JP2004115311A - Metal-ceramic joined body and process for producing the same - Google Patents

Metal-ceramic joined body and process for producing the same Download PDF

Info

Publication number
JP2004115311A
JP2004115311A JP2002280618A JP2002280618A JP2004115311A JP 2004115311 A JP2004115311 A JP 2004115311A JP 2002280618 A JP2002280618 A JP 2002280618A JP 2002280618 A JP2002280618 A JP 2002280618A JP 2004115311 A JP2004115311 A JP 2004115311A
Authority
JP
Japan
Prior art keywords
metal
ceramic
alloy
ceramic substrate
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002280618A
Other languages
Japanese (ja)
Other versions
JP4237460B2 (en
Inventor
Takayuki Takahashi
高橋 貴幸
Nobuyoshi Tsukaguchi
塚口 信芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2002280618A priority Critical patent/JP4237460B2/en
Priority to US10/668,967 priority patent/US7159757B2/en
Priority to EP03021766A priority patent/EP1403230B1/en
Priority to DE60331394T priority patent/DE60331394D1/en
Publication of JP2004115311A publication Critical patent/JP2004115311A/en
Application granted granted Critical
Publication of JP4237460B2 publication Critical patent/JP4237460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To join a metal member and a ceramic substrate directly even when an eutectic molten matter does not form and to join them without using molten metal. <P>SOLUTION: The metal members 14 are directly joined to both surfaces of the ceramic substrate 16 by stacking a plurality of sets each comprising a ceramic substrate 16 and metal members 14 arranged on both surfaces of the ceramic substrate 16 through a spacer 12 on a pallet 10, then placing a weight 18 on the sets through a spacer, and heating them in a vacuum furnace. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックス基板とこのセラミックス基板に接合された金属部材とからなる金属−セラミックス接合体およびその製造方法に関し、特に抵抗素子としての銅合金からなる金属部材がセラミックス基板に接合されたシャント抵抗素子などの抵抗用電子部材に使用される金属−セラミックス接合体およびその製造方法に関する。
【0002】
【従来の技術】
従来、回路の電流を検出するシャント抵抗素子などの抵抗用電子部材では、予めプレス加工などにより高精度に加工したシート状の抵抗体としてのマンガニン合金板などの合金板が、銀ろうなどの活性金属を含む金属系のろう材を用いたろう接によって、アルミナ基板などのセラミック基板に接合されている(例えば、特許文献1参照)。
【0003】
一方、ろう材などの中間材を使用しないで金属板とセラミックス基板を直接接合する方法として、不活性雰囲気中において金属板とセラミックス基板をその共晶温度と金属の融点との間の温度に加熱して、金属板とセラミックス基板との間に共晶融体を生成させることにより、金属板とセラミックス基板を直接接合するいわゆる共晶接合法(例えば、特許文献2参照)や、溶融金属をセラミックス基板に直接接触させて接合するいわゆる溶湯接合法(例えば、特許文献3参照)などが知られている。
【0004】
【特許文献1】
特開平11−97203号公報(段落番号0007)
【特許文献2】
特開昭52−37914号公報(5頁、左下欄13行〜右下欄1行)
【特許文献3】
特開平7−193358号公報(段落番号0015〜0016)
【0005】
【発明が解決しようとする課題】
しかし、活性金属を含むろう材を使用するろう接では、活性金属として銀などの貴金属の材料を使用する必要があり、製造コストが比較的高くなるという問題もある。また、合金板とろう材との合金化により抵抗が変わるため、抵抗体用電子部材として使用するには好ましくない場合がある。
【0006】
また、共晶接合法は、共晶融体を生成する金属板とセラミックス基板とを接合する場合に限られ、また、セラミックス中の酸素を接合材として利用する場合が多く、金属と非酸化物系セラミックスとを接合するのは困難である。
【0007】
さらに、溶湯接合法では、溶融金属をセラミックス基板に直接接触させることにより金属板とセラミックス基板とを接合するため、細かい抵抗のような形状の電子材料を製造するのが困難な場合がある。
【0008】
したがって、本発明は、このような従来の問題点に鑑み、共晶融体を生成しない場合でも金属部材とセラミックス基板とを直接接合することができ且つ溶融金属を使用することなく金属部材とセラミック基板とを直接接合することができる、金属−セラミック接合体およびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、銅およびニッケルを含む合金からなる金属部材をセラミックス基板の少なくとも一方の面に直接接合する金属−セラミックス接合体の製造方法において、真空中において合金の固相線以上且つ液相線以下の温度に加熱することにより、金属部材とセラミックス基板とを直接接合することができることを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明による金属−セラミックス接合体の製造方法は、銅およびニッケルを含む合金からなる金属部材をセラミックス基板の少なくとも一方の面に直接接合する金属−セラミックス接合体の製造方法において、真空中において合金の固相線以上且つ液相線以下の温度に加熱することにより、金属部材を前記セラミックス基板に直接接合することを特徴とする。
【0011】
この金属−セラミックス接合体の製造方法において、合金が全率固溶型の合金であるのが好ましい。また、合金がマンガンを含んでもよい。この場合、合金が、1.0〜4.0重量%のニッケルと、10.0〜13.0重量%のマンガンとを含み、残部が銅と不可避的元素であるのが好ましい。
【0012】
合金の固相線以上且つ液相線以下の温度は、合金の固相線より50℃高い温度以下の温度であるのが好ましい。また、合金がマンガニン合金の場合には、合金の固相線以上且つ液相線以下の温度が、960〜990℃の温度であるのが好ましい。
【0013】
また、金属部材の周縁部に金属部材の厚さよりも薄い薄板部を設けるのが好ましい。この薄板部の厚さは0.2mm以下であるのが好ましい。また、金属部材が予め所定の形状に加工されているのが好ましい。さらに、金属部材の全面または一部の面にめっきを施してもよい。また、金属−セラミックス接合体を抵抗用電子部材として使用することができる。
【0014】
また、上記の金属−セラミックス接合体の製造方法において、セラミックス基板の少なくとも一方の面に金属部材を配置して、スペーサを介して支持板上に載せ、その上面にスペーサを介しておもりを載せ、真空炉内において加熱してセラミックス基板と金属部材を直接接合するのが好ましい。
【0015】
また、本発明による金属−セラミックス接合体は、セラミックス基板と、このセラミックス基板の少なくとも一方の面に直接接合された銅よびニッケルを含む合金からなる金属部材とからなる金属−セラミックス接合体において、金属部材の表面粗さが10μm以下であることを特徴とする。この金属−セラミックス接合体において、合金がマンガンを含んでもよい。
【0016】
【発明の実施の形態】
本発明による金属−セラミックス接合体の製造方法の実施の形態は、銅およびニッケルを含む合金からなる金属部材をセラミックス基板の少なくとも一方の面に直接接合する金属−セラミックス接合体の製造方法において、真空中において合金の固相線以上且つ液相線以下の温度に加熱することにより、金属部材とセラミックス基板とを直接接合することを特徴とする。
【0017】
銅およびニッケルを含む合金としては、電流検出などに使用されるマンガニン合金やコンスタンタン合金が好ましい。これらの合金は、全率固溶体であり、体積抵抗率が最大で抵抗温度係数が最小の組成を選んだものであり、精密抵抗用の合金として好ましい。
【0018】
セラミックスとしては、酸化物系セラミックスであるアルミナやジルコニアを主成分とするセラミックス、非酸化物系セラミックスである窒化アルミや窒化珪素を主成分とする窒化物セラミックス、炭化物系セラミックスであるSiCなどを主成分とするセラミックスを使用することができ、特に酸化物系セラミックスに限定されない。
【0019】
金属部材とセラミックス基板の接合は、セラミックス基板の少なくとも一方の面に金属部材を配置して、スペーサを介して支持板上に載せ、その上面にスペーサを介しておもりを載せた後、真空炉内において行うことができる。例えば、図1に示すように、スペーサ12を介してパレット10上に、セラミックス基板16の両面に金属部材14を配置したものを複数組載せ、さらにその上にスペーサ12を介しておもり18を載せた後、真空炉内で加熱することにより、セラミックス基板16の両面に金属部材14を直接接合することができる。
【0020】
また、金属部材とセラミックス基板の接合は、合金の固相線以上且つ液相線以下の温度に加熱することにより行われるが、特に精密抵抗用素子などに使用する金属−セラミックス接合体を製造する場合には、合金の固相線以上の温度で且つ合金の固相線より50℃高い温度以下の温度で行うのが好ましい。
【0021】
この接合のメカニズムは明確ではないが、固液共存相において液相の発生によりセラミックス表面が濡れて接合に至ると考えられる。したがって、金属−セラミックス接合体を電子材料として使用する場合には、金属部材の表面形状を保つ必要があり、より固相線に近い温度で過剰に液相を発生させないことが必要であるので、合金の固相線以上の温度で且つ合金の固相線より50℃高い温度以下の温度に制御することが好ましい。
【0022】
また、金属部材とセラミックス基板の接合は、10−4torr以上の高真空で行われ、また、AlN基板などの非酸化物系セラミックス基板に金属部材を直接接合するため、従来の共晶接合法と異なり酸素の関与はほとんどないと考えられる。また、真空中において接合するため、接合後の合金板の表面は酸化しておらず、その後のめっきの酸化被膜の除去工程などが不要になるという利点がある。また、共晶接合法などによる不活性ガス中における直接接合では、接合した金属部材の表面が膨れる接合欠陥、いわゆる「膨れ」と呼ばれる不良が発生し易いことが知られているが、真空中で接合する本発明の方法では、膨れの原因となるガスが存在しないため、膨れ不良は起こり難い。
【0023】
また、精密抵抗用電子部材の材料であるマンガニン合金からなる金属部材を使用する場合には、接合温度の好ましい範囲は960〜990℃であり、更に好ましい範囲は960〜980℃である。例えば、2重量%のニッケルと12重量%のマンガンを含み且つ残部が銅と不可避的元素であるマンガニン合金の場合には、固相線の温度が約960℃で、液相線の温度が約1000℃であり、固相線付近の狭い温度範囲で制御しなければ金属部材の平滑な表面を保つことが困難である。上記の接合温度の範囲で接合すると、マンガニン合金板の表面粗さRzが10μm以下になり、アセンブリ工程における半田漏れ性、チップ搭載性、ワイヤボンディング特性も良好になり、電子材料用として好ましい接合体を得ることができる。一方、上記の接合温度の範囲よりも高い温度で接合すると、半田漏れ性などの特性の劣化の原因となる場合がある。
【0024】
マンガニン合金からなる金属部材の場合には、その板厚が0.4mm未満であるのが好ましく、0.2mm以下であるのが更に好ましい。板厚が0.4mm以上になると、金属部材とセラミックス基板の接合において、それらの熱膨張係数の差により発生する応力によってセラミックス基板が破壊する場合があるからである。また、この熱応力を低減するために、金属部材とセラミックス基板を接合した後に徐冷するのが好ましい。
【0025】
マンガニン合金からなる金属部材の厚さが0.4mm以上の場合には、その金属部材の端部に薄板部を設けるのが好ましく、その薄板部の厚さが0.2mm以下であるのが好ましい。マンガニン合金など合金は、銅などの純金属に比べて0.2%耐力が大きく、セラミックス基板に加わる残留応力も大きいので、信頼性について十分配慮する必要があり、薄板部により応力を緩和する必要があるからである。
【0026】
金属部材を予め所定の形状に加工しておくと、後加工を行う必要がないため、プレスやエッチングにより金属部材を所定の形状に加工した後に、金属部材をセラミックス基板に接合するのが好ましい。さらに、半田付けを容易にするとともに金属部材の経時変化を防止するために、金属部材の全面または一部の面にNiめっきやNi合金めっきなどのめっきを施してもよい。このめっきは、電解めっきまたは無電解めっきにより行うことができる。
【0027】
また、セラミックス基板の表裏に別の種類の金属部材を接合してもよい。例えば、予め片面に銅部材を直接接合法により接合しておき、他方の面にCu−Ni−Mn合金からなる部材を接合してもよい。この場合、銅部材を放熱板として利用することができる。
【0028】
【実施例】
以下、本発明による金属−セラミックス接合体およびその製造方法の実施例について詳細に説明する。
【0029】
[実施例1]
45mm×67mm×0.635mmの大きさの96%アルミナからなるセラミックス基板の両面に、20mm×30mm×0.2mmの大きさの2Ni−12Mn−Cu合金からなるマンガニン板を直接配置したものを、AlNからなるスペーサを介して複数積層し、真空炉内において最高温度975℃で30分間加熱した後、冷却して金属−セラミックス接合体を得た。なお、スペーサと合金との接合を防止するため、離型材としてBN粉を塗布したスペーサを使用した。
【0030】
このようにして得られた金属−セラミックス接合体についてピール強度を測定したところ、ピール強度は3kg/cm以上であり、電子部材として十分に強固な接合が得られたことがわかった。また、マンガニン板の変質はなく、精密抵抗体として使用可能な電子部品を作製することができた。さらに、膨れ不良の発生もなかった。
【0031】
[実施例2]
マンガニン板の大きさが20mm×30mm×0.1mmである以外は、実施例1と同様の方法により、金属−セラミックス接合体を得た。このようにして得られた金属−セラミックス接合体についてピール強度を測定したところ、ピール強度は3kg/cm以上であり、電子部材として十分に強固な接合が得られたことがわかった。また、マンガニン板の変質はなく、また、接合されたマンガニン板の表面粗さRzを測定したところ、6.9μmであった。さらに、この金属−セラミックス接合体の表面にNi−P無電界めっきを施し、半田漏れ性およびワイヤボンディング性を調べたところ、電子部品としての使用に問題はなかった。また、膨れ不良の発生もなかった。
【0032】
[実施例3]
マンガニン板の大きさが20mm×30mm×0.05mmである以外は、実施例1と同様の方法により、金属−セラミックス接合体を得た。このようにして得られた金属−セラミックス接合体についてピール強度を測定したところ、ピール強度は3kg/cm以上であり、電子部材として十分に強固な接合が得られたことがわかった。また、マンガニン板の変質はなく、精密抵抗体として使用可能な電子部品を作製することができた。さらに、膨れ不良の発生もなかった。
【0033】
[実施例4]
セラミックス基板として窒化アルミ基板を使用した以外は、実施例1と同様の方法により、金属−セラミックス接合体を得た。このようにして得られた金属−セラミックス接合体についてピール強度を測定したところ、ピール強度は3kg/cm以上であり、電子部材として十分に強固な接合が得られたことがわかった。また、マンガニン板の変質はなく、精密抵抗体として使用可能な電子部品を作製することができた。さらに、膨れ不良の発生もなかった。
【0034】
[実施例5]
セラミックス基板として窒化アルミ基板を使用した以外は、実施例2と同様の方法により、金属−セラミックス接合体を得た。このようにして得られた金属−セラミックス接合体についてピール強度を測定したところ、ピール強度は3kg/cm以上であり、電子部材として十分に強固な接合が得られたことがわかった。また、マンガニン板の変質はなく、精密抵抗体として使用可能な電子部品を作製することができた。さらに、膨れ不良の発生もなかった。
【0035】
[実施例6]
セラミックス基板として窒化アルミ基板を使用した以外は、実施例3と同様の方法により、金属−セラミックス接合体を得た。このようにして得られた金属−セラミックス接合体についてピール強度を測定したところ、ピール強度は3kg/cm以上であり、電子部材として十分に強固な接合が得られたことがわかった。また、マンガニン板の変質はなく、精密抵抗体として使用可能な電子部品を作製することができた。さらに、膨れ不良の発生もなかった。
【0036】
[実施例7]
セラミックス基板としてジルコニアを含むアルミナ基板を使用した以外は、実施例1と同様の方法により、金属−セラミックス接合体を得た。このようにして得られた金属−セラミックス接合体についてピール強度を測定したところ、ピール強度は3kg/cm以上であり、電子部材として十分に強固な接合が得られたことがわかった。また、マンガニン板の変質はなく、精密抵抗体として使用可能な電子部品を作製することができた。さらに、膨れ不良の発生もなかった。
【0037】
[実施例8]
厚さ0.2mmのマンガニン板をシャント抵抗用としてエッチングにより所定の形状に加工した後に、アルミナ基板上に直接配置し、最高温度980℃で10分間加熱した以外は、実施例1と同様の方法により、金属−セラミックス接合体を得た。このようにして得られた金属−セラミックス接合体についてピール強度を測定したところ、ピール強度は3kg/cm以上であり、電子部材として十分に強固な接合が得られたことがわかった。また、マンガニン板の変質はなく、精密抵抗体として使用可能な電子部品を作製することができた。さらに、膨れ不良の発生もなかった。
【0038】
[実施例9]
厚さ0.2mmのマンガニン板をシャント抵抗用としてエッチングにより所定の形状に加工した後、AlN基板上に直接配置し、最高温度980℃で10分間加熱した以外は、実施例1と同様の方法により、金属−セラミックス接合体を得た。このようにして得られた金属−セラミックス接合体についてピール強度を測定したところ、ピール強度は3kg/cm以上であり、電子部材として十分に強固な接合が得られたことがわかった。また、マンガニン板の変質はなく、精密抵抗体として使用可能な電子部品を作製することができた。さらに、膨れ不良の発生もなかった。
【0039】
[実施例10]
20mm×30mm×0.4mmのマンガニン板の外周1mmの部分をエッチングにより厚さ0.2mmに加工した後、アルミナ基板上に直接配置し、最高温度980℃で10分間加熱した以外は、実施例1と同様の方法により、金属−セラミックス接合体を得た。このようにして得られた金属−セラミックス接合体についてピール強度を測定したところ、ピール強度は3kg/cm以上であり、電子部材として十分に強固な接合が得られたことがわかった。また、マンガニン板の変質はなく、精密抵抗体として使用可能な電子部品を作製することができた。さらに、膨れ不良の発生もなかった。
【0040】
[比較例]
マンガニン板とアルミナ基板との間に、活性金属としてチタンを含有する銀ろうを配置し、接合温度を850℃として真空中で接合する以外は、実施例5と同様の方法により、金属−セラミックス接合体を得た。このようにして得られた金属−セラミックス接合体についてピール強度を測定したところ、ピール強度は5kg/cm以上であり、電子部材として十分に強固な接合が得られたことがわかった。しかし、ろう材成分がマンガニン板に拡散してマンガニン板が変質し、抵抗体として使用することができなかった。
【0041】
【発明の効果】
上述したように、本発明によれば、共晶融体を生成しない場合でも金属部材とセラミックス基板とを直接接合することができるとともに、溶融金属を使用することなく金属部材とセラミック基板とを直接接合することができる。また、真空中で接合することから、膨れ不良の発生を抑制することもできる。また、本発明の方法により製造された金属−セラミックス接合体は、電子部材として十分に強固に接合されるので、汎用インバータの回路の電流測定に利用されるシャント抵抗や、混成集積回路における電流検出素子や、ひずみゲージ式変換器などの温度補償回路などに使用することができる。さらに、接合した金属部材の表面粗さRzが10μm以下であるため、半田漏れ性やワイヤボンディング性などのアセンブリ工程で必要とされる特性を有する電子部品を製造することができる。
【図面の簡単な説明】
【図1】本発明による金属−セラミックス接合体の製造方法によりセラミックス基板の両面に金属部材を直接接合する工程を示す側面図。
【符号の説明】
10 パレット
12 スペーサ
14 金属部材
16 セラミック基板
18 おもり
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal-ceramics joined body composed of a ceramics substrate and a metal member joined to the ceramics substrate, and a method of manufacturing the same, and more particularly to a shunt resistor in which a metal member made of a copper alloy as a resistance element is joined to a ceramics substrate. The present invention relates to a metal-ceramic joint used for a resistance electronic member such as an element and a method for producing the same.
[0002]
[Prior art]
Conventionally, for resistance electronic members such as shunt resistance elements that detect the current of a circuit, an alloy plate such as a manganin alloy plate as a sheet-like resistor that has been processed with high precision by pressing or the like in advance has been activated by an active material such as silver solder. It is joined to a ceramic substrate such as an alumina substrate by brazing using a metal brazing material containing metal (for example, see Patent Document 1).
[0003]
On the other hand, as a method of directly joining a metal plate and a ceramic substrate without using an intermediate material such as brazing material, the metal plate and the ceramic substrate are heated to a temperature between the eutectic temperature and the melting point of the metal in an inert atmosphere. Then, a eutectic melt is generated between the metal plate and the ceramic substrate to directly join the metal plate and the ceramic substrate (for example, see Patent Document 2). A so-called molten metal joining method in which the substrate is brought into direct contact with a substrate and joined (for example, see Patent Document 3) is known.
[0004]
[Patent Document 1]
JP-A-11-97203 (paragraph number 0007)
[Patent Document 2]
JP-A-52-37914 (5 pages, 13 lines at lower left column to 1 line at lower right column)
[Patent Document 3]
JP-A-7-193358 (paragraph numbers 0015 to 0016)
[0005]
[Problems to be solved by the invention]
However, in brazing using a brazing material containing an active metal, it is necessary to use a noble metal material such as silver as the active metal, and there is a problem that the manufacturing cost is relatively high. Further, since the resistance changes due to alloying of the alloy plate and the brazing material, it may not be preferable for use as an electronic member for a resistor.
[0006]
In addition, the eutectic bonding method is limited to the case where a metal plate that produces a eutectic melt and a ceramic substrate are bonded. In many cases, oxygen in ceramics is used as a bonding material. It is difficult to bond with the ceramics.
[0007]
Further, in the molten metal joining method, since the metal plate and the ceramic substrate are joined by bringing the molten metal into direct contact with the ceramic substrate, it may be difficult to produce an electronic material having a shape such as fine resistance.
[0008]
Accordingly, the present invention has been made in view of the above-described conventional problems, and enables a metal member and a ceramic substrate to be directly joined even when a eutectic melt is not generated, and a metal member and a ceramic substrate can be used without using a molten metal. An object of the present invention is to provide a metal-ceramic joined body that can be directly joined to a substrate and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, in a method of manufacturing a metal-ceramic joined body directly joining a metal member made of an alloy containing copper and nickel to at least one surface of a ceramic substrate, The inventors have found that a metal member and a ceramic substrate can be directly joined by heating the alloy to a temperature not lower than the solidus line and not higher than the liquidus line in a vacuum, and have completed the present invention.
[0010]
That is, the method for producing a metal-ceramic joined body according to the present invention is a method for producing a metal-ceramic joined body in which a metal member made of an alloy containing copper and nickel is directly joined to at least one surface of a ceramic substrate. The metal member is directly bonded to the ceramic substrate by heating the alloy to a temperature not lower than the solidus line and not higher than the liquidus line.
[0011]
In this method for manufacturing a metal-ceramic joined body, it is preferable that the alloy is an all-solid-solution alloy. Further, the alloy may contain manganese. In this case, it is preferable that the alloy contains 1.0 to 4.0% by weight of nickel and 10.0 to 13.0% by weight of manganese, with the balance being copper and inevitable elements.
[0012]
The temperature above the solidus of the alloy and below the liquidus is preferably below 50 ° C. above the solidus of the alloy. Further, when the alloy is a manganin alloy, it is preferable that the temperature between the solidus line and the liquidus line of the alloy is 960 to 990 ° C.
[0013]
Further, it is preferable to provide a thin plate portion thinner than the thickness of the metal member at the peripheral edge of the metal member. It is preferable that the thickness of the thin plate is 0.2 mm or less. Further, it is preferable that the metal member is processed in a predetermined shape in advance. Further, the entire surface or a part of the metal member may be plated. Further, a metal-ceramics joined body can be used as an electronic member for resistance.
[0014]
Further, in the above-described method for manufacturing a metal-ceramic joined body, a metal member is arranged on at least one surface of the ceramic substrate, placed on a support plate via a spacer, and a weight is placed on the upper surface via the spacer, It is preferable that the ceramic substrate and the metal member are directly joined by heating in a vacuum furnace.
[0015]
Further, the metal-ceramic bonded body according to the present invention is a metal-ceramic bonded body comprising a ceramic substrate and a metal member made of an alloy containing copper and nickel directly bonded to at least one surface of the ceramic substrate. The member has a surface roughness of 10 μm or less. In this metal-ceramic bonding body, the alloy may include manganese.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a method for manufacturing a metal-ceramic joined body according to the present invention is a method for manufacturing a metal-ceramic joined body in which a metal member made of an alloy containing copper and nickel is directly joined to at least one surface of a ceramic substrate. The method is characterized in that the metal member and the ceramic substrate are directly joined to each other by heating to a temperature not lower than the solidus line and not higher than the liquidus line of the alloy.
[0017]
As the alloy containing copper and nickel, a manganin alloy or a constantan alloy used for current detection or the like is preferable. These alloys are all solid solutions, and have a composition having the largest volume resistivity and the smallest temperature coefficient of resistance, and are preferred as alloys for precision resistance.
[0018]
The ceramics mainly include oxide-based ceramics mainly containing alumina and zirconia, non-oxide-based ceramics such as aluminum nitride and nitride-based silicon nitride, and carbide-based ceramics such as SiC. Ceramics as a component can be used and are not particularly limited to oxide-based ceramics.
[0019]
The joining of the metal member and the ceramic substrate is performed by disposing the metal member on at least one surface of the ceramic substrate, placing the metal member on a support plate via a spacer, placing a weight on the upper surface of the ceramic substrate via a spacer, and then placing the metal member in a vacuum furnace. Can be performed. For example, as shown in FIG. 1, on a pallet 10 with a spacer 12 interposed therebetween, a plurality of ceramic substrates 16 having metal members 14 arranged on both surfaces thereof are mounted, and a weight 18 is further mounted thereon with the spacer 12 interposed therebetween. After that, the metal members 14 can be directly bonded to both surfaces of the ceramic substrate 16 by heating in a vacuum furnace.
[0020]
The joining of the metal member and the ceramic substrate is performed by heating the alloy to a temperature not lower than the solidus and not higher than the liquidus. Particularly, a metal-ceramic bonded body used for precision resistance elements and the like is manufactured. In this case, it is preferable to carry out at a temperature not lower than the solidus of the alloy and not higher than 50 ° C. higher than the solidus of the alloy.
[0021]
Although the mechanism of this bonding is not clear, it is considered that the generation of the liquid phase in the solid-liquid coexisting phase wets the ceramic surface and leads to bonding. Therefore, when using a metal-ceramic joint as an electronic material, it is necessary to maintain the surface shape of the metal member, it is necessary not to generate an excessive liquid phase at a temperature closer to the solidus line, It is preferable to control the temperature to be equal to or higher than the solidus of the alloy and equal to or lower than 50 ° C. higher than the solidus of the alloy.
[0022]
Further, the joining of the metal member and the ceramic substrate is performed in a high vacuum of 10 −4 torr or more. In addition, since the metal member is directly joined to a non-oxide ceramic substrate such as an AlN substrate, a conventional eutectic joining method is used. Unlike the above, it is considered that oxygen is hardly involved. Further, since the bonding is performed in a vacuum, the surface of the alloy plate after the bonding is not oxidized, and there is an advantage that a subsequent step of removing an oxide film of plating is not required. Also, it is known that direct bonding in an inert gas by an eutectic bonding method or the like easily causes a bonding defect in which the surface of the bonded metal member swells, which is a so-called “swelling” defect. In the bonding method of the present invention, there is no gas that causes swelling, so that swelling failure hardly occurs.
[0023]
When a metal member made of a manganin alloy, which is a material of the electronic member for precision resistance, is used, a preferable range of the joining temperature is 960 to 990 ° C, and a more preferable range is 960 to 980 ° C. For example, in the case of a manganin alloy containing 2% by weight of nickel and 12% by weight of manganese and the balance being copper and an unavoidable element, the temperature of the solidus is about 960 ° C. and the temperature of the liquidus is about It is 1000 ° C., and it is difficult to maintain a smooth surface of the metal member unless controlled in a narrow temperature range near the solidus. When the bonding is performed within the above-mentioned bonding temperature range, the surface roughness Rz of the manganin alloy plate becomes 10 μm or less, the solder leakage property in the assembly process, the chip mounting property, and the wire bonding characteristics are improved. Can be obtained. On the other hand, joining at a temperature higher than the above-mentioned joining temperature range may cause deterioration of characteristics such as solder leakage.
[0024]
In the case of a metal member made of a manganin alloy, the plate thickness is preferably less than 0.4 mm, more preferably 0.2 mm or less. If the plate thickness is 0.4 mm or more, the ceramic substrate may be broken by the stress generated due to the difference in the coefficient of thermal expansion between the metal member and the ceramic substrate in joining. Further, in order to reduce the thermal stress, it is preferable to gradually cool the metal member and the ceramic substrate after joining them.
[0025]
When the thickness of the metal member made of manganin alloy is 0.4 mm or more, it is preferable to provide a thin plate at the end of the metal member, and it is preferable that the thickness of the thin plate is 0.2 mm or less. . Alloys such as manganin alloys have a higher 0.2% proof stress and higher residual stress applied to ceramic substrates than pure metals such as copper, so it is necessary to give due consideration to reliability. Because there is.
[0026]
If the metal member is processed into a predetermined shape in advance, it is not necessary to perform post-processing. Therefore, it is preferable to bond the metal member to the ceramic substrate after processing the metal member into a predetermined shape by pressing or etching. Further, in order to facilitate the soldering and prevent the metal member from changing over time, the entire surface or a part of the metal member may be plated with Ni plating or Ni alloy plating. This plating can be performed by electrolytic plating or electroless plating.
[0027]
Further, another type of metal member may be joined to the front and back of the ceramic substrate. For example, a copper member may be previously joined to one surface by a direct joining method, and a member made of a Cu-Ni-Mn alloy may be joined to the other surface. In this case, the copper member can be used as a heat sink.
[0028]
【Example】
Hereinafter, examples of the metal-ceramic bonding body and the method for manufacturing the same according to the present invention will be described in detail.
[0029]
[Example 1]
A ceramic substrate made of 96% alumina having a size of 45 mm × 67 mm × 0.635 mm and a manganin plate made of a 2Ni-12Mn—Cu alloy having a size of 20 mm × 30 mm × 0.2 mm directly disposed on both surfaces of the ceramic substrate, A plurality of layers were stacked via a spacer made of AlN, heated at a maximum temperature of 975 ° C. for 30 minutes in a vacuum furnace, and then cooled to obtain a metal-ceramic bonded body. In order to prevent the joining between the spacer and the alloy, a spacer coated with BN powder was used as a release material.
[0030]
The peel strength of the thus obtained metal-ceramic bonded article was measured, and it was found that the peel strength was 3 kg / cm or more, and that a sufficiently strong bond was obtained as an electronic member. In addition, there was no deterioration of the manganin plate, and an electronic component usable as a precision resistor could be manufactured. Further, there was no occurrence of poor swelling.
[0031]
[Example 2]
A metal-ceramic joint was obtained in the same manner as in Example 1 except that the size of the manganin plate was 20 mm × 30 mm × 0.1 mm. The peel strength of the thus obtained metal-ceramic bonded article was measured, and it was found that the peel strength was 3 kg / cm or more, and that a sufficiently strong bond was obtained as an electronic member. In addition, there was no deterioration of the manganin plate, and the surface roughness Rz of the joined manganin plate was measured to be 6.9 μm. Furthermore, the surface of this metal-ceramic joint was subjected to Ni-P electroless plating, and the solder leakage property and the wire bonding property were examined. As a result, there was no problem in use as an electronic component. In addition, there was no occurrence of poor swelling.
[0032]
[Example 3]
A metal-ceramic joint was obtained in the same manner as in Example 1 except that the size of the manganin plate was 20 mm × 30 mm × 0.05 mm. The peel strength of the thus obtained metal-ceramic bonded article was measured, and it was found that the peel strength was 3 kg / cm or more, and that a sufficiently strong bond was obtained as an electronic member. In addition, there was no deterioration of the manganin plate, and an electronic component usable as a precision resistor could be manufactured. Further, there was no occurrence of poor swelling.
[0033]
[Example 4]
A metal-ceramic joint was obtained in the same manner as in Example 1, except that an aluminum nitride substrate was used as the ceramic substrate. The peel strength of the thus obtained metal-ceramic bonded article was measured, and it was found that the peel strength was 3 kg / cm or more, and that a sufficiently strong bond was obtained as an electronic member. In addition, there was no deterioration of the manganin plate, and an electronic component usable as a precision resistor could be manufactured. Further, there was no occurrence of poor swelling.
[0034]
[Example 5]
A metal-ceramic joint was obtained in the same manner as in Example 2 except that an aluminum nitride substrate was used as the ceramic substrate. The peel strength of the thus obtained metal-ceramic bonded article was measured, and it was found that the peel strength was 3 kg / cm or more, and that a sufficiently strong bond was obtained as an electronic member. In addition, there was no deterioration of the manganin plate, and an electronic component usable as a precision resistor could be manufactured. Further, there was no occurrence of poor swelling.
[0035]
[Example 6]
A metal-ceramic joint was obtained in the same manner as in Example 3, except that an aluminum nitride substrate was used as the ceramic substrate. The peel strength of the thus obtained metal-ceramic bonded article was measured, and it was found that the peel strength was 3 kg / cm or more, and that a sufficiently strong bond was obtained as an electronic member. In addition, there was no deterioration of the manganin plate, and an electronic component usable as a precision resistor could be manufactured. Further, there was no occurrence of poor swelling.
[0036]
[Example 7]
A metal-ceramic bonded article was obtained in the same manner as in Example 1, except that an alumina substrate containing zirconia was used as the ceramic substrate. The peel strength of the thus obtained metal-ceramic bonded article was measured, and it was found that the peel strength was 3 kg / cm or more, and that a sufficiently strong bond was obtained as an electronic member. In addition, there was no deterioration of the manganin plate, and an electronic component usable as a precision resistor could be manufactured. Further, there was no occurrence of poor swelling.
[0037]
Example 8
A method similar to that of Example 1 except that a manganin plate having a thickness of 0.2 mm was processed into a predetermined shape by etching for a shunt resistor, then directly placed on an alumina substrate, and heated at a maximum temperature of 980 ° C. for 10 minutes. As a result, a metal-ceramic joined body was obtained. The peel strength of the thus obtained metal-ceramic bonded article was measured, and it was found that the peel strength was 3 kg / cm or more, and that a sufficiently strong bond was obtained as an electronic member. In addition, there was no deterioration of the manganin plate, and an electronic component usable as a precision resistor could be manufactured. Further, there was no occurrence of poor swelling.
[0038]
[Example 9]
A method similar to that of Example 1, except that a manganin plate having a thickness of 0.2 mm was processed into a predetermined shape by etching for a shunt resistor, then placed directly on an AlN substrate, and heated at a maximum temperature of 980 ° C. for 10 minutes. As a result, a metal-ceramic joined body was obtained. The peel strength of the thus obtained metal-ceramic bonded article was measured, and it was found that the peel strength was 3 kg / cm or more, and that a sufficiently strong bond was obtained as an electronic member. In addition, there was no deterioration of the manganin plate, and an electronic component usable as a precision resistor could be manufactured. Further, there was no occurrence of poor swelling.
[0039]
[Example 10]
Example 1 Except that a 1 mm portion of the outer circumference of a 20 mm × 30 mm × 0.4 mm manganin plate was processed to a thickness of 0.2 mm by etching, and then directly placed on an alumina substrate and heated at a maximum temperature of 980 ° C. for 10 minutes. In the same manner as in Example 1, a metal-ceramic joint was obtained. When the peel strength of the metal-ceramic joined body obtained in this way was measured, the peel strength was 3 kg / cm or more, and it was found that a sufficiently strong joint was obtained as an electronic member. In addition, there was no deterioration of the manganin plate, and an electronic component usable as a precision resistor could be manufactured. Further, there was no occurrence of poor swelling.
[0040]
[Comparative example]
Metal-ceramic bonding was performed in the same manner as in Example 5, except that a silver solder containing titanium as an active metal was placed between the manganin plate and the alumina substrate, and bonding was performed in a vacuum at a bonding temperature of 850 ° C. I got a body. When the peel strength was measured for the metal-ceramic bonded article thus obtained, the peel strength was 5 kg / cm or more, and it was found that a sufficiently strong bond was obtained as an electronic member. However, the brazing filler metal diffused into the manganin plate and the manganin plate deteriorated, and could not be used as a resistor.
[0041]
【The invention's effect】
As described above, according to the present invention, a metal member and a ceramic substrate can be directly joined even when a eutectic melt is not generated, and the metal member and the ceramic substrate can be directly joined without using a molten metal. Can be joined. In addition, since the bonding is performed in a vacuum, the occurrence of blistering failure can be suppressed. Also, since the metal-ceramic bonded body manufactured by the method of the present invention is sufficiently firmly bonded as an electronic member, a shunt resistor used for current measurement of a general-purpose inverter circuit and a current detection in a hybrid integrated circuit are used. It can be used for elements and temperature compensation circuits such as strain gauge type transducers. Furthermore, since the surface roughness Rz of the joined metal members is 10 μm or less, it is possible to manufacture an electronic component having characteristics required in an assembly process such as solder leakage and wire bonding.
[Brief description of the drawings]
FIG. 1 is a side view showing a step of directly joining metal members to both surfaces of a ceramic substrate by a method for producing a metal-ceramic joint according to the present invention.
[Explanation of symbols]
10 Pallet 12 Spacer 14 Metal member 16 Ceramic substrate 18 Weight

Claims (14)

銅およびニッケルを含む合金からなる金属部材をセラミックス基板の少なくとも一方の面に直接接合する金属−セラミックス接合体の製造方法において、真空中において前記合金の固相線以上且つ液相線以下の温度に加熱することにより、前記金属部材を前記セラミックス基板に直接接合することを特徴とする、金属−セラミックス接合体の製造方法。In a method of manufacturing a metal-ceramic joined body in which a metal member made of an alloy containing copper and nickel is directly joined to at least one surface of a ceramic substrate, the temperature of the alloy is increased to a temperature not lower than the solidus and not higher than the liquidus in a vacuum. A method for manufacturing a metal-ceramic joined body, wherein the metal member is directly joined to the ceramic substrate by heating. 前記合金が全率固溶型の合金であることを特徴とする、請求項1に記載の金属−セラミックス接合体の製造方法。The method according to claim 1, wherein the alloy is a solid solution type alloy. 前記合金がマンガンを含むことを特徴とする、請求項1または2に記載の金属−セラミックス接合体の製造方法。The method according to claim 1, wherein the alloy contains manganese. 前記合金が、1.0〜4.0重量%のニッケルと、10.0〜13.0重量%のマンガンとを含み、残部が銅と不可避的元素であることを特徴とする、請求項3に記載の金属−セラミックス接合体の製造方法。4. The alloy according to claim 3, wherein the alloy comprises 1.0 to 4.0% by weight of nickel and 10.0 to 13.0% by weight of manganese, with the balance being copper and unavoidable elements. 3. The method for producing a metal-ceramic bonded article according to item 1. 前記合金の固相線以上且つ液相線以下の温度が、前記合金の固相線より50℃高い温度以下の温度であることを特徴とする、請求項1乃至4のいずれかに記載の金属−セラミックス接合体の製造方法。The metal according to any one of claims 1 to 4, wherein the temperature not lower than the solidus and not higher than the liquidus of the alloy is not higher than 50 ° C higher than the solidus of the alloy. -A method for producing a ceramic joined body. 前記合金がマンガニン合金であり、前記合金の固相線以上且つ液相線以下の温度が、960〜990℃の温度であることを特徴とする、請求項1乃至4のいずれかに記載の金属−セラミックス接合体の製造方法。The metal according to any one of claims 1 to 4, wherein the alloy is a manganin alloy, and the temperature of the alloy between the solidus temperature and the liquidus temperature is 960 to 990 ° C. -A method for producing a ceramic joined body. 前記金属部材の周縁部に前記金属部材の厚さよりも薄い薄板部を設けることを特徴とする、請求項1乃至6のいずれかに記載の金属−セラミックス接合体の製造方法。The method for manufacturing a metal-ceramic joined body according to any one of claims 1 to 6, wherein a thin plate portion thinner than the thickness of the metal member is provided at a peripheral portion of the metal member. 前記薄板部の厚さが0.2mm以下であることを特徴とする、請求項7に記載の金属−セラミックス接合体の製造方法。The method according to claim 7, wherein the thickness of the thin plate portion is 0.2 mm or less. 前記金属部材が予め所定の形状に加工されていることを特徴とする、請求項1乃至8のいずれかに記載の金属−セラミックス接合体の製造方法。The method according to claim 1, wherein the metal member is processed in a predetermined shape in advance. 前記金属部材の全面または一部の面にめっきを施すことを特徴とする、請求項1乃至9のいずれかに記載の金属−セラミックス接合体の製造方法。The method according to claim 1, wherein plating is performed on an entire surface or a partial surface of the metal member. 前記金属−セラミックス接合体が抵抗用電子部材であることを特徴とする、請求項1乃至10のいずれかに記載の金属−セラミックス接合体の製造方法。The method according to claim 1, wherein the metal-ceramic joint is a resistance electronic member. 前記セラミックス基板の少なくとも一方の面に前記金属部材を配置して、スペーサを介して支持板上に載せ、その上面にスペーサを介しておもりを載せ、真空炉内において加熱して前記セラミックス基板と前記金属部材を直接接合することを特徴とする、請求項1乃至11のいずれかに記載の金属−セラミックス接合体の製造方法。The metal member is arranged on at least one surface of the ceramic substrate, placed on a support plate via a spacer, a weight is placed on the upper surface via a spacer, and heated in a vacuum furnace to form the ceramic substrate and the ceramic substrate. The method for producing a metal-ceramic joint according to any one of claims 1 to 11, wherein the metal members are directly joined. セラミックス基板と、このセラミックス基板の少なくとも一方の面に直接接合された銅およびニッケルを含む合金からなる金属部材とからなる金属−セラミックス接合体において、前記金属部材の表面粗さが10μm以下であることを特徴とする、金属−セラミックス接合体。In a metal-ceramic bonding body composed of a ceramic substrate and a metal member made of an alloy containing copper and nickel directly bonded to at least one surface of the ceramic substrate, the metal member has a surface roughness of 10 μm or less. A metal-ceramics joined body characterized by the following. 前記合金がマンガンを含むことを特徴とする、請求項13に記載の金属−セラミックス接合体。14. The metal-ceramic joint according to claim 13, wherein the alloy includes manganese.
JP2002280618A 2002-09-26 2002-09-26 Metal-ceramic bonded body and manufacturing method thereof Expired - Fee Related JP4237460B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002280618A JP4237460B2 (en) 2002-09-26 2002-09-26 Metal-ceramic bonded body and manufacturing method thereof
US10/668,967 US7159757B2 (en) 2002-09-26 2003-09-23 Metal/ceramic bonding article and method for producing same
EP03021766A EP1403230B1 (en) 2002-09-26 2003-09-25 Method for producing a metal/ceramic layered bonded article
DE60331394T DE60331394D1 (en) 2002-09-26 2003-09-25 Method for producing a metal-ceramic layer composite article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280618A JP4237460B2 (en) 2002-09-26 2002-09-26 Metal-ceramic bonded body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004115311A true JP2004115311A (en) 2004-04-15
JP4237460B2 JP4237460B2 (en) 2009-03-11

Family

ID=32275277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280618A Expired - Fee Related JP4237460B2 (en) 2002-09-26 2002-09-26 Metal-ceramic bonded body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4237460B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667565B2 (en) 2004-09-08 2010-02-23 Cyntec Co., Ltd. Current measurement using inductor coil with compact configuration and low TCR alloys
US7915993B2 (en) 2004-09-08 2011-03-29 Cyntec Co., Ltd. Inductor
JP2011184286A (en) * 2010-02-09 2011-09-22 Showa Denko Kk Laminated wood and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667565B2 (en) 2004-09-08 2010-02-23 Cyntec Co., Ltd. Current measurement using inductor coil with compact configuration and low TCR alloys
US7915993B2 (en) 2004-09-08 2011-03-29 Cyntec Co., Ltd. Inductor
JP2011184286A (en) * 2010-02-09 2011-09-22 Showa Denko Kk Laminated wood and method of manufacturing the same

Also Published As

Publication number Publication date
JP4237460B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP2016208010A (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP5359954B2 (en) Power module substrate with heat sink, power module, and method for manufacturing power module substrate with heat sink
JP2009065144A (en) Board for power module, its manufacturing method, and power module
US7159757B2 (en) Metal/ceramic bonding article and method for producing same
JPH08255973A (en) Ceramic circuit board
JP5423076B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP4104253B2 (en) Board integrated structure
JP3834351B2 (en) Ceramic circuit board
JPH1065296A (en) Ceramic circuit board
JP4293406B2 (en) Circuit board
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JP2005032834A (en) Joining method of semiconductor chip and substrate
JP6645368B2 (en) Joint body, power module substrate, method of manufacturing joined body, and method of manufacturing power module substrate
JP4910113B2 (en) Method for producing metal / ceramic bonding substrate
JP5047315B2 (en) Ceramic circuit board
JP4237460B2 (en) Metal-ceramic bonded body and manufacturing method thereof
JP2008147309A (en) Ceramic substrate and semiconductor module using the same
JP4557398B2 (en) Electronic element
JP4244723B2 (en) Power module and manufacturing method thereof
JPH08102570A (en) Ceramic circuit board
WO2016167217A1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP3969987B2 (en) Ceramic / alloy joints
JP2004115310A (en) Metal-ceramic joined body and process for producing the same
JP2001203299A (en) Aluminium board and ceramics circuit board using the same
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees