JP2004117110A - Pipe inspection device - Google Patents

Pipe inspection device Download PDF

Info

Publication number
JP2004117110A
JP2004117110A JP2002279207A JP2002279207A JP2004117110A JP 2004117110 A JP2004117110 A JP 2004117110A JP 2002279207 A JP2002279207 A JP 2002279207A JP 2002279207 A JP2002279207 A JP 2002279207A JP 2004117110 A JP2004117110 A JP 2004117110A
Authority
JP
Japan
Prior art keywords
pipe
mandrel
core member
rotated
pipe inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002279207A
Other languages
Japanese (ja)
Inventor
Shin Murata
村田 伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Kogyo Co Ltd
Original Assignee
Murata Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Kogyo Co Ltd filed Critical Murata Kogyo Co Ltd
Priority to JP2002279207A priority Critical patent/JP2004117110A/en
Publication of JP2004117110A publication Critical patent/JP2004117110A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a measurement error of 1-2 μm is generated in the straightness or the roundness of a long aluminum pipe, when a foreign material, such as dust enters between the core member and a pipe inner circumferential surface, because the pipe is held by the core member of a measurement device so that the core member and the pipe are rotated integrally. <P>SOLUTION: The measurement device is constituted so that the pipe (10) is supported via an air layer, with respect to the core member (7), and that the pipe (10) is rotated by compressed air, with respect to the core member (7), without rotating the core member (7). Accordingly, the pipe (10) is rotated, without being brought into contact with the core member (7), and the measurement accuracy is not deteriorated by the foreign material from the outside. The rotation of the pipe (10) is assisted using blowing auxiliary air (11) to the outer surface of the pipe (10), or using a roller (12) or a belt (17). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はパイプ検査装置、特に詳述すれば、パイプの芯直度やパイプの表面のゆがみや真円度等を、パイプを回転させながらその外径の振れをみて測定するパイプ検査装置に関する。
【0002】
【従来の技術】
電子複写機のクリーニング装置や現像装置には長尺のアルミパイプが用いられており、このパイプは、トナーの除去や供給を一様にするため、精度の高いパイプ芯直度、真円度、ゆがみの測定が要求されている。たとえば、パイプ断面が楕円形に変形しているパイプを回転させると、パイプの外表面は基準線に対して振れた形となり、トナーの除去や供給にムラが生じる。
【0003】
長尺パイプの芯直度や真円度等は、パイプの両端を心金に支持した状態で、パイプをベアリングに支持された心金により回転させ、レーザー光を回転するパイプの表面に投射し、その反射角や受光量により測定している。
【0004】
【発明が解決しようとする課題】
前述したパイプ検査装置において、パイプの芯直度や真円度を±2.0μmの測定度を必要とする場合、心金とパイプ或いは心金とベアリングとの間に、埃等の小さな異物が入ったとき、この異物そのものが、1〜2μmの寸法であるため、誤った測定結果を検出することになる。或いは、ベアリングの回転精度がレーザー測定器の測定精度に大きく影響している。
【0005】
それ故に、本発明は、前述した従来技術の不具合を解消させることを解決すべき課題とする。
【0006】
【課題を解決するための手段】
本発明は、前述した課題を解決するために、基本的には、パイプを支持する心金を回転させることなく、心金とパイプとの間に空気層を形成しながら、空気流によりパイプを回転させる技術手段を採用する。
この手段の採用は、心金とパイプとの直接接触はなく、パイプを基準線に沿って回転させ得るので、埃等の異物による測定精度の低下はない。
【0007】
本発明によれば、被測定パイプの両端を心金で保持するパイプ検査装置において、心金が中空部と中空部を外部に連通させる複数個のノズルとを有し、心金の中空部に供給された圧縮空気を、ノズルを介して心金とパイプ内周面との間に供給し、パイプを心金に対して浮かせ無接触の形で圧縮空気により回転させることを特徴とするパイプ検査装置が提供される。
【0008】
【発明の実施の形態】
パイプ検査装置1は、図1に示す如く、ベース2の両端に固定されたエアシリンダ装置3,3、エアシリンダ装置3,3のプランジャによりリニアガイド5に沿い往復動自在な対の支持台4,4、ガイド5に沿い往復動自在でありかつ測定位置で静止するレーザー測定器6とを有す。これとは別に、複数個のレーザー測定器を所定の測定位置に固定しておいてもよい。たとえば、パイプ10の両端と中央部分の測定を可能とするよう3ヶ所にレーザー測定器を固定配置する。
対の支持台4,4は、エアシリンダ装置3,3のプランジャに結合され、リニアガイド5に対する位置がエアシリンダ装置3,3により調整できる。
【0009】
支持台4,4は心金7,7を保持しており、心金7,7は一端を閉じた中空体で、他端に圧縮空気源に接続される継手8,8を有す。
各心金7の中空部10′は、その先端部に穿孔された複数個の離間したノズル9を介して、パイプ10の内周面に沿って外部に連通する。ノズル9の中心線は心金7の中心線を通る線Lに対し傾斜し、中空部10′内に継手8を介して供給された圧縮空気はノズル9を介して垂直方向と水平方向のベクトルを有する流線となってパイプ10の内周面へと排出される。
垂直方向のベクトルが測定されようとするパイプ10の内周面と心金7の外表面との間の小さな空間を通って外部に流出し、パイプ10の内周面を心金7に対し無接触に浮かせる働きをする。
ノズル9から流出する圧縮空気の水平方向のベクトルがパイプ10を回転させる働きをする。かくして、ノズル9から流出する圧縮空気がパイプ10を心金7に対して浮かせ、回転させる。
【0010】
図4に示す如く、パイプ10の外表面の接線方向に補助空気流11を送り、回転するパイプ10の初期回転を円滑にさせるとよい。即ち、心金7,7に保持されたパイプ10は、ノズル9からの圧縮空気により、心金7,7に対し、浮上しかつ回転を始めるが、パイプ10の回転初期において圧縮空気のみでは定速回転に至るまでに時間を要す。このため、補助空気流11により早期にパイプ10を定速回転状態とさせるようにするとよい。
これとは別に、図5に示すように、回転するパイプ10の外表面に接するゴムローラ12をモータ13によりパイプ10の回転を補助することもできる。ゴムローラ12のパイプ10に対する位置は、エアシリンダ14により調整される。ゴムローラ12は、上下に対称に配するが、一方のみでもよい。
1個のモータ13を用い両ゴムローラ12を回転させてもよい。
【0011】
図6に示す例は、リンク16の両端にローラ15,15を回転自在に支持させ、両ローラ15,15にベルト17を張設したものである。一方のローラ15をモータ13により回転させることでベルト17を両ローラ15,15間で回転させる。
シリンダ14は、リンク16の中央部に結合され、リンク16を昇降させることでパイプ10に対するベルト17の位置を調整できる。
【0012】
図6の例では、ベルト17をパイプ10に対し上下対称に配し、対のベルト17によりパイプ10の回転を補助しているが、一方のベルト17のみによりパイプ10を回転させるようにしてもよい。勿論、両ベルト17を1個のモータ13で回転させてもよい。
パイプ10が定速回転となったとき、補助空気流11の供給の停止、ゴムローラ12の回転するパイプ10からの離反、或いはベルト17の回転するパイプ10からの離反をなし、ノズル9からの圧縮空気のみによりパイプ10を定速回転させる。
【0013】
図4乃至6に示す例では、図2と図3に示す如く、空気圧により心金7に対し浮上し、心金7に対して無接触に回転するパイプ10を、基準中心線Lに対しパイプ10をさらに回転させる働きをする。
図2と図3に示す例にあてて、空気圧によるパイプ10の回転を従とし、図4乃至6の例によるパイプ10の回転を主とするようにしてもよい。
【0014】
回転しているパイプ10に対し、レーザー測定器6をパイプ10の左右両端部及び中央部の3ヶ所へ移動、静止させて、パイプ10の振れを測定する。
レーザー測定器6は、レーザー投光部と受光部とを有する市販品を用いればよい。回転するパイプ10に振れがあれば、受光部の受けるレーザー量が変化するので、この変化を理想的なパイプ回転をベースとするマスターゲージと比較し、その変化量からパイプ10の真円度、芯直度、断面変形部を測定する。
【0015】
測定作業が完了した後、シリンダ3,3を動作させ、支持台4,4をエアシリンダ装置3,3側へ引き寄せ、パイプ10を心金7から外す。勿論、一方のエアシリンダ装置3のみ作動させ、一方の支持台4を一方へ移動させ、パイプ10を着脱自在としてもよい。
パイプ10の心金7への取り付けは前述の逆の作業でよい。
【0016】
本発明によれば、測定すべきパイプを心金に対し、空気圧により浮上させ、無接触とした状態でパイプを回転させているので、埃等による測定誤差はない。また、基準線に対してパイプを回転させ得るので、レーザー測定器によるマスターゲージとの測定データとの対比の制度が高く即ちマスターゲージ作成条件と同一条件でのパイプの回転が可能であり測定精度が高い。
【図面の簡単な説明】
【図1】本発明の一例のパイプ検査装置の正面図である。
【図2】心金とパイプとの関係を示す部分拡大図である。
【図3】図2の矢視III−IIIより見た断面図である。
【図4】パイプに空気を吹きつけパイプを回転させる例を示す断面図である。
【図5】パイプを補助回転させるための別の例を示す側面図である。
【図6】パイプを補助回転させるための他の例を示す側面図である。
【符号の説明】
2  ベース
3,3  エアシリンダ装置
4,4  支持台
5  リニアガイド
6  レーザー測定器
7,7  心金
9  ノズル
10  パイプ
12  ゴムローラ
13  モータ
14  エアシリンダ
15  ローラ
16  リンク
17  ベルト
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pipe inspection apparatus, and more particularly, to a pipe inspection apparatus for measuring the straightness of a pipe, the distortion of a surface of the pipe, the roundness, and the like by measuring the outer diameter of the pipe while rotating the pipe.
[0002]
[Prior art]
A long aluminum pipe is used for a cleaning device and a developing device of an electronic copier. This pipe has a highly accurate pipe straightness, roundness, and uniformity in removing and supplying toner. Measurement of distortion is required. For example, when a pipe whose pipe cross section is deformed into an elliptical shape is rotated, the outer surface of the pipe is deflected with respect to a reference line, and unevenness occurs in toner removal and supply.
[0003]
For the straightness and roundness of a long pipe, the pipe is rotated by a mandrel supported by bearings with both ends of the pipe supported by a mandrel, and a laser beam is projected on the surface of the rotating pipe. And the reflection angle and the amount of received light.
[0004]
[Problems to be solved by the invention]
In the above-described pipe inspection apparatus, when the pipe straightness or roundness needs a measurement degree of ± 2.0 μm, small foreign matter such as dust is present between the mandrel and the pipe or between the mandrel and the bearing. When the foreign substance enters, the foreign substance itself has a size of 1 to 2 μm, so that an erroneous measurement result is detected. Alternatively, the rotation accuracy of the bearing greatly affects the measurement accuracy of the laser measuring device.
[0005]
Therefore, an object of the present invention is to solve the above-described disadvantages of the related art.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention basically forms a pipe with an air flow while forming an air layer between the mandrel and the pipe without rotating the mandrel supporting the pipe. Employ technical means to rotate.
By adopting this means, since there is no direct contact between the mandrel and the pipe and the pipe can be rotated along the reference line, there is no decrease in measurement accuracy due to foreign matter such as dust.
[0007]
According to the present invention, in a pipe inspection device that holds both ends of a pipe to be measured with a mandrel, the mandrel has a hollow portion and a plurality of nozzles that allow the hollow portion to communicate with the outside. Pipe inspection characterized in that the supplied compressed air is supplied between the mandrel and the inner peripheral surface of the pipe via a nozzle, and the pipe is floated on the mandrel and rotated by the compressed air in a non-contact manner. An apparatus is provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, a pipe inspection device 1 includes air cylinder devices 3, 3 fixed to both ends of a base 2, and a pair of support bases 4 that can reciprocate along a linear guide 5 by plungers of the air cylinder devices 3, 3. , 4, and a laser measuring device 6 which is reciprocally movable along the guide 5 and is stationary at the measuring position. Alternatively, a plurality of laser measuring devices may be fixed at predetermined measurement positions. For example, laser measuring instruments are fixedly arranged at three places so as to enable measurement of both ends and a central portion of the pipe 10.
The pair of support bases 4 and 4 are connected to plungers of the air cylinder devices 3 and 3, and the position with respect to the linear guide 5 can be adjusted by the air cylinder devices 3 and 3.
[0009]
The support bases 4, 4 hold mandrels 7, 7, each of which is a hollow body having one end closed and has a joint 8, 8, which is connected to a compressed air source at the other end.
The hollow portion 10 'of each mandrel 7 communicates with the outside along the inner peripheral surface of the pipe 10 via a plurality of spaced nozzles 9 drilled at the tip. The center line of the nozzle 9 is inclined with respect to the line L passing through the center line of the mandrel 7, and the compressed air supplied through the joint 8 into the hollow portion 10 ′ passes through the nozzle 9 in the vertical and horizontal vectors. And is discharged to the inner peripheral surface of the pipe 10.
It flows out through a small space between the inner peripheral surface of the pipe 10 and the outer surface of the mandrel 7 where the vector in the vertical direction is to be measured. Works to float on contact.
The horizontal vector of the compressed air flowing out of the nozzle 9 serves to rotate the pipe 10. Thus, the compressed air flowing out of the nozzle 9 causes the pipe 10 to float and rotate with respect to the mandrel 7.
[0010]
As shown in FIG. 4, an auxiliary air flow 11 may be sent in a tangential direction to the outer surface of the pipe 10 to make the initial rotation of the rotating pipe 10 smooth. That is, the pipe 10 held by the mandrel 7, 7 floats and starts rotating with respect to the mandrel 7, 7 by the compressed air from the nozzle 9. It takes time to reach high speed. For this reason, it is preferable that the pipe 10 be brought into the constant-speed rotation state early by the auxiliary airflow 11.
Alternatively, as shown in FIG. 5, the rotation of the pipe 10 can be assisted by the motor 13 for the rubber roller 12 which is in contact with the outer surface of the rotating pipe 10. The position of the rubber roller 12 with respect to the pipe 10 is adjusted by an air cylinder 14. The rubber rollers 12 are arranged vertically symmetrically, but only one of them may be used.
One rubber 13 may be used to rotate both rubber rollers 12.
[0011]
In the example shown in FIG. 6, rollers 15, 15 are rotatably supported at both ends of a link 16, and a belt 17 is stretched over both rollers 15, 15. By rotating one roller 15 by the motor 13, the belt 17 is rotated between the two rollers 15 and 15.
The cylinder 14 is connected to the center of the link 16, and the position of the belt 17 with respect to the pipe 10 can be adjusted by moving the link 16 up and down.
[0012]
In the example of FIG. 6, the belt 17 is arranged vertically symmetrically with respect to the pipe 10, and the rotation of the pipe 10 is assisted by the pair of belts 17. However, the pipe 10 may be rotated by only one belt 17. Good. Of course, both belts 17 may be rotated by one motor 13.
When the pipe 10 rotates at a constant speed, the supply of the auxiliary air flow 11 is stopped, the rubber roller 12 is separated from the rotating pipe 10, or the belt 17 is separated from the rotating pipe 10, and the compression from the nozzle 9 is performed. The pipe 10 is rotated at a constant speed only by air.
[0013]
In the example shown in FIGS. 4 to 6, as shown in FIGS. 2 and 3, the pipe 10 which floats on the mandrel 7 by air pressure and rotates without contact with the mandrel 7 is connected to the pipe with respect to the reference center line L. It serves to further rotate 10.
In the examples shown in FIGS. 2 and 3, the rotation of the pipe 10 by air pressure may be used as the slave, and the rotation of the pipe 10 according to the examples of FIGS.
[0014]
With respect to the rotating pipe 10, the laser measuring device 6 is moved to three places at the left and right ends and the center of the pipe 10 and stopped, and the deflection of the pipe 10 is measured.
As the laser measuring device 6, a commercially available product having a laser projecting unit and a light receiving unit may be used. If the rotating pipe 10 oscillates, the amount of laser received by the light receiving unit changes. This change is compared with an ideal pipe rotation-based master gauge, and the change amount is used to determine the roundness of the pipe 10, Measure straightness and cross section deformation.
[0015]
After the measurement operation is completed, the cylinders 3 and 3 are operated, the support bases 4 and 4 are pulled toward the air cylinder devices 3 and 3, and the pipe 10 is removed from the mandrel 7. Of course, only one air cylinder device 3 may be operated, one support base 4 may be moved to one, and the pipe 10 may be detachable.
Attachment of the pipe 10 to the mandrel 7 may be performed in the reverse order of the above.
[0016]
According to the present invention, since the pipe to be measured is lifted by air pressure with respect to the mandrel and the pipe is rotated in a non-contact state, there is no measurement error due to dust or the like. In addition, since the pipe can be rotated with respect to the reference line, the accuracy of comparison with the measurement data of the master gauge by the laser measuring device is high, that is, the pipe can be rotated under the same conditions as the master gauge preparation conditions, and the measurement accuracy can be improved. Is high.
[Brief description of the drawings]
FIG. 1 is a front view of a pipe inspection apparatus according to an example of the present invention.
FIG. 2 is a partially enlarged view showing a relationship between a mandrel and a pipe.
FIG. 3 is a cross-sectional view taken along line III-III in FIG.
FIG. 4 is a cross-sectional view showing an example in which air is blown onto a pipe to rotate the pipe.
FIG. 5 is a side view showing another example for auxiliary rotation of a pipe.
FIG. 6 is a side view showing another example for auxiliary rotation of a pipe.
[Explanation of symbols]
2 Base 3, 3 Air cylinder device 4, 4 Support base 5 Linear guide 6 Laser measuring device 7, 7 Mandrel 9 Nozzle 10 Pipe 12 Rubber roller 13 Motor 14 Air cylinder 15 Roller 16 Link 17 Belt

Claims (6)

被測定パイプの両端を心金で保持するパイプ検査装置において、心金が中空部と中空部を外部に連通させる複数個のノズルとを有し、心金の中空部に供給された圧縮空気を、ノズルを介して心金とパイプ内周面との間に供給し、パイプを心金に対して浮かせ無接触の形で圧縮空気により回転させることを特徴とするパイプ検査装置。In a pipe inspection device that holds both ends of a pipe to be measured with a mandrel, the mandrel has a hollow portion and a plurality of nozzles that communicate the hollow portion to the outside, and the compressed air supplied to the hollow portion of the mandrel is A pipe inspection apparatus characterized in that a pipe is supplied between a mandrel and an inner peripheral surface of a pipe through a nozzle, and the pipe is floated with respect to the mandrel and rotated by compressed air in a non-contact manner. レーザー測定器がパイプの長手方向に沿って移動自在でありかつ測定位置で静止し、パイプの外表面方向からパイプの回転を補助する回転力を付与する手段を有する請求項1に記載のパイプ検査装置。2. The pipe inspection according to claim 1, wherein the laser measuring device is movable along the length of the pipe and is stationary at the measurement position, and has means for applying a rotational force to assist the rotation of the pipe from the outer surface of the pipe. apparatus. 前記手段が互いに噴出方向を逆向きとする空気流である請求項2に記載のパイプ検査装置。3. The pipe inspection apparatus according to claim 2, wherein the means are air flows whose ejection directions are opposite to each other. 前記手段がモータで回動するローラ又はベルトである請求項2に記載のパイプ検査装置。3. The pipe inspection device according to claim 2, wherein the means is a roller or a belt rotated by a motor. ローラ又はベルトが上下対称に配され、各ローラ又はベルトが個々のモータにより作動させられる請求項4に記載のパイプ検査装置。The pipe inspection apparatus according to claim 4, wherein the rollers or belts are arranged vertically symmetrically, and each roller or belt is operated by an individual motor. レーザー測定器が複数の測定位置に固定されている請求項3乃至5の何れかに記載のパイプ検査装置。The pipe inspection device according to any one of claims 3 to 5, wherein the laser measuring device is fixed at a plurality of measurement positions.
JP2002279207A 2002-09-25 2002-09-25 Pipe inspection device Pending JP2004117110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279207A JP2004117110A (en) 2002-09-25 2002-09-25 Pipe inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279207A JP2004117110A (en) 2002-09-25 2002-09-25 Pipe inspection device

Publications (1)

Publication Number Publication Date
JP2004117110A true JP2004117110A (en) 2004-04-15

Family

ID=32274278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279207A Pending JP2004117110A (en) 2002-09-25 2002-09-25 Pipe inspection device

Country Status (1)

Country Link
JP (1) JP2004117110A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157863A (en) * 2006-12-26 2008-07-10 Nissan Diesel Motor Co Ltd Device and method for measuring roundness
DE102016103483A1 (en) * 2016-02-26 2017-08-31 Sms Group Gmbh Straightness measuring device and method
CN116518912A (en) * 2023-07-05 2023-08-01 北京市市政四建设工程有限责任公司 Pipeline straightness detection device for municipal construction
CN117029718A (en) * 2023-07-24 2023-11-10 无锡市昊昊钢管有限公司 Accurate steel pipe detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157863A (en) * 2006-12-26 2008-07-10 Nissan Diesel Motor Co Ltd Device and method for measuring roundness
DE102016103483A1 (en) * 2016-02-26 2017-08-31 Sms Group Gmbh Straightness measuring device and method
CN116518912A (en) * 2023-07-05 2023-08-01 北京市市政四建设工程有限责任公司 Pipeline straightness detection device for municipal construction
CN116518912B (en) * 2023-07-05 2023-08-25 北京市市政四建设工程有限责任公司 Pipeline straightness detection device for municipal construction
CN117029718A (en) * 2023-07-24 2023-11-10 无锡市昊昊钢管有限公司 Accurate steel pipe detection device
CN117029718B (en) * 2023-07-24 2024-01-26 无锡市昊昊钢管有限公司 Accurate steel pipe detection device

Similar Documents

Publication Publication Date Title
JP4632962B2 (en) Coaxiality / perpendicularity measuring apparatus and method
TWI530669B (en) Apparatus for characterizing glass sheets
JP2018048993A (en) Continuous friction-wear test method and continuous friction-wear tester
JP2004117110A (en) Pipe inspection device
JPS5943306A (en) Laser sensor for controlling size
CN103342249A (en) Printing paper air-suction flattening device
JPH1040749A (en) Eccentricity measuring device for pressure roller for wire marking
JP2009535632A (en) Measuring apparatus and measuring method for inspection of substrate surface
JP2010271047A (en) Apparatus for measuring shaft having optical type and touch probe type measuring mechanisms and shaft supporting mechanism, and method for measuring specifications and accuracy of shaft by the apparatus
JP4537624B2 (en) Tread ring joint amount verification method and verification device
JP2011149762A (en) Twist-amount measuring device
KR101760119B1 (en) Apparatus for inspecting preform and method thereof
JP3543790B2 (en) Measuring method of surface micro-projections on tubular specimen
JPH1010092A (en) Flaw detecting device for connection part of branch pipe
KR20050073830A (en) Apparatus for measuring thickness of gelatine sheet of manufacturing device for soft gelatine capsule
JP2002286405A (en) Method of measuring film thickness of endless belt and film thickness measuring device
JP2001033229A (en) Noncontact fluid measuring device
JP3926750B2 (en) Belt circumference measuring device
KR100919879B1 (en) support device of ultrasonic testing apparatus
JP2004219351A (en) Apparatus for measuring belt dimension
JP2010188603A (en) Wall thickness detector for film in film molding device
JP2761705B2 (en) Tire circumference measuring device
JP3677245B2 (en) Tire fitting measuring device
JPH1137918A (en) Equipment for measuring permeability of air through sheet material
JPH06207863A (en) Device for measuring tension profile

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20050829

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20050830

Free format text: JAPANESE INTERMEDIATE CODE: A7424