JP2004115881A - TiCN-BASED CERMET AND ITS MANUFACTURING METHOD - Google Patents

TiCN-BASED CERMET AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP2004115881A
JP2004115881A JP2002282971A JP2002282971A JP2004115881A JP 2004115881 A JP2004115881 A JP 2004115881A JP 2002282971 A JP2002282971 A JP 2002282971A JP 2002282971 A JP2002282971 A JP 2002282971A JP 2004115881 A JP2004115881 A JP 2004115881A
Authority
JP
Japan
Prior art keywords
hard phase
cermet
ticn
area
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002282971A
Other languages
Japanese (ja)
Other versions
JP4280048B2 (en
Inventor
Takashi Tokunaga
徳永 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002282971A priority Critical patent/JP4280048B2/en
Publication of JP2004115881A publication Critical patent/JP2004115881A/en
Application granted granted Critical
Publication of JP4280048B2 publication Critical patent/JP4280048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of TiCN-based cermet having excellent wear resistance and fracture resistance. <P>SOLUTION: In the TiCN-based cermet, a hard phase in which TiCN and a part of WC, MoC, etc., are made into solid solution is bonded by 1 to 30wt.% of a binder phase of Co and/or Ni, and the hard phase consists of a first hard phase of black color and a second hard phase of grayish white color. The TiCN-based cermet is formed so that the average grain size d<SB>1in</SB>of the first hard phase in the inner part, is 0.05 to 0.5μm; the area ratio S<SB>1in</SB>of the first hard phase, is 40 to 80 area%; the average grain size d<SB>2in</SB>of the second hard phase, is 0.6 to 2μm; and the area ratio S<SB>2in</SB>of the second hard phase, is 5 to 40 area%. Moreover, a surface region existing at the surface of the cermet has the following characteristics: the average grain size d<SB>1sf</SB>of the first hard phase, is 0.3 to 1μm and larger than the d<SB>1in</SB>; the area ratio S<SB>1sf</SB>of the first hard phase, is 5 to 20 area%; the average grain size d<SB>2sf</SB>of the second hard phase, is 1 to 2μm and larger than the d<SB>2in</SB>; and the area ratio S<SB>2sf</SB>of the second hard phase, is 50 to 80 area%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、切削工具部材、耐摩耗性工具部材等に適する靱性と硬度をともに備えたTiCN基サーメットとその製造方法に関するものである。
【0002】
【従来の技術】
従来より、耐摩耗性工具や切削工具用合金としてTiC基サーメットやTiCN基サーメットが開発されており、特に靭性を改善したTiCN基サーメットが広く用いられている。
【0003】
かかるTiCN基サーメットにおいては、特に耐欠損性を向上させることが求められており、例えば、特開平8−199283号公報(特許文献1)では、硬質相の固溶状態、具体的には芯部が黒色の有芯構造をなす硬質相と芯部が白色の有芯構造をなす硬質相との存在割合、およびその粒度を最適化することによって高速切削等にて発生する熱衝撃に対して優れた耐久性を改善できることが開示されている。
【0004】
【特許文献1】
特開平8−199283号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特開平8−199283号公報にて開示されたサーメットにおいても熱衝撃に対する耐久性は未だ不十分で切削性能の改良に限界があり、更なる耐熱衝撃性の改善および耐欠損性、耐摩耗性の向上が求められていた。
【0006】
本発明は、上記課題を解決するためのもので、その目的はTiCN基サーメットの硬質相の固溶状態を場所毎に適正化して組織の最適化を図ることにより更なる耐欠損性の向上および耐欠損性、耐摩耗性の向上を図ることにある。
【0007】
【課題を解決するための手段】
本発明においては、原料粉末の粒径、焼成条件の適正化によって、上記硬質相の固溶状態を各部分に合わせてそれぞれ最適化し、サーメット内部において硬質相の微粒化による強度、硬度向上と、サーメット表面における耐熱衝撃性向上とをともに満足させることができる結果、サーメット全体としての耐欠損性および耐摩耗性がともに向上することを知見した。
【0008】
すなわち、本発明のTiCN基サーメットは、TiCNとTi以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属の炭化物、窒化物および炭窒化物の少なくとも一部とが固溶してなる硬質相を、Coおよび/またはNiの結合相1〜30重量%にて結合してなるものであって、該TiCN基サーメット任意断面の走査型電子顕微鏡写真(SEM)において、前記硬質相が黒色の第1硬質相と灰白色の第2硬質相とからなり、前記サーメット内部における第1硬質相の平均粒径d1inが0.05〜0.5μmで、前記サーメット内部の全体に占める第1硬質相の面積比率S1inが40〜80面積%からなり、かつ前記サーメット内部における前記第2硬質相の平均粒径d2inが0.6〜2μmで、前記サーメット内部の全体に占める第2硬質相の面積比率S2inが5〜40面積%からなるとともに、前記サーメット表面に前記第1硬質相の平均粒径d1sfが0.3〜1μmでd1inより大きく、前記サーメット表面部の全体に占める第1硬質相の面積比率S1sfが5〜40面積%からなり、かつ前記サーメット表面における前記第2硬質相の平均粒径d2sfが1〜3μmでd2inより大きく、前記サーメット表面部の全体に占める第2硬質相の面積比率S2sfが50〜80面積%からなる表面領域が存在することを特徴とするものである。
