JP2004114015A - Exhaust gas cleaning catalyst and method of evaluating its cleaning capacity - Google Patents

Exhaust gas cleaning catalyst and method of evaluating its cleaning capacity Download PDF

Info

Publication number
JP2004114015A
JP2004114015A JP2002285206A JP2002285206A JP2004114015A JP 2004114015 A JP2004114015 A JP 2004114015A JP 2002285206 A JP2002285206 A JP 2002285206A JP 2002285206 A JP2002285206 A JP 2002285206A JP 2004114015 A JP2004114015 A JP 2004114015A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
purification
layer
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002285206A
Other languages
Japanese (ja)
Other versions
JP4320537B2 (en
Inventor
Takahiko Fujiwara
藤原 孝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002285206A priority Critical patent/JP4320537B2/en
Publication of JP2004114015A publication Critical patent/JP2004114015A/en
Application granted granted Critical
Publication of JP4320537B2 publication Critical patent/JP4320537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning catalyst in which a catalytic metal can be activated in a period of time as short as possible from a low-temperature zone and to provide a method of evaluating the cleaning activity of this catalyst accurately in the low-temperature zone. <P>SOLUTION: A catalyst depositing layer is composed of an oxide satisfying the expression: C<SB>1</SB><SP>2</SP>/λ<SB>1</SB>≤0.04, wherein C<SB>1</SB>is heat capacity; λ<SB>1</SB>is thermal conductivity. The heat energy of exhaust gas is efficiently absorbed in the catalyst depositing layer and a noble metal is warmed up rapidly to the activated temperature by the exhaust gas. Therefore, the time until the catalyst exhibits satisfactory activity is shortened even when an engine is started and subsequently the cleaning ability of the catalyst is improved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車エンジンなどの内燃機関から排出される排ガスを効率よく浄化できる排ガス浄化用触媒と、その浄化能の評価方法に関する。
【0002】
【従来の技術】
自動車の排気系には酸化触媒,三元触媒,NO 吸蔵還元型触媒などの排ガス浄化用触媒が搭載され、排ガス中のHC,CO,NO などの有害成分を浄化している。これらの排ガス浄化用触媒はPtなどの貴金属を触媒金属として担持し、その触媒作用によりHC,COを酸化して浄化し、NO を還元して浄化している。
【0003】
ところがPtなどの触媒金属は、低温域では触媒活性が発現されず、所定の活性化温度以上で触媒活性を発現する。そのため始動時などにおいては、排ガス温度が触媒金属の活性化温度まで上昇するまでの間は排ガス中の有害成分を浄化することが困難である。しかしながら近年では、環境問題意識の高まりから排ガス規制がさらに強化され、排ガス浄化用触媒においては、始動時からできるだけ短時間で触媒金属を活性化させることが求められている。
【0004】
そこで、できるだけ高温の排ガスが排ガス浄化用触媒に流入するように、エンジン直下に排ガス浄化用触媒を配置することが行われている。また排ガス浄化用触媒は外筒に収納された状態で配置されるので、排ガス浄化用触媒と外筒との間に断熱材を介在させて排ガス浄化用触媒が冷却されにくくすることも行われている。このように構成することにより、高温の排ガスが直ちに排ガス浄化用触媒に流入し、また熱伝導によって排ガス浄化用触媒の熱が外部に逃げるのが防止されるため、排ガスの熱を利用して排ガス浄化用触媒を加熱することができ、暖機が促進される。
【0005】
一方、排ガス浄化用触媒側の対策としては、排ガス流入側に触媒金属を多く担持させることや、触媒金属を微細に高分散担持して活性点を増大させることなどが行われている。
【0006】
しかしながらいずれの対策も一長一短があり、始動時などの低温域からできるだけ短時間で触媒金属を活性化させて早期に浄化活性を発現させることを満足させるには至っていない。
【0007】
また排ガス浄化用触媒の浄化能の指標としては、50%浄化温度が一般に用いられている。例えば酸化触媒によるHCの浄化率は、低温域ではゼロであるが、温度が上昇するにつれて上昇し、排ガス温度が 400℃以上ではほぼ 100%の浄化率となる。そこでHCの浄化率が50%になる温度を測定してHC50%浄化温度とし、HC50%温度が低いほど低温域におけるHC浄化能が高いと評価している。
【0008】
しかしながら、温度を横軸に、浄化率を縦軸にとって実際の浄化挙動をプロットした場合に、ある温度で急激に立ち上がる曲線を描くものと、温度上昇とともになだらかにHC浄化率が上昇するものの比較などでは、50%浄化温度による評価では低温域における浄化能を正しく評価することは困難であった。
【0009】
【特許文献1】特許第3235640号
【特許文献2】特開平09−299797号
【特許文献3】特開平08−038898号
【0010】
【発明が解決しようとする課題】
本発明はこのような事情に鑑みてなされたものであり、低温域からできるだけ短時間で触媒金属を活性化でき低温域における浄化活性が高い排ガス浄化用触媒を提供するとともに、その低温域における浄化活性を正確に評価できる評価方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決する本発明の排ガス浄化用触媒の特徴は、基材と、基材の表面に形成された触媒担持層と、触媒担持層に担持された貴金属と、を含んでなる排ガス浄化用触媒であって、触媒担持層は、熱容量をC 、熱伝導率をλ としたとき、C /λ ≦0.04を満たす酸化物よりなることにある。
【0012】
上記排ガス浄化用触媒において、触媒担持層と基材の間には、熱容量をC 、熱伝導率をλ としたとき、C ×λ ≦10を満たす酸化物よりなる下層を有することが望ましく、下層の酸化物はさらにC /λ ≦0.04を満たすことが望ましい。また触媒担持層には、CeO−ZrO複合酸化物を含むことが望ましい。
【0013】
そして本発明の浄化能の評価方法の特徴は、基材と、基材の表面に形成された触媒担持層と、触媒担持層に担持された貴金属と、を含んでなる排ガス浄化用触媒の浄化能の評価方法であって、触媒担持層を構成する酸化物の熱容量をC 、熱伝導率をλ としたとき、C /λ ≦0.04のときに浄化能が高いと評価することにある。
【0014】
本発明の評価方法において、触媒担持層と基材の間には、熱容量がC 、熱伝導率がλ の酸化物よりなる下層を備え、C ×λ ≦10のときにさらに浄化能が高いと評価することも好ましい。
【0015】
【発明の実施の形態】
本発明にいう熱容量Cは次元がJ/g・K(J:ジュール,g:グラム,K:ケルビン)で表されるものであり、熱伝導率λは次元がW/m・K(W:ワット,m:メートル,K:ケルビン)で表されるものである。
【0016】
本発明の排ガス浄化用触媒では、熱容量をC 、熱伝導率をλ としたとき、C /λ ≦0.04を満たす酸化物よりなる触媒担持層を有している。この酸化物は熱伝導率λ が高く、熱容量C が小さいため、排ガスの熱エネルギーが触媒担持層に効率よく吸収され、排ガスによって速やかに貴金属の活性化温度まで暖機される。したがって始動時などにおいても触媒活性が発現するまでの時間が短縮され、その結果、浄化能が向上する。C  /λ >0.04では、上記作用効果の発現が困難である。
【0017】
触媒担持層に含まれる酸化物は、25℃における熱容量C が 0.2〜 1.2J/g・Kの範囲が好ましく、25℃における熱伝導率λ が 0.8〜70W/m・Kの範囲が好ましい。C < 0.2J/g・Kであったり、λ >70W/m・Kであるような酸化物には、触媒担持層として適するものが存在しない。またC > 1.2J/g・Kであったり、λ < 0.8W/m・Kであるような酸化物では、C /λ ≦0.04を満たすことが困難である。
【0018】
/λ ≦0.04を満たす酸化物の種としては、アルミナ,ジルコニア,チタニア,セリア,シリカ−アルミナ,シリカなどの単体あるいは複合酸化物から選ばれるものを単独で、あるいは複数種類混合して用いることができる。複数種混合した場合には、混合物の熱容量及び熱伝導率がC /λ ≦0.04を満たせばよい。中でもCeO−ZrO複合酸化物を含むことが特に好ましい。CeO−ZrO複合酸化物は酸素吸蔵放出能が高く、その安定性にも優れているため、HC及びCOの浄化活性が特に向上する。そしてC /λ ≦0.04を満たすCeO−ZrO複合酸化物を含むことで、低温域におけるHC及びCOの浄化能が高く、その高い浄化能を長期間維持することが可能となる。
【0019】
CeO−ZrO複合酸化物は、触媒担持層に20重量%以上含まれることが望ましい。この酸化物の含有量が20重量%未満であると、酸素吸蔵放出能が不足して排ガス雰囲気の変動を吸収することが困難となりHC及びCOの浄化能が低下する。
【0020】
基材としては、コーディエライトなどの耐熱性セラミックス製、あるいは金属製のものを用いることができ、その形状はペレット状、ハニカム状、フォーム状など従来用いられているものを用いることができる。
【0021】
排ガス浄化用触媒の暖機性には、触媒担持層の形成量も関係する。したがって触媒担持層は、基材の1リットルあたり 100〜 300g形成することが望ましい。触媒担持層の形成量がこの範囲より少ないと、暖機性には貢献するものの、貴金属の担持密度が増大するため高温耐熱時に貴金属の粒成長が顕著となり耐熱性が低下する。また触媒担持層の形成量がこの範囲より多くなると、暖機性が低下するとともに、通気抵抗が増大してしまう。
【0022】
触媒担持層に担持される貴金属としては、Pt,Rh,Pd,Irなどから選択して用いることができ、単独で担持してもよいし複数種担持することもできる。その担持量は、基材1Lあたり 0.1〜10g程度と従来と同様でよい。またNO 吸蔵還元型触媒であれば、貴金属と共にアルカリ金属,アルカリ土類金属及び希土類元素から選択されるNO 吸蔵材が担持される。
【0023】
触媒担持層と基材の間には、熱容量をC 、熱伝導率をλ としたとき、C ×λ ≦10を満たす酸化物よりなる下層を有することが望ましい。このように熱容量が少なくかつ熱伝導率が高い酸化物よりなる下層を有することにより、触媒担持層の熱エネルギーが基材に奪われるのを抑制でき、かつ下層自体も暖機性に優れるため、コート層全体の暖機性を高く維持することができる。なお下層を構成する酸化物も、C /λ ≦0.04を満たすことが特に好ましい。
【0024】
上記のように二層構造のコート層とする場合、下層のコート量は基材の1リットルあたり30〜 200gとすることが望ましい。下層の形成量がこの範囲より少ないと上記作用の発現が困難となり、下層の形成量がこの範囲より多くなると、暖機性が低下するようになる。なお前述した理由と同様の理由により、下層と触媒担持層の合計で基材の1リットルあたり 100〜 300gとすることが望ましい。
【0025】
下層のC ×λ ≦10を満たす酸化物としては、アルミナ,ジルコニア,チタニア,セリア,シリカ−アルミナ,シリカなどの単体あるいは複合酸化物から選ばれるものを単独で、あるいは複数種類混合して用いることができる。複数種混合した場合には、混合物の熱容量及び熱伝導率がC ×λ ≦10を満たせばよい。中でもCeO−ZrO複合酸化物を含むことが特に好ましい。CeO−ZrO複合酸化物は酸素吸蔵放出能が高く、その安定性にも優れているため、HC及びCOの浄化活性が特に向上する。そしてC ×λ ≦10を満たすCeO−ZrO複合酸化物を含むことで、低温域におけるHC及びCOの浄化能が高く、その高い浄化能を長期間維持することが可能となる。
【0026】
CeO−ZrO複合酸化物は、下層に20重量%以上含まれることが望ましい。この酸化物の含有量が20重量%未満であると、酸素吸蔵放出能が不足して排ガス雰囲気の変動を吸収することが困難となりHC及びCOの浄化能が低下する。
【0027】
下層には貴金属を担持しなくてもよいが、触媒担持層と同様に貴金属を担持することが好ましい。このようにすれば触媒担持層の貴金属の担持密度が増大するのを抑制でき、貴金属の粒成長を抑制することができる。
【0028】
そして本発明の浄化能の評価方法では、触媒担持層を構成する酸化物の熱容量をC 、熱伝導率をλ としたとき、C /λ ≦0.04のときに浄化能が高いと評価している。この評価方法を用いることにより、従来の50%浄化温度を指標とした評価方法に比べて、始動時など低温域から短時間の間の浄化能をより正確に評価することができ、実際のエミッションをより正確に推定することができる。したがって排ガスやモデルガスを用いて実験することなく排ガス浄化用触媒の浄化能を評価することができ、排ガス浄化用触媒の開発期間を大きく短縮することが可能となる。
【0029】
触媒担持層を構成する酸化物の熱容量C と熱伝導率λ を測定するには、触媒担持層を掻き取り、比熱測定装置などを用いて行うことができる。
【0030】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明する。
【0031】
(実施例1)
Al粉末 100重量部と、CeO−ZrO複合酸化物粉末(モル比Ce/Zr=65/35)50重量部と、バインダーとしてのアルミナゾル(アルミナ含有量70重量%)5重量部、イオン交換水 100重量部を混合し、ボールミルにて湿式粉砕してスラリーを調製した。
【0032】
一方、コーディエライト製のハニカム基材(体積 1.1L、セル密度 400セル/in )を用意し、上記スラリーに浸漬後に引き上げて余分なスラリーを吸引除去した後、 250℃で1時間乾燥し 500℃で1時間焼成してコート層を形成した。コート層はハニカム基材1Lあたり 200g形成された。
【0033】
このコート層を掻き取り、レーザフラッシュ法で25℃における熱伝導率(λ )を、乾燥試料の重量と比熱より25℃における熱容量(C )を測定した。そしてC /λ を算出し、結果を触媒Aとして表1に示す。
【0034】
このコート層をもつハニカム基材を、所定濃度のジニトロジアンミン白金水溶液に浸漬し、引き上げて余分な水滴を吹き払った後、 250℃で1時間乾燥してコート層にPtを担持した。次いで所定濃度の硝酸ロジウム水溶液に浸漬し、引き上げて余分な水滴を吹き払った後、 250℃で1時間乾燥してコート層にRhを担持した。Ptの担持量はコート層に対して 0.7重量%であり、Rhの担持量はコート層に対して 0.2重量%である。こうして触媒Aを調製した。
【0035】
Al粉末とCeO−ZrO複合酸化物粉末との混合比を重量比で1:1としたこと以外は触媒Aと同様にして、触媒Bを調製した。また触媒Aと同様にして熱容量(C )と熱伝導率(λ )を測定した後にC /λ を算出し、結果を表1に示す。
【0036】
CeO−ZrO複合酸化物粉末として、モル比Ce/Zr=50/50のものを用い、 Al粉末とCeO−ZrO複合酸化物粉末との混合比を重量比で1:1としたこと以外は触媒Aと同様にして、触媒Cを調製した。また触媒Aと同様にして熱容量(C )と熱伝導率(λ )を測定した後にC /λ を算出し、結果を表1に示す。
【0037】
CeO−ZrO複合酸化物粉末として、モル比Ce/Zr=25/75のものを用い、 Al粉末とCeO−ZrO複合酸化物粉末との混合比を重量比で1:2としたこと以外は触媒Aと同様にして、触媒Dを調製した。また触媒Aと同様にして熱容量(C )と熱伝導率(λ )を測定した後にC /λ を算出し、結果を表1に示す。
【0038】
CeO−ZrO複合酸化物粉末として、モル比Ce/Zr=25/75のものを用い、 Al粉末とCeO−ZrO複合酸化物粉末との混合比を重量比で1:2としたこと以外は触媒Aと同様にして、触媒Eを調製した。また触媒Aと同様にして熱容量(C )と熱伝導率(λ )を測定した後にC /λ を算出し、結果を表1に示す。
【0039】
CeO−ZrO複合酸化物粉末として、モル比Ce/Zr=25/75のものを用い、 Al粉末とCeO−ZrO複合酸化物粉末との混合比を重量比で1:3としたこと以外は触媒Aと同様にして、触媒Fを調製した。また触媒Aと同様にして熱容量(C )と熱伝導率(λ )を測定した後にC /λ を算出し、結果を表1に示す。
【0040】
CeO−ZrO複合酸化物粉末として、モル比Ce/Zr=15/85のものを用い、 Al粉末とCeO−ZrO複合酸化物粉末との混合比を重量比で1:3としたこと以外は触媒Aと同様にして、触媒Gを調製した。また触媒Aと同様にして熱容量(C )と熱伝導率(λ )を測定した後にC /λ を算出し、結果を表1に示す。
【0041】
【表1】

Figure 2004114015
【0042】
上記のようにして得られた触媒をそれぞれ排気量3Lのガソリンエンジンの排気系に搭載し、ストイキ雰囲気で燃焼された排ガスを触媒入りガス温度 900℃で50時間流通させるエージングを行った。そしてエージング後に上記エンジンを2000 rpm、吸気管負圧 40kPa、A/F=14.6の条件にて運転し、始動時から各触媒のHC浄化率を温度と共に測定して、50%HC浄化温度を算出した。各触媒のC /λ に対する50%HC浄化温度の結果を図1に示す。
【0043】
一方、上記エンジンをLA#4モードで運転し、始動時から 120秒間に排出されたHC量を測定した。結果を図2に示す。
【0044】
図2から、触媒担持層のC /λ が小さい触媒ほど始動時から 120秒間に排出されたHC量が少なく、排出されたHC量はC /λ の増加量に対してほぼ直線的に増加していることが明らかであり、C /λ ≦0.04の範囲が好ましい値を示していることがわかる。しかし図1では、HC50%浄化温度の序列とC /λ の序列は全く一致していないことから、始動直後の浄化能を評価するには、HC50%浄化温度を指標とすることは好ましくなく、C /λ を指標とすることが望ましいことが明らかである。
【0045】
(実施例2)
ハニカム基材1Lあたり 100gのコート量としたこと以外は実施例1と同様のコート層(下層)が形成された、Ptの担持前の各コート付き基材(A〜G)を用意した。この下層の、50℃における熱容量(C )と熱伝導率(λ )は実施例1の各触媒A〜Gと同様であり、それから算出されたC ×λ を表2に示す。
【0046】
次に、触媒Bの調製時に用いた、 Al粉末とCeO−ZrO複合酸化物粉末との混合比を重量比で1:1とした混合粉末の所定量に、ジニトロジアンミン白金と硝酸ロジウムが所定濃度で溶解した水溶液の所定量とアルミナゾルの所定量を混合してスラリーを調製した。そして各コート付き基材(A〜G)をこのスラリーに浸漬し、引き上げて余分なスラリーを吸引除去した後、 250℃で1時間乾燥し500℃で1時間焼成して、下層の表面にそれぞれ触媒担持層を形成した。触媒担持層はハニカム基材1Lあたりそれぞれ 100g形成され、Ptの担持量は触媒担持層と下層の合計量に対して 0.7重量%であり、Rhの担持量は触媒担持層と下層の合計量に対して 0.2重量%である。こうして触媒A’〜G’を調製した。触媒担持層の50℃における熱容量(C )と熱伝導率(λ )は、実施例1の触媒Bと同様である。
【0047】
【表2】
Figure 2004114015
【0048】
得られた触媒A’〜G’について、実施例1と同様にしてエージングを行い、実施例1と同様にしてHC50%浄化温度を測定した。結果を図3に示す。また実施例1と同様にして、始動時から 120秒間に排出されたHC量を測定し、結果を図4に示す。
【0049】
図4から、下層のC ×λ が小さい触媒ほど始動時から 120秒間に排出されたHC量が少なく、排出されたHC量はC ×λ の増加量に対してほぼ直線的に増加していることが明らかであり、C ×λ ≦10の範囲が好ましい値を示していることがわかる。しかし図3では、HC50%浄化温度の序列とC ×λ の序列は一致しておらず、C ×λ の序列に無関係にほぼ一定となっていることから、始動直後の浄化能を評価するには、HC50%浄化温度を指標とすることは好ましくなく、C ×λ を指標とすることが望ましいことが明らかである。
【0050】
【発明の効果】
すなわち本発明の排ガス浄化用触媒によれば、始動時などの低温域において触媒活性が発現するまでの時間が短縮され、その結果、浄化能が向上する。
【0051】
また本発明の浄化能の評価方法によれば、従来の50%浄化温度を指標とした評価方法に比べて、始動時など低温域から短時間の間の浄化能をより正確に評価することができ、実際のエミッションをより正確に推定することができる。したがって排ガスやモデルガスを用いて実験することなく排ガス浄化用触媒の浄化能を評価することができ、排ガス浄化用触媒の開発期間を大きく短縮することが可能となる。
【図面の簡単な説明】
【図1】実施例1におけるC /λ とHC50%浄化温度との関係を示すグラフである。
【図2】実施例1におけるC /λ と始動時〜 120秒間のHC排出量との関係を示すグラフである。
【図3】実施例2におけるC ×λ とHC50%浄化温度との関係を示すグラフである。
【図4】実施例2におけるC ×λ と始動時〜 120秒間のHC排出量との関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst capable of efficiently purifying exhaust gas discharged from an internal combustion engine such as an automobile engine, and a method for evaluating the purifying ability thereof.
[0002]
[Prior art]
Oxidation catalyst in an exhaust system of an automobile, a three-way catalyst, an exhaust gas purifying catalyst such as the NO x storage reduction catalyst is mounted, and purify HC in exhaust gas, CO, harmful components such as NO x. The noble metal such as those of the exhaust gas purifying catalyst is Pt supported as a catalyst metal, HC, by oxidizing CO and purified by the catalytic action, and purifying by reducing NO x.
[0003]
However, catalytic metals such as Pt do not exhibit catalytic activity in a low temperature range, and exhibit catalytic activity at a predetermined activation temperature or higher. Therefore, at the time of starting or the like, it is difficult to purify harmful components in the exhaust gas until the exhaust gas temperature rises to the activation temperature of the catalytic metal. However, in recent years, exhaust gas regulations have been further strengthened due to increased awareness of environmental issues, and it has been demanded for an exhaust gas purifying catalyst to activate the catalytic metal in as short a time as possible from the start.
[0004]
Therefore, an exhaust gas purifying catalyst is disposed immediately below the engine so that the exhaust gas having the highest possible temperature flows into the exhaust gas purifying catalyst. In addition, since the exhaust gas purifying catalyst is arranged in a state housed in the outer cylinder, it is also possible to interpose a heat insulating material between the exhaust gas purifying catalyst and the outer cylinder to make it difficult for the exhaust gas purifying catalyst to be cooled. I have. With this configuration, the high-temperature exhaust gas immediately flows into the exhaust gas purification catalyst, and the heat of the exhaust gas purification catalyst is prevented from escaping to the outside by heat conduction. The purification catalyst can be heated, and warm-up is promoted.
[0005]
On the other hand, as a countermeasure on the exhaust gas purifying catalyst side, a large amount of a catalytic metal is supported on an exhaust gas inflow side, and an active point is increased by finely dispersing and supporting a catalytic metal finely.
[0006]
However, each of these measures has advantages and disadvantages, and it has not yet been satisfied that the catalytic metal is activated in a short time as possible from a low temperature range such as at the time of start-up, so that the purification activity can be quickly expressed.
[0007]
Also, as an index of the purification ability of the exhaust gas purification catalyst, a 50% purification temperature is generally used. For example, the purification rate of HC by the oxidation catalyst is zero in a low temperature range, but increases as the temperature rises. When the exhaust gas temperature is 400 ° C. or higher, the purification rate becomes almost 100%. Therefore, the temperature at which the HC purification rate becomes 50% is measured and set as the HC 50% purification temperature, and it is evaluated that the lower the HC 50% temperature, the higher the HC purification ability in a low temperature range.
[0008]
However, when plotting the actual purification behavior with the temperature on the horizontal axis and the purification rate on the vertical axis, a comparison is made between a curve that suddenly rises at a certain temperature and a curve in which the HC purification rate rises gently with increasing temperature. Then, it was difficult to correctly evaluate the purifying ability in a low temperature range by the evaluation based on the 50% purification temperature.
[0009]
[Patent Document 1] Japanese Patent No. 3235640 [Patent Document 2] Japanese Patent Application Laid-Open No. 09-299797 [Patent Document 3] Japanese Patent Application Laid-Open No. 08-038889 [0010]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and provides an exhaust gas purifying catalyst which can activate a catalytic metal from a low temperature range in a short time as possible and has a high purification activity in a low temperature range, and also has a purification function in the low temperature range. An object of the present invention is to provide an evaluation method capable of accurately evaluating an activity.
[0011]
[Means for Solving the Problems]
The feature of the exhaust gas purifying catalyst of the present invention that solves the above problems is that the exhaust gas purifying catalyst comprises a base material, a catalyst supporting layer formed on the surface of the base material, and a noble metal supported on the catalyst supporting layer. a catalyst, catalyst supporting layer, C 1 heat capacity, when the thermal conductivity was lambda 1, is to become an oxide satisfying C 1 2 / λ 1 ≦ 0.04 .
[0012]
In the exhaust gas purifying catalyst, a lower layer made of an oxide that satisfies C 2 2 × λ 2 ≦ 10 is provided between the catalyst supporting layer and the base material, where the heat capacity is C 2 and the thermal conductivity is λ 2. it is desirable, oxides underlayers it is desirable to further satisfy C 2 2 / λ 2 ≦ 0.04 . Further, it is desirable that the catalyst supporting layer contains a CeO 2 -ZrO 2 composite oxide.
[0013]
The method for evaluating the purification ability of the present invention is characterized in that the purification of an exhaust gas purification catalyst comprising a base material, a catalyst support layer formed on the surface of the base material, and a noble metal supported on the catalyst support layer. a method for evaluating ability, C 1 the heat capacity of the oxide constituting the catalyst carrier layer, when the thermal conductivity was lambda 1, the high purification performance when the C 1 2 / λ 1 ≦ 0.04 To evaluate.
[0014]
In the evaluation method of the present invention, between the catalyst-carrying layer and the substrate, the heat capacity C 2, comprises a lower thermal conductivity is made of oxide of lambda 2, further when the C 2 2 × λ 2 ≦ 10 It is also preferable to evaluate that the purification ability is high.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the heat capacity C has a dimension expressed by J / g · K (J: joule, g: gram, K: Kelvin), and the thermal conductivity λ has a dimension of W / m · K (W: Watts, m: meters, K: kelvin).
[0016]
The exhaust gas purifying catalyst of the present invention, C 1 heat capacity, when the thermal conductivity was lambda 1, and a catalyst supporting layer made of an oxide that satisfies C 1 2 / λ 1 ≦ 0.04 . Since this oxide has a high thermal conductivity λ 1 and a small heat capacity C 1 , the thermal energy of the exhaust gas is efficiently absorbed by the catalyst supporting layer, and the exhaust gas quickly warms up to the activation temperature of the noble metal. Therefore, even at the time of starting or the like, the time until the catalytic activity is developed is shortened, and as a result, the purification performance is improved. In C 1 2 / λ 1> 0.04 , the expression of the advantageous effects is difficult.
[0017]
The oxide contained in the catalyst supporting layer preferably has a heat capacity C 1 at 25 ° C. in the range of 0.2 to 1.2 J / g · K, and a thermal conductivity λ 1 at 25 ° C. of 0.8 to 70 W / m · K. The range of K is preferred. There is no oxide suitable for the catalyst-supporting layer in oxides having C 1 <0.2 J / g · K or λ 1 > 70 W / m · K. The or a C 1> 1.2J / g · K , the oxide such that λ 1 <0.8W / m · K , it is difficult to satisfy C 1 2 / λ 1 ≦ 0.04 .
[0018]
The seeds oxide satisfying C 1 2 / λ 1 ≦ 0.04 , alumina, zirconia, titania, ceria, silica - alumina, those selected from single or composite oxides such as silica alone or in a plurality of types, They can be used in combination. When mixed multiple species, heat capacity and thermal conductivity of the mixture should satisfy C 1 2 / λ 1 ≦ 0.04 . Among them, it is particularly preferable to include a CeO 2 —ZrO 2 composite oxide. Since the CeO 2 -ZrO 2 composite oxide has a high oxygen storage / release capability and is excellent in stability, the activity of purifying HC and CO is particularly improved. Then, by including the CeO 2 -ZrO 2 composite oxide satisfying C 1 2 / λ 1 ≦ 0.04 , can purification performance of HC and CO in low-temperature region is high, maintains the high purification performance long term It becomes.
[0019]
CeO 2 -ZrO 2 composite oxide is preferably contained in the catalyst supporting layer 20% by weight or more. If the content of this oxide is less than 20% by weight, the oxygen storage / release capability is insufficient, making it difficult to absorb fluctuations in the exhaust gas atmosphere, and the HC and CO purification capabilities are reduced.
[0020]
As the base material, a heat-resistant ceramic material such as cordierite or a metal material can be used, and a conventionally used material such as a pellet, a honeycomb, or a foam can be used.
[0021]
The warming property of the exhaust gas purifying catalyst also depends on the amount of the catalyst supporting layer formed. Therefore, it is desirable to form the catalyst supporting layer in an amount of 100 to 300 g per liter of the substrate. If the formation amount of the catalyst supporting layer is less than this range, it contributes to the warm-up property, but the supporting density of the noble metal increases, so that the grain growth of the noble metal becomes remarkable at high temperature heat resistance and the heat resistance decreases. On the other hand, when the amount of the catalyst-supporting layer is larger than this range, the warm-up property is reduced and the airflow resistance is increased.
[0022]
The noble metal supported on the catalyst supporting layer can be selected from Pt, Rh, Pd, Ir, and the like, and can be used alone or in combination. The supporting amount may be about 0.1 to 10 g per liter of the substrate, which is the same as the conventional one. Also, if the NO x storage-reduction catalyst, an alkali metal with the precious metal, the NO x storage material selected from alkaline earth metals and rare earth elements is supported.
[0023]
Between the catalyst-carrying layer and the substrate, the heat capacity C 2, when the thermal conductivity was lambda 2, it is desirable to have a lower layer made of an oxide that satisfies C 2 2 × λ 2 ≦ 10 . By having the lower layer made of an oxide having a low heat capacity and a high thermal conductivity as described above, the heat energy of the catalyst supporting layer can be suppressed from being taken away by the base material, and the lower layer itself has excellent warm-up properties. Warmability of the entire coat layer can be kept high. It is particularly preferable that the oxide constituting the lower layer also satisfies C 2 2 / λ 2 ≦ 0.04.
[0024]
When the coating layer has a two-layer structure as described above, the coating amount of the lower layer is desirably 30 to 200 g per liter of the base material. When the formation amount of the lower layer is smaller than this range, it is difficult to exhibit the above-mentioned effect, and when the formation amount of the lower layer is larger than this range, the warm-up property is reduced. For the same reason as described above, the total of the lower layer and the catalyst supporting layer is desirably 100 to 300 g per liter of the base material.
[0025]
As the oxide satisfying C 2 2 × λ 2 ≦ 10 in the lower layer, an oxide selected from simple or composite oxides such as alumina, zirconia, titania, ceria, silica-alumina, and silica may be used alone or in combination of two or more. Can be used. When mixed multiple species, heat capacity and thermal conductivity of the mixture should satisfy C 2 2 × λ 2 ≦ 10 . Among them, it is particularly preferable to include a CeO 2 —ZrO 2 composite oxide. Since the CeO 2 -ZrO 2 composite oxide has a high oxygen storage / release capability and is excellent in stability, the activity of purifying HC and CO is particularly improved. By including the CeO 2 -ZrO 2 composite oxide satisfying C 2 2 × λ 2 ≦ 10, the purifying ability of HC and CO in a low temperature region is high, and the high purifying ability can be maintained for a long time. .
[0026]
It is desirable that the CeO 2 -ZrO 2 composite oxide be contained in the lower layer in an amount of 20% by weight or more. If the content of this oxide is less than 20% by weight, the oxygen storage / release capability is insufficient, making it difficult to absorb fluctuations in the exhaust gas atmosphere, and the HC and CO purification capabilities are reduced.
[0027]
The lower layer need not carry a noble metal, but preferably carries a noble metal in the same manner as the catalyst carrying layer. By doing so, it is possible to suppress an increase in the noble metal loading density in the catalyst supporting layer, and to suppress the grain growth of the noble metal.
[0028]
And in the evaluation method of the purification ability of the present invention, purification performance at the time of the C 1 to the heat capacity of the oxide constituting the catalyst carrier layer, when the thermal conductivity was λ 1, C 1 2 / λ 1 ≦ 0.04 Rate is high. By using this evaluation method, it is possible to more accurately evaluate the purification performance in a short time from a low temperature region, such as at the time of starting, as compared with a conventional evaluation method using a 50% purification temperature as an index. Can be more accurately estimated. Therefore, it is possible to evaluate the purifying ability of the exhaust gas purifying catalyst without conducting an experiment using the exhaust gas or the model gas, and it is possible to greatly shorten the development period of the exhaust gas purifying catalyst.
[0029]
The measurement of the heat capacity C 1 and the thermal conductivity λ 1 of the oxide constituting the catalyst supporting layer can be performed by scraping the catalyst supporting layer and using a specific heat measuring device or the like.
[0030]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0031]
(Example 1)
100 parts by weight of Al 2 O 3 powder, 50 parts by weight of CeO 2 -ZrO 2 composite oxide powder (molar ratio Ce / Zr = 65/35), and 5 parts by weight of alumina sol (alumina content 70% by weight) as a binder And 100 parts by weight of ion-exchanged water were mixed and wet-pulverized with a ball mill to prepare a slurry.
[0032]
On the other hand, a cordierite honeycomb substrate (volume: 1.1 L, cell density: 400 cells / in 2 ) was prepared, pulled up after dipping in the above slurry, suctioned off excess slurry, and dried at 250 ° C. for 1 hour. Then, it was baked at 500 ° C. for 1 hour to form a coat layer. The coating layer was formed in an amount of 200 g per liter of the honeycomb substrate.
[0033]
The coated layer was scraped off, and the thermal conductivity (λ 1 ) at 25 ° C. was measured by a laser flash method, and the heat capacity (C 1 ) at 25 ° C. was measured from the weight and specific heat of the dried sample. Then calculate the C 1 2 / lambda 1, shown in Table 1 the results as catalyst A.
[0034]
The honeycomb substrate having the coat layer was immersed in an aqueous solution of dinitrodiammine platinum having a predetermined concentration, pulled up to blow off excess water droplets, and dried at 250 ° C. for 1 hour to carry Pt on the coat layer. Next, the coated layer was immersed in a predetermined concentration of rhodium nitrate aqueous solution, pulled up and blown off excess water droplets, and dried at 250 ° C. for 1 hour to carry Rh on the coat layer. The supported amount of Pt was 0.7% by weight based on the coat layer, and the supported amount of Rh was 0.2% by weight based on the coat layer. Thus, catalyst A was prepared.
[0035]
A catalyst B was prepared in the same manner as the catalyst A, except that the mixing ratio of the Al 2 O 3 powder and the CeO 2 -ZrO 2 composite oxide powder was 1: 1 by weight. The heat capacity in the same manner as catalyst A (C 1) and the thermal conductivity (lambda 1) to calculate the C 1 2 / lambda 1 after measuring and the results are shown in Table 1.
[0036]
The CeO 2 -ZrO 2 composite oxide powder having a molar ratio of Ce / Zr = 50/50 was used, and the mixing ratio of the Al 2 O 3 powder and the CeO 2 -ZrO 2 composite oxide powder was 1: Except having changed to 1, it carried out similarly to catalyst A, and prepared catalyst C. The heat capacity in the same manner as catalyst A (C 1) and the thermal conductivity (lambda 1) to calculate the C 1 2 / lambda 1 after measuring and the results are shown in Table 1.
[0037]
A CeO 2 -ZrO 2 composite oxide powder having a molar ratio of Ce / Zr = 25/75 was used, and the mixing ratio of the Al 2 O 3 powder and the CeO 2 -ZrO 2 composite oxide powder was 1: A catalyst D was prepared in the same manner as the catalyst A except that the catalyst D was 2. The heat capacity in the same manner as catalyst A (C 1) and the thermal conductivity (lambda 1) to calculate the C 1 2 / lambda 1 after measuring and the results are shown in Table 1.
[0038]
A CeO 2 -ZrO 2 composite oxide powder having a molar ratio of Ce / Zr = 25/75 was used, and the mixing ratio of the Al 2 O 3 powder and the CeO 2 -ZrO 2 composite oxide powder was 1: A catalyst E was prepared in the same manner as the catalyst A except that the catalyst was set to 2. The heat capacity in the same manner as catalyst A (C 1) and the thermal conductivity (lambda 1) to calculate the C 1 2 / lambda 1 after measuring and the results are shown in Table 1.
[0039]
A CeO 2 -ZrO 2 composite oxide powder having a molar ratio of Ce / Zr = 25/75 was used, and the mixing ratio of the Al 2 O 3 powder and the CeO 2 -ZrO 2 composite oxide powder was 1: A catalyst F was prepared in the same manner as the catalyst A, except that the catalyst was set to 3. The heat capacity in the same manner as catalyst A (C 1) and the thermal conductivity (lambda 1) to calculate the C 1 2 / lambda 1 after measuring and the results are shown in Table 1.
[0040]
The CeO 2 -ZrO 2 composite oxide powder having a molar ratio of Ce / Zr = 15/85 was used, and the mixing ratio of the Al 2 O 3 powder and the CeO 2 -ZrO 2 composite oxide powder was 1: A catalyst G was prepared in the same manner as the catalyst A except that the catalyst was set to 3. The heat capacity in the same manner as catalyst A (C 1) and the thermal conductivity (lambda 1) to calculate the C 1 2 / lambda 1 after measuring and the results are shown in Table 1.
[0041]
[Table 1]
Figure 2004114015
[0042]
Each of the catalysts obtained as described above was mounted on an exhaust system of a gasoline engine having a displacement of 3 L, and aging was performed in which exhaust gas burned in a stoichiometric atmosphere was allowed to flow at a catalyst-containing gas temperature of 900 ° C. for 50 hours. After aging, the engine was operated under the conditions of 2000 rpm, negative pressure of the intake pipe of 40 kPa, and A / F = 14.6. From the start, the HC purification rate of each catalyst was measured together with the temperature. Was calculated. The results of 50% HC purification temperature for C 1 2 / lambda 1 of each catalyst shown in FIG.
[0043]
On the other hand, the engine was operated in the LA # 4 mode, and the amount of HC discharged for 120 seconds from the start was measured. FIG. 2 shows the results.
[0044]
From Figure 2, C 1 2 / λ HC amount less discharged to 1 120 seconds from the start smaller catalyst of the catalyst-carrying layer, HC amount discharged for increase of C 1 2 / lambda 1 it is clear that increases substantially linearly, it is understood that the scope of C 1 2 / λ 1 ≦ 0.04 indicates a preferred value. However, in Figure 1, since the order of hierarchy and C 1 2 / lambda 1 of HC50% purification temperature not at all coincide, to evaluate purification performance immediately after starting is to an index HC50% purification temperature not preferred, it is apparent that it is desirable to index the C 1 2 / λ 1.
[0045]
(Example 2)
Except that the coating amount was 100 g per liter of the honeycomb base material, each coated base material (A to G) before carrying Pt was prepared in which the same coating layer (lower layer) as in Example 1 was formed. The lower layer, shown heat capacity at 50 ° C. and (C 2) thermal conductivity (lambda 2) is the same as the catalyst A~G of Example 1, the C 2 2 × lambda 2 therefrom is calculated in Table 2 .
[0046]
Next, dinitrodiammine platinum and dinitrodiammineplatinum were added to a predetermined amount of the mixed powder used in the preparation of the catalyst B, in which the mixing ratio of the Al 2 O 3 powder and the CeO 2 -ZrO 2 composite oxide powder was 1: 1 by weight. A predetermined amount of an aqueous solution in which rhodium nitrate was dissolved at a predetermined concentration and a predetermined amount of alumina sol were mixed to prepare a slurry. Then, each coated substrate (A to G) is immersed in this slurry, pulled up, and the excess slurry is removed by suction. Then, it is dried at 250 ° C. for 1 hour and baked at 500 ° C. for 1 hour. A catalyst supporting layer was formed. The catalyst supporting layer is formed in an amount of 100 g per liter of the honeycomb substrate. The amount of Pt supported is 0.7% by weight based on the total amount of the catalyst supporting layer and the lower layer, and the amount of Rh supported is the total of the catalyst supporting layer and the lower layer. It is 0.2% by weight based on the amount. Thus, catalysts A ′ to G ′ were prepared. The heat capacity (C 1 ) and the thermal conductivity (λ 1 ) of the catalyst supporting layer at 50 ° C. are the same as those of the catalyst B of Example 1.
[0047]
[Table 2]
Figure 2004114015
[0048]
The obtained catalysts A ′ to G ′ were aged in the same manner as in Example 1, and the HC 50% purification temperature was measured in the same manner as in Example 1. The results are shown in FIG. Further, in the same manner as in Example 1, the amount of HC discharged for 120 seconds from the start was measured, and the results are shown in FIG.
[0049]
From Figure 4, lower C 2 2 × lambda HC amount less discharged to 2 120 seconds from the start smaller catalyst, HC amount discharged is substantially linear with increasing amounts of C 2 2 × lambda 2 manner it is apparent that has increased, it can be seen that the range of C 2 2 × λ 2 ≦ 10 indicates a preferred value. However, in FIG. 3, the order of the HC 50% purification temperature and the order of C 2 2 × λ 2 do not match, and are substantially constant regardless of the order of C 2 2 × λ 2 . to evaluate the cleaning ability, it is not preferable that an index HC50% purification temperature, it is apparent that it is desirable to index the C 2 2 × λ 2.
[0050]
【The invention's effect】
That is, according to the exhaust gas purifying catalyst of the present invention, the time required for the catalytic activity to be exhibited in a low temperature range such as at the time of starting is reduced, and as a result, the purifying ability is improved.
[0051]
Further, according to the purification ability evaluation method of the present invention, it is possible to more accurately evaluate the purification ability in a short time from a low temperature region, such as at the start, as compared with the conventional evaluation method using a 50% purification temperature as an index. It is possible to estimate the actual emission more accurately. Therefore, it is possible to evaluate the purifying ability of the exhaust gas purifying catalyst without conducting an experiment using the exhaust gas or the model gas, and it is possible to greatly shorten the development period of the exhaust gas purifying catalyst.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between C 2 2 / λ 2 and an HC 50% purification temperature in Example 1.
FIG. 2 is a graph showing the relationship between C 2 2 / λ 2 and the amount of HC discharged from the time of starting to 120 seconds in Example 1.
FIG. 3 is a graph showing a relationship between C 2 2 × λ 2 and an HC 50% purification temperature in Example 2.
FIG. 4 is a graph showing the relationship between C 2 2 × λ 2 and the amount of HC discharged from the time of starting up to 120 seconds in Example 2.

Claims (6)

基材と、該基材の表面に形成された触媒担持層と、該触媒担持層に担持された貴金属と、を含んでなる排ガス浄化用触媒であって、
該触媒担持層は、熱容量をC 、熱伝導率をλ としたとき、C /λ ≦0.04を満たす酸化物よりなることを特徴とする排ガス浄化用触媒。
A base material, a catalyst support layer formed on the surface of the base material, and a noble metal supported on the catalyst support layer, an exhaust gas purification catalyst comprising:
The catalyst carrying layer, C 1 heat capacity, when the thermal conductivity was lambda 1, an exhaust gas purifying catalyst characterized by comprising an oxide satisfying C 1 2 / λ 1 ≦ 0.04 .
前記触媒担持層と前記基材の間には、熱容量をC 、熱伝導率をλ としたとき、C ×λ ≦10を満たす酸化物よりなる下層を有する請求項1に記載の排ガス浄化用触媒。Between the substrate and the catalyst carrying layer, when the heat capacity was C 2, the thermal conductivity lambda 2, according to claim 1, comprising a lower layer formed of an oxide that satisfies C 2 2 × λ 2 ≦ 10 Exhaust gas purification catalyst. 前記酸化物は、さらにC /λ ≦0.04を満たす請求項2に記載の排ガス浄化用触媒。The oxide catalyst for exhaust gas purification according to claim 2, further satisfying a C 2 2 / λ 2 ≦ 0.04 . 前記触媒担持層にはCeO−ZrO複合酸化物を含む請求項1又は請求項2に記載の排ガス浄化用触媒。3. The exhaust gas purifying catalyst according to claim 1, wherein the catalyst supporting layer includes a CeO 2 —ZrO 2 composite oxide. 4. 基材と、該基材の表面に形成された触媒担持層と、該触媒担持層に担持された貴金属と、を含んでなる排ガス浄化用触媒の浄化能の評価方法であって、
該触媒担持層を構成する酸化物の熱容量をC 、熱伝導率をλ としたとき、C /λ ≦0.04のときに浄化能が高いと評価することを特徴とする浄化能の評価方法。
A substrate, a catalyst supporting layer formed on the surface of the substrate, and a noble metal supported on the catalyst supporting layer, a method for evaluating the purification performance of an exhaust gas purifying catalyst comprising:
C 1 the heat capacity of the oxide constituting the catalyst carrier layer, when the thermal conductivity was lambda 1, and evaluating the purifying ability when C 1 2 / λ 1 ≦ 0.04 is high Evaluation method of purification ability.
前記触媒担持層と前記基材の間には、熱容量がC 、熱伝導率がλ の酸化物よりなる下層を備え、C ×λ ≦10のときに浄化能が高いと評価する請求項5に記載の浄化能の評価方法。A lower layer made of an oxide having a heat capacity of C 2 and a thermal conductivity of λ 2 is provided between the catalyst supporting layer and the base material, and has a high purifying ability when C 2 2 × λ 2 ≦ 10. The method for evaluating purification ability according to claim 5.
JP2002285206A 2002-09-30 2002-09-30 Evaluation method of purification performance of exhaust gas purification catalyst Expired - Fee Related JP4320537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285206A JP4320537B2 (en) 2002-09-30 2002-09-30 Evaluation method of purification performance of exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285206A JP4320537B2 (en) 2002-09-30 2002-09-30 Evaluation method of purification performance of exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2004114015A true JP2004114015A (en) 2004-04-15
JP4320537B2 JP4320537B2 (en) 2009-08-26

Family

ID=32278570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285206A Expired - Fee Related JP4320537B2 (en) 2002-09-30 2002-09-30 Evaluation method of purification performance of exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4320537B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258648A (en) * 1987-04-15 1988-10-26 Mazda Motor Corp Catalyst for purifying exhaust gas
JPH06269682A (en) * 1993-03-22 1994-09-27 Nissan Motor Co Ltd Electric heating type catalyst for purifying exhaust gas
JPH08229395A (en) * 1995-02-24 1996-09-10 Mazda Motor Corp Exhaust gas purifying catalyst
JPH10296085A (en) * 1997-04-30 1998-11-10 Cataler Kogyo Kk Exhaust gas-purifying catalyst
JPH11333294A (en) * 1998-05-27 1999-12-07 Johnson Matthey Japan Inc Exhaust gas cleaning catalyst and exhaust gas cleaning
JP2000140639A (en) * 1998-11-06 2000-05-23 Cataler Corp Catalyst for purifying exhaust gas
JP2000312825A (en) * 1999-04-23 2000-11-14 Degussa Huels Ag High performance catalyst containing precious metal and manufacture thereof
JP2001070791A (en) * 1999-09-03 2001-03-21 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001104785A (en) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas
JP2003200062A (en) * 2001-10-26 2003-07-15 Denso Corp Catalyst for vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258648A (en) * 1987-04-15 1988-10-26 Mazda Motor Corp Catalyst for purifying exhaust gas
JPH06269682A (en) * 1993-03-22 1994-09-27 Nissan Motor Co Ltd Electric heating type catalyst for purifying exhaust gas
JPH08229395A (en) * 1995-02-24 1996-09-10 Mazda Motor Corp Exhaust gas purifying catalyst
JPH10296085A (en) * 1997-04-30 1998-11-10 Cataler Kogyo Kk Exhaust gas-purifying catalyst
JPH11333294A (en) * 1998-05-27 1999-12-07 Johnson Matthey Japan Inc Exhaust gas cleaning catalyst and exhaust gas cleaning
JP2000140639A (en) * 1998-11-06 2000-05-23 Cataler Corp Catalyst for purifying exhaust gas
JP2000312825A (en) * 1999-04-23 2000-11-14 Degussa Huels Ag High performance catalyst containing precious metal and manufacture thereof
JP2001070791A (en) * 1999-09-03 2001-03-21 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001104785A (en) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas
JP2003200062A (en) * 2001-10-26 2003-07-15 Denso Corp Catalyst for vehicle

Also Published As

Publication number Publication date
JP4320537B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4682151B2 (en) Exhaust gas purification catalyst
JP4935219B2 (en) Exhaust gas purification catalyst
JP5376261B2 (en) Exhaust gas purification catalyst
JP5807782B2 (en) Exhaust gas purification catalyst
JPWO2017163985A1 (en) Exhaust gas purification catalyst
JP6440771B2 (en) Exhaust gas purification catalyst device
JP6889252B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using it
EP3730203A1 (en) Exhaust gas purification catalyst
JP2004074138A (en) Catalyst for exhaust gas purification, and exhaust gas purification method
JP2004058013A (en) Purification catalyst for exhaust gas
JP3882627B2 (en) Exhaust gas purification catalyst
JP6735912B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2004298813A (en) Layered catalyst
WO2007055216A1 (en) Exhaust gas clean-up system and exhaust gas clean-up method
JP2002045702A (en) Catalyst for purifying exhaust gas
JP4459346B2 (en) Exhaust gas purification catalyst
JP2011089503A (en) Exhaust gas purification structure
JP2008036629A (en) Method for cleaning internal combustion engine exhaust gas
JP2001252565A (en) Exhaust gas cleaning catalyst
JP4320537B2 (en) Evaluation method of purification performance of exhaust gas purification catalyst
JP2003080081A (en) Catalyst for cleaning exhaust gas
JP4329467B2 (en) Catalyst carrier and method for producing the same
JP4503314B2 (en) Exhaust gas purification catalyst
JP4236488B2 (en) Exhaust gas purification catalyst
JP2010099632A (en) Apparatus for purifying exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees