JP2004117910A - 有機elディスプレイ装置の駆動方法 - Google Patents

有機elディスプレイ装置の駆動方法 Download PDF

Info

Publication number
JP2004117910A
JP2004117910A JP2002281881A JP2002281881A JP2004117910A JP 2004117910 A JP2004117910 A JP 2004117910A JP 2002281881 A JP2002281881 A JP 2002281881A JP 2002281881 A JP2002281881 A JP 2002281881A JP 2004117910 A JP2004117910 A JP 2004117910A
Authority
JP
Japan
Prior art keywords
region
row
period
signal electrode
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002281881A
Other languages
English (en)
Inventor
Satoshi Nakazawa
中沢 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Display Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Kyocera Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Kyocera Display Corp filed Critical Asahi Glass Co Ltd
Priority to JP2002281881A priority Critical patent/JP2004117910A/ja
Publication of JP2004117910A publication Critical patent/JP2004117910A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

【課題】輝度や色を領域毎に変えつつ、消費電流の増加やドライバICのチップサイズの増加を防止できるようにする。
【解決手段】走査電極ドライバは、選択行の走査電極の電位を接地電位に設定し、他の走査電極の電位をVccに設定する。走査電極ドライバは、コントローラから入力されるLPがハイレベルからローレベルに変化するタイミングで選択行を切り替える。コントローラは、水平方向に分割された各領域に応じたLP立下り周期でLPを出力する。この結果、各走査電極の選択期間は、各領域毎に定められ、各領域に応じた輝度や色で画素が発光する。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、有機EL(Electroluminescence )ディスプレイ装置の駆動方法に関する。
【0002】
【従来の技術】
有機EL素子は、陽極と陰極との間に有機薄膜を有する。陰極が陽極よりも高電位となるように両電極間に電圧を印加しても、有機薄膜にはほとんど電流が流れず、有機薄膜は発光しない。逆に、陽極が陰極よりも高電位となるように両極間に所定電圧(発光開始電圧)以上の電圧を印加すると、有機薄膜に電流が流れ、有機薄膜は発光する。この発光を利用した有機ELディスプレイ装置が知られている。
【0003】
図8は、従来の有機ELディスプレイ装置の駆動装置の例を示す。走査電極110〜110と信号電極120〜120は有機薄膜を挟持するようにマトリクス状に配置される。走査電極110〜110と信号電極120〜120との交差部分が有機EL素子となる。そして、有機ELディスプレイ装置は、各交差部分を個々の画素として表示を行う。各走査電極110〜110は走査電極ドライバ111に接続され、各信号電極120〜120は信号電極ドライバ121に接続される。走査電極ドライバ111は、画素を発光させる行を選択し、選択行および非選択行の走査電極の電位を制御する。信号電極ドライバ121は、各信号電極120〜120と一対一に対応する信号電極スイッチ122〜122と、定電流回路123〜123とを備える。そして、選択行において発光させるべき画素が存在する信号電極に電流を流すように信号電極スイッチ122〜122を制御する。なお、走査電極ドライバ111や信号電極ドライバ121は、例えば、ICによって実現される。
【0004】
ここでは、信号電極120〜120が有機EL素子の陽極になり、走査電極110〜110が有機EL素子の陰極になるように配置した場合について説明する。ただし、各走査電極110〜110が有機EL素子の陽極になり、各信号電極120〜120が有機EL素子の陰極になるように配置して、走査電極110〜110から信号電極120〜120に電流を流すようにしてもよい。
【0005】
第1行を選択する場合、走査電極ドライバ111は、第1行に対応する走査電極スイッチ112を接地電位側に設定し、他の行の走査電極スイッチ112〜112を所定の電位Vcc側に設定する。ここでは、Vccは接地電位よりも高いものとする。また、信号電極ドライバ121は、発光させるべき画素が存在する信号電極に対応する信号電極スイッチを定電流回路側に設定し、他の信号電極に対応するスイッチを接地電位側に設定する。図8では、第2列、第3列の信号電極スイッチ122,122を定電流回路123、123側に設定し、他の信号電極スイッチ122、122を接地電位側に設定した場合の例を示す。定電流回路から信号電極、有機薄膜を経て走査電極に電流が流れると、有機EL素子は発光する。図8に示す例では、定電流回路123,123から電流が流れるので画素E21、E31が発光する。一方、定電流回路123,123からは電流が流れないので、画素E11、Em1は発光しない。第2行以降の表示も同様に繰り返す。この駆動方法は、例えば、特許文献1に記載されている。
【0006】
有機ELディスプレイ装置では、水平方向に分割した各領域毎に表示色を予め決定しておくことがある。また、輝度を領域毎に予め決定しておく場合もある。図9は、表示する色を領域毎に変化させる画面の例を示す。この画面は、水平方向に青色表示領域201と白色表示領域202とに分割されている。そして、青色表示領域201に第1行から第k行までの各走査電極が配置され、白色表示領域202に第k+1行から最終行までの各走査電極が配置されている。図9に示すような画面の有機ELディスプレイ装置は、カーステレオの操作パネル等で用いられている。走査電極ドライバ111および信号電極ドライバ121は、第1行から第k行までの選択期間と第k+1行から最終行までの選択期間とで、表示する色を変化させるように駆動する。有機ELディスプレイ装置において、画素に流すべき電流量は発光させる色によって異なる。従って、色の制御は輝度の制御と同様に行うことができる。以下、輝度の制御方法について説明する。
【0007】
表示画素の輝度を制御する方法として、PWM(Pulse Width Modulation:パルス幅変調制御)がある(例えば、特許文献1参照。)。PWMでは、特許文献1に記載されているように、階調制御用クロックパルスを出力する。そして、選択期間開始とともに階調制御用クロックパルスの計数を行い、階調制御用クロックパルスの計数値が表示すべき輝度に応じた値になるまで、信号電極から選択行の走査電極に定電流を流すように制御する。以下、階調制御用クロックパルスをCLと記す。また、階調制御用クロックパルスの計数値をCL計数値と記す。
【0008】
図10は、PWMによって輝度を制御する場合における制御信号および駆動波形の例を示す説明図である。図10に示すFLM(ファーストラインマーカ)は、1フレームの開始を示す制御信号である。LP(ラッチパルス)は、選択する走査電極の切り換えを示す制御信号である。FLMおよびLPは、コントローラ(図8において図示せず。)から出力される。走査電極ドライバ111は、FLMがハイレベルになると、第1行から各走査電極を順次選択していく。また、LPがハイレベルからローレベルに変化するタイミングから、次にLPがハイレベルからローレベルに変化するタイミングまでが選択期間となる。
【0009】
ここでは、選択期間中、信号電極に定電流を流し続けた場合の輝度(最高輝度)を第7階調とし、オフ表示時の輝度(最低輝度)を第0階調とする場合を例に説明する。この場合、選択期間の開始時にCLを出力し、また、CLの出力周期を選択期間の1/7に設定すればよい。また、図10は、第2行および第3行の画素を第7階調で発光させ、他の行の画素を第5階調で発光させる場合の例を示す。PWMでは、選択期間開始時にCL計数値を0に初期化し、その後、CLを出力する度にCL計数値を1増加させる。第1行の選択期間では、CL計数値が初期値から第5階調に応じた値になるまで、発光させる画素が存在する信号電極から第1行走査電極に定電流を流す。その後、選択期間終了まで、その信号電極の電位を接地電位に設定し、電流を停止させる。その結果、第1行の画素は、第5階調で発光する。第2行および第3行の選択期間では、発光させる画素が存在する信号電極から選択行の走査電極に定電流を流し続ける。すると、第2行および第3行の画素は、それぞれ第7階調で発光する。第4行以降を選択する場合には、第1行選択時と同様に駆動すればよい。
【0010】
高輝度で表示する高輝度表示領域(本例では、第2行および第3行)において、輝度を変化させてもよい。選択期間終了時まで定電流を流し続けるのではなく、CL計数値が所望の階調に応じた値になったときに電流を停止させれば、第0階調から第7階調まで、所望の輝度で画素を発光させることができる。同様に、低輝度で表示する低輝度表示領域(本例では、第2行および第3行以外の行)において、輝度を変化させてもよい。この場合も、CL計数値が所望の階調に応じた値になったときに電流を停止させればよい。ただし、本例の低輝度表示領域では、計数値が第5階調に応じた値になると、必ず電流を停止させる。このように駆動すれば、高輝度表示領域では第0階調から第7階調までの輝度で画素を発光させることができ、低輝度表示領域では第0階調から第5階調までの輝度で画素を発光させることができる。
【0011】
また、有機EL素子に流す電流量を変動させることによって、輝度を制御することもある(例えば、特許文献2参照。)。この制御方法では、高輝度で発光させる場合、有機EL素子に流す電流量を増加させる。
【0012】
図11は、電流量を変動させることで輝度を制御する場合における制御信号および駆動波形の例を示す説明図である。図11では、第2行および第3行の画素を高輝度とし、他の行の画素を低輝度とする場合の例を示す。第1行の選択期間では、発光させるべき画素が存在する信号電極から第1行走査電極に定電流を流し、第1行の画素を低輝度で発光させる。このときの信号電極の電位を低輝度電位と記すことにする。第2行および第3行の選択期間では、発光させるべき画素が存在する信号電極から選択行の走査電極に流す定電流を増加させる。例えば、第2行および第3行の輝度を他の行の2倍にするのであれば、信号電極から走査電極に流す電流量を2倍に増加させる。このときの信号電極の電位を高輝度電位と記すことにする。図11に示すように、高輝度電位は低輝度電位よりも高電位となる。第4行以降の選択期間では、電流量を低下させて各画素を発光させる。
【0013】
また、高輝度表示領域(本例では、第2行および第3行)および低輝度表示領域(本例では、第2行および第3行以外の行)において、それぞれ輝度を変化させてもよい。電流量を変動させて高輝度表示領域と低輝度表示領域の輝度を変化させ、さらに各領域での輝度を段階的に変化させるには、電流量変動制御とPWMとを組み合わせればよい。この場合の制御信号および駆動波形の例を図12に示す。第2行および第3行の選択期間では、信号電極の電流量を増加させる。その結果、図12に示すように信号電極の電位は上昇する。さらに、どの行を選択している場合であっても、CL計数値が所望の輝度に応じた値になったならば電流を停止させる。この結果、各領域で輝度を段階的に変動させることができる。電流量変動制御とPWMとを組み合わせた制御方法は、例えば特許文献2に記載されている。
【0014】
ここでは、輝度を制御する場合について説明したが、発光色の制御もPWMや電流量変動制御によって行うことができる。また、領域毎に色を変えて表示する場合、各領域における輝度を変化させるように駆動してもよい。例えば、図9に例示する画面において、青色表示領域201で青色の輝度を変化させ、白色表示領域202で白色の輝度を変化させてもよい。
【0015】
【特許文献1】
特開2002−140037号公報(第2−6ページ、第3−4図、第8−17図)
【0016】
【特許文献2】
特開2000−56727号公報(第3−4ページ、第1−4図および第17−18図)
【0017】
【発明が解決しようとする課題】
PWMによって領域毎に輝度を変える場合には、高輝度表示領域で表示できる階調数と低輝度表示領域で表示できる階調数とを揃えることができないという問題があった。例えば、図10に示す例では、高輝度表示領域(第2行および第3行)では、第0階調から第7階調までの8段階で表示できる。一方、低輝度表示領域(第2行および第3行以外の行)では、CL計数値が第5階調に応じた値になると、電流を停止させる。従って、第0階調から第5階調までの6段階でしか表示できない。このような問題は、表示する色を領域毎に変える場合にも生じる。例えば、ある領域の色は8段階の輝度で表示できるが、他の領域の色は6段階の表示しかできないという場合が生じる。
【0018】
なお、CL出力周期を短縮すれば、低輝度表示領域でも8段階表示を行うことができる。図13は、CL出力タイミングの例を示す説明図である。図10では、CL出力周期を選択期間の1/7としたが、図13に示すように、CL出力周期を選択期間の1/49とすれば、各領域で8段階の輝度を実現できる。図13において丸印とともに示したCLの出力タイミングで電流を停止すれば、低輝度表示領域においても第0階調を最低輝度とし第5階調を最高輝度として8段階の輝度で表示を行うことができる。しかし、CLの出力周期を短縮すると、図10に示す場合よりも単位時間におけるCLの発生数が増加し、消費電流が増加してしまう。このような消費電流の増加を防止して、各領域で表示可能な階調数を容易に揃えられるようにすることが好ましい。
【0019】
また、図11に例示するように、電流量を変動させて輝度を制御する場合には、信号電極の電位が高輝度電位になるため、信号電極ドライバ121に高電圧の電源回路が必要になる。また、高輝度で画素を発光させる場合、有機EL素子に流す電流量を増加させるので、消費電流が増加してしまう。また、多くの電流を流せるようにするためには、信号電極ドライバ121内における出力バッファサイズを大きくしなければならない。すると、信号電極側のIC(信号電極ドライバ121)も大きくなってしまう。
【0020】
そこで、本発明は、輝度や色を領域毎に変えつつ、消費電流の増加を防止できるようにすることを目的とする。また、変更可能な階調数を各領域で揃えやすくすることを目的とする。また、信号電極ドライバの回路規模の増大(ドライバICのチップサイズの増大)を防げるようにすることを目的とする。
【0021】
【課題を解決するための手段】
本発明の態様1は、複数の走査電極と複数の信号電極との間に有機薄膜が配置された有機ELディスプレイ装置の走査電極を一本ずつ選択しながら走査電極を走査する有機ELディスプレイ装置の駆動方法において、走査電極と平行な方向に沿って表示画面を複数の領域に分割し、少なくとも一つの領域における走査電極の選択期間が他の領域における走査電極の選択期間とは異なる期間になるように、各領域毎に走査電極の選択期間を定めることを特徴とする有機ELディスプレイ装置の駆動方法を提供する。
【0022】
本発明の態様2は、各領域毎に一つずつ選択期間を定めた場合における各領域の選択期間の組み合わせとして、複数の組み合わせを予め用意し、一の走査電極が選択されてから再びその一の走査電極が選択されるまでの期間であるフレーム期間を各組み合わせのもとで一定に保ち、フレーム期間内に全ての走査電極を一回ずつ選択した場合には、フレーム期間終了までの間、各走査電極の電位を非選択時電位に設定し、各信号電極の電位をオフ表示にするためのオフ表示電位に設定する有機ELディスプレイ装置の駆動方法を提供する。そのような駆動方法によれば、設定を切り替えたときに、所望の領域以外の領域で輝度が変化しないようにすることができる。
【0023】
本発明の態様3は、全ての走査電極を一回ずつ選択する期間を走査期間とし、各組み合わせにおける走査期間の最大値をTFmaxとしたときに、フレーム期間をTFmaxに保つ有機ELディスプレイ装置の駆動方法を提供する。
【0024】
本発明の態様4は、各領域毎に定める選択期間を、選択期間の最小値の正の整数倍に定める有機ELディスプレイ装置の駆動方法を提供する。そのような駆動方法によれば、変更可能な階調数を各領域で揃えやすくすることができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。本発明では、表示画面を走査電極と平行な方向に沿って複数の領域に分割する。以下に示す各実施の形態では、図1に示すように表示画面を水平方向に沿って第一の領域51から第三の領域53に分割し、第二の領域52における表示輝度を、第一の領域51および第三の領域53における表示輝度よりも高くする場合を例に説明する。
【0026】
[実施の形態1]まず、第一の実施の形態について説明する。ここでは、分割した各領域の輝度を固定的に定める場合を例に説明する。図2は、本実施の形態の駆動方法が適用される有機ELディスプレイ装置の駆動装置の例を示す説明図である。有機ELディスプレイ装置は、有機薄膜を挟持するようにマトリクス状に配置される複数の走査電極10〜10と、複数の信号電極20〜20とを備える。各走査電極10〜10と各信号電極20〜20との交差部分が有機EL素子となり、有機ELディスプレイ装置はこの交差部分を個々の画素として表示を行う。ここでは、信号電極20〜20が有機EL素子の陽極になり、走査電極10〜10が有機EL素子の陰極になるように配置されているものとする。
【0027】
駆動装置は、コントローラ1と、走査電極ドライバ11と、信号電極ドライバ21とを備える。コントローラ1は、走査電極ドライバ11と、信号電極ドライバ21とを制御する。図2に示す例では、コントローラ1がメモリ(図示せず。)を含んでいるものとする。メモリは、各行に対応する表示データを記憶する。そして、コントローラ1によって一行分の表示データが指定されると、その一行分の表示データをメモリ内のデータ出力領域にコピーする。後述するように、信号電極ドライバ21は、データ出力領域にコピーされたデータを取り込む。
【0028】
走査電極ドライバ11は、各走査電極10〜10と一対一に接続される走査電極スイッチ12〜12を備える。各走査電極スイッチ12〜12の一方の端子は、所定の電圧Vccを提供する電圧源に接続され、他方の端子は接地される。走査電極ドライバ11は、コントローラ1に従って、選択行の走査電極スイッチを接地電位側の端子に接続し、非選択行の走査電極スイッチを電圧Vcc側の端子に接続する。そして、走査電極を一本ずつ選択しながら全ての走査電極10〜10を走査する。なお、Vccは、接地電位よりも高い電位であり、後述する各定電流回路23〜23から非選択行に電流を流さないようにするために設定される電位である。
【0029】
走査電極ドライバ11には、選択する走査電極の切り替えを示すLP(ラッチパルス)がコントローラ1から入力される。走査電極ドライバ11は、LPがハイレベルからローレベルになるタイミングで選択行を切り替える。従って、LPがハイレベルからローレベルに変化するタイミングから、次にLPがハイレベルからローレベルに変化するタイミングまでが選択期間である。
【0030】
信号電極ドライバ21は、信号電極スイッチ22〜22と、定電流回路23〜23とを備える。定電流回路23〜23は、各信号電極から各走査電極に定電流を流す。各信号電極スイッチ22〜22は、各信号電極20〜20と一対一に接続される。また、各信号電極スイッチ22〜22の一方の端子は定電流回路23〜23に一対一に接続され、他方の端子はそれぞれ接地される。選択行の走査電極スイッチが接地電位側の端子に接続され、信号電極スイッチが定電流回路側の端子に接続された状態において、信号電極から選択行の走査電極に流れる電流は一定に保たれる。信号電極ドライバ21は、コントローラ1が出力する選択行の表示データ(Data)に基づき、発光させるべき画素が存在する信号電極を判断する。そして、各選択期間の開始時に、発光させるべき画素が存在する列の信号電極スイッチを定電流回路側の端子に接続し、発光させるべき画素が存在しない列の信号電極スイッチを接地電位側の端子に接続する。
【0031】
コントローラ1は、信号電極ドライバ21に、CP(データ転送用クロックパルス)、LPおよびDataを出力する。Dataは、選択行の個々の画素について発光させるか否かを示す情報である。CPは、Dataの中から各列(各画素)のデータを順次取得するタイミングを規定するクロックパルスである。なお、CPは、PWMのために用いられる階調制御用クロックパルスとは区別される。図3は、コントローラ1が信号電極ドライバ21に対してCPおよびLPを出力するタイミングを示す説明図である。コントローラ1は、信号電極ドライバ21にDataを取り込ませる場合、これから選択される行を指定してメモリにその行の表示データをデータ出力領域にコピーさせる。また、コントローラ1は、選択期間中、信号電極の数と同数のパルスとしてCPを信号電極ドライバ21に出力する。信号電極ドライバ21は、CPの立下りタイミング毎(CPがローレベルに変化するタイミング毎)に、データ出力領域にコピーされた一行分の表示データ(Data)から各画素のデータを一つずつ取得する。この表示データは、次の選択期間に選択される行の表示データである。すなわち、信号電極ドライバ21は、1行分の表示データを、その行が選択される直前の選択期間の間に取り込む。そして、信号電極ドライバ1は、次の選択期間において、その表示データに基づき各信号電極スイッチを設定する。
【0032】
また、コントローラ1は、走査電極ドライバ11に、LPと、1フレームの開始を示すFLM(ファーストラインマーカ)を出力する。
【0033】
コントローラ1は、第一の領域51および第三の領域53に配置された走査電極の選択期間よりも第二の領域52に配置された走査電極の選択期間の方が長くなるようにLPを出力する。以下、コントローラ1が、領域によって選択期間を変動させる動作について説明する。
【0034】
図4は、FLMおよびLPの出力タイミングおよび駆動波形の例を示す説明図である。なお、図4に例示した信号電極の駆動波形は、同じ列上の各画素を全て発光させる場合の駆動波形である。
【0035】
コントローラ1は、LPがハイレベルからローレベルに変化するタイミングの周期(以下、LP立下り周期と記す。)を、選択行が属する領域毎に定める。このとき、少なくとも一つの領域における選択期間が他の領域における選択期間とは異なる期間になるようにLP立下り周期を定める。本実施の形態では、コントローラ1は、第二の領域52を走査する際におけるLP立下り周期を、他の領域を走査する際におけるLP立下り周期よりも長く定める。この結果、第二の領域52を走査するときの選択期間は、他の領域を走査するときの選択期間よりも長くなる。
【0036】
図4では、第1行から第5行までの走査電極が配置された領域を第一の領域51とし、第6行から第8行までの走査電極が配置された領域を第二の領域52とし、第9行から最終行までの走査電極が配置された領域を第三の領域53とした場合の例を示す。第二の領域52を走査する際におけるLP立下り周期Tは、第6行から第8行までの各走査電極の選択期間である。第一の領域51および第三の領域53を走査する際におけるLP立下り周期Tは、第6行から第8行以外の各走査電極の選択期間である。図4に示すように第6行から第8行までの各走査電極の選択期間Tを他の走査電極の選択期間Tよりも長くすると、第6行から第8行の有機EL素子に定電流が流れる時間は、他の行の有機EL素子に定電流が流れる時間よりも長くなる。その結果、第6から第8行の有機EL素子の発光輝度は、他の行の有機EL素子の発光輝度よりも高くなる。
【0037】
なお、コントローラ1は、第1行からの走査を指示する場合には、FLMをローレベルからハイレベルにし、FLMがハイレベルとなっている間に、LPをハイレベルにする。走査電極ドライバ11は、FLMがハイレベルになっているときにLPがハイレベルからローレベルに変化すると、そのタイミングから第1行の走査電極の選択期間を開始する。コントローラ1は、第1行の選択期間中にFLMをハイレベルからローレベルにする。
【0038】
次に、図2,3を用いて、FLMおよびLPに応じた走査電極ドライバ11および信号電極ドライバ21の動作について説明する。走査電極ドライバ11は、FLMがハイレベルになっている期間中にLPがハイレベルからローレベルに変化すると、そのタイミングで、第1行の走査電極スイッチ12を接地電位側の端子に接続し、他の走査電極スイッチ12〜12を電圧Vcc側の端子に接続する。また、信号電極ドライバ21は、コントローラ1から取り込んだ第1行の表示データに基づいて、発光させるべき画素が存在する信号電極の信号電極スイッチを定電流回路側の端子に接続し、他の信号電極スイッチを接地電位側の端子に接続する。コントローラ1は、LP立下り周期をTとしてLPを出力する。この結果、第1行の選択期間Tの間、定電流回路に接続された各信号電極から第1行走査電極に定電流が流れ、その各信号電極と第1行走査電極との交差部分の有機EL素子が発光する。
【0039】
なお、接地電位側の端子に接続された信号電極は第1行走査電極と等電位であるので、その信号電極から第1行走査電極に電流は流れない。また、非選択行の電位はVccに設定されるので、各信号電極から非選択行の走査電極に電流は流れない。
【0040】
また、第1行の選択期間の間、信号電極ドライバ21は、次に選択される第2行の表示データをコントローラ1に含まれるメモリから取得する。
【0041】
コントローラ1がLPをハイレベルに立ち上げ、再びLPをローレベルにすると、信号電極ドライバ11は、選択行を第1行から第2行に切り替える。すなわち、第2行の走査電極スイッチ12を接地電位側の端子に接続し、他の走査電極スイッチ12,12〜12を電圧Vcc側の端子に接続する。また、信号電極ドライバ21は、コントローラ1から取り込んだ第2行の表示データに基づいて、発光させるべき画素が存在する信号電極の信号電極スイッチを定電流回路側の端子に接続し、他の信号電極スイッチを接地電位側の端子に接続する。走査電極ドライバ11および信号電極ドライバ21は、最終行を走査するまで同様の動作を繰り返す。
【0042】
ただし、コントローラ1は、第6行の選択を開始した後、LP立下り周期をTからTに変更し、第9行の選択を開始した後、再びLP立下り周期をTに戻す。その結果、第6行から第8行までを走査する際の選択期間はTになり、他の行の選択期間Tよりも長くなる。すると、第6行から第8行までの有機EL素子に定電流が流れる時間は、他の行の有機EL素子に定電流が流れる時間よりも長くなる。従って、第二の領域52(第6行から第8行までの領域)の有機EL素子の発光輝度は、第一の領域51および第三の領域53の有機EL素子の発光輝度よりも高くなる。
【0043】
最終行が選択されると、コントローラ1はFLMをハイレベルにし、走査電極ドライバ11に再び第1行からの走査を指示する。コントローラ1、走査電極ドライバ11および信号電極ドライバ21は、以上の動作を繰り返し、第1行から最終行までの走査を繰り返す。
【0044】
このような駆動方法によれば、水平方向に分割した各領域毎に輝度を変更することができる。また、信号電極ドライバ21が定電流の大きさを増加させる必要がないため、消費電流の増加を抑えることができる。そして、信号電極の電位も上がらないため、信号電極ドライバ21に高電圧の電源回路を設ける必要がなくなる。また、信号電極ドライバ21は大きな電流を流す必要がなくなるので、信号電極ドライバ21のサイズが大きくならずに済む。
【0045】
ここでは、分割した各領域の輝度を固定的に定めた場合を例に説明したが、各領域の輝度を切り替えてもよい。例えば、初期表示状態では各領域の輝度を等しくし、コントローラ1に所定の輝度変更コマンドが入力されたときに第二の領域52の輝度を他の領域の輝度より高くなるように切り替えてもよい。各領域を走査する際におけるLP立下り周期を短くすれば個々の領域の輝度を低くすることができ、長くすれば個々の領域の輝度を高くすることができる。
【0046】
以下、初期表示状態では各領域の輝度を等しくして表示を行い、コントローラ1に輝度変更コマンドが入力されたときに第二の領域52の輝度を他の領域の輝度より高くする場合を例に説明する。この場合、コントローラ1は、輝度変更コマンドが入力されるまでは、走査する領域に関わらずLP立下り周期をTに保つ。このとき、第一の領域から第三の領域までの各領域の輝度は等しい。コントローラ1は、輝度変更コマンドを受信すると、第二の領域52を走査する際のLP立下り周期をTからTに変更する。また、第一の領域51および第三の領域53を走査する際のLP立下り周期をTのまま維持する。すると、第二の領域の輝度は他の領域の輝度よりも高くなる。第二の領域を走査する際のLP立下り周期をTに戻せば、再び画面全体の輝度が等しくなる。
【0047】
一つの走査電極(例えば、第一行走査電極)が選択されてから再びその走査電極が選択されるまでの期間をフレーム期間という。上記のように第二の領域を走査する際のLP立下り周期を変更すると、フレーム期間も変動する。すると、第一の領域および第三の領域を走査する際のLP立下り周期をTのまま維持しても、フレーム期間に対する選択期間Tの割合が変動する。その結果、第二の領域の輝度を変更すると、第一の領域および第三の領域の輝度も変動する。例えば、第二の領域の輝度を上昇させると、フレーム期間に対する選択期間Tの割合が減少する。そのため、第一の領域および第三の領域の輝度は、初期表示状態における輝度よりも低下する。
【0048】
[実施の形態2]次に、第二の実施の形態について説明する。第二の実施の形態は、各領域の輝度を段階的に変更させることができ、また、変更可能な階調数を各領域で揃えられるようにしたものである。
【0049】
第二の実施の形態の駆動方法が適用される駆動装置の構成は、図2と同様に表される。FLMおよびLPが入力される走査電極ドライバ11の動作およびCP、LPが入力される信号電極ドライバ21の動作は、第一の実施の形態と同様である。ただし、後述するように、信号電極ドライバ21にはCL(階調制御用クロックパルス)が入力され、信号電極ドライバ21は、表示すべき階調に応じたタイミングで信号電極から選択行走査電極に流す電流を停止させる。
【0050】
コントローラ1は、第一の実施の形態と同様に、FLMとLPとを出力する。また、コントローラ1は、第一の実施の形態と同様、少なくとも一つの領域の選択期間が他の領域の選択期間とは異なる期間になるように領域毎にLP立下り周期を定め、領域によって輝度を変える。ただし、第二の実施の形態では、それぞれの領域を走査するときの選択期間を、選択期間の最小値のP倍にする。すなわち、コントローラ1は、それぞれの領域を走査する際のLP立下り周期を、最小のLP立下り周期のP倍とする。ここで、Pは正の整数である。以下、各領域を走査するときのLP立下り周期の最小値をTminと記す。
【0051】
また、コントローラ1は、信号電極ドライバ21に、CL(階調制御用クロックパルス)を出力する。CLは、信号電極ドライバ21が画素の表示階調に応じて定電流を停止するタイミングを規定するための信号である。信号電極ドライバ21は、選択期間開始とともにCLの計数を行い、CL計数値が表示すべき輝度に応じた値になるまで、信号電極から選択行走査電極に定電流を流すように制御する。
【0052】
選択行の表示データには、個々の画素をどの階調で発光させるのかを示す情報が含まれる。コントローラ1と信号電極ドライバ21とは、第一の実施の形態と同様に各行の表示データを授受する。
【0053】
図5は、CLの出力周期の説明図である。図5(a)に示すように、コントローラ1は、LP立下り周期(選択期間)をTminに定める場合、その選択期間内で所定の周期でCLを出力する。このCL出力周期をCLminとする。コントローラ1は、他の領域を走査する際、LP立下り周期をTmin・Pに定める。このとき、コントローラ1は、CL出力周期もCLminのP倍(CLmin・P)に変更する。なお、CL出力周期をCLmin・Pとするためには、コントローラ1は、CLmin毎にCLを出力するか否かを判断し、その判断をP回行う毎にCLを出力すればよい。この判断周期はCLminと等しいので、コントローラ1は容易にCL出力周期をCLminの正の整数倍に変更できる。LP立下り周期をTminのP倍にしたときに、CL出力周期もCLminのP倍にするので、1選択期間内にコントローラ1が出力するCLの数は一定である。
【0054】
例えば、低輝度で表示する第一の領域51および第三の領域53を走査する際のLP立下り周期をTとし、高輝度で表示する第二の領域52を走査する際のLP立下り周期をTとする。このとき、最小のLP立下り周期はTである。従って、コントローラ1は、TをTのP倍の周期として定める。また、コントローラ1は、第二の領域52を走査する際のCL出力周期を、第一の領域51および第三の領域53を走査する際のCL出力周期のP倍にする。このとき、いずれの領域を走査している場合であっても、1選択期間にコントローラ1が出力するCLの数は一定である。
【0055】
信号電極ドライバ21は、各選択期間開始時にCL計数値を0に初期化する。そして、個々の選択期間開始時に、その選択期間で第0階調(オフ表示)とすべき画素が存在する列の信号電極スイッチを接地電位側の端子に接続し、他の列の信号電極スイッチを定電流回路側の端子に接続する。信号電極ドライバ21は、CLが入力される度にCL計数値を1増加させる。CL計数値が1になると、第1階調で表示すべき画素が存在する列の信号電極スイッチを定電流回路側から接地電位側に切り替える。この結果、第1階調で表示すべき画素が存在する信号電極から選択行走査電極に電流が流れなくなる。同様に、CL計数値が増加する度に、各階調で表示すべき画素が存在する列の信号電極スイッチを接地電位側に切り替える。
【0056】
このように信号電極ドライバ21は、CLが入力されるタイミングで信号電極から選択行走査電極に流れる電流を停止させ、表示データで指定された輝度で選択行の画素を発光させる。そして、領域毎に選択期間の長さが異なっていても、1選択期間内に信号電極ドライバ21に入力されるCLの数は一定である。従って、信号電極ドライバ21は、第一の領域51から第三の領域53までの各領域において、変更可能な階調数を揃えることができる。例えば、いずれの領域でも、輝度を7段階に変更させることができる。また、図13に示すようにCL出力周期を短くする必要がないので、消費電流の増加を抑えられる。
【0057】
図5では、CL出力周期をCLmin・Pとする場合について説明した。LP立下り周期をTmin・Pとするときに、CL出力周期をCLmin・PとせずCLminのままとし、信号電極ドライバ21が信号電極スイッチを切り替えるタイミングを定めるCL計数値をP倍にしてもよい。例えば、LP立下り周期をTmin・Pとする間、コントローラ1は、信号電極ドライバ1に、信号電極スイッチ切替タイミングを定めるCL計数値をP倍にするように指示する信号を出力する。この信号が出力されている間、信号電極ドライバ21は、CL計数値がPになったときに、第1階調で表示すべき画素が存在する列の信号電極スイッチを接地電位側に切り替える。第2階調以上の各階調で画素を発光させる場合も同様に、CL計数値がPの所定の倍数になったときに、その階調で表示すべき画素が存在する列の信号電極スイッチを接地電位側に切り替える。
【0058】
表示可能な階調数を各領域で揃えるためには、CL出力周期をCLminのP倍にしてもよい。あるいは、信号電極ドライバ21において信号電極スイッチを切り替えるタイミングを定めるCL計数値を、最小となる選択期間におけるCL計数値のP倍にしてもよい。いずれの場合であっても、各選択期間を選択期間の最小値のP倍にすれば、容易に各領域で階調数を揃えることができる。
【0059】
本実施の形態によれば、第一の実施の形態と同様、消費電流の増加を抑えることができ、また、変更可能な階調数を各領域で揃えることができる。
【0060】
[実施の形態3]次に、第三の実施の形態について説明する。第三の実施の形態では、領域の輝度を切り替える。第一の実施の形態であっても、領域の輝度を切り替えることができる。しかし、第一の実施の形態では、ある領域の輝度を切り替えるためにLP立下り周期を変更すると、フレーム期間も変動してしまい、その結果、所望の領域以外の輝度も多少変動してしまう。第三の実施の形態では、所望の領域の輝度のみを切り替える。
【0061】
第三の実施の形態の駆動方法が適用される駆動装置の構成は、図2と同様に表される。コントローラ1は、第一の実施の形態と同様に、FLMとLPとを出力する。また、コントローラ1は、第一の実施の形態と同様に、領域毎に選択期間(LP立下り周期)を定め、領域によって輝度を変える。ただし、第三の実施の形態では、コントローラ1は、各領域毎に一つずつ選択期間を定めた場合における各領域の選択期間の組み合わせとして、複数の組み合わせを予め用意しておく。ただし、少なくとも一つの領域の選択期間が他の領域の選択期間とは異なる期間になるように定めた選択期間の組み合わせを複数の組み合わせの中に含めておく。そして、所定のタイミング(例えば、外部から輝度変更コマンドが入力されたタイミング)で、適用すべき選択期間の組み合わせを切り替える。
【0062】
例えば、コントローラ1は、第一の領域から第三の領域までの各領域における選択期間をそれぞれT,T,Tとする第一の組み合わせと、各領域における選択期間をそれぞれT,T,Tとする第二の組み合わせとを予め定めておく。そして、所定のタイミングで、適用すべき組み合わせを切り替える。以下の説明では、選択期間の組み合わせとして、この二種類の組み合わせを予め定めておく場合を例に説明する。ただし、T>Tとする。第一の組み合わせに従って走査する場合、各領域における選択期間は等しいので各領域の輝度も等しくなる。第二の組み合わせに従って走査する場合、第二の領域における選択期間は他の領域における選択期間よりも長くなるので、第二の領域の輝度は他の領域の輝度よりも高くなる。
【0063】
なお、ある領域の輝度を高くするためには、その領域の選択期間を長く定めればよい。逆に、ある領域の輝度を低くするためには、その領域の選択期間を短く定めればよい。
【0064】
また、コントローラ1は、適用する組み合わせを切り替えてもフレーム期間が一定になるようにFLMを出力する。全ての走査電極を一回ずつ選択する期間を走査期間と記す。そして、各組み合わせにおける走査期間の最大値をTFmaxとする。コントローラ1は、各組み合わせのもとで、フレーム期間をTFmaxを一定に保つようにFLMを出力する。
【0065】
例えば、第一の組み合わせ(各領域の輝度を等しく表示する組み合わせ)において、第1行から最終行までの走査電極を一回ずつ選択する走査期間をTF1とする。また、第二の組み合わせ(第二の領域の輝度を高くする組み合わせ)における走査期間をTF2とする。この場合、TF2>TF1であるので、TFmax=TF2になる。よって、コントローラ1は、フレーム期間がTF2で一定になるようにFLMを出力する。
【0066】
FLMおよびLPが入力される走査電極ドライバ11の動作およびCP、LPが入力される信号電極ドライバ21の動作は、第一の実施の形態と同様である。また、コントローラ1と信号電極ドライバ21とは、第一の実施の形態と同様に各行の表示データを授受する。表示データは、選択行の個々の画素について発光させるか否かを示す情報であり、信号電極ドライバ21は、表示データに基づいて、各信号電極スイッチ22〜22を設定する。ただし、フレーム期間以内に、全ての走査電極を一回ずつ選択した場合、走査電極ドライバ11は、そのフレーム期間終了まで各走査電極スイッチ12〜12を電位Vcc側の端子に接続させる。また、信号電極ドライバ21は、各信号電極スイッチ22〜22を接地電位側の端子に接続させる。全ての走査電極の選択が終了してから、フレーム期間の終了時までの期間をダミー期間と記す。
【0067】
例えば、第一の組み合わせでは、フレーム期間はTF2であるが、全ての走査電極を一回ずつ選択するのに要する期間はTF1である。残りのダミー期間(TF2−TF1)の間、各走査電極の電位をVccに設定し、各信号電極の電位を接地電位に設定し、画面全体をオフ表示とする。
【0068】
図6は、輝度設定の切り替えに伴う制御信号出力タイミングおよび駆動波形の変化の例を示す説明図である。図6は、第1行および第2行の走査電極が配置された領域を第一の領域51とし、第3行および第4行の走査電極が配置された領域を第二の領域52とし、第5行および第6行の走査電極が配置された領域を第三の領域53とした場合の例を示す。
【0069】
まず、第一の組み合わせを適用した場合の動作について説明する(図6(a)参照。)。走査電極ドライバ11は、FLMがハイレベルになっている期間中にLPがハイレベルからローレベルに変化すると、そのタイミングで、第1行の走査電極スイッチ12を接地電位側の端子に接続し、他の走査電極スイッチ12〜12を電圧Vcc側の端子に接続する。また、信号電極ドライバ21は、コントローラ1から取り込んだ第1行の表示データに基づいて、発光させるべき画素が存在する信号電極の信号電極スイッチを定電流回路側の端子に接続し、他の信号電極スイッチを接地電位側の端子に接続する。コントローラ1は、LP立下り周期をTとしてLPを出力する。この結果、第1行の選択期間Tの間、定電流回路に接続された各信号電極から第1行走査電極に定電流が流れ、その各信号電極と第1行走査電極との交差部分の有機EL素子が発光する。
【0070】
走査電極ドライバ11および信号電極ドライバ21は、LPがハイレベルからローレベルに変化する度に同様の動作を繰り返し、最終行まで走査する。
【0071】
その後のダミー期間中、コントローラ1は、例えば、LP立下り周期をTとしたままLPを出力し続ける。走査電極ドライバ11は、最終行まで走査したならば、次に第1行からの走査開始を指示されるまで、各走査電極スイッチ12〜12を電位Vcc側の端子に接続する。また、コントローラ1は、ダミー期間中、各画素を全てオフ表示にすることを指示する表示データを信号電極ドライバ21に出力する。信号電極ドライバ21は、この表示データに基づいて、各信号電極スイッチ22〜22を接地電位側の端子に接続する。
【0072】
次に、選択期間の組み合わせを第二の組み合わせに切り替え、第二の領域の輝度を高くする場合の動作について説明する(図6(b)参照。)。走査電極ドライバ11および信号電極ドライバ21の動作は、図6(a)に示す場合と同様である。ただし、コントローラ1は、第3行の選択を開始した後、LP立下り周期をTからTに変更し、第5行の選択を開始した後、再びLP立下り周期をTに戻す。その結果、第3行および第4行を走査する際の選択期間はTになり、他の行の選択期間Tよりも長くなる。すると、第3行および第4行の有機EL素子に定電流が流れる時間は、他の行の有機EL素子に定電流が流れる時間よりも長くなる。従って、第二の領域52(第3行および第4行)の有機EL素子の発光輝度は、第一の領域51および第三の領域53の有機EL素子の発光輝度よりも高くなる。
【0073】
また、フレーム期間は、第二の組み合わせにおける走査期間TF2として定められている。従って、第二の組み合わせを適用した場合、ダミー期間は発生せず、走査電極ドライバ11は最終行を選択後に第1行を選択する。
【0074】
適用すべき組み合わせを切り替える前後でフレーム期間はTF2のまま変化しないので、フレーム期間に対する選択期間Tの割合は変動しない。従って、第二の領域52の輝度を高くするように選択期間の組み合わせを切り替えても、第一の領域51や第三の領域53の輝度は変化しない。
【0075】
第一の実施の形態では、ある領域の輝度の設定を切り替えると、他の領域の輝度も多少変動してしまうが、本実施の形態では、フレーム期間をTFmaxで一定にする。そのため、一部の領域の輝度を変えるように設定を切り替えても、他の領域の輝度に影響を及ぼさない。従って、第一の実施の形態で輝度の設定を切り替える場合よりも、表示品位を向上させることができる。また、第一の実施の形態と同様、消費電流の増加を抑えることができる。
【0076】
第三の実施の形態と第二の実施の形態とを組み合わせ、各選択期間の組み合わせを適用したときに個々の領域の輝度を段階的に変えられるようにしてもよい。この場合、コントローラ1は、第二の実施の形態と同様に、信号電極ドライバ21に対してCLを出力する。また、選択行の表示データには、個々の画素をどの階調で発光させるのかを示す情報が含まれる。信号電極ドライバ21は、選択期間開始とともにCLの計数を行う。そして、選択期間開始後、CL計数値が個々の階調に応じた値になったときに、信号電極スイッチを定電流回路側から接地電位側に切り替え、選択行走査電極への電流を停止させる。
【0077】
また、各選択期間の組み合わせにおける各領域の選択期間の最小値をTminとする。各組み合わせにおける各領域の選択期間は、TminのP倍(Pは正の整数である。)になるように定められる。さらに、最小の選択期間Tminで走査電極を選択する際のCL出力周期をCLminとする。コントローラ1は、選択期間の長さをTminのP倍に定めるときには、CL出力タイミングもCLminのP倍に変更する。
【0078】
図7は、第三の実施の形態と第二の実施の形態とを組み合わせた場合における、制御信号出力タイミングおよび駆動波形の変化の例を示す説明図である。各領域の選択期間の組み合わせとして、前述の第一の組み合わせおよび第二の組み合わせが定められているとする。この場合、Tmin=Tである。また、フレーム期間は、第二の組み合わせにおける走査期間TF2である。
【0079】
第一の組み合わせのとき、コントローラ1は、図7(a)に示すようにLP立下り周期をTとしてLPを出力する。また、CL出力周期をCLminとしてCLを出力する。走査電極ドライバ11は、LPがローレベルになるタイミングで選択行を切り替え、最終行まで走査する。信号電極ドライバ21は、CLが入力されるタイミングで各列の信号電極スイッチを切り替え、選択行の各画素を指定された階調で発光させる。フレーム期間内に全ての走査電極を一回ずつ選択した後、走査電極ドライバ11は、各走査電極スイッチ12〜12を電位Vcc側の端子に接続する。また、信号電極ドライバ21は、各信号電極スイッチ22〜22を接地電位側の端子に接続する。
【0080】
第一の組み合わせから第二の組み合わせに切り替えたときの動作について説明する(図7(b)参照。)。第一の領域51および第三の領域53を走査するときの動作は、第一の組み合わせを適用した場合と同様である。コントローラ1は、第二の領域を走査するとき、LP立下り周期をTのP倍に設定し、CL出力周期をCLminのP倍に設定する。信号電極ドライバ21は、CLが入力されるタイミングで各列の信号電極スイッチを切り替え、選択行の各画素を指定された階調で発光させる。この結果、第二の領域52を走査する際の選択期間がT・Pになり、第二の領域52の輝度が高くなる。なお、フレーム期間は、第二の組み合わせにおける走査期間TF2として定められている。従って、第二の組み合わせに切り替えたときにはダミー期間は生じない。
【0081】
1選択期間内に信号電極ドライバ21に入力されるCLの数は各領域で一定である。また、輝度の設定を初期表示状態から切り替えたときも、1選択期間内に入力されるCLの数は一定に保たれる。従って、第三の実施の形態と第二の実施の形態を組み合わせることで、変更可能な階調数を常に揃えることができる。
【0082】
LP立下り周期をT・Pとするときに、CL出力周期をCLmin・PとせずCLminのままとし、信号電極ドライバ21が信号電極スイッチを切り替えるタイミングを定めるCL計数値をP倍にしてもよい。この場合、LP立下り周期をT・Pとする間、例えば、コントローラ1は、信号電極ドライバ1に、信号電極スイッチ切替タイミングを定めるCL計数値をP倍にするように指示する信号を出力する。この信号が出力されている間、信号電極ドライバ21は、CL計数値がPになったときに、第1階調で表示すべき画素が存在する列の信号電極スイッチを接地電位側に切り替える。第2階調以上の各階調で画素を発光させる場合も同様に、CL計数値がPの所定の倍数になったときに、その階調で表示すべき画素が存在する列の信号電極スイッチを接地電位側に切り替える。
【0083】
表示可能な階調数を揃えるためには、CL出力周期をCLminのP倍にしてもよい。あるいは、信号電極ドライバ21において信号電極スイッチを切り替えるタイミングを定めるCL計数値を、最小となる選択期間におけるCL計数値のP倍にしてもよい。いずれの場合であっても、各選択期間を選択期間の最小値TのP倍にすれば、容易に階調数を揃えることができる。
【0084】
なお、上記の各実施の形態では、各領域の輝度を制御する場合について説明したが、各領域の色の制御も同様に行うことができる。
【0085】
また、上記の各実施の形態では、信号電極20〜20が有機EL素子の陽極になり、走査電極10〜10が有機EL素子の陰極になるように配置されている場合について説明した。各走査電極10〜10が有機EL素子の陽極になり、各信号電極20〜20が有機EL素子の陰極になるように配置して、走査電極10〜10から信号電極20〜20に電流を流すようにしてもよい。
【0086】
本発明による駆動方法は、水平方向に分割した領域毎に輝度や色の設定を変える有機ELディスプレイ装置に適用される。例えば、図9に例示するカーステレオの操作パネル等に適用される。あるいは、携帯電話機の補助ディスプレイ装置(背面ディスプレイ装置)等に適用される。
【0087】
【発明の効果】
本発明によれば、走査電極と平行な方向に沿って表示画面を複数の領域に分割し、少なくとも一つの領域における走査電極の選択期間が他の領域における走査電極の選択期間とは異なる期間になるように、各領域毎に走査電極の選択期間を定める。従って、輝度や色を領域毎に変えつつ、消費電流の増加を防止することができる。また、信号電極ドライバに高電圧の電源回路を設ける必要がなくなる。また、信号電極ドライバのサイズを大きくしなくてすむ。
【図面の簡単な説明】
【図1】水平方向に分割された領域の例を示す説明図。
【図2】有機ELディスプレイ装置の駆動装置の例を示す説明図。
【図3】信号電極ドライバへの信号の出力タイミングを示す説明図。
【図4】制御信号出力タイミングおよび駆動波形の例を示す説明図。
【図5】階調制御用クロックパルスの出力周期の説明図。
【図6】輝度設定の切り替えに伴う制御信号出力タイミングおよび駆動波形の変化の例を示す説明図。
【図7】輝度設定の切り替えに伴う制御信号出力タイミングおよび駆動波形の変化の例を示す説明図。
【図8】従来の有機ELディスプレイ装置の駆動装置の例を示す説明図。
【図9】表示する色を領域毎に変化させる画面の例を示す説明図。
【図10】PWMにおける制御信号および駆動波形を示す説明図。
【図11】電流量制御における制御信号および駆動波形を示す説明図。
【図12】電流量変動制御とPWMとを組み合わせた場合の制御信号および駆動波形を示す説明図。
【図13】階調制御用クロックパルス出力タイミングの例を示す説明図。
【符号の説明】
1 コントローラ
10〜10 走査電極
11 走査電極ドライバ
12〜12 走査電極スイッチ
20〜20 信号電極
21 信号電極ドライバ
22〜22 信号電極スイッチ
23〜23 定電流回路

Claims (4)

  1. 複数の走査電極と複数の信号電極との間に有機薄膜が配置された有機ELディスプレイ装置の走査電極を一本ずつ選択しながら走査電極を走査する有機ELディスプレイ装置の駆動方法において、
    走査電極と平行な方向に沿って表示画面を複数の領域に分割し、
    少なくとも一つの領域における走査電極の選択期間が他の領域における走査電極の選択期間とは異なる期間になるように、各領域毎に走査電極の選択期間を定める
    ことを特徴とする有機ELディスプレイ装置の駆動方法。
  2. 各領域毎に一つずつ選択期間を定めた場合における各領域の選択期間の組み合わせとして、複数の組み合わせを予め用意し、
    一の走査電極が選択されてから再び前記一の走査電極が選択されるまでの期間であるフレーム期間を各組み合わせのもとで一定に保ち、
    前記フレーム期間内に全ての走査電極を一回ずつ選択した場合には、フレーム期間終了までの間、各走査電極の電位を非選択時電位に設定し、各信号電極の電位をオフ表示にするためのオフ表示電位に設定する
    請求項1に記載の有機ELディスプレイ装置の駆動方法。
  3. 全ての走査電極を一回ずつ選択する期間を走査期間とし、各組み合わせにおける走査期間の最大値をTFmaxとしたときに、フレーム期間をTFmaxに保つ請求項2に記載の有機ELディスプレイ装置の駆動方法。
  4. 各領域毎に定める選択期間を、選択期間の最小値の正の整数倍に定める請求項1、2または3に記載の有機ELディスプレイ装置の駆動方法。
JP2002281881A 2002-09-26 2002-09-26 有機elディスプレイ装置の駆動方法 Pending JP2004117910A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281881A JP2004117910A (ja) 2002-09-26 2002-09-26 有機elディスプレイ装置の駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281881A JP2004117910A (ja) 2002-09-26 2002-09-26 有機elディスプレイ装置の駆動方法

Publications (1)

Publication Number Publication Date
JP2004117910A true JP2004117910A (ja) 2004-04-15

Family

ID=32276213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281881A Pending JP2004117910A (ja) 2002-09-26 2002-09-26 有機elディスプレイ装置の駆動方法

Country Status (1)

Country Link
JP (1) JP2004117910A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053242A (ja) * 2004-08-10 2006-02-23 Rohm Co Ltd 表示装置の駆動方法、駆動装置およびそれを利用した表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053242A (ja) * 2004-08-10 2006-02-23 Rohm Co Ltd 表示装置の駆動方法、駆動装置およびそれを利用した表示装置

Similar Documents

Publication Publication Date Title
KR100640120B1 (ko) 화상표시장치
US20080018632A1 (en) Driving To Reduce Aging In An Active Matrix Led Display
JP2004279626A (ja) 表示装置およびその駆動方法
US7864139B2 (en) Organic EL device, driving method thereof, and electronic apparatus
US20060044231A1 (en) Drive device and drive method of self light emitting display panel and electronic equipment equipped with the drive device
JPH11296131A (ja) マトリクス表示ディスプレイの階調表示方法及びこの方法を用いた表示装置
JP5361139B2 (ja) 表示装置
KR20030095954A (ko) 디스플레이 디바이스
CN110599945B (zh) Led显示装置及其驱动方法
JP2002287664A (ja) 表示パネルとその駆動方法
JP2004341516A (ja) 共通アノード受動マトリクス有機発光ダイオード(oled)ディスプレイ、そのための駆動回路、その有機発光ダイオードをプリチャージするための方法、および配置
CN114241974A (zh) 显示面板及其驱动方法、显示装置
JP2004117910A (ja) 有機elディスプレイ装置の駆動方法
JP2005208259A (ja) 有機elディスプレイ装置の駆動装置および駆動方法
JP4948546B2 (ja) 有機el発光装置
JP3931470B2 (ja) マトリクス型表示装置
JP2007232902A (ja) 有機elディスプレイ装置の駆動装置
JP3973526B2 (ja) 有機elディスプレイ装置の駆動方法
JP2004138977A (ja) 表示パネルの駆動装置
JP2004347760A (ja) 電界放出ディスプレイパネル用駆動装置及び電界放出ディスプレイ装置
US10283041B2 (en) Display device
JP2007219434A (ja) 有機elディスプレイ装置の駆動装置
JP2007093870A (ja) 有機elディスプレイ装置の駆動装置
JP2000172217A (ja) マトリクス型表示装置
JP2000250454A (ja) 蛍光表示装置の駆動回路