【0009】
ここで、前記灰白色の第2硬質相の中心に白色部が存在するとともに、前記サーメット内部における白色部の存在割合が前記サーメット表面における白色部の存在割合よりも多いことが望ましい。
【0010】
また、前記第1硬質相が金属成分としてTiを80重量%以上含有するとともに、前記灰白色の第2硬質相が前記第1硬質相に対してTi以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属を多く含有することが望ましい。
【0011】
また、本発明のTiCN基サーメットの製造方法は、平均粒径0.1〜1.2μmのTiCN粉末と、Ti以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属の炭化物、窒化物および炭窒化物の粉末と、Coおよび/またはNiとを調合して所定形状に加工した後、0.7〜2℃/minの昇温速度で1150〜1250℃まで昇温し、次いで5〜15℃/minの昇温速度で1400〜1500℃まで昇温し、さらに4〜14℃/minの昇温速度で1500〜1600℃まで昇温して所定時間維持し、不活性ガスを10〜150Pa充填した状態で降温することを特徴とする。
【0012】
【発明の実施の形態】本発明のTiCN基サーメット(以下、単にサーメットと略す。)について、その内部の任意断面についての走査型電子顕微鏡写真(SEM)である図1および表面を含む任意断面についてのSEM写真である図2を基に説明する。
【0013】
図1、2によれば、本発明のTiCN基サーメット(以下、単にサーメットと略す。)1は、TiCNとTi以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属の炭化物、窒化物および炭窒化物の少なくとも一部とが固溶してなる硬質相2を、1〜30重量%のCoおよび/またはNiの結合相3で硬質相2を結合した構成からなり、図1、2によれば、硬質相2は、黒色の第1硬質相2aと灰白色の第2硬質相2bとからなる。
【0014】
本発明によれば、サーメット1内部(図1)における第1硬質相2aの平均粒径d1inが0.05〜0.5μmで、サーメット1内部の全体に占める第1硬質相2aの面積比率S1inが40〜80面積%からなり、かつサーメット1内部における第2硬質相2bの平均粒径d2inが0.6〜2μmで、サーメット1内部の全体に占める第2硬質相2bの面積比率S2inが5〜40面積%からなるとともに、サーメット1表面(図2)における第1硬質相2aの平均粒径d1sfが0.3〜1μmで、サーメット1表面部の全体に占める第1硬質相2aの面積比率S1sfが5〜40面積%からなり、かつサーメット1表面における第2硬質相2bの平均粒径d2sfが1〜3μmで、サーメット1表面部の全体に占める第2硬質相2bの面積比率S2sfが50〜80面積%からなることが大きな特徴であり、これによって、サーメット1の強度を高めることができるとともに、サーメット1表面における熱伝導率、ヤング率を高めてサーメット1の表面における耐熱衝撃性を向上できることによって、特に高速切削、高送り切削や湿式切削等過酷な熱衝撃が発生するような条件においてもサーメット1の耐摩耗性および耐欠損性を向上させることができる。
【0015】
なお、上記平均粒径(d、d)および面積比率(S、S)は、走査型電子顕微鏡(SEM)写真に対して市販の画像解析装置を用いることによって測定することができる。
【0016】
ここで、上記サーメット1内部における第1硬質相2aの平均粒径d1inが0.05μmより小さいと、硬質相同士の凝集によって組織が不均質となり強度低下を招くとともに、サーメット1内部の熱伝導率が低下する。逆に、d1inが0.5μmを超えると、サーメット1の強度、硬度が低下していずれも耐欠損性、耐摩耗性が低下する。d1inの望ましい範囲は0.1〜0.3μmである。また、第1硬質相2aの面積比率S1inが40面積%より少ないかまたは80面積%より多いと、サーメット1の強度、硬度が低下する。S1inの望ましい範囲は50〜70面積%である。
【0017】
さらに、サーメット1内部における第2硬質相2bの平均粒径d2inが0.6μmより小さいと硬質相2が凝集して不均一な組織となり、d2inが2μmを超えると第2硬質相2bの分散状態が悪くなり強度が低下する。d2inの望ましい範囲は0.8〜1.5μmである。また、サーメット1内部における第2硬質相2bの面積比率S2inが5面積%より少ないとサーメット1が焼結不良状態となって強度が低下し、S2inが40面積%より多いとサーメット1が硬質相2全体の平均粒径が大きくなって強度が低下する。S2inの望ましい範囲は10〜30面積%である。
【0018】
一方、サーメット1表面領域においては、第1硬質相2aの平均粒径d1sfが0.3μmより小さいと、熱伝導率および耐塑性変形性が低下し、逆に、d1sfが1μmを超えると、サーメット1表面の耐欠損性が低下する。d1sfの望ましい範囲は0.3〜0.7μmである。また、サーメット1表面部における第1硬質相2aの面積比率S1sfが5面積%より少ないと、サーメット1の耐塑性変形性が低下し、逆に40面積%より多いとサーメット1表面の熱伝導性が損なわれて耐熱衝撃性が低下する。S1sfの望ましい範囲は7〜25面積%である。
【0019】
さらに、サーメット1表面領域における第2硬質相2bの平均粒径d2sfが1μmより小さいと熱伝導率および耐塑性変形性が低下し、d2sfが3μmを超えるとサーメット1表面の耐欠損性が低下する。d2sfの望ましい範囲は1.2〜2μmである。また、サーメット1表面部における第2硬質相2bの面積比率S2sfが50面積%より少ないとサーメット1の熱伝導率および耐塑性変形性が低下し、S2sfが80面積%より多いと第1硬質相および結合相不足によってサーメット1表面の耐欠損性が低下する。S2sfの望ましい範囲は60〜75面積%である。
【0020】
また、本発明によれば、灰白色の第2硬質相2bの中心には白色部3cが存在するとともに、サーメット1内部(図1)における白色部3cの存在割合がサーメット1表面(図2)における白色部3cの存在割合よりも多いことが、サーメット1内部の硬質相2(3a、3b)を微粒化してサーメット1の強度を高めるとともにサーメット1表面における硬質相2(3a、3b)の固溶状態を最適化してサーメット1の耐熱衝撃性を高める点で望ましい。
【0021】
また、第1硬質相2aとしては、金属成分としてTiを80重量%以上含有することが望ましく、特に、Tiが80〜98重量%、Ti以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属、特にW、Mo、Cr、NbおよびVの一種以上、さらにW(本発明では固溶体金属と称す。)の総量が1〜15重量%、Coおよび/またはNiの結合相金属の総量が0〜3重量%の割合からなることが望ましい。
【0022】
さらに、前記灰白色の第2硬質相2bとしては、第1硬質相2aに対して固溶体金属を多く含有することが望ましく、特に、Tiが30〜70重量%、固溶体金属の総量が70〜30重量%、Coおよび/またはNiの結合相金属の総量が0〜3重量%の割合からなることが望ましい。なお、上記硬質相中の金属成分の含有比率は透過型電子顕微鏡(TEM)のエネルギー分散分光分析(EDS)にて測定可能である。
【0023】
また、本発明によれば、硬質相2は、第1硬質相2aを芯部とし、第2硬質相2bを周辺部とする2重有芯構造をなしていることが、粒成長抑制効果を有しサーメット1が微細で均一な組織となるとともに、結合相3との濡れ性に優れるためにサーメット1の高強度化に寄与する点で望ましいが、全ての硬質相2が有芯構造をなしていなくてもよい。有芯構造の場合、第2硬質相2bの面積は、中心部の第1硬質相2aの面積を除いた環状部の面積である。
【0024】
また、本発明によれば、サーメット1の強度、硬度、耐熱衝撃性のバランスを最適化する上で、d1sf/d1in=1〜6、d2sf/d2in=1.5〜1.7、S1sf/S1in=0.3〜0.5、S2sf/S2in=1.5〜4であることが望ましい。
【0025】
さらに、サーメット1の耐欠損性および耐摩耗性の両立を図るために前記表面領域の厚みは20〜100μm、特に30〜50μmとすることが望ましい。
【0026】
なお、サーメット1におけるビッカース硬度は表面領域内で最大値をとり、内部に向かって次第にビッカース硬度が低下していくことが望ましい。これにより、高い耐摩耗性と耐欠損性の両方を有することができる。
【0027】
(製造方法) 次に、本発明のTiCN基サーメットの製造方法について説明する。
【0028】
まず、平均粒径0.1〜1.2μm、特に0.2〜0.9μmのTiCN粉末と、平均粒径0.1〜2μmのTiN粉末、上述した固溶体金属の炭化物粉末、窒化物粉末または炭窒化物粉末のいずれか1種と、Co粉末および/またはNi粉末とを混合した混合粉末を調整する。
【0029】
本発明によれば、上記TiCN原料粉末の平均粒径を0.1〜1.2μmの範囲に制御することが重要であり、この平均粒径が0.1μmより小さいと原料が凝集してサーメットが不均質な組織となり、逆に1.2μmを超えるとサーメットを上述した組織とすることができない。
【0030】
そして、この混合粉末にバインダーを添加して、プレス成形、押出成形、射出成形等の公知の成形方法によって所定形状に成形する。
【0031】
次に、上記成形体を、0.7℃/min〜2℃/minの昇温速度Aで室温から1150〜1250℃の焼成温度Aまで昇温し、1150〜1250℃から1400〜1500℃の焼成温度Bまで5℃/min〜15℃/minの昇温速度Bで昇温し、さらに、1500〜1600℃の焼成温度Cまで4℃/min〜14℃/minの昇温速度Bよりも遅い昇温速度Cで昇温して所定時間保持した後、不活性ガスを10〜150Pa充填した状態で降温する。
【0032】
本発明によれば、上記焼成時の昇温速度、および降温時に所定量の不活性ガスを充填した状態で降温することが重要であり、以上の製造方法によって上述した組織のサーメットを作製することができる。
【0033】
【実施例】平均粒径0.7μm、または2μmのTiCN粉末、平均粒径1.5μmのTiN粉末、平均粒径μmのTaC粉末、平均粒径1.5μmのNbC粉末、平均粒径1.1μmのWC粉末、平均粒径1.8μmのZrC粉末、平均粒径1.0μmのVC粉末、平均粒径2.4μmのNi粉末、および平均粒径1.9μmのCo粉末を表1に示す割合で調整した混合粉末をステンレス製ボールミルと超硬ボールを用いて、IPAにて湿式混合し、パラフィンを3重量%添加、混合した後、200MPaでCNMG120408にプレス成形し、表1に示す焼成条件で焼成した。なお、降温時にはHeガスを表1に示す量だけ注入した。
【0034】
得られたサーメットをダイヤモンド砥石によって加工し、下記条件にて切削性能を評価した。また、各試料について走査型電子顕微鏡(SEM)観察を行い、7000倍の写真任意5箇所について市販の画像解析ソフトを用いて7mm×7mmの領域で画像解析を行い、硬質相(第1硬質相、第2硬質相)の存在状態を確認した。結果は表2に示した。
(切削条件)
切削評価1
切削方法:旋削 連続切削(耐摩耗性評価)
切削速度:230m/min
送り  :0.25mm/rev
切込み :2.0mm
被削材 :SCM435
切削状態:湿式(エマルジョン)
切削時間:10分
評価項目:逃げ面摩耗幅(mm)
切削評価2
切削方法:旋削 断続切削(耐欠損性評価)
被削材:S45C
被削材:4本溝入り丸棒、
切削速度:100m/min、
送りおよび切削時間:0.1mm/revで10秒間切削後、送りを0.05mm/revずつ上げて各10秒間ずつ切削(最大送り0.5mm/revまで)
切込み:2mm、
評価項目:欠損するまでの総切削時間
切削状態:湿式(エマルジョン)
【0035】
【表1】

Figure 2004115881
【0036】
【表2】
Figure 2004115881
【0037】
表1、2より、本発明品である試料No.1〜12では、耐摩耗性と耐欠損性のともに優れた結果を示した。これに対して、単純な焼成パターンで焼成した試料No.13では、表面に所定の表面領域が形成されず、耐摩耗性および耐欠損性がともに低下した。また、焼成温度Cが1600℃を超え、降温時に不活性ガスを大量に導入した試料No.14、およびTiCN原料粒径が1.2μmを超える試料No.15では第1または第2硬質相の平均粒径が内部および表面領域ともに所定の範囲を超えてしまい耐欠損性が低下した。さらに、昇温速度Bが4℃/minより遅く、焼成温度Cが1600℃を超え、降温時に不活性ガスを導入しなかった試料No.16では第1硬質相の面積比率が内部において少なくなり、耐欠損性が低下した。また、昇温速度が14℃/minよりも速く、焼成温度Cが1500℃よりも低い試料No.17では表面部の第2硬質相の粒径が小さく、かつ表面部の第1硬質相の占める割合が多く、耐摩耗性が低下した。また、焼成温度Aまで5℃/minで昇温した試料No.18では内部と表面における第1硬質相の面積比率が多すぎて耐摩耗性が低下した。さらにまた、昇温速度Aが0.7℃/minより遅く、焼成温度Cが1600℃より高い試料No.19では表面における第1硬質相の粒径が大きく、かつ第2硬質相の粒径が小さいため、耐摩耗性が低下した。
【0038】
【発明の効果】
以上、詳述したとおり、本発明のTiCN基サーメットによれば、硬質相の固溶状態を各部分に合わせてそれぞれ最適化し、サーメット内部において硬質相の微粒化による強度、硬度向上と、サーメット表面における耐熱衝撃性向上とをともに満足させることができる結果、サーメット全体としての耐欠損性および耐摩耗性がともに向上する。
【0039】
また、本発明のTiCN基サーメットの製造方法によれば、原料粉末の粒径、焼成条件の適正化によって、硬質相の固溶状態を各部分に合わせてそれぞれ最適化し、サーメット内部において硬質相の微粒化による強度、硬度向上と、サーメット表面における耐熱衝撃性向上とをともに満足させることができる結果、サーメット全体としての耐欠損性および耐摩耗性がともに向上する。
【図面の簡単な説明】
【図1】本発明のTiCN基サーメットの内部についての走査型電子顕微鏡写真の模写図である。
【図2】本発明のTiCN基サーメットの表面付近についての走査型電子顕微鏡写真の模写図である。
【符号の説明】1:TiCN基サーメット
2:硬質相
3:硬質相
4:芯部
5:周辺部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a TiCN-based cermet having both toughness and hardness suitable for cutting tool members, wear-resistant tool members, and the like, and a method for producing the same.
[0002]
[Prior art]
Hitherto, TiC-based cermets and TiCN-based cermets have been developed as wear-resistant tools and alloys for cutting tools, and TiCN-based cermets with particularly improved toughness have been widely used.
[0003]
In such a TiCN-based cermet, it is particularly required to improve the fracture resistance. For example, Japanese Patent Application Laid-Open No. 8-199283 (Patent Document 1) discloses a solid solution state of a hard phase, specifically, a core portion. Excellent in thermal shock generated by high-speed cutting, etc. by optimizing the proportion of the hard phase having a black cored structure and the hard phase having a white cored structure, and by optimizing the particle size It is disclosed that the durability can be improved.
[0004]
[Patent Document 1]
JP-A-8-199283
[Problems to be solved by the invention]
However, even in the cermet disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-199283, the durability against thermal shock is still insufficient, and there is a limit to the improvement of cutting performance. There has been a demand for improved wear properties.
[0006]
The present invention has been made to solve the above-mentioned problems, and the object is to further improve the fracture resistance by optimizing the structure by optimizing the solid solution state of the hard phase of the TiCN-based cermet for each location, and The purpose is to improve fracture resistance and wear resistance.
[0007]
[Means for Solving the Problems]
In the present invention, by optimizing the particle size of the raw material powder and the firing conditions, the solid solution state of the hard phase is optimized according to each part, and the strength and hardness are improved by atomizing the hard phase inside the cermet. As a result of being able to satisfy both the improvement of the thermal shock resistance on the cermet surface, it was found that both the fracture resistance and the wear resistance of the cermet as a whole are improved.
[0008]
That is, the TiCN-based cermet of the present invention comprises at least a part of carbides, nitrides, and carbonitrides of at least one metal selected from metals of Group IVa, Va, and VIa other than TiCN and Ti. A solid phase in which a solid phase is formed by solid-solution bonding of 1 to 30% by weight of a Co and / or Ni binder phase, and a scanning electron micrograph (SEM) of an arbitrary cross section of the TiCN-based cermet. Wherein the hard phase comprises a black first hard phase and a gray-white second hard phase, wherein the average particle diameter d 1in of the first hard phase in the cermet is 0.05 to 0.5 μm, and The area ratio S1in of the first hard phase in the whole of the cermet is 40 to 80% by area, and the average particle size d2in of the second hard phase in the cermet is 0.6 to 2 μm. The area ratio S 2in of the second hard phase in the entire cermet is 5 to 40% by area, and the average particle diameter d 1sf of the first hard phase is 0.3 to 1 μm on the cermet surface. The area ratio S 1sf of the first hard phase to the entire cermet surface portion is larger than 1 in , and the area ratio S 1sf of the first hard phase is 5 to 40% by area, and the average particle size d 2 sf of the second hard phase on the cermet surface is 1 to 3 μm. And a surface region in which the area ratio S 2sf of the second hard phase occupying the entire cermet surface portion is 50 to 80 area%, which is larger than d 2 in .
[0009]
Here, it is desirable that a white portion is present at the center of the gray-white second hard phase, and that an existing ratio of the white portion inside the cermet is larger than an existing ratio of the white portion on the cermet surface.
[0010]
Further, the first hard phase contains 80% by weight or more of Ti as a metal component, and the gray-white second hard phase is different from the first hard phase in the periodic table IVa, Va, and VIa group other than Ti. It is desirable to contain a large amount of at least one metal selected from metals.
[0011]
Further, the method for producing a TiCN-based cermet of the present invention comprises the steps of: providing a TiCN powder having an average particle diameter of 0.1 to 1.2 μm and at least one metal selected from metals of Group IVa, Va and VIa other than Ti; After mixing the powders of the carbides, nitrides and carbonitrides of the seed metals with Co and / or Ni and processing them into a predetermined shape, the mixture is processed at a rate of 0.7-2 ° C./min at a rate of 1150-1250 ° C. To 1500 to 1500 ° C at a rate of 5 to 15 ° C / min, and then to 1500 to 1600 ° C at a rate of 4 to 14 ° C / min and maintain for a predetermined time. In addition, the temperature is reduced in a state where the inert gas is filled with 10 to 150 Pa.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION A TiCN-based cermet of the present invention (hereinafter simply abbreviated as a cermet) is a scanning electron micrograph (SEM) of an arbitrary cross section inside the cermet, and FIG. 2 will be described with reference to FIG.
[0013]
According to FIGS. 1 and 2, a TiCN-based cermet (hereinafter simply referred to as a cermet) 1 of the present invention is composed of at least one selected from metals of Group IVa, Va and VIa of the periodic table other than TiCN and Ti. Hard phase 2 in which at least a part of carbides, nitrides and carbonitrides of the same kind of metal forms a solid solution, and hard phase 2 is bound with 1 to 30% by weight of Co and / or Ni binding phase 3 According to FIGS. 1 and 2, the hard phase 2 includes a black first hard phase 2a and an off-white second hard phase 2b.
[0014]
According to the present invention, the average particle diameter d 1in of the first hard phase 2a inside the cermet 1 (FIG. 1) is 0.05 to 0.5 μm, and the area ratio of the first hard phase 2a to the whole inside the cermet 1 S 1 in is composed of 40 to 80 area%, and the average particle size d 2 in of the second hard phase 2 b inside the cermet 1 is 0.6 to 2 μm, and the area ratio of the second hard phase 2 b to the whole inside the cermet 1 S 2 in is 5 to 40% by area, and the average particle size d 1sf of the first hard phase 2a on the surface of the cermet 1 (FIG. 2) is 0.3 to 1 μm, and the first hard phase occupies the entire surface of the cermet 1. area ratio S 1SF phase 2a consists 5-40 area%, and an average particle diameter d 2SF in the second hard phase 2b is 1~3μm in the cermet 1 surface, a second hard phase in the total of the cermet 1 surface portion b area ratio S 2SF is a significant feature that consists of 50 to 80 area%, thereby, it is possible to increase the strength of the cermet 1, the thermal conductivity of the cermet 1 surface, to increase the Young's modulus cermet 1 By improving the thermal shock resistance on the surface of the cermet 1, the wear resistance and chipping resistance of the cermet 1 can be improved even under severe thermal shock conditions such as high-speed cutting, high-feed cutting and wet cutting. .
[0015]
The average particle size (d 1 , d 2 ) and the area ratio (S 1 , S 2 ) can be measured by using a commercially available image analyzer for a scanning electron microscope (SEM) photograph. .
[0016]
Here, if the average particle diameter d 1in of the first hard phase 2a inside the cermet 1 is smaller than 0.05 μm, the structure becomes inhomogeneous due to agglomeration of the hard phases, causing a decrease in strength and the heat conduction inside the cermet 1. The rate drops. Conversely, if d 1in exceeds 0.5 μm, the strength and hardness of the cermet 1 decrease, and both the fracture resistance and the wear resistance decrease. A desirable range of d 1 in is 0.1 to 0.3 μm. If the area ratio S 1in of the first hard phase 2a is less than 40 area% or more than 80 area%, the strength and hardness of the cermet 1 decrease. The desirable range of S 1 in is 50 to 70 area%.
[0017]
Further, when the average particle diameter d 2in of the second hard phase 2b inside the cermet 1 is smaller than 0.6 μm, the hard phase 2 aggregates to form a non-uniform structure, and when d 2in exceeds 2 μm, the second hard phase 2b Dispersion deteriorates and strength decreases. desired range of d 2in is 0.8 to 1.5 .mu.m. Also, if the area ratio S 2in of the second hard phase 2b inside the cermet 1 is less than 5 area%, the cermet 1 will be in a poor sintering state and the strength will be reduced, and if the S 2in is more than 40 area%, the cermet 1 will be poor. The average particle size of the entire hard phase 2 increases, and the strength decreases. Desirable range of S 2in is 10 to 30 area%.
[0018]
On the other hand, in the cermet 1 surface region, when the average particle diameter d 1sf of the first hard phase 2a is smaller than 0.3 μm, the thermal conductivity and the plastic deformation resistance decrease, and conversely, when d 1sf exceeds 1 μm. In addition, the fracture resistance of the surface of the cermet 1 decreases. A desirable range of d 1sf is 0.3 to 0.7 μm. When the area ratio S 1sf of the first hard phase 2a on the surface of the cermet 1 is less than 5% by area, the plastic deformation resistance of the cermet 1 is reduced. Properties are impaired and thermal shock resistance is reduced. A desirable range of S 1sf is 7 to 25 area%.
[0019]
Further, when the average particle size d 2sf of the second hard phase 2b in the cermet 1 surface region is smaller than 1 μm, the thermal conductivity and the plastic deformation resistance decrease, and when the d 2sf exceeds 3 μm, the fracture resistance of the cermet 1 surface decreases. descend. desired range of d 2SF is 1.2~2Myuemu. The area ratio S 2SF in the second hard phase 2b in the cermet 1 surface portion is reduced less as the thermal conductivity and plastic deformation resistance of the cermet 1 50 area%, the the S 2SF is more than 80 area% 1 The shortage of the hard phase and the binder phase lowers the fracture resistance of the cermet 1 surface. A desirable range of S2sf is 60 to 75 area%.
[0020]
According to the present invention, the white portion 3c exists at the center of the gray-white second hard phase 2b, and the ratio of the white portion 3c inside the cermet 1 (FIG. 1) is determined on the surface of the cermet 1 (FIG. 2). When the proportion of the white portion 3c is larger than that, the hard phase 2 (3a, 3b) inside the cermet 1 is atomized to increase the strength of the cermet 1, and the solid phase of the hard phase 2 (3a, 3b) on the surface of the cermet 1 is dissolved. This is desirable in that the state is optimized and the thermal shock resistance of the cermet 1 is increased.
[0021]
Further, the first hard phase 2a preferably contains 80% by weight or more of Ti as a metal component, and particularly contains 80 to 98% by weight of Ti and a metal of a group IVa, Va or VIa group other than Ti. The total amount of at least one metal selected from among them, particularly one or more of W, Mo, Cr, Nb and V, and further W (referred to as solid solution metal in the present invention) is 1 to 15% by weight, Co and / or It is desirable that the total amount of the binder phase metal of Ni be in the ratio of 0 to 3% by weight.
[0022]
Further, it is desirable that the gray-white second hard phase 2b contains a large amount of solid solution metal with respect to the first hard phase 2a. In particular, the content of Ti is 30 to 70% by weight, and the total amount of solid solution metal is 70 to 30% by weight. %, The total amount of Co and / or Ni binder phase metals is desirably comprised between 0 and 3% by weight. The content ratio of the metal component in the hard phase can be measured by energy dispersive spectroscopy (EDS) of a transmission electron microscope (TEM).
[0023]
Further, according to the present invention, the hard phase 2 has a double cored structure in which the first hard phase 2a has a core portion and the second hard phase 2b has a peripheral portion. It is desirable that the cermet 1 has a fine and uniform structure and contributes to increasing the strength of the cermet 1 because of its excellent wettability with the binder phase 3. However, all the hard phases 2 have a cored structure. It does not have to be. In the case of a cored structure, the area of the second hard phase 2b is the area of the annular portion excluding the area of the first hard phase 2a at the center.
[0024]
Further, according to the present invention, the strength of the cermet 1, the hardness, in order to optimize the balance between thermal shock resistance, d 1sf / d 1in = 1~6 , d 2sf / d 2in = 1.5~1.7 , S 1sf / S 1in = 0.3~0.5 , it is desirable that the S 2sf / S 2in = 1.5~4.
[0025]
Further, in order to achieve both the fracture resistance and wear resistance of the cermet 1, the thickness of the surface region is desirably 20 to 100 μm, particularly preferably 30 to 50 μm.
[0026]
It is desirable that the Vickers hardness of the cermet 1 has a maximum value in the surface region, and the Vickers hardness gradually decreases toward the inside. Thereby, both high wear resistance and fracture resistance can be obtained.
[0027]
(Production Method) Next, a method for producing the TiCN-based cermet of the present invention will be described.
[0028]
First, a TiCN powder having an average particle diameter of 0.1 to 1.2 μm, particularly 0.2 to 0.9 μm, a TiN powder having an average particle diameter of 0.1 to 2 μm, a carbide powder, a nitride powder or A mixed powder is prepared by mixing any one of the carbonitride powders with the Co powder and / or the Ni powder.
[0029]
According to the present invention, it is important to control the average particle size of the TiCN raw material powder in the range of 0.1 to 1.2 μm. If the average particle size is smaller than 0.1 μm, the raw material aggregates and cermet Has a heterogeneous structure, and if it exceeds 1.2 μm, the cermet cannot be the above-described structure.
[0030]
Then, a binder is added to the mixed powder and molded into a predetermined shape by a known molding method such as press molding, extrusion molding, or injection molding.
[0031]
Next, the molded body is heated from room temperature to a firing temperature A of 1150 to 1250 ° C at a heating rate A of 0.7 ° C / min to 2 ° C / min. The temperature is raised to a firing temperature B at a heating rate B of 5 ° C./min to 15 ° C./min, and further to a firing temperature C of 1500 to 1600 ° C. than that of 4 ° C./min to 14 ° C./min. After the temperature is increased at a slow temperature increasing rate C and maintained for a predetermined time, the temperature is decreased while the inert gas is filled at 10 to 150 Pa.
[0032]
According to the present invention, it is important to lower the temperature in a state in which a predetermined amount of inert gas is filled at the time of the temperature rise rate during the firing and the predetermined amount of the inert gas at the time of the temperature decrease, and to produce a cermet having the above-described structure by the above manufacturing method. Can be.
[0033]
EXAMPLES The average particle diameter 0.7μm or 2 [mu] m TiCN powder,, TiN powder having an average particle diameter of 1.5 [mu] m, TaC powder having an average particle diameter of 2 [mu] m, NbC powder having an average particle diameter of 1.5 [mu] m, an average particle diameter of 1 Table 1 shows WC powder having an average particle diameter of 0.1 μm, ZrC powder having an average particle diameter of 1.8 μm, VC powder having an average particle diameter of 1.0 μm, Ni powder having an average particle diameter of 2.4 μm, and Co powder having an average particle diameter of 1.9 μm. Using a stainless steel ball mill and carbide balls, the mixed powder adjusted in the ratio shown was wet-mixed with IPA, paraffin was added in an amount of 3% by weight, mixed, press-molded at 200 MPa into CNMG120408, and baked as shown in Table 1. It was fired under the conditions. At the time of cooling, He gas was injected in an amount shown in Table 1.
[0034]
The obtained cermet was processed with a diamond grindstone, and the cutting performance was evaluated under the following conditions. In addition, a scanning electron microscope (SEM) observation was performed on each sample, and image analysis was performed on five arbitrary 7000-fold photographs in a 7 mm × 7 mm area using commercially available image analysis software to obtain a hard phase (first hard phase). , The second hard phase). The results are shown in Table 2.
(Cutting conditions)
Cutting evaluation 1
Cutting method: Turning Continuous cutting (evaluation of wear resistance)
Cutting speed: 230m / min
Feed: 0.25mm / rev
Cut: 2.0mm
Work material: SCM435
Cutting state: wet (emulsion)
Cutting time: 10 minutes Evaluation item: flank wear width (mm)
Cutting evaluation 2
Cutting method: Turning Intermittent cutting (Evaluation of fracture resistance)
Work material: S45C
Work material: Round bar with 4 grooves,
Cutting speed: 100m / min,
Feed and cutting time: After cutting at 0.1 mm / rev for 10 seconds, feed is increased by 0.05 mm / rev and cut for 10 seconds each (up to a maximum feed of 0.5 mm / rev)
Cut: 2mm,
Evaluation item: Total cutting time until breakage Cutting condition: Wet (emulsion)
[0035]
[Table 1]
Figure 2004115881
[0036]
[Table 2]
Figure 2004115881
[0037]
From Tables 1 and 2, it can be seen that Sample No. Nos. 1 to 12 showed excellent results in both abrasion resistance and fracture resistance. On the other hand, Sample No. fired in a simple firing pattern. In No. 13, the predetermined surface area was not formed on the surface, and both the wear resistance and the fracture resistance were reduced. In addition, the sample No. in which the sintering temperature C exceeded 1600 ° C. and a large amount of inert gas was introduced when the temperature was lowered. Sample No. 14 and TiCN raw material particle size exceeding 1.2 μm. In No. 15, the average particle size of the first or second hard phase exceeded the predetermined range in both the internal and surface regions, and the fracture resistance was reduced. Further, Sample No. in which the heating rate B was lower than 4 ° C./min, the firing temperature C exceeded 1600 ° C., and no inert gas was introduced at the time of cooling. In No. 16, the area ratio of the first hard phase was reduced inside, and the fracture resistance was reduced. Further, Sample No. whose heating rate was higher than 14 ° C./min and whose firing temperature C was lower than 1500 ° C. In No. 17, the particle size of the second hard phase on the surface portion was small, and the ratio of the first hard phase on the surface portion was large, and the wear resistance was reduced. Further, the sample No. which was heated to the firing temperature A at 5 ° C./min. In No. 18, the area ratio of the first hard phase between the inside and the surface was too large, and the wear resistance was reduced. Furthermore, the sample No. having a temperature rising rate A lower than 0.7 ° C./min and a firing temperature C higher than 1600 ° C. In No. 19, since the particle size of the first hard phase on the surface was large and the particle size of the second hard phase was small, the wear resistance was reduced.
[0038]
【The invention's effect】
As described above in detail, according to the TiCN-based cermet of the present invention, the solid solution state of the hard phase is optimized according to each part, and the strength and hardness are improved by atomizing the hard phase inside the cermet, and the cermet surface is improved. As a result, both the fracture resistance and the wear resistance of the cermet as a whole can be improved.
[0039]
According to the method for producing a TiCN-based cermet of the present invention, the solid solution state of the hard phase is optimized according to each part by optimizing the particle size of the raw material powder and the firing conditions, and the hard phase of the hard phase is formed inside the cermet. As a result, both improvement in strength and hardness by atomization and improvement in thermal shock resistance on the cermet surface can be satisfied, both the fracture resistance and the wear resistance of the cermet as a whole are improved.
[Brief description of the drawings]
FIG. 1 is a schematic drawing of a scanning electron micrograph of the inside of a TiCN-based cermet of the present invention.
FIG. 2 is a schematic drawing of a scanning electron micrograph of the vicinity of the surface of a TiCN-based cermet of the present invention.
[Explanation of Signs] 1: TiCN-based cermet 2: hard phase 3: hard phase 4: core part 5: peripheral part

Claims (4)

TiCNとTi以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属の炭化物、窒化物および炭窒化物の少なくとも一部とが固溶してなる硬質相を、Coおよび/またはNiの結合相1〜30重量%にて結合してなるTiCN基サーメットであって、該TiCN基サーメット任意断面の走査型電子顕微鏡写真(SEM)において、前記硬質相が黒色の第1硬質相と灰白色の第2硬質相とからなり、前記サーメット内部における第1硬質相の平均粒径d1inが0.05〜0.5μmで、前記サーメット内部の全体に占める第1硬質相の面積比率S1inが40〜80面積%からなり、かつ前記サーメット内部における前記第2硬質相の平均粒径d2inが0.6〜2μmで、前記サーメット内部の全体に占める第2硬質相の面積比率S2inが5〜40面積%からなるとともに、前記サーメット表面に前記第1硬質相の平均粒径d1sfが0.3〜1μmでd1inより大きく、前記サーメット表面部の全体に占める第1硬質相の面積比率S1sfが5〜40面積%からなり、かつ前記サーメット表面における前記第2硬質相の平均粒径d2sfが1〜3μmでd2inより大きく、前記サーメット表面部の全体に占める第2硬質相の面積比率S2sfが50〜80面積%からなる表面領域が存在することを特徴とするTiCN基サーメット。A hard phase formed by solid solution of TiCN and at least a part of carbides, nitrides and carbonitrides of at least one metal selected from metals of Group IVa, Va and VIa of the periodic table other than Ti , Co and / or Ni bonded phase in 1-30% by weight of a TiCN-based cermet, wherein the hard phase is black in a scanning electron micrograph (SEM) of an arbitrary cross section of the TiCN-based cermet. A first hard phase comprising a first hard phase and an off-white second hard phase, wherein the first hard phase in the cermet has an average particle diameter d 1in of 0.05 to 0.5 μm, and the first hard phase occupies the whole of the cermet; area ratio S 1in of consists of 40 to 80 area%, and the average particle size d 2in of the second hard phase in the cermet interior in 0.6~2Myuemu, entire interior of the cermet The area ratio S 2in of the second hard phase to the cermet is 5 to 40% by area, and the average particle diameter d 1sf of the first hard phase is 0.3 to 1 μm larger than d 1 in on the cermet surface; The area ratio S 1sf of the first hard phase to the entire surface portion is 5 to 40% by area, and the average particle diameter d 2sf of the second hard phase on the cermet surface is 1 to 3 μm and is larger than d 2 in , A TiCN-based cermet, wherein there is a surface region in which an area ratio S 2sf of the second hard phase occupying the entire cermet surface portion is 50 to 80 area%. 前記灰白色の第2硬質相の中心に白色部が存在するとともに、前記サーメット内部における白色部の存在割合が前記サーメット表面における白色部の存在割合よりも多いことを特徴とする請求項1記載のTiCN基サーメット。2. The TiCN according to claim 1, wherein a white portion is present at the center of the gray-white second hard phase, and an existing ratio of the white portion inside the cermet is higher than an existing ratio of the white portion on the cermet surface. 3. Base cermet. 前記第1硬質相が金属成分としてTiを80重量%以上含有するとともに、前記灰白色の第2硬質相が前記第1硬質相に対してTi以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属を多く含有することを特徴とする請求項1乃至3のいずれか記載のTiCN基サーメット。The first hard phase contains 80% by weight or more of Ti as a metal component, and the off-white second hard phase is composed of a group IVa, Va, and VIa group metal other than Ti with respect to the first hard phase. The TiCN-based cermet according to any one of claims 1 to 3, wherein the cermet contains a large amount of at least one metal selected from the group consisting of: 平均粒径0.1〜1.2μmのTiCN粉末と、Ti以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属の炭化物、窒化物および炭窒化物の粉末と、Coおよび/またはNiとを調合して所定形状に加工した後、0.7〜2℃/minの昇温速度で1150〜1250℃まで昇温し、次いで5〜15℃/minの昇温速度で1400〜1500℃まで昇温し、さらに4〜14℃/minの昇温速度で1500〜1600℃まで昇温して所定時間維持し、不活性ガスを10〜150Pa充填した状態で降温するTiCN基サーメットの製造方法。TiCN powder having an average particle size of 0.1 to 1.2 μm, and carbides, nitrides, and carbonitrides of at least one metal selected from metals of Group IVa, Va and VIa other than Ti. After the powder and Co and / or Ni are mixed and processed into a predetermined shape, the temperature is raised to 1150 to 1250 ° C. at a rate of 0.7 to 2 ° C./min, and then 5 to 15 ° C./min. The temperature is raised to 1400 to 1500 ° C. at a rate of temperature increase, further raised to 1500 to 1600 ° C. at a rate of 4 to 14 ° C./min, maintained for a predetermined time, and filled with 10 to 150 Pa of inert gas. A method for producing a TiCN-based cermet to be cooled.
JP2002282971A 2002-09-27 2002-09-27 Method for producing TiCN-based cermet Expired - Fee Related JP4280048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002282971A JP4280048B2 (en) 2002-09-27 2002-09-27 Method for producing TiCN-based cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002282971A JP4280048B2 (en) 2002-09-27 2002-09-27 Method for producing TiCN-based cermet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008215177A Division JP4974980B2 (en) 2008-08-25 2008-08-25 TiCN-based cermet

Publications (2)

Publication Number Publication Date
JP2004115881A true JP2004115881A (en) 2004-04-15
JP4280048B2 JP4280048B2 (en) 2009-06-17

Family

ID=32276977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282971A Expired - Fee Related JP4280048B2 (en) 2002-09-27 2002-09-27 Method for producing TiCN-based cermet

Country Status (1)

Country Link
JP (1) JP4280048B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213599A (en) * 2004-01-29 2005-08-11 Kyocera Corp TiCN-BASED CERMET AND ITS MANUFACTURING METHOD
JP2007231421A (en) * 2007-02-23 2007-09-13 Kyocera Corp TiCN-BASED CERMET
JP2008195971A (en) * 2007-02-08 2008-08-28 Kyocera Corp Cermet
WO2009017053A1 (en) * 2007-07-27 2009-02-05 Kyocera Corporation Titanium-base cermet, coated cermet, and cutting tool
JP2010005729A (en) * 2008-06-26 2010-01-14 Kyocera Corp Surface coating member
WO2010013735A1 (en) * 2008-07-29 2010-02-04 京セラ株式会社 Cutting tool
WO2010110197A1 (en) * 2009-03-24 2010-09-30 住友電気工業株式会社 Cermet
US7811683B2 (en) * 2006-09-27 2010-10-12 Kyocera Corporation Cutting tool
JP2011093006A (en) * 2009-10-27 2011-05-12 Tungaloy Corp Cermet and coated cermet
JP2013010997A (en) * 2011-06-29 2013-01-17 Sumitomo Electric Hardmetal Corp Cermet, method for producing the same, and cutting tool
JP2014005485A (en) * 2012-06-21 2014-01-16 Sumitomo Electric Ind Ltd Rigid material and cutting tool
US20140227053A1 (en) * 2010-12-25 2014-08-14 Kyocera Corporation Cutting tool
JP2016087742A (en) * 2014-11-05 2016-05-23 株式会社タンガロイ Cermet tool and surface-coated cermet tool
CN114657433A (en) * 2022-03-18 2022-06-24 武汉理工大学 Solid solution reinforced metal ceramic and preparation method thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213599A (en) * 2004-01-29 2005-08-11 Kyocera Corp TiCN-BASED CERMET AND ITS MANUFACTURING METHOD
US7811683B2 (en) * 2006-09-27 2010-10-12 Kyocera Corporation Cutting tool
JP2008195971A (en) * 2007-02-08 2008-08-28 Kyocera Corp Cermet
JP2007231421A (en) * 2007-02-23 2007-09-13 Kyocera Corp TiCN-BASED CERMET
WO2009017053A1 (en) * 2007-07-27 2009-02-05 Kyocera Corporation Titanium-base cermet, coated cermet, and cutting tool
JP5328653B2 (en) * 2007-07-27 2013-10-30 京セラ株式会社 Ti-based cermet, coated cermet and cutting tool
JP2010005729A (en) * 2008-06-26 2010-01-14 Kyocera Corp Surface coating member
CN102105249A (en) * 2008-07-29 2011-06-22 京瓷株式会社 Cutting tool
WO2010013735A1 (en) * 2008-07-29 2010-02-04 京セラ株式会社 Cutting tool
US8580376B2 (en) 2008-07-29 2013-11-12 Kyocera Corporation Cutting tool
WO2010110197A1 (en) * 2009-03-24 2010-09-30 住友電気工業株式会社 Cermet
KR101253853B1 (en) 2009-03-24 2013-04-12 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cermet
CN102046823A (en) * 2009-03-24 2011-05-04 住友电气工业株式会社 Cermet
JP2010222650A (en) * 2009-03-24 2010-10-07 Sumitomo Electric Ind Ltd Cermet
JP4690475B2 (en) * 2009-03-24 2011-06-01 住友電気工業株式会社 Cermet and coated cermet tools
TWI457445B (en) * 2009-03-24 2014-10-21 Sumitomo Electric Industries Metal cermet
JP2011093006A (en) * 2009-10-27 2011-05-12 Tungaloy Corp Cermet and coated cermet
US9943910B2 (en) * 2010-12-25 2018-04-17 Kyocera Corporation Cutting tool
US20140227053A1 (en) * 2010-12-25 2014-08-14 Kyocera Corporation Cutting tool
JP2013010997A (en) * 2011-06-29 2013-01-17 Sumitomo Electric Hardmetal Corp Cermet, method for producing the same, and cutting tool
JP2014005485A (en) * 2012-06-21 2014-01-16 Sumitomo Electric Ind Ltd Rigid material and cutting tool
JP2016087742A (en) * 2014-11-05 2016-05-23 株式会社タンガロイ Cermet tool and surface-coated cermet tool
CN114657433A (en) * 2022-03-18 2022-06-24 武汉理工大学 Solid solution reinforced metal ceramic and preparation method thereof
CN114657433B (en) * 2022-03-18 2023-08-29 武汉理工大学 Solid solution strengthening metal ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP4280048B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP5127264B2 (en) TiCN-based cermet
KR100186288B1 (en) High toughness cermet and process for preparing the same
JP4280048B2 (en) Method for producing TiCN-based cermet
WO2011002008A1 (en) Cermet and coated cermet
JP4974980B2 (en) TiCN-based cermet
JP5127110B2 (en) TiCN-based cermet and method for producing the same
JP2008133509A (en) Cermet
US7909905B2 (en) TiCN-base cermet and cutting tool and method for manufacturing cut article using the same
JPH10110234A (en) Cutting tool mode of carbo-nitrided titanium cermet excellent in chipping resistance
JP5273987B2 (en) Cermet manufacturing method
US6231277B1 (en) Cermet tool and method for manufacturing the same
JP4703122B2 (en) Method for producing TiCN-based cermet
JP4172754B2 (en) TiCN-based cermet and method for producing the same
JP2893886B2 (en) Composite hard alloy material
JP2010274346A (en) Cutting tool
JP5031610B2 (en) TiCN-based cermet
JP2015127455A (en) Powder high speed tool steel
JP2008195971A (en) Cermet
JPH10324943A (en) Ultra-fine cemented carbide, and its manufacture
EP2154259A1 (en) Cermet
JP3359221B2 (en) TiCN-based cermet tool and its manufacturing method
JPH08253836A (en) Wear resistant tungsten carbide-base cemented carbide having excellent toughness
JP4172752B2 (en) TiCN-based cermet and method for producing the same
JP2893887B2 (en) Composite hard alloy material
JP2002192406A (en) Cemented carbide throw-away cutting tip exercising superior abrasion resistance in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees