JP2004114561A - Method for producing epoxy resin molding material of thermosetting resin composition and semiconductor device - Google Patents

Method for producing epoxy resin molding material of thermosetting resin composition and semiconductor device Download PDF

Info

Publication number
JP2004114561A
JP2004114561A JP2002282493A JP2002282493A JP2004114561A JP 2004114561 A JP2004114561 A JP 2004114561A JP 2002282493 A JP2002282493 A JP 2002282493A JP 2002282493 A JP2002282493 A JP 2002282493A JP 2004114561 A JP2004114561 A JP 2004114561A
Authority
JP
Japan
Prior art keywords
epoxy resin
molding material
resin molding
semiconductor device
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002282493A
Other languages
Japanese (ja)
Inventor
Takeshi Masuda
増田 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002282493A priority Critical patent/JP2004114561A/en
Publication of JP2004114561A publication Critical patent/JP2004114561A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an epoxy resin molding material having bubbles dispersed uniformly. <P>SOLUTION: This molding material contains an epoxy resin, a phenol resin, a curing accelerator and an inorganic filler as essential components, and is produced through a process for mixing the respective components using a mixer, a first process for heating and melting the components with a heat roll to obtain a heat molten object, and a second process for heating and melting the heat molten object with the heat roll at a shearing speed of 40 /s or less. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ボイドが少ない特性を有するエポキシ樹脂成形材料の製造方法及びそれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
IC、LSI等の半導体素子の封止方法としてエポキシ樹脂成形材料のトランスファー成形が低コスト、大量生産に適した方法として採用されており、信頼性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂の改良により、特性の向上が図られてきた。このエポキシ樹脂成形材料を用いて、半導体素子を封止して得られた半導体装置は、表面実装の採用により半田を用いて配線基板に接合されているが、近年の環境問題への取り組みで、従来の有鉛半田から無鉛半田へ移行しつつある。ところが、有鉛半田から無鉛半田への移行により、半導体装置の表面実装時の半田処理温度が、約240℃から約260℃と、20℃程度高くなり、無鉛半田の処理温度でも耐えられる耐半田性に優れた半導体装置が求められている。これに対応するための耐半田性を向上する手段が、従来から種々提案されており、これらの内で、低溶融粘度の樹脂成分の採用、無機充填材の粒度分布の適正化等により無機充填材を高充填化して、エポキシ樹脂成形材料の硬化物を低吸湿化し、線膨張係数を小さくする手段があり、それなりの効果が得られている。しかし、無機充填材を増やすことにより、流動性に起因するボイド及び未充填が、半導体装置の成形時に生じる問題がある。又半導体装置のボイド低減のために、用いるエポキシ樹脂成形材料の製造方法において、減圧条件下で混練することが提案されているが無鉛半田化に対応するには不満足な場合がある(例えば、特許文献1参照。)。従来以上にボイドを少なくできるエポキシ樹脂成形材料が望まれている。
【0003】
【特許文献1】
特開平9−52228号公報(全頁)
【0004】
【発明が解決しようとする課題】
本発明は、ボイドが少なくなる特性を有するエポキシ樹脂成形材料の製造方法及び得られたエポキシ樹脂成形材料を用いて半導体素子を封止してなる半導体装置を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、
[1] (A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤及び(D)無機充填材を必須成分とし、前記各成分を混合機で混合する工程、熱ロールで加熱溶融して加熱溶融物を得る第1工程、続けて前記加熱溶融物を熱ロールで剪断速度40/s以下で加熱溶融する第2工程を含むことを特徴とする半導体封止用エポキシ樹脂成形材料の製造方法、
[2] 第[1]項記載の製造方法で得られるエポキシ樹脂成形材料を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0006】
【発明の実施の形態】
本発明は、(A)〜(D)成分を必須成分とし、前記成分を混合機で混合する工程、熱ロールで加熱溶融して加熱溶融物を得る第1工程、続いて前記加熱溶融物を熱ロールで剪断速度40/s以下にて加熱溶融する第2工程を含むエポキシ樹脂成形材料の製造方法である。第2工程での剪断速度を40/s以下に制御して、加熱溶融し製造することにより、理由は定かではないが得られるエポキシ樹脂成形材料中に含まれる気泡が偏在することがなく均一に分散される。気泡が偏在していると、成形時に気泡同士が結合して成長し、その結果半導体装置の硬化物層に大きなボイドとして残存することになる。成形時に気泡同士が結合し大きなボイドになることは、X線による成形材料の流動観察で確認されている。気泡が均一分散されていることにより、成形中に気泡同士が結合する頻度が減少し、硬化物層に残存する大型のボイドが大幅に減少するものと考えられる。第2工程での剪断速度が40/sを越えると、エポキシ樹脂成形材料中の気泡が偏在し、その気泡の大きさが不揃いとなり、これが成形時に結合して大きなボイドとなる。第1工程の加熱溶融物は、溶けた樹脂中に他の成分が混ざってしっとりした状態から僅かに混練された状態とすればよい。
第2工程において、等速では混練効果がなく、混練効果が少ないと得られた成形材料の不均一による離型不良や硬化不良のおそれがあるので剪断速度の下限値としては10/s程度が好ましい。
【0007】
本発明で用いる(A)〜(D)成分を混合する混合機としては、通常半導体用封止材料の製造に用いられているヘンシェルミキサー、ボールミル等が挙げられるが、均一に混合できる混合機ならば、特に限定されるものではない。
本発明における第1工程と第2工程に用いる熱ロールは、低剪断速度域で駆動する機能を具備しておれば同一のロールでも、別々のロールでもよい。
【0008】
本発明での加熱溶融工程は、第1工程と第2工程の二段に分けて行う。通常、エポキシ樹脂成形材料を製造する工程では、全成分をミキサー等を用いて常温混合し、ロール、押出機等の熱溶融混練機で混練した後、冷却、粉砕するが、本発明では上記の熱溶融混線工程を分割し、第1工程と第2工程に分けて、後段の第2工程で剪断速度40/s以下で熱溶融混練を行うことを特徴とする。これによりエポキシ樹脂成形材料内部の気泡を均等な大きさで、均一に分散できるため、成形時に発生する気泡の結合によるボイドの巨大化を防ぐことができる。
【0009】
本発明に用いるエポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造を特に限定するものではないが、例えばビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂等が挙げられ、通常半導体封止用エポキシ樹脂成形材料に使用されるエポキシ樹脂を用いればよい。これらは単独でも併用しても差し支えない。
【0010】
本発明に用いるフェノール樹脂としては、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造を特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂等が挙げられ、通常半導体封止用エポキシ樹脂成形材料に使用されるフェノール樹脂を用いればよい。これらは単独でも併用しても差し支えない。
これらの配合量としては、全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の比としては0.8〜1.3が好ましい。
【0011】
本発明に用いる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に使用するものを用いることができる。例えば1,8−ジアザビシクロ(5,4,1)ウンデセン−7、トリフェニルホスフィン、2−メチルイミダゾール、テトラフェニルホスホニウム・テトラフェニルボレート等が挙げられ、これらは単独でも混合して用いても差し支えない。
【0012】
本発明に用いる無機充填材としては、一般に封止材料に使用されているものを用いることができる。例えば溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素等が挙げられ、これらは単独でも併用しても差し支えない。無機充填材の配合量は、成形性と耐半田性のバランスから、全エポキシ樹脂組成物中60〜95重量%とすることが好ましく、更に好ましくは70〜92重量%である。60重量%未満だと、吸水率の上昇に伴う耐半田性が低下し、95重量%を越えると、ワイヤースイープ及びパッドシフト等の成形性の問題が生じ好ましくない。
【0013】
本発明では、(A)〜(D)成分の他、必要に応じて、カッブリング剤、カーボンブラック等の着色剤、臭素化エポキシ樹脂、酸化アンチモン等の難燃剤、シリコーンオイル、シリコーンゴム等の低応力剤、天然ワックス、合成ワックス等の離型剤等を配合することができる。
本発明でのエポキシ樹脂成形材料を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形すればよい。
【0014】
【実施例】
以下に、本発明の実施例を示すが、本発明はこれにより限定されるものではない。
実施例1
ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX4000、エポキシ当量186)6.54重量部、フェノールノボラック樹脂(水酸基当量104)3.71重量部、トリフェニルホスフィン0.25重量部、球状溶融シリカ(平均粒径23ミクロン)89重量部、カルナバワックス0.3重量部、カーボンブラック0.2重量部をヘンシェルミキサーにより均一混合し、この混合物を95〜105℃の熱ロールで2分間溶融し第1工程の混練物とした。続いて同一の熱ロール(ロール回転数を高速側10rpm、低速側9rpm、ピッチ1.5mmに設定)の剪断速度を13.3/sにし、更に2分間混練し第2工程での混練を行い、これを冷却粉砕して、エポキシ樹脂成形材料とした。
【0015】
評価方法
・スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で測定した。スパイラルフローは、流動性のパラメータであり、大きい数値を示す方が良好な流動性を示す。単位はcm。
・ボイドの数及び空隙サイズのばらつき
上記エポキシ樹脂成形材料を、金型温度175℃、成形材料予熱3秒、注入時間8秒、封入圧力6.9MPaの条件で、マルチポットタイプの160pQFPを40個成形後、パッケージ表面にある大きさ10mils以上のボイドの数を顕微鏡で数えた。
又同一成形条件であるが、完全注入はせず(全注入時間8秒中の6秒で停止)、金型内で十分に硬化後、パッケージ表面を研磨し、ゲート付近のボイドをパッケージ上方から10個ランダムに選び、長径方向の大きさを測定しその標準偏差をもって空隙サイズのばらつきとした。
【0016】
実施例2〜4、比較例1〜4
実施例1と同一の組成を用い、実施例1の第2工程での熱ロールのロール回転数、ピッチを表1の値に設定し、表1の剪断速度で加熱溶融した以外は、実施例1と同様にしてエポキシ樹脂成形材料を得、実施例1と同様に評価した。結果を表1に示す。
【0017】
【表1】

Figure 2004114561
【0018】
成形時の空隙サイズのばらつきを小さくすればボイドの数も少なくなる。この空隙サイズのばらつきを減らすことにより、成形時のボイド同士の結合を抑制し、ボイドが少ない半導体装置を得ることできる。
【0019】
【発明の効果】
本発明に従うと、気泡が均一分散されたエポキシ樹脂成形材料が得られ、これを用いて封止された半導体装置はボイドが少なく、産業上有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing an epoxy resin molding material having characteristics with few voids, and a semiconductor device using the same.
[0002]
[Prior art]
Transfer molding of an epoxy resin molding material has been adopted as a method suitable for low cost, mass production as a sealing method for semiconductor elements such as ICs and LSIs. In terms of reliability, epoxy resin and phenol resin which is a curing agent are used. Improvements have been made to improve the characteristics. A semiconductor device obtained by sealing a semiconductor element using this epoxy resin molding material is bonded to a wiring board using solder by adopting surface mounting, but due to recent environmental issues, The transition from conventional leaded solder to lead-free solder is in progress. However, the transition from leaded solder to lead-free solder raises the soldering temperature during surface mounting of semiconductor devices from about 240 ° C. to about 260 ° C., which is about 20 ° C., and can withstand the processing temperature of lead-free solder. There is a demand for a semiconductor device having excellent performance. Various means for improving solder resistance to cope with this have been proposed in the past, and among these, the use of a resin component having a low melt viscosity, the optimization of the particle size distribution of the inorganic filler, and the like have led to inorganic filling. There is a means for increasing the filling of the material to lower the moisture absorption of the cured product of the epoxy resin molding material and to reduce the linear expansion coefficient, and a certain effect has been obtained. However, when the amount of the inorganic filler is increased, there is a problem that voids and unfilled due to fluidity are generated at the time of molding the semiconductor device. In order to reduce voids in semiconductor devices, it has been proposed to knead under reduced pressure conditions in a method for manufacturing an epoxy resin molding material to be used, but there are cases where it is unsatisfactory to deal with lead-free soldering. Reference 1). An epoxy resin molding material that can reduce voids more than ever has been desired.
[0003]
[Patent Document 1]
JP-A-9-52228 (all pages)
[0004]
[Problems to be solved by the invention]
The present invention provides a method for manufacturing an epoxy resin molding material having a property of reducing voids, and a semiconductor device in which a semiconductor element is sealed using the obtained epoxy resin molding material.
[0005]
[Means for Solving the Problems]
The present invention
[1] (A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator and (D) an inorganic filler as essential components, a step of mixing the components with a mixer, and heating and melting with a hot roll. Production of an epoxy resin molding material for semiconductor encapsulation, comprising a first step of obtaining a heated melt by heating, and a second step of subsequently heating and melting the heated melt with a hot roll at a shear rate of 40 / s or less. Method,
[2] A semiconductor device obtained by sealing a semiconductor element using an epoxy resin molding material obtained by the production method according to [1].
It is.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention comprises the steps of mixing the components (A) to (D) as essential components, mixing the components with a mixer, heating and melting with a hot roll to obtain a heated melt, This is a method for producing an epoxy resin molding material including a second step of heating and melting at a shear rate of 40 / s or less with a hot roll. By controlling the shear rate in the second step to 40 / s or less and heating and melting to produce, it is not clear why the bubbles contained in the obtained epoxy resin molding material are not unevenly distributed and are uniformly distributed. Distributed. When the air bubbles are unevenly distributed, the air bubbles are combined and grow at the time of molding, and as a result, they remain as large voids in the cured product layer of the semiconductor device. It has been confirmed by X-ray observation of the flow of the molding material that the bubbles are combined with each other to form large voids during molding. It is considered that the fact that the air bubbles are uniformly dispersed reduces the frequency of bonding of the air bubbles during molding and significantly reduces large voids remaining in the cured product layer. If the shear rate in the second step exceeds 40 / s, bubbles in the epoxy resin molding material are unevenly distributed, and the sizes of the bubbles become uneven, which are combined during molding to form large voids. The heat-melted product in the first step may be in a state of being slightly kneaded from a moist state in which other components are mixed in the melted resin.
In the second step, there is no kneading effect at a constant speed, and if the kneading effect is small, there is a possibility of mold release failure or curing failure due to unevenness of the obtained molding material. Therefore, the lower limit of the shear rate is about 10 / s. preferable.
[0007]
Examples of the mixer for mixing the components (A) to (D) used in the present invention include a Henschel mixer, a ball mill, and the like, which are usually used for producing a sealing material for semiconductors. If it is not limited, it is not particularly limited.
The heat rolls used in the first step and the second step in the present invention may be the same rolls or separate rolls as long as they have a function of driving in a low shear rate range.
[0008]
The heating and melting step in the present invention is performed in two stages, a first step and a second step. Usually, in the step of producing an epoxy resin molding material, all components are mixed at room temperature using a mixer or the like, rolls, kneaded with a hot melt kneader such as an extruder, and then cooled and pulverized. The method is characterized in that the hot melt kneading step is divided into a first step and a second step, and hot melt kneading is performed at a shear rate of 40 / s or less in the subsequent second step. Thereby, the bubbles inside the epoxy resin molding material can be uniformly dispersed in a uniform size, so that it is possible to prevent the generation of voids due to the bonding of the bubbles generated during molding.
[0009]
The epoxy resin used in the present invention refers to all monomers, oligomers and polymers having two or more epoxy groups in one molecule, and the molecular weight and molecular structure are not particularly limited. For example, biphenyl type epoxy resin, bisphenol Epoxy resin, stilbene epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, triphenolmethane epoxy resin, alkyl-modified triphenolmethane epoxy resin, epoxy resin containing triazine nucleus, dicyclopentadiene-modified phenol epoxy Resins, phenol aralkyl type epoxy resins, etc., may be used, and an epoxy resin that is usually used for an epoxy resin molding material for semiconductor encapsulation may be used. These may be used alone or in combination.
[0010]
The phenolic resin used in the present invention refers to all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule, and their molecular weight and molecular structure are not particularly limited. Examples thereof include phenol novolak resin and cresol. A novolak resin, a dicyclopentadiene-modified phenol resin, a terpene-modified phenol resin, a triphenolmethane-type resin, a phenol aralkyl resin and the like can be mentioned, and a phenol resin which is usually used for an epoxy resin molding material for semiconductor encapsulation may be used. These may be used alone or in combination.
The ratio of the number of epoxy groups in all epoxy resins to the number of phenolic hydroxyl groups in all phenolic resins is preferably 0.8 to 1.3.
[0011]
As the curing accelerator used in the present invention, any one can be used as long as it promotes the curing reaction between the epoxy group and the phenolic hydroxyl group, and those generally used for a sealing material can be used. For example, 1,8-diazabicyclo (5,4,1) undecene-7, triphenylphosphine, 2-methylimidazole, tetraphenylphosphonium / tetraphenylborate and the like can be mentioned, and these may be used alone or in combination. .
[0012]
As the inorganic filler used in the present invention, those generally used for a sealing material can be used. For example, fused silica, crystalline silica, talc, alumina, silicon nitride and the like can be mentioned, and these may be used alone or in combination. The amount of the inorganic filler is preferably from 60 to 95% by weight, more preferably from 70 to 92% by weight, based on the balance between moldability and solder resistance. If the amount is less than 60% by weight, the soldering resistance decreases with an increase in the water absorption. If the amount exceeds 95% by weight, problems such as wire sweep and pad shift are caused.
[0013]
In the present invention, in addition to the components (A) to (D), if necessary, a coloring agent such as a coupling agent, carbon black, a flame retardant such as a brominated epoxy resin or antimony oxide, a silicone oil, a silicone rubber or the like may be used. A stress agent, a release agent such as a natural wax or a synthetic wax, or the like can be blended.
In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor element using the epoxy resin molding material of the present invention, it is only necessary to cure and mold by a molding method such as transfer molding, compression molding and injection molding.
[0014]
【Example】
Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
Example 1
6.54 parts by weight of biphenyl type epoxy resin (manufactured by Japan Epoxy Resins Co., Ltd., YX4000, epoxy equivalent: 186), 3.71 parts by weight of phenol novolak resin (hydroxyl equivalent 104), 0.25 parts by weight of triphenylphosphine, spherical melting 89 parts by weight of silica (average particle size: 23 microns), 0.3 parts by weight of carnauba wax, and 0.2 parts by weight of carbon black are uniformly mixed by a Henschel mixer, and the mixture is melted for 2 minutes with a hot roll at 95 to 105 ° C. The kneaded product of the first step was used. Subsequently, the shear rate of the same hot roll (set the roll rotation speed at 10 rpm on the high-speed side, 9 rpm on the low-speed side, and the pitch at 1.5 mm) was set to 13.3 / s, and kneading was further performed for 2 minutes to perform kneading in the second step. This was cooled and pulverized to obtain an epoxy resin molding material.
[0015]
Evaluation method: Spiral flow: Using a mold for measuring spiral flow according to EMMI-1-66, the measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes. Spiral flow is a parameter of fluidity, and a larger value indicates better fluidity. The unit is cm.
・ Variations in the number of voids and void size Forty of the above multi-pot type 160pQFP were molded from the above epoxy resin molding material under the conditions of a mold temperature of 175 ° C, a preheating of the molding material of 3 seconds, an injection time of 8 seconds, and a sealing pressure of 6.9 MPa. After the molding, the number of voids having a size of 10 mils or more on the package surface was counted with a microscope.
Under the same molding conditions, complete injection is not performed (stop at 6 seconds out of 8 seconds in total injection time). After fully curing in the mold, the package surface is polished, and voids near the gate are removed from above the package. Ten were randomly selected, the size in the major axis direction was measured, and the standard deviation was used as the variation in the void size.
[0016]
Examples 2 to 4, Comparative Examples 1 to 4
Example 2 Example 2 was repeated except that the same composition as in Example 1 was used, and the number of revolutions and pitch of the hot rolls in the second step of Example 1 were set to the values shown in Table 1 and were heated and melted at the shear rate shown in Table 1. In the same manner as in Example 1, an epoxy resin molding material was obtained, and evaluated in the same manner as in Example 1. Table 1 shows the results.
[0017]
[Table 1]
Figure 2004114561
[0018]
If the variation in the size of the voids during molding is reduced, the number of voids will also be reduced. By reducing the variation in the void size, bonding between voids during molding can be suppressed, and a semiconductor device with few voids can be obtained.
[0019]
【The invention's effect】
According to the present invention, an epoxy resin molding material in which air bubbles are uniformly dispersed is obtained, and a semiconductor device sealed with the epoxy resin molding material has few voids and is industrially useful.

Claims (2)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤及び(D)無機充填材を必須成分とし、前記各成分を混合機で混合する工程、熱ロールで加熱溶融して加熱溶融物を得る第1工程、続けて前記加熱溶融物を熱ロールで剪断速度40/s以下で加熱溶融する第2工程を含むことを特徴とする半導体封止用エポキシ樹脂成形材料の製造方法。(A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator and (D) an inorganic filler as essential components, a step of mixing the above components with a mixer, and heating and melting with a hot roll to heat and melt. A method for producing an epoxy resin molding material for semiconductor encapsulation, comprising: a first step of obtaining a product; and a second step of subsequently heating and melting the heated melt with a hot roll at a shear rate of 40 / s or less. 請求項1記載の製造方法で得られるエポキシ樹脂成形材料を用いて半導体素子を封止してなることを特徴とする半導体装置。A semiconductor device comprising a semiconductor element encapsulated with an epoxy resin molding material obtained by the method according to claim 1.
JP2002282493A 2002-09-27 2002-09-27 Method for producing epoxy resin molding material of thermosetting resin composition and semiconductor device Pending JP2004114561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002282493A JP2004114561A (en) 2002-09-27 2002-09-27 Method for producing epoxy resin molding material of thermosetting resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002282493A JP2004114561A (en) 2002-09-27 2002-09-27 Method for producing epoxy resin molding material of thermosetting resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004114561A true JP2004114561A (en) 2004-04-15

Family

ID=32276627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282493A Pending JP2004114561A (en) 2002-09-27 2002-09-27 Method for producing epoxy resin molding material of thermosetting resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004114561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506881A (en) * 2013-01-14 2016-03-07 キャボット コーポレイションCabot Corporation Method and apparatus for processing of elastomer composites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506881A (en) * 2013-01-14 2016-03-07 キャボット コーポレイションCabot Corporation Method and apparatus for processing of elastomer composites

Similar Documents

Publication Publication Date Title
JP2002322243A (en) Method of production for epoxy resin composition and semiconductor device
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP3009027B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
JP2004114561A (en) Method for producing epoxy resin molding material of thermosetting resin composition and semiconductor device
JP2003277585A (en) Epoxy resin composition and semiconductor device
JP2001040182A (en) Epoxy resin composition for sealing semiconductor and semiconductor apparatus using the same
JP3540628B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP2002012654A (en) Epoxy resin composition for sealing semiconductor
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP3919162B2 (en) Epoxy resin composition and semiconductor device
JP3957944B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP2991847B2 (en) Resin composition for semiconductor encapsulation
JPH05267371A (en) Resin-sealed type semiconductor device
JP4850599B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP4380237B2 (en) Thermosetting resin composition epoxy resin composition and semiconductor device
JP2008007562A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained by using the same
JP2811933B2 (en) Epoxy resin composition for sealing
JP2000273154A (en) Epoxy resin composition and semiconductor device
JP2001261936A (en) Epoxy resin composition and semiconductor device
JP3478380B2 (en) Epoxy resin composition and semiconductor device
JP4362885B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP4013049B2 (en) Epoxy resin composition for sealing and resin-sealed semiconductor device
JPH10130469A (en) Epoxy resin composition