[0017]
As shown in FIG. 1, the electrode plate group 1 used in the battery of the present invention has a rectangular positive electrode plate 2 and a negative electrode plate 3 arranged via a retainer 4. As the conventional retainer 4, a nonwoven fabric of an acid-resistant fiber such as a glass fiber mat can be used. As shown in FIG. 2, the grid plate 10 is filled with the active material 11 in the positive electrode plate 2, and a current collecting lug 12 is formed on one side thereof. The negative electrode plate has the same structure as the positive electrode plate.
[0018]
The predetermined number of the positive electrode plates 2 and the negative electrode plates 3 are combined, and the ear portions of the same polarity, that is, the ear portions 12 and the connecting members 13 for electrical connection, such as pole members and connecting bodies, are integrated in the positive electrode. Is formed. As an example of a specific manufacturing method, a current collecting ear portion is arranged in a mold on a comb tooth, and is arranged at a position close to the ear portion 12, as conventionally called burning welding. Thereafter, molten lead is supplied to the periphery of the ear 12 and the space between the ear 12 and the connecting member 13, and the molten lead is solidified to form the shelf 14.
[0019]
In the present invention, the ratio (S 1 / S 2 ) of the cross-sectional area (S 1 ) of the boundary between the connecting member 13 and the shelf 14 to the sum (S 2 ) of the cross-sectional areas of the ears 12 is defined as the ratio of the positive electrode plate 2. It is defined in association with the aspect ratio. That is, the ratio (S 1 / S 2 ) is A, the length of the side 2a of the positive electrode plate 2 on which the ear 12 is provided is d, and the length of the other side 2b substantially orthogonal to the side 2a is h. When the ratio (h / d) of these two sides is B, A is defined according to the aspect ratio B of the dimension of the positive electrode plate 2.
[0020]
That is,
{Circle around (1)} When B ≧ 1, A ≧ 1.
[0021]
(2) If 0.8 ≦ B <1, A ≧ 2.5B−1.5.
[0022]
(3) When B <0.8, A ≧ 0.625B.
[0023]
When the positive electrode plate 2 expands due to oxidation and expands in size, the shelf 14 is pushed in the X direction in FIG. 1 by the ear 12, and a stress is applied in a direction in which the connecting member 13 and the shelf 14 bend at the boundary. Are concentrated, and corrosion tends to progress. In the present invention, by limiting the ratio (S 1 / S 2 ) of the cross-sectional area (S 1 ) of the boundary portion to the total (S 2 ) of the cross-sectional areas of the ear portions 12, stress concentration at the boundary portion and corrosion due to the stress concentration are caused. Of the process.
[0024]
Further, the stress applied to the shelf 14 by the ear 12 greatly changes depending on the shape of the positive electrode plate 2. This is because even if the electrode plate areas are the same, the dimensional change due to corrosion differs depending on the length-width ratio. For example, in the case of a vertically long electrode plate, extension in the vertical direction is performed with priority in the horizontal direction. In such an electrode plate, when the ears are arranged so as to protrude in the vertical direction, the stress applied to the shelf 14 increases even under the same corrosion condition as compared with the case where the ears are arranged so as to protrude in the horizontal direction. Therefore, it is necessary to determine the ratio (S 1 / S 2 ) according to the dimensional ratio (h / d) of the positive electrode plate.
[0025]
Further, in the present invention, in addition to the cast grid 17 as shown in FIG. 4 as a grid used for the positive electrode plate 2, the development direction especially at the time of expanding as shown in FIG. It is also suitable for the expanded lattice body 15 which is the same as the above. Such an expanded lattice body 15 is preferentially extended in the deployment direction, that is, the protruding direction of the ear 12 due to corrosion. Therefore, the stress on the shelf 14 and the connecting portion is increased. In the present invention, even if a lattice body which preferentially extends in the direction in which the ears 12 protrude is used, stress concentration at the joint between the connecting member 13 and the shelf 14 and corrosion due to this can be suppressed. Further, the configuration of the present invention can also be applied to a case where the lead portion 14 and the connection member use lead alloys having different compositions from each other.
[0026]
【Example】
In the electrode plate group shown in FIG. 1, the dimensional ratio (h / d) of the positive electrode plate, the cross-sectional area (S 1 ) of the boundary between the connecting member 13 and the shelf 14, and the sum of the cross-sectional areas of the ears 12 (S 2 ), the ratio (S 1 / S 2 ) was changed to produce a 2V65Ah control valve type lead-acid battery (hereinafter referred to as “battery.” As a grid used for the positive electrode plate, a cast grid 17 shown in FIG. 4 was used. The expanded lattice body 15 and the expanded lattice body 16 shown in Fig. 3 and Fig. 5 were used.The expanded lattice body 15 shown in Fig. 3 has the protruding direction of the ear 12 and the development direction at the time of the expansion processing as described above. On the other hand, the expanding lattice body 16 shown in Fig. 5 is configured such that the protruding direction of the ear 12 and the developing direction at the time of the expanding process are orthogonal to each other.
[0027]
In addition, Pb-0.07 mass% Ca-1.6 mass% Sn alloy was used for all of these lattice bodies. Pb-0.8% by mass Sn was used for the shelf 14 of the positive electrode, and Pb-2.0% by mass Sn alloy was used for the connection member.
[0028]
For each of these batteries, a durability test of the positive electrode shelf-connection member was performed. As a durability test, trickle charging was performed at a charging voltage of 2.275 V in an atmosphere of 60 ° C. for 420 days, and then each battery was disassembled to check the state of the junction between the positive electrode connecting member and the shelf. When a crack was generated in the joint, it was evaluated how much the cross-sectional area of the joint was reduced by the crack. The results are shown in FIGS.
[0029]
FIG. 6 shows the results of a durability test of a battery using an expanded grid body 15 in which the development direction shown in FIG. The symbol ○ indicates that there is no crack between the shelf of the positive electrode and the connecting member, the symbol × indicates that the shelf and the connecting member have broken due to the crack, and the junction between the shelf and the connecting member although a crack has occurred. Is maintained as a symbol ●, and the ratio of the cross-sectional area of the remaining shelf-connecting member is indicated in percentage with the symbol ●. For example, when the cross-sectional area of the shelf-connecting member was reduced to half of the initial value due to a crack, the value was shown as 50%.
[0030]
From the results shown in FIG. 6, d is the length of the side 2a of the positive electrode plate 2 on which the lugs 12 are provided, and h is the length of the other side 2b substantially orthogonal to the side 2a. When (= h / d) is 1 or more, the ratio A (= S 1 / S 2 ) to the total (S 2 ) of the cross-sectional areas of the ears 12 is set to 1 or more, so that the crack between the shelf and the connecting member is formed. Can be suppressed. In order to suppress this crack, it is necessary to limit A by the value of B. When B is 0.8 ≦ B <1, the relationship between A and B is A ≧ 2.5B−1.5 A is limited within the range that satisfies. Further, when B is B <0.8, B is limited within a range where the relationship between A and B satisfies A ≧ 0.625B. By limiting A in accordance with B in this manner, corrosion due to stress concentration at the junction between the positive electrode connecting member and the shelf and the occurrence of cracks caused by the trickle charging, which may conventionally occur due to trickle charging, are remarkable. Can be suppressed.
[0031]
FIG. 7 shows the results of a durability test of a battery using the cast grid 17 shown in FIG. 4 as the positive grid. The results were shown in the same manner as in FIG. When the cast grid 17 was used as the positive grid, the same result as the battery using the expanded grid 15 was obtained. However, in the region where the crack occurs, the degree of the crack was reduced as compared with the case where the expanded lattice body 15 was used. Since the casting lattice 17 extends in the vertical direction (the direction in which the ears protrude) and also extends in the lateral direction, the extension in the direction in which the ears protrude is eased as compared with the expanded lattice which extends preferentially in the deployment direction. I can guess that.
[0032]
Further, a durability test result of a battery using the expanded grid body 16 of the comparative example shown in FIG. 5 as the positive grid body was performed, but no crack was generated between the shelf and the connection member. In these batteries after the durability test, unlike the batteries using the cast lattice 17 and the expanded lattice 15, the lateral extension of the electrode plate occurred in preference to the vertical extension of the electrode plate. Therefore, it can be assumed that there was no stress concentration leading to corrosion and cracks between the shelf and the connecting member.
[0033]
【The invention's effect】
As described above, according to the configuration of the present invention, even if the control valve-type lead-acid battery is trickle-charged for a long period of time, the above-described phenomena such as the corrosion of the connection portion between the positive electrode shelf and the pole column component and the cracks caused thereby. It is industrially extremely useful because it can provide a control valve type lead-acid battery with a long life and excellent safety.
[Brief description of the drawings]
FIG. 1 is a view showing an electrode group of a battery of the present invention. FIG. 2 is a view showing a positive electrode plate of a battery of the present invention. FIG. 3 is a view showing an expanded lattice used in the battery of the present invention. FIG. 5 is a view showing a cast grid used in the battery of the present invention. FIG. 5 is a view showing an expanded grid according to a comparative example. FIG. 6 is a view showing a durability test result of a positive electrode shelf-connecting member of batteries of the present invention and a comparative example. FIG. 7 is a diagram showing endurance test results of the shelf-connection member of the positive electrode of the batteries of the present invention example and the comparative example.
DESCRIPTION OF SYMBOLS 1 Electrode group 2 Positive electrode plate 2a Side 2b Side 3 Negative electrode plate 4 Retainer 10 Grid body 11 Active material 12 Ear part 13 Connecting member 14 Shelf 15 Expanded grid body 16 Expanded grid body 17 Cast grid body

Claims (3)

矩形状の正極板と負極板とをリテーナを介して配置してなる極板群に電解液を含浸保持した制御弁式鉛蓄電池であって、
前記正極板の集電耳を集合溶接した棚部とこの棚部に溶接された極柱あるいは接続体等の電気的接続のための接続部材を備え、
前記接続部材と前記棚部との境界部の断面積(S)の前記集電耳の断面積の総和(S)に対する比率(S/S)をAとし、
前記正極板の前記集電耳を設けた辺の長さをd、前記辺に概直交する他の辺の長さをhとし、これら2辺の比率(h/d)をBとした場合に、
前記BがB≧1において、前記AをA≧1とし、
前記Bが0.8≦B<1において、前記AをA≧2.5B−1.5とし、
前記BがB<0.8において、前記AをA≧0.625Bとしたことを特徴とする制御弁式鉛蓄電池。
A control valve-type lead storage battery in which an electrolytic solution is impregnated and held in an electrode plate group in which a rectangular positive electrode plate and a negative electrode plate are arranged via a retainer,
A connecting member for electrical connection, such as a shelf where the current collecting ears of the positive electrode plate are collectively welded and a pole or a connecting body welded to the shelf,
A is a ratio (S 1 / S 2 ) of a cross-sectional area (S 1 ) of a boundary portion between the connection member and the shelf to a total sum (S 2 ) of cross-sectional areas of the current collecting ears;
When the length of the side of the positive electrode plate on which the current collecting ears are provided is d, the length of another side substantially orthogonal to the side is h, and the ratio (h / d) of these two sides is B. ,
When B is B ≧ 1, A is A ≧ 1;
When the B is 0.8 ≦ B <1, the A is A ≧ 2.5B−1.5,
A control valve type lead-acid battery characterized in that A is A ≧ 0.625B when B is B <0.8.
前記正極板は鉛合金シートを展開伸長したエキスパンド格子体を備えるとともに、前記エキスパンド格子体の展開方向と前記集電耳部の突出方向が同一としたことを特徴とする請求項1記載の制御弁式鉛蓄電池。2. The control valve according to claim 1, wherein the positive electrode plate includes an expanded lattice body formed by expanding and expanding a lead alloy sheet, and a developing direction of the expanded lattice body and a protruding direction of the current collecting ear part are the same. 3. Type lead acid battery. 前記接続部材と前記棚部とは互いに異なる組成の鉛もしくは鉛合金で構成されることを特徴とした請求項1および2に記載の制御弁式鉛蓄電池。3. The control valve type lead-acid battery according to claim 1, wherein the connection member and the shelf are made of lead or a lead alloy having different compositions.
JP2002278753A 2002-09-25 2002-09-25 Control valve lead storage battery Pending JP2004119106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278753A JP2004119106A (en) 2002-09-25 2002-09-25 Control valve lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278753A JP2004119106A (en) 2002-09-25 2002-09-25 Control valve lead storage battery

Publications (1)

Publication Number Publication Date
JP2004119106A true JP2004119106A (en) 2004-04-15

Family

ID=32273948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278753A Pending JP2004119106A (en) 2002-09-25 2002-09-25 Control valve lead storage battery

Country Status (1)

Country Link
JP (1) JP2004119106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104754A1 (en) * 2014-01-08 2015-07-16 パナソニックIpマネジメント株式会社 Lead-acid battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319256U (en) * 1989-07-06 1991-02-26
JPH05217574A (en) * 1992-02-05 1993-08-27 Furukawa Battery Co Ltd:The Electrode plate group for lead-acid battery
JPH07307148A (en) * 1994-05-12 1995-11-21 Japan Storage Battery Co Ltd Lead-acid battery
JPH11135131A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2000348758A (en) * 1999-06-07 2000-12-15 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2002222662A (en) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd Lead storage battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319256U (en) * 1989-07-06 1991-02-26
JPH05217574A (en) * 1992-02-05 1993-08-27 Furukawa Battery Co Ltd:The Electrode plate group for lead-acid battery
JPH07307148A (en) * 1994-05-12 1995-11-21 Japan Storage Battery Co Ltd Lead-acid battery
JPH11135131A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2000348758A (en) * 1999-06-07 2000-12-15 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2002222662A (en) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd Lead storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104754A1 (en) * 2014-01-08 2015-07-16 パナソニックIpマネジメント株式会社 Lead-acid battery
JP5866510B2 (en) * 2014-01-08 2016-02-17 パナソニックIpマネジメント株式会社 Lead acid battery
JPWO2015104754A1 (en) * 2014-01-08 2017-03-23 パナソニックIpマネジメント株式会社 Lead acid battery

Similar Documents

Publication Publication Date Title
JP5522444B2 (en) Lead acid battery
JP4501330B2 (en) Lead acid battery
JP2006156371A (en) Negative electrode collector for lead-acid battery
JP2008171701A (en) Lead acid storage battery
JP2002175798A (en) Sealed lead-acid battery
JP5050309B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP2004119106A (en) Control valve lead storage battery
JP2006210210A (en) Lead-acid battery
JP4265260B2 (en) Control valve type lead acid battery
JP2008218258A (en) Lead acid battery
JP2006140033A (en) Lead storage battery
JP2001202988A (en) Sealed lead-acid battery
JP2015022796A (en) Lead storage battery
JP3637603B2 (en) Lead acid battery
JP3509294B2 (en) Lead storage battery
JP3134466B2 (en) Lead storage battery
JPH0770321B2 (en) Sealed lead acid battery
JPH11354128A (en) Sealed lead-acid battery
JPS6191874A (en) Collection body for lead storage battery
JP2009064748A (en) Control valve type lead-acid storage battery
JP2003178809A (en) Maintenance method of lead-acid battery
JP4802903B2 (en) Lead acid battery
JPH088093B2 (en) Lead acid battery
JP2004071224A (en) Storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